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We discuss the chiral phase transition of hot and dense quark matter. We illustrate that the first-order

phase transition is generally favored at high baryon density and the repulsive vector-vector interaction

weakens the first-order phase transition. We use the Nambu–Jona-Lasinio model with the Polyakov loop

coupling for concreteness. We locate the QCD critical surface on the quark mass plane for various values

of the vector coupling constant. We find that, with increasing quark chemical potential, the first-order

region in the quark mass plane could shrink for sufficiently large vector coupling. This may be a possible

explanation for the recent lattice QCD results by de Forcrand and Philipsen.
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I. INTRODUCTION

On the phase diagram in the plane with the axes by
temperature, density, pressure, concentration, external
fields, etc., the ‘‘critical point’’ commonly refers to the
terminal point of the phase transition boundary of first
order. This point has an exact second-order phase transition
regardless of symmetry properties.

Interestingly enough, the existence of the critical point is
a possibility not only in condensed matter physics but also
in QCD (quantum chromodynamics) physics [1]. The QCD
phase diagram with the temperature T and the quark
chemical potential � has taken on significance in the
application to the heavy-ion collisions at various energies
as well as to the neutron star structure. There seems to be a
consensus that the QCD phase transitions associated with
chiral symmetry restoration and color deconfinement are a
smooth crossover when T goes up with � ’ 0. In contrast,
the situation changes in the different regime where �
grows with T ’ 0. Model studies [2,3] suggest that the
first-order chiral phase transition should occur at some �
comparable to the constituent quark mass (or one third of
the baryon mass) when T ’ 0. To be consistent with cross-
over at T � 0 and � ’ 0, therefore, the critical point is
expected to exist at intermediate TE and �E.

It is, however, important to remark that the existence of
the QCD critical point is still under dispute [4]. One
interesting negative observation against the QCD critical
point has come from the Monte Carlo simulation of QCD
on the lattice with varying the light-quark massmud and the
strange-quark mass ms [5], though some other lattice
simulations are rather affirmative. (For a review see
Ref. [6].)

For the symmetry reason the chiral phase transition in
three-flavor quark matter at mud ¼ ms ¼ 0 is presumably
first order [7]. Because the mass term explicitly breaks
chiral symmetry, the first-order transition turns to cross-
over at some mud and ms [8,9], which defines the critical
boundary in the mud-ms plane. Model studies that support
the QCD critical point predict that the first-order region in

the mud-ms plane expands by the effect of increasing �, so
that the physical quark mass point hits the critical surface
at � ¼ �E [10,11]. However, de Forcrand and Philipsen
[5] recently claimed that the first-order region should not
expand but rather shrink at higher density as long as�=T is
small.
The purpose of this paper is twofold:
(1) We will extract the general feature of the quasipar-

ticle description at high density to favor the first-
order phase transition. We make use of simple
closed expressions by limiting our discussions to
the T ¼ 0 case. In fact, the confirmation of the
first-order phase transition at T ¼ 0 and � � 0
suffices for the existence of the QCD critical point
since the QCD phase transition at � ¼ 0 and T � 0
is crossover. In the same way we discuss the effect
of the repulsive vector-vector interaction on the
general ground. These are all discussed in Sec. II.

(2) We will point out in Sec. III that the shrinkage of the
first-order region in the mud-ms plane is not uncom-
mon once we take account of a vector-vector inter-
action. We draw the critical surface using the
Polyakov loop augmented Nambu–Jona-Lasinio
(PNJL) model to exemplify the effect of the vector
interaction, which may be a likely explanation for
the results by de Forcrand and Philipsen.

