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We have studied the interaction of vector mesons within the hidden gauge formalism and applied it to

the particular case of the �� interaction. We find a strong attraction in the isospin, spin channels I, S ¼ 0,

0 and 0, 2, which is enough to bind the �� system. We also find that the attraction in the I, S ¼ 0, 2

channel is much stronger than in the 0, 0 case. The states develop a width when the � mass distribution is

considered, and particularly when the �� decay channel is turned on. Using a regularization scheme with

cutoffs of natural size, we obtain results in fair agreement with the mass and the width of the f0ð1370Þ and
f2ð1270Þ meson states, providing a natural explanation of why the tensor state is more bound than the

scalar and offering a new picture for these states, which would be dynamically generated from the ��

interaction or, in simpler words, �� molecular states.
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I. INTRODUCTION

Chiral perturbation theory, with its unitary extensions to
higher energies, has brought a new momentum to hadron
physics at low and intermediate energies. The exact uni-
tarity in coupled channels together with dispersion rela-
tions [1,2], the inverse amplitude method (IAM) [3,4], or
the equivalent solution in terms of coupled Bethe-Salpeter
equations [5–7] introduce a nonperturbative scheme that
proves highly efficient to study meson-meson or meson-
baryon interactions, usually referred to as the chiral unitary
approach. By fixing a minimum of subtraction constants or
cutoffs to regularize the loops, one finds a fair agreement
with data in a vast amount of reactions [8] (see [9] for a
recent review). One of the results of these studies is that the
amplitudes have sometimes poles that can be associated to
known resonances. Sometimes new resonances are pre-
dicted, like a second �ð1405Þ [10] or a second K1ð1270Þ
axial vector meson [11], for which experimental support
has been found in [12,13], respectively. So far, resonances
have been investigated in the interaction of the SU(3) octet
of the pseudoscalar mesons of the � with themselves
[3,4,6,7,14], which provide the low lying scalar mesons,
the interaction of the pseudoscalar mesons with the octet of
baryons of the p, which generate JP ¼ 1=2� baryonic
resonances [2,5,10,15–18], the interaction of pseudoscalar
mesons with the decuplet of the � [19,20], which leads to
JP ¼ 3=2� baryon resonances, and the interaction of pseu-
doscalar mesons with vector mesons, which leads to axial
vector meson resonances [11,21]. Yet, the interaction of
vector mesons with themselves has not been tackled from
this perspective. The purpose of the present paper is to
study this interaction and show how, also in this case, one
obtains dynamically generated resonances.

The interaction of vector mesons with themselves is
done using the Lagrangians of hidden gauge formalism,

which mix vector mesons with pseudoscalars and respect
chiral symmetry [22,23]. The hidden gauge Lagrangians
for vector-vector interaction do not provide local chiral
Lagrangians as in the case of meson-meson or meson-
baryon interaction discussed above. Nonlocal terms corre-
sponding to the exchange of vector mesons appear in the
amplitudes. Yet, under certain approximations these terms
can also be recast in the form of local Lagrangians similar
to those quoted above. In this first paper on the issue we
shall describe the formalism and apply it to study the ��
� interaction. We shall see that one gets attraction in the
I ¼ 0, S ¼ 0 and I ¼ 0, S ¼ 2 channels which is enough
to produce bound states of �� �. We shall see that the
interaction in the I ¼ 0, S ¼ 2 tensor case is stronger than
in the scalar one I ¼ 0, S ¼ 0 and that the states that we
obtain can be associated to the known resonances f0ð1370Þ
and f2ð1270Þ. In order to obtain the width of the states we
shall also consider their decay into��, obtained within the
same formalism of [22,23].
On the theoretical side there is work done for both

resonances. The coupling of the tensor resonance to ��
was exploited in [24], within the formalism of the IAM,
and the f2ð1270Þwas obtained qualitatively, at the expense
of adding counterterms or higher order that produce the
resonance within this formalism. This does not mean that
the f2ð1270Þ is a resonance built up from ��. The infor-
mation on the resonance properties is essentially buried in
the counterterms, like in the case of the �meson that is also
obtained within the IAM [3,4] starting from the �� inter-
action. There again, the basic properties of the rho are tied
to the Li coefficients of the second order chiral Lagrangian
[25], and its generation within the IAM does not mean that
one has a dynamically generated resonance from the basic
�� interaction. Indeed, a careful study of the large Nc

behavior of the resonance shows that the state remains as
Nc goes to infinite, as corresponds to genuine states that are
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built essentially from q �q, unlike the dynamically generated
scalar mesons that fade away in that limit [26]. In the
present case the counterterms needed in the IAM to pro-
duce this state in [24] are burying the information about the
nature of the f2ð1270Þ resonance, which, as we will show,
gets dynamically generated from the �� interaction. Work
with quark models is also available. In [27] the f0ð1370Þ is
assumed to be dominantly a q �q state, unlike the lighter
scalars that are assumed to be largely four quark states. In
[28] the f0ð1370Þ is also studied within the improved
ladder approximation of QCD assuming it to be mostly
made of q �q components, although, as quoted there, the
meson-meson or four quark components are supposed to be
important. In [29] the f0ð1370Þ is assumed to be a mixture
of q �q and four quarks, while in [30] a mixture of q �q
components with glueballs is preferred. Once again, in
[31] the q �q nature is preferred for the f0ð1370Þ with the
quarks of nonstrange nature. For the case of the f2ð1270Þ
there is also work done in [32], where the state is assumed
to be predominantly a q �q state.

Our work will bring a new perspective into this pan-
orama, showing that practically with no freedom (up to
fine-tuning of a cutoff parameter from values around the
natural size), the f2ð1270Þ and f0ð1370Þ states emerge as
bound states of the �� interaction evaluated within the
reliable formalism of hidden gauge.

II. FORMALISM FOR VV INTERACTION

We follow the formalism of the hidden gauge interaction
for vector mesons of [22,23] (see also [33] for a practical
set of Feynman rules). The interaction Lagrangian involv-
ing the interaction of vector mesons amongst themselves is
given by

L III ¼ �1
4hV��V

��i; (1)

where the symbol h i stands for the trace in the SU(3) space
and V�� is given by

V�� ¼ @�V� � @�V� � ig½V�; V��; (2)

with g given by

g ¼ MV

2f
; (3)

with f ¼ 93 MeV the pion decay constant. The value of g
of Eq. (3) is one of the ways to account for the KSFR rule

[34], which is tied to vector meson dominance [35]. The
magnitude V� is the SU(3) matrix of the vectors of the

octet of the �:

V� ¼
�0ffiffi
2

p þ !ffiffi
2

p �þ K�þ

�� � �0ffiffi
2

p þ !ffiffi
2

p K�0

K�� �K�0 �

0
BB@

1
CCA

�

: (4)

The interaction of LIII gives rise to a contact term
coming for ½V�; V�� ½V�; V��,

L ðcÞ
III ¼

g2

2
hV�V�V

�V� � V�V�V
�V�i; (5)

depicted in Fig. 1(a), and on the other hand it gives rise to a
three vector vertex,

L ð3VÞ
III ¼ ighð@�V� � @�V�ÞV�V�i; (6)

depicted in Fig. 1(b). This latter Lagrangian gives rise to a
VV ! VV interaction by means of the exchange of one of
the vectors, as shown in Fig. 1(c). These Lagrangians have
been previously used to study collision rates of vector
mesons in heavy ion collisions [36].
The SU(3) structure of the Lagrangian allows us to take

into account all the channels within SU(3) which couple to
certain quantum numbers. This is what is done in the study
of the interaction of pseudoscalar mesons [6,7] where, for
instance, for the scalar-isoscalar channel one introduces
the�� andK �K pairs as coupled channels. In this particular
case the interaction leads to the generation of two scalar-
isoscalar resonances, the f0ð600Þ or � and the f0ð980Þ. It is
also seen that the �� and K �K states largely decouple: the
� is basically �� resonance, while the f0ð980Þ couples
mostly to K �K and weakly to ��, as a consequence of
which one has a small width for the f0ð980Þ in spite of the
large phase space for decay into ��.
In the present work we shall provide the formalism for

the VV interaction and present results for the simplest case,
the �� interaction. We are aiming at obtaining from this
interaction the lightest scalar and tensor mesons after the
f0ð980Þ which is very well reproduced in terms of
pseudoscalar-pseudoscalar components. In the Particle
Data Group (PDG) [37] we find the f2ð1270Þ and the
f0ð1370Þ. The �� system interacting in S wave, as we
shall do, can lead to different isospin, spin states I, J ¼
0, 0; 1, 1; 0, 2; 2, 0; and 2, 2. It would be most interesting to
see if the results that we obtain agree, at least qualitatively,

FIG. 1. Terms of the LIII Lagrangian: (a) four vector contact term, Eq. (5); (b) three vector interaction, Eq. (6); (c) t and u channels
from vector exchange; (d) s channel for vector exchange.
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with the experimental data on this sector at low energies. In
particular, it is challenging to find a reason why the
f2ð1270Þ is lower in energy than the f0ð1370Þ. In this
exploratory work we shall work only with the � meson,
with the limited aim to learn about the structure of these
low lying resonances. The use of couple channels is wel-
come and should be tackled in the future, but for the
purpose of studying these low lying resonances, the other
channel, K� �K�, has a mass of 1784 MeV, more than
400 MeV higher than the mass of the f0ð1370Þ, and then,
as is the case in all studies of meson-meson interaction, this
channel can barely affect the structure of these low lying
resonances. In any case, its possible effect, through a
weakly energy dependent K �K loop function at the energies
that we are concerned, can be accommodated by fine-
tuning the subtraction constants of the regularized ��
loop function, or equivalently the cutoff, as we shall do.