II. FIRST-ORDER PHASE TRANSITION

Let us first consider a simple chiral model at T ¼ 0 with
and without the vector interaction. We will do so because
we should understand the underlying mechanism for pos-
sibility of the first-order phase transition at T ¼ 0 and� �
0 to elucidate the effect of the vector interaction.
The simplest case in the chiral limit is enough for our

present demonstration in which one dynamical mass M
serves as the order parameter. Here M is either the con-
stituent quark mass in the color deconfined phase or one
third of the nucleon mass minus binding energy of nuclear
matter if the system confines color. Although we can
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formulate both, we shall focus on the former, i.e. decon-
fined quark matter, hereafter. (For the latter, see discus-
sions in Ref. [3].) We assume that the pressure P�½M�
results in the chiral symmetry broken phase at zero density.
That is, the free energy, �P�½M�, has minima located at

M ¼ �M0; we simply postulate the following form;

P�½M� ¼ �aðM2
0 �M2Þ2 (1)

with a parameter a. Here we note that a linear term in M
should be present if the current quark mass is nonzero. We
can neglect this explicit chiral symmetry breaking in the
qualitative level because such a term has only minor effects
on the phase transition in the two-flavor sector. In the three-
flavor case, in contrast, the UAð1Þ breaking term generates
a cubic term in M which favors the first-order phase
transition. We will not think of this situation; our purpose
here is to see how the first-order transition is possible at
high density even though it is of second order at vanishing
density. Thus, the above form of Eq. (1) is valid when all
the quarks are massless and the three-flavor UAð1Þ break-
ing is not significant.

Now let us turn finite � on. As long as � is smaller than
the lowest-lying mass of fermionic excitation, nothing
happens and the vacuum remains empty. Once � exceeds
a certain threshold M, a finite amount of density appears.
The pressure has a contribution from the density which is
generally expressed as

P�½M� ¼
Z �

0
d�0nqð�0Þ: (2)

Here nqð�Þ represents the fermion density. In the quasi-

particle picture it is given by the integrated Dirac-Fermi
distribution function with the constituent mass;

nqð�Þ ¼ �
Z d3p

ð2�Þ3
�

1

eð"��Þ=T þ 1
� 1

eð"þ�Þ=T þ 1

�

!T¼0 �

6�2
ð�2 �M2Þ3=2�ð�2 �M2Þ; (3)

where " ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
and � is the fermionic degrees of

freedom (color� flavor� spin). In two-flavor quark mat-
ter, for a relevant example, � ¼ ð3 colorsÞ � ð2 flavorsÞ �
ð2 spinsÞ ¼ 12. We note that � denotes the Heaviside theta
function, which signifies that the system at �<M is
empty. In fact, the theta function is essential to make a
double-peak shape in the total pressure, as we will see
soon.

It is possible to perform the integration (2) to find an
analytical expression with logarithmic terms. To simplify
our qualitative analysis, however, we shall introduce an
approximation as

P�½M� � �

24�2�2
ð�2 �M2Þ3�ð�2 �M2Þ; (4)

which turns out to be a good approximation as shown in
Fig. 1. The solid curve represents Eq. (4), while the dotted

curve is Eq. (2) with Eq. (3) substituted. Because more
particles can reside in the Fermi sphere for smaller mass,
P�½M� has a maximum at M ¼ 0.

Let us consider the condition for P½M� ¼ P�½M� þ
P�½M� to have a first-order phase transition. Here P�½M�
and P�½M� have a peak at M ¼ M0 and M ¼ 0, respec-

tively (see Fig. 2). The existence of double peaks in P½M�
requires that � & M0, meaning that � should not be much
greater than M0. (So, � can be larger than M0 slightly.)
This is necessary for the peak at M ¼ M0 to survive. At
M ¼ 0 the pressure curvature (i.e. the coefficient of theM2

term) should be negative, that is,

a <
�

16�2

�2

M2
0

&
�

16�2
: (5)

At the first-order critical point the peak atM ¼ 0 is as high
as the second peak at M ¼ M0 (neglecting a small shift by
the contribution from P�½M�), which yields the critical

condition that

a ’ �

24�2

�4
c

M4
0

: (6)

As long as� is raised with� & M0 satisfied, the curvature
condition (5) is sufficient for the existence of �c deduced
from Eq. (6). This is another way to see why we should
have required � & M0.
We shall next take account of the mean fields from the

vector-vector interaction, �GVð �c��c Þð �c��c Þ [11–14].
Because h �c�0c i is nothing but the fermionic density,
roughly speaking, the vector interaction generates a con-
tribution to the pressure;