Starting with the Lagrangian of Eq. (5) we can imme-
diately obtain the corresponding amplitude to �þ�� !
�þ�� corresponding to Fig. 2.

We immediately obtain1

�itðcÞ
�þ��!�þ�� ¼ i2g2ð2�ð1Þ� �ð2Þ� �ð3Þ� �ð4Þ� � �ð1Þ� �ð2Þ� �ð3Þ� �ð4Þ�

� �ð1Þ� �ð2Þ� �ð3Þ� �ð4Þ� Þ; (7)

where the indices 1, 2, 3, and 4 correspond to the particles
with momenta k1, k2, k3, and k4 in Fig. 2. For simplicity of
the notation we write the Lorentz indices as subindices
with the understanding that repeated indices should be one
covariant and the other one contravariant.

Equation (7) shows three different structures of the
vector polarizations, the same number as possible spins
of the two � systems, and there is some relationship as we
shall see below.

The large mass of the vectors offers a technical advan-
tage, since the three momenta of the � in the scattering
amplitude in the region of energies of interest to us
are small compared to its mass. We shall work in the limit
of small three momenta of the � where the �� components

are only nonvanishing for the spatial indices; that is,
we take �0 � 0 for practical purposes [recall
�0ðlinear polarizationÞ ¼ k

MV
and �0 ¼ 0 for the two trans-

verse polarizations].

III. SPIN PROJECTORS

Next wewant to find the appropriate projectors in S ¼ 0,
1, 2 in terms of the different combinations of the four
polarization vectors. For this purpose we look into the
loop diagram of Fig. 3, where the interaction has been
iterated to provide the second term of the Bethe-Salpeter

equation. Take the term �ð1Þ� �ð2Þ� �ð3Þ� �ð4Þ� and iterate it. We get
the structure

�ð1Þ� �ð2Þ� �ð3Þ� �ð4Þ� �ð1
0Þ

�0 �
ð20Þ
�0 �

ð30Þ
�0 �

ð40Þ
�0 ; (8)

with the contraction of the internal indices 3, 10 and 4, 20
leading, after summing over the possible polarizations, to�

�g��0 þ q�q�0

M2
V

��
�g��0 þ ðP� qÞ�ðP� qÞ�0

M2
V

�
; (9)

where P is the total momentum of the �� system. Since�,
�, �0, �0 are all external indices, all of them are spatial and
the sum above reverts into (i, j ¼ 1, 2, 3)�

�ii0 þ qiqi0

M2
V

��
�jj0 þ

qjqj0

M2
V

�
: (10)

We shall work in a renormalization scheme which relies
upon the function of q apart from the two propagators in
the loop function, fðqÞ, being evaluated on shell. The base
for it can be seen in the N=D method [1,2] which relies
upon the potential and the T-matrix factorized on shell in
the loops as a result of the use of a dispersion relation on
T�1 after imposing unitarity. Another method of work is to
recast fðqÞ as fðqon shellÞ þ ðfðqÞ � fðqon shellÞÞ. Obviously
fðqÞ � fðqon shellÞ vanishes for q ¼ qon shell, as a conse-
quence of which it cancels the singularity of one meson
propagator and one gets a diagram with a topology as in
Fig. 4 (the argument is the same when dealing with the off-
shell part of the other meson). This diagram gets canceled
by tadpoles in the calculation or otherwise can be argued to
renormalize the lowest order of the �� ! �� potential.
The arguments above imply that we take qi, qi0 on shell

in Eq. (10) and
qiqi0
M2

V

is negligible and we ignore it. The

argument used above is slightly different for the structure

�ð1Þ� �ð2Þ� �ð3Þ� �ð4Þ� . Indeed, now we have the combination

�ð1Þ� �ð2Þ� �ð3Þ� �ð4Þ� �ð1
0Þ

�0 �
ð20Þ
�0 �

ð30Þ
�0 �

ð40Þ
�0 ; (11)

and contract the indices of 3, 10 and 4, 20 summing over

FIG. 2. Contact term of the �� interaction.

FIG. 3. Loop function for two mesons.

1We always use a Cartesian basis for the polarization vectors.
Should one use a spherical basis, one should complex conjugate
the �� of the outgoing vectors.
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polarizations such that we get

�
�g��0 þ q�q�0

M2
V

��
�g��0 þ ðP� qÞ�ðP� qÞ�0

M2
V

�
: (12)

The fact that the external indices �, �0 are spatial does not
tell us anything on the internal indices �,�0 which can also
be timelike. We can distinguish three cases:

(i) � ¼ i, �0 ¼ j0 space like. On shell we get �ij0�ij0

with correction of Oð ~q2=M2
VÞ that we neglect.