PV½M� ¼ �GVn
2
q ¼ �GV�

2

36�4
ð�2 �M2Þ3�ð�2 �M2Þ

(7)
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FIG. 1 (color online). Comparison between the exact integra-
tion in Eq. (2) (by the dotted curve) and the approximation in
Eq. (4) (by the solid curve).
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at T ¼ 0, which takes the same functional form as the
approximated (4). (In the above we have constructed
PV½M� using nq given by @P�=@�. This approximation

is qualitatively reasonable, but not self-consistent with the
full pressure from which nq should have been inferred. We

will come back to this point later.) The coefficient in Eq.
(4) is hence modified by the effect of Eq. (7) (that is, the
effective fermionic degrees of freedom are reduced), and
the curvature condition is then

a <

�
1� 2�GV�

2

3�2

�
�

16�2

�2

M2
0

: (8)

Therefore, even though we start with a that satisfies Eq. (5)
, there is a critical GV for which Eq. (8) is not satisfied
within � & M0. Then, the first-order phase transition
would disappear.

Let us see concrete numbers. In the conventional NJL
model with two flavors [15], for which our discussions
based on Eq. (1) are valid, one can read a as

a ¼ 1

2M2
0

�
��2

8�2
� 1

4GS

�
¼ 0:067; (9)

where we used � ¼ 12 and the ultraviolet cutoff � ¼
631 MeV, the four-fermion coupling GS�

2 ¼ 2:19, and
the resultant M0 ¼ 336:2 MeV [15]. The first term origi-
nates from the zero-point energy and the second from the
four-fermion interaction. Then, the right-hand side of Eq.
(5) is 0.076 and the inequality is certainly satisfied. In the
case of the chiral quark model [16], for comparison, a is
estimated as a ’ m2

�f
2
�=ð8M4

0Þ, which yields a ¼ 0:02�
0:05 depending on the value of the � meson mass. This is
again within the region of the first-order phase transition.

The critical point in the NJL model case is

�c ¼ 1:07M0; (10)

from Eq. (6). This estimate is consistent with the empirical
value in the NJL model study.
It is easy to see the effect ofGV from Eq. (8). As we have

confirmed, the critical � is nearly M0 and we can replace
� ! M0 in Eq. (8) approximately. Then, the inequality
does not hold when

GV > 0:25GS; (11)

meaning that such GV makes the first-order phase transi-
tion disappear at all along the � axis. It is impressive that
this rough estimate is fairly consistent with a more serious
analysis in the NJL model [12].
We can learn from the above argument that the repulsive

vector-vector interaction reduces the pressure arising from
the degenerated particles in the Fermi sphere. To achieve
chiral restoration with such strong vector interaction, then,
�>M0 is necessary and a peak around M ¼ M0 is
washed away by the tail in P�½M� þ PV½M�which extends
up to M ¼ �. This is the qualitative mechanism how the
vector interaction would hinder the first-order phase
transition.

III. THREE-FLAVOR MASS PLANE

From the point of view of thermodynamic pressure, so
far, we have seen how the first-order phase transition could
occur at � ¼ �c ’ M0 especially in the case of two-flavor
cold quark matter.
Let us now proceed to the main part of our discussions

on three-flavor quark matter. For a fixed value of �, the
chiral phase transition at finite T is of first order when the
current quark masses mud and ms stay small, and becomes
of crossover if mud and ms exceed a critical boundary.
Therefore, in the 3D space of mud, ms, and �, the critical
condition makes a hypersurface. For concreteness we
adopt the PNJL model used in Ref. [11] to draw the critical
surface. The NJL model might allow for artificial quark
excitations at finite temperature due to the lack of confine-
ment. This tends to shift the location of the critical point
ð�E; TEÞ to higher �E and lower TE because the tempera-
ture effect smears the first-order phase transition induced
by density. The PNJL model cures this (for instance TE

changes�50 MeV in the NJL model to�100 MeV in the
PNJL model with the same parameter set [17]) by means of
the color projection by the Polyakov loop which is a
colored phase factor associated with single-quark excita-
tion. Since the model details are not our main focus, we
simply refer to Refs. [11,17] for details.
Figure 3 is the critical surface with standard curvature

obtained in the PNJL model. Above the critical surface the
finite-T phase transition is of first order, while no sharp
phase transition takes place below the surface. The second-
order phase transition sits on the critical surface. This is
just one model example but shows typical behavior in
model studies [10]. The physical mass point hits the critical
surface at � ¼ �E ¼ 313:5 MeV where the critical tem-

M

M = M0M = µ

Pµ[M]

P [M]

Pχ[M]

FIG. 2 (color online). Sketch of the double-peak pressure
P½M� resulting from the sum of P�½M� and P�½M�.
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perature is T ¼ TE ¼ 101:8 MeV (shown by a cross in
Fig. 3).