(ii) � ¼ 0, �0 ¼ i or vice versa. We get nonvanishing
terms from q0ðP� qÞ0 ~q2=M4

V which are again of
the order of ~q2=M2

V . The whole term is neglected.
(iii) � ¼ 0, �0 ¼ 0. Now the term

�
�g00 þ q0q0

M2
V

��
�g00 þ ðP� qÞ0ðP� qÞ0

M2
V

�
(13)

vanishes on shell up to terms of ~q2=M2
V , which we

again neglect.
The discussion has served to show that the regularization

procedure is slightly different for different combinations of
the polarization vectors, and hence, for the different spin
terms. This implies that in dimensional regularization one
cannot invoke exactly the same subtraction constant in all
channels but they cannot be too different either. We use
cutoff renormalization, and the former findings would
imply possible different cutoffs in different channels but
not too different, and they must be of natural size. We show
results in the present paper for different possible cutoffs of
natural size. There is another reason to allow for some
freedom in the subtraction constants for different spins,

since we make the approximation q2

M2
V

¼ 0 in the exchanged

vectors. Given the large width of the � meson, a consid-
eration of the � mass convolution for the four � mesons in
the amplitudes has a consequence that this quantity would
not be fully negligible for some distribution of masses in

the convolution. We have evaluated the average value of q2

M2
V

for forward scattering with the convolution of the four �0s
and find q2=M2

V of the order of 10%, enough to justify our
calculations, but inside loops this quantity can be bigger
and it is also s dependent. Once again, these effects could
be accounted for by means of fine-tuning of the subtraction
constants mentioned before for different channels.
For practical purposes, in this renormalization scheme

we only need the transverse components in all cases, and in
the propagators of the vector mesons we can take

hT½�i�i0 �i ¼ �ii0

q2 �M2
V þ i�

(14)

or the same expression with q ! P� q for the second
propagator.
After this exercise it is easy to check that the three

independent structures that upon iteration lead to the
same structure are given by

P ð0Þ ¼ 1
3�

ð1Þ
i �ð2Þi �ð3Þj �ð4Þj

P ð1Þ ¼ 1
2ð�ð1Þi �ð2Þj � �ð1Þj �ð2Þi Þ12ð�ð3Þi �ð4Þj � �ð3Þj �ð4Þi Þ

P ð2Þ ¼ f12ð�ð1Þi �ð2Þj þ �ð1Þj �ð2Þi Þ � 1
3�

ð1Þ
l �ð2Þl �ijg

� f12ð�ð3Þi �ð4Þj þ �ð3Þj �ð4Þi Þ � 1
3�

ð3Þ
m �ð4Þm �ijg:

(15)

It is also easy to see that these structures project over the
three different states of spin, S ¼ 0, 1, 2, respectively, by
taking states with a certain third component of the spin and
writing them in terms of spherical vectors � 1ffiffi

2
p ð�1 � i�2Þ

and �3.
Although we have to keep in mind that we will be

dealing with spatial components, it is convenient to write
these projectors in covariant form such as to easily separate
the structures that appear from the Lagrangians into the
different spin projectors. So we write

P ð0Þ ¼ 1
3���

����
�

P ð1Þ ¼ 1
2ð�������� � �����

���Þ
P ð2Þ ¼ f12ð�������� þ �����

���Þ � 1
3�	�

	�
�

g;

(16)

where the order 1, 2, 3, 4 in the polarization vectors is
understood (this allows us to write the expressions cova-
riantly without complication in the indices. We use the
covariant formalism in what follows).

IV. ISOSPIN PROJECTION

We must now evaluate the amplitudes for the isospin
states:

FIG. 4. Topology of the part of the diagram of Fig. 3 coming
from off-shell parts of the polarization sums.
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j��; I ¼ 0i ¼ � 1ffiffiffi
6

p j�þðk1�1Þ��ðk2�2Þ þ ��ðk1�1Þ�þðk2�2Þ þ �0ðk1�1Þ�0ðk2�2Þi

j��; I ¼ 1; I3 ¼ 0i ¼ � 1

2
j�þðk1�1Þ��ðk2�2Þ � ��ðk1�1Þ�þðk2�2Þi

j��; I ¼ 2; I3 ¼ 0i ¼ � 1ffiffiffi
2

p j 1ffiffiffi
6

p ð�þðk1�1Þ��ðk2�2Þ þ ��ðk1�1Þ�þðk2�2ÞÞ �
ffiffiffi
2

3

s
�0ðk1�1Þ�0ðk2�2Þi:

(17)

Note that we are using the unitary normalization [6], with
an extra factor 1ffiffi

2
p such that when summing over intermedi-

ate states of identical particles we obtain the resolution of
the identity, i.e. 1

2

P
qj�0ð ~qÞ�0ð� ~qÞih�0ð ~qÞ�0ð� ~qÞj ¼ 1.

One must correct the final amplitudes for the ‘‘wrong’’
normalization on the external legs, with a global normal-
ization factor that does not affect the search for the poles or
the energy dependence of the amplitudes. We also take the
phase convention j�þi ¼ �j1; 1i of isospin.

By using the isospin wave functions and the Lagrangian
of Eq. (5) we obtain for I ¼ 1

tðI¼1Þ ¼ 3g2ð�������� � �����
���Þ; (18)

which according to the spin projection operators of
Eq. (16) only has the S ¼ 1 component, consistent with
the rule Lþ Sþ I ¼ even. Thus we have

tðI¼1;S¼1Þ � 6g2: (19)

The interaction is repulsive, however we still have to
evaluate the contribution from the vector exchange mecha-
nisms. In I ¼ 0 we get the amplitude

tðI¼0Þ ¼ 2g2f2�������� � �����
��� � �����

���g;
(20)

which by means of the spin projection structures leads to

tðI¼0;S¼0Þ ¼ 8g2 tðI¼0;S¼2Þ ¼ �4g2: (21)

We can see that the interaction in the I ¼ 0, S ¼ 0 channel
is repulsive but the one in S ¼ 2 is attractive. We still need,
however, the contribution of the vector exchange terms.
Note again that according to the rule Lþ Sþ I ¼ even we
do not get contribution of S ¼ 1 for I ¼ 0. In I ¼ 2 we
obtain the amplitude

tðI¼2Þ ¼ �g2ð2�������� � �����
��� � �����

���Þ;
(22)

which projected over spin states leads to

tðI¼2;S¼0Þ ¼ �4g2 tðI¼2;S¼2Þ ¼ 2g2: (23)

V. VECTOR EXCHANGE TERMS

From the Lagrangian of Eq. (6) we get the three vector
vertex depicted in Fig. 5. The vertex function correspond-
ing to the diagram of Fig. 3 is given by

�itð3Þ ¼ � ffiffiffi
2

p
gfðik��ð0Þ� � ik��

ð0Þ
� Þ���0�

þ ð�iq��� þ iq���Þ�0��ð0Þ�
þ ðiðq� kÞ��0� � iðq� kÞ��0�Þ�ð0Þ���g; (24)

with this basic structure we can readily evaluate the am-
plitude of the diagram of Fig. 6 and we obtain

�itðexÞ ¼ � ffiffiffi
2

p
gfðiðk1 � k3Þ��ð0Þ� � iðk1 � k3Þ��ð0Þ� Þ�ð1Þ��ð3Þ� þð�ik1��

ð1Þ
� þ ik1��

ð1Þ
� Þ�ð3Þ��ð0Þ�

þðik3��ð3Þ� � ik3��
ð3Þ
� Þ�ð0Þ��ð1Þ�g i

ðk1 � k3Þ2 �M2
� þ i�

ð� ffiffiffi
2

p Þgfð�iðk2 � k4Þ�0�ð0Þ
�0 þ iðk2 � k4Þ�0�ð0Þ

�0 Þ�ð4Þ�0
�ð2Þ�0

þ ðik4�0�ð4Þ�0 � ik4�0�ð4Þ�0 Þ�ð2Þ�0
�ð0Þ�0 þ ðik2�0�ð2Þ�0 þ ik2�0�ð2Þ�0 Þ�ð0Þ�0

�ð4Þ�0 g: (25)

At this point we must recall that the three momenta of
the external particles is small and neglected, so that we
keep only spatial components of the polarization vectors.
As a consequence, the term ðk1 � k3Þ2 in the � propagator
is neglected. Similarly all terms of the type ki��

�, ki��
0�

can be neglected and only the terms ki��
ð0Þ� remain, since

the exchanged vector can be timelike (the only component
that survives). As a consequence, our amplitude gets much
simplified and we obtain FIG. 5. Three vector vertex diagram.
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�itðexÞ ¼ 2i
g2

M2
�

ðk1 � k4 þ k3 � k4 þ k1 � k2 þ k2 � k3Þ

� �����
���; (26)

with a unique spin structure, which can be recast, using
momentum conservation into

tðexÞ ¼ � 4g2

M2
�

�
3

4
s�M2

�

�
�����

���: (27)

The approximations done here are the same ones that one
would do for the interaction of a vector with a pseudoscalar
and which lead to the local chiral Lagrangian of [11,21,38]
used to generate axial vector mesons in [11,21]. This
example serves to place our approximations in a due
perspective, since such approximations are implicit in
most of the effective chiral Lagrangians used in the litera-
ture [39], which can be deduced from the formalism of the
hidden gauge Lagrangians that we are using here.