It is general in the quasiparticle picture that the density
effect induces a pressure like Eq. (2) whose maximum is
located in the (partially) chiral symmetric phase. In the
presence of such an additional peak nearMud ’ mud,Ms ’
ms, the first-order transition region is enhanced with in-
creasing �.

The problem is that this curvature of the critical surface
as shown in Fig. 3 might be inconsistent with the lattice
observation [5] even though the model results seem to be
rather robust not relying on any special assumption.

We here propose one scenario that has a natural account
for the lattice results and, at the same time, may not
necessarily exclude the existence of the critical point.
The necessary ingredient is the vector-vector interaction
alone. As a matter of fact, the repulsive vector interaction is
anticipated from the hadron property [12,18]. Figures 4 and
5 are the examples from the PNJL model with the vector
interaction incorporated. Here we should explain the mean-
field treatment for the vector interaction in a self-consistent
way [2,11–14,18]. The zeroth component in the vector
interaction, �GVð �c�0c Þð �c�0c Þ, produces the mean-
field terms, �2GVnq �c�0c þGVn

2
q. The former term

adds to the chemical potential as � ! �� 2GVnq and

the latter adjusts the larger contribution from the former.
Then, the mean-field nq is fixed by @P=@nq ¼ 0 which

guarantees the thermodynamic relation, nq � @P=@� ¼ 0.

(Note that @P=@nq ¼ �2GV@P=@�.)

We have chosen a considerably large value of GV to
make it easier to perceive the effect visually. The point is
that the inclusion ofGV � 0 induces the opposite curvature
to that in Fig. 3 at small �, and eventually the curvature
returns to the standard one at larger �. It should be noted
that the first-order region at � ¼ 0 does not change but the
axis scale in Figs. 4 and 5 is different from Fig. 3.

Although our aim is just to present some demonstrations
like Figs. 4 and 5, it is intriguing to make a quantitative
comparison. Along the diagonal m ¼ mud ¼ ms line, the
critical mass is expanded in terms of � as

mcð�Þ
mcð0Þ

¼ 1þ c2

�
�

�Tc

�
2 þ c4

�
�

�Tc

�
4 þ � � � : (12)

Our calculations give c2 ¼ 5:88 and c4 ¼ 43:8 at GV ¼ 0
as shown by the solid curve in Fig. 6. The lattice results are,
on the other hand, c2 ¼ �0:7ð4Þ and c4 ’ 0 in the first
paper of Ref. [5] which is indicated by the upper shaded
region in Fig. 6. In the last paper of Ref. [6] significantly
different values are reported; c2 ¼ �3:3ð3Þ and c4 ¼
�47ð20Þ as shown by the lower shaded region. In our
calculations the vector interaction drastically alters the
curvature from the solid curve to the dashed (dotted) curve
in Fig. 6 at GV ¼ 0:4GS (GV ¼ 0:8GS).
From Fig. 6 we may say that someGV < 0:4GS could be

enough to understand the results in the first paper of
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FIG. 3 (color online). Critical surface with standard curvature
in the PNJL model without the vector interaction. The physical
mass point in this model is ðmud ¼ 5:5 MeV; ms ¼ 135:7 MeVÞ
which hits the critical surface at � ¼ �E.
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FIG. 5 (color online). Demonstration of the effect of the vector
interaction in the PNJL model with GV ¼ 0:8GS.
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FIG. 4 (color online). Demonstration of the effect of the vector
interaction in the PNJL model with GV ¼ 0:4GS.
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Ref. [5], while the vector interaction alone is not sufficient
to reproduce the results in the last paper of Ref. [5]. To
make the statement more conclusive we need more lattice
QCD data.