Before proceeding further, one must evaluate the ampli-
tudes for the different isospin states and we obtain

tðex;I¼1Þ ¼ � 2g2

M2
�

�
3

4
s�M2

�

�
ð�������� � �����

���Þ;
(28)

which already projects over S ¼ 1, as it should, such that

tðex;I¼1;S¼1Þ ¼ �4g2
�
3s

4M2
�

� 1

�
: (29)

The case of I ¼ 0, 2 is more subtle because, unlike the case
of the contact term, we have now a t and u exchange
channel, see Fig. 7. When the two diagrams are considered
we obtain

tðex;I¼0Þ ¼ � 4g2

M2
�

�
3

4
s�M2

�

�
ð�������� þ �����

���Þ;
(30)

which upon spin projection leads to

tðex;I¼0;S¼0Þ ¼ �8g2
�
3s

4M2
�

� 1

�

tðex;I¼0;S¼2Þ ¼ �8g2
�
3s

4M2
�

� 1

�
:

(31)

Similarly for I ¼ 2 we obtain

tðex;I¼2Þ ¼ 2g2

M2
�

�
3

4
s�M2

�

�
ð�������� þ �����

���Þ;
(32)

which upon spin projection leads to

tðex;I¼2;S¼0Þ ¼ 4g2
�
3s

4M2
�

� 1

�

tðex;I¼2;S¼2Þ ¼ 4g2
�
3s

4M2
�

� 1

�
:

(33)

The results obtained with the contact term and the
�-exchange mechanism provide the kernel, or potential
V, to be used in the Bethe-Salpeter equation in its on-shell
factorized form,

T ¼ V

1� VG
; (34)

for each spin-isospin channel independently, where G is
the two � loop function in the approximation of neglecting
the on-shell three momenta,

G ¼ i
Z d4q

ð2�Þ4
1

q2 �m2
� þ i�

1

ðP� qÞ2 �m2
� þ i�

;

(35)

which upon using dimensional regularization can be recast
as

G ¼ 1

16�2

�
	þ log

m2
1

�2
þm2

2 �m2
1 þ s

2s
log

m2
2

m2
1

þ pffiffiffi
s

p
�
log

s�m2
2 þm2

1 þ 2p
ffiffiffi
s

p
�sþm2

2 �m2
1 þ 2p

ffiffiffi
s

p

þ log
sþm2

2 �m2
1 þ 2p

ffiffiffi
s

p
�s�m2

2 þm2
1 þ 2p

ffiffiffi
s

p
��
; (36)

where P is the total four-momentum of the two mesons, p

FIG. 6. Vector exchange diagram for �þ�� ! �þ��.

FIG. 7. t and u channel exchange of vector.
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is the three-momentum of the mesons in the center-of-mass
frame, and m1 ¼ m2 ¼ m�, or using a cutoff as

G ¼
Z qmax

0

q2dq

ð2�Þ2
!1 þ!2

!1!2½ðP0Þ2 � ð!1 þ!2Þ2 þ i�� ;
(37)

where qmax stands for the cutoff, !i ¼ ð ~q2i þm2
i Þ1=2 and

the center-of-mass energy ðP0Þ2 ¼ s. The potential V ob-
tained summing the lowest order T matrices obtained from
the contact term and � exchange are summarized in
Table I.

In Table I we have written in the last column the quan-
tum numbers of the state and the approximate strength of
the potential calculated at the �� threshold to get an idea of
the weight of the interaction. We observe attraction in the I,
S ¼ 1, 1; 0, 0; and 0, 2 channels and repulsion in 2, 0; 2, 2.
We, thus, cannot generate I ¼ 2 low lying states from this
�� interaction. We find a weak attraction for the I, S ¼ 1, 1
with 1þð1þ�Þ quantum numbers and then a strong attrac-
tion for I, S ¼ 0, 0 and a much larger attraction for I, S ¼
0, 2 anticipating that if the interaction leads to a bound ��
state with I, S ¼ 0, 0 it will necessarily lead to a much
deeper bound I, S ¼ 0, 2 state, a trend actually followed by
the f0ð1370Þ and f2ð1270Þ resonances. The case of I, S ¼
1, 1 with 1þð1þ�Þ quantum numbers is special. These are
the quantum numbers of the b1ð1235Þ. This state is gen-
erated dynamically from the interaction of vector mesons
with pseudoscalars, the KK� channel being the most im-
portant one [11]. The weak interaction of the possible ��
component of this state and the fact the �� threshold is
300 MeVabove the mass of the b1ð1235Þ anticipate that the
�� channel investigated here will have little effect mod-
ifying the results obtained for that resonance from the
dynamics of the KK� interaction. The weak attraction in
this channel does not support a �� bound state but could
lead to a broad resonance at higher energies that we do not
investigate here.

One may wonder about mixing the! channel with the �.
One can easily see that there are no contact terms with !
and the three vector vertices mixing ! with � are also
forbidden since �!! violates isospin and ��! violates G
parity.

The formalism that we are using is also allowed for
s-channel � exchange and we can have the diagram of
Fig. 8. By performing similar approximations as done

before, we obtain an amplitude only in I ¼ 1, S ¼ 0 of
the type

tðsÞ ¼ 24g2
1

ðk1 þ k2Þ2 �M2
�

~k1 � ~k3; (38)

which is a p-wave amplitude and repulsive. Note it also
satisfies Lþ Sþ I ¼ even.

VI. CONVOLUTION DUE TO THE � MASS
DISTRIBUTION

The strong attraction in the I, S ¼ 0, 0; 0, 2 channels
will produce �� bound states and thus with nowidth within
the model. However, this is not strictly true because the �
has a large width or equivalently a mass distribution that
allows the states obtained to decay in �� for the low mass
components of the � mass distribution. To take this into
account we follow the traditional method which is to
convolute the G function for the mass distributions of the

two � mesons [40] replacing the G function by ~G as
follows:

~GðsÞ ¼ 1

N2

Z ðm�þ2��Þ2

ðm��2��Þ2
d ~m2

1

�
� 1

�

�
Im

1

~m2
1 �m2

� þ i� ~m1

�
Z ðm�þ2��Þ2

ðm��2��Þ2
d ~m2

2

�
� 1

�

�
Im

1

~m2
2 �m2

� þ i� ~m2

�Gðs; ~m2
1; ~m

2
2Þ; (39)

with

N ¼
Z ðm�þ2��Þ2

ðm��2��Þ2
d ~m2

1

�
� 1

�

�
Im

1

~m2
1 �m2

� þ i� ~m1

; (40)

where �� ¼ 146:2 MeV and for � � �ð ~mÞ we take the �

width for the decay into the pions in p-wave

�ð ~mÞ ¼ ��

�
~m2 � 4m2

�

m2
� � 4m2

�

�
3=2

�ð ~m� 2m�Þ: (41)

The use of ~G in Eq. (34) provides a width to the states
obtained.

VII. RESULTS

In the first step we calculate the T matrix for the scat-
tering of �� in the two channels I, S ¼ 0, 0; 0, 2 which
experience the largest attraction according to Table I. We

TABLE I. V for the different spin-isospin channels.

I S Contact Exchange 	Total½IGðJPGÞ�
1 1 6g2 �4g2ð 3s

4M2
�
� 1Þ �2g2½1þð1þ�Þ�

0 0 8g2 �8g2ð 3s
4M2

�
� 1Þ �8g2½0þð0þþÞ�

0 2 �4g2 �8g2ð 3s
4M2

�
� 1Þ �20g2½0þð2þþÞ�

2 0 �4g2 4g2ð 3s
4M2

�
� 1Þ 4g2½0þð2þþÞ�

2 2 2g2 4g2ð 3s
4M2

�
� 1Þ 10g2½0þð2þþÞ�

FIG. 8. S-channel � exchange diagram.
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consider the potential coming from the contact and ex-
change term, not the approximate sum shown in the table.
For reasonable choices of the cutoff, qmax, of the order of
1 GeV we always find bound states for both sets of quan-
tum numbers, easily visible since T goes to infinity at
values of

ffiffiffi
s

p
smaller than 2 �-meson masses. In Table II

we show the energies of the bound states for different
values of the cutoff when we take a fixed � mass equal
to its nominal mass.

We have used two values of the cutoff around 1 GeV=c,
875 MeV=c, and 1000 MeV=c. What we see is that in both
cases, and for higher values of qmax, one gets bound states
for both S ¼ 0, S ¼ 2, and the binding of the S ¼ 2 state is
bigger than for S ¼ 0. Since the strength of the potential
for S ¼ 2 is much bigger than for S ¼ 0, we also see that
the binding of the tensor state is more sensitive to the cutoff
than that of the scalar state. Yet, reasonable changes of
qmax around 1 GeV revert into changes of about 50 MeV in
the binding for the tensor state and about 20 MeV for the
scalar state. As usually done in this kind of calculation,
once one shows the qualitative features of the states ob-
tained, one can do some fine-tuning of the parameters, only
qmax in the present case, in order to match the energy of a
certain state. In this case we choose the f2ð1270Þ tensor
state, since its mass is very precisely determined from
different experiments [37] at 1275 MeV. Unlike the case
of the f2ð1270Þ state which has a well-defined mass, the
f0ð1370Þ has a large dispersion of values in the PDG [37]
to the point that they quote a mass 1200–1500 MeVas their
average.