The rest of this paper will be devoted to qualitative
explanation of this back-bending curvature as a result of
the vector interaction. We will discuss the mechanism in
order.

(1) We have to realize that the finite T is important to
understand the back-bending behavior. The infor-
mation of the critical temperature is implicit in
Figs. 3–5. The general tendency is that the critical
temperature becomes smaller as � increases. Thus,
in fact, the critical surface is cut at a large chemical
potential for which the critical point touches T ¼ 0.

(2) In the vicinity of � ¼ 0, hence, the finite T effect is
substantial, which makes the functional forms of the
integrated nqð�Þ with respect to � (i.e. P�) and n2q
deviate from each other unlike the T ¼ 0 case. It
should be mentioned that the simple argument in
Sec. II is still applicable for mud ¼ ms as it is
[except for the UAð1Þ breaking term]. Then the
integrated one (2) turns out to be less steeper than
n2q as a function of M, which can be readily con-

firmed by simple numerical calculations (see Fig. 7).
Thus the pressure contribution by density-induced
particles is relatively more suppressed by finite T
than the vector interaction effect involving n2q. This

means, in other words, that n2q brings a sharper

modification than P� to the total pressure at higher

T (and thus smaller � in turn).
(3) Because the repulsive vector interaction has the

opposite effect to the density, as we have seen in

Sec. II, some GV exists which is large enough to
invert the density effect. Still, the first-order region
at � ¼ 0 is intact since nq ¼ 0 at � ¼ 0.

(4) With appropriate GV � 0, as � goes up, the first-
order region shrinks by the effect of growing n2q
from the vector interaction which overwhelms the
effect of P� as long as �=T is small.

(5) When � gets larger and T=� becomes smaller, the
functional shape of n2q comes to be identical to that

of P� as seen in Fig. 7. If GV is not too large, the

density effect can surpass the vector interaction
eventually, which makes the curvature bend back
into the standard direction at high �, which is
manifestly the case in Figs. 4 and 5.

VI. SUMMARY

We have clarified how the quasiparticle description can
lead to a first-order phase transition in cold and dense
quark matter. In the same way we have intuitively made
clear the role played by the mean-fields from the repulsive
vector-vector interaction which reduces a pressure contri-
bution from density-induced particles.
We have then discussed the vector interaction in the

mud-ms plane with three flavors. We have drawn the critical
surface using the PNJL model with the vector interaction.
Along the same line as the quasiparticle description we
have given a simple account for the back-bending behavior
of the critical surface, which is consistent with the negative
curvature in the recent lattice simulations. Logically speak-
ing, therefore, there might be a chance that the critical
point still persists even with the negative curvature at small
density.
It should be remarked, however, that whether the back

bending occurs or not cannot be naively interpreted as
whether the critical point exists or not. This is because,
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as we mentioned, the critical surface is cut at some large�
where the critical temperature is zero. As a matter of fact,
the critical value of GV is around 0.25 as in Eq. (11) (see
also Refs. [11–13]) for which we cannot observe clear
back-bending behavior in the PNJL model. In this way, if
we take the comparison to the PNJL model analysis seri-
ously, the lattice results by de Forcrand and Philipsen
certainly suggest the nonexistence of the QCD critical
point.

There are important issues to be investigated in the
future. First of all, the determination of GV is indispens-
able. For this purpose, unfortunately, the description of the
vector meson property within the NJL model is not quite
reliable because the momentum cutoff is not large enough
as compared to the vector meson mass. The lattice simu-
lation is one possibility, though the observable operator to
measure GV is not clear yet. Second, not only the vector
interaction but also the anomaly (’t Hooft) term is impor-
tant for the existence of the QCD critical point [7]. The
density dependence of the anomaly coupling strength is
unknown from the lattice simulation, which may affect the

critical surface curvature. The density dependence ofGV is
not known, either, but the point of what we have shown
here is that intriguing density dependence appears from n2q
even for a constant GV . Hence, if the opposite curvature of
the critical surface to the standard one is really established
in the lattice simulation, it could be interpreted as circum-
stantial evidence for finite repulsive vector-vector
interaction.
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