As to the width, in our calculation it is obviously zero in
both cases since we have obtained �� bound states.

Experimentally we have �ðf2ð1270ÞÞ ¼ 184:4þ3:9
�2:5 MeV

and �ðf0ð1370ÞÞ ¼ 200–500 MeV according to [37]. Let
us see if we can find a reasonable width for these states
once we take into account the � mass distribution as
described in the former section.
In Fig. 9 we show the results for jTj2 obtained by

considering the � mass distribution. We show the results
for the two cutoffs of Table II. As we can see in the figure,
the matching of the mass of the f2ð1270Þ is obtained with a
cutoff qmax ¼ 875 MeV=c. Then we obtain 1532 MeV for
the energy of the S ¼ 0 state that we would like to asso-
ciate to the f0ð1370Þ. Given, large dispersion of masses of
the f0ð1370Þ, the results obtained by us would be consis-
tent with the present experimental observation.
We see that jTj2 has a good Breit-Wigner distribution in

both cases, with a peak around the masses shown in
Table II, but changed slightly. However, the widths are
relatively small. For the tensor state, one finds a width of
about 2–3 MeV and for the scalar state the width is about
50–75 MeV, depending on the cutoff.
We see that the consideration of the � mass distribution

leads indeed to a width of the states, but it is still very small
compared with experiment, particularly for the tensor state.
Clearly, there must be other sources of the imaginary part.
The likely candidate for the decay must be two pions, and
indeed this accounts for 84.7% of the total width in the case
of the f2ð1270Þ. The case of the f0ð1370Þ is less clear since
the two pion fraction can be of the order of 20% [37] while
the 4� fraction could be dominant.
In the next section we address this problem and study the

mechanisms that lead to the two pions decay of the two �
system.

VIII. CONSIDERATION OF THE TWO PION
DECAY MODE

The results obtained are interesting in as much as we are
obtaining the two states f0ð1370Þ and f2ð1270Þ qualita-
tively, with the important fact that the f2ð1270Þ state is
more bound than the f0ð1370Þ. In this section we take into

TABLE II. Pole positions for the two different channels.

I S

ffiffiffi
s

p ðMeVÞ
½qmax ¼ 875 MeV=c�

ffiffiffi
s

p ðMeVÞ
½qmax ¼ 1000 MeV=c�

0 0 1512 1491

0 2 1255 1195

0.0×100

1.0×105

2.0×105

3.0×105

4.0×105

5.0×105

6.0×105

7.0×105

8.0×105

 1300  1400  1500  1600  1700

|T
|2

s1/2[MeV]

Squared amplitude for S = 0 

qmax=875 MeV
qmax=1000 MeV

0.0×100

1.0×109

2.0×109

3.0×109

4.0×109

5.0×109

 1000  1125  1250  1375  1500

|T
|2

s1/2[MeV]

Squared amplitude for S = 2 

qmax=875 MeV
qmax=1000 MeV

FIG. 9. jTj2 taking into account the � mass distribution for S ¼ 0 and S ¼ 2.
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account the diagrams that couple �� to ��, thus mixing
the �� channel with the �� and allowing the states ob-
tained to develop a width from decay into ��.

The �� interaction at these energies away from the ��
threshold, in L ¼ 0 and L ¼ 2 that we will need for states
of J ¼ 0, 2, respectively, is rather weak compared with the
one of the �� interaction. Furthermore, the energies of the
two resonances under discussion are close to the two �
meson threshold and far away for that of ��. Hence, this
latter channel cannot have much weight in the wave func-
tion of these resonances. It is, thus, unnecessary to treat the
�� as a coupled channel and one can simplify the work by
computing the diagrams for �� ! �� mediated by two
pion exchange depicted in Fig. 10 for �þ�� ! �þ��. If

we introduce these new terms as part of the �� interaction
and iterate them through the Bethe-Salpeter equation of
Eq. (34), we generate all terms with transition of �� to ��
and neglect terms containing the �� ! �� interaction
that we considered weaker.
The evaluation of the box diagram in Fig. 11, where the

momenta are explicitly shown, is straightforward. One
needs the ��� couplings which are provided within the
same framework of the hidden gauge formalism [22,23] by
means of the Lagrangian

L V�� ¼ �ighV�½�; @���i: (42)

We have

�itð��Þ ¼
Z d4q

ð2�Þ4 ð�iÞð ffiffiffi
2

p
gÞ4ðq� k1 þ qÞ��ð1Þ� iðk1 � qþ P� qÞ��ð2Þ�iðk3 � q� qÞ	�ð3Þ	ð�iÞðq� k3 � Pþ qÞ
�ð4Þ


� i

q2 �m2
� þ i�

i

ðk1 � qÞ2 �m2
� þ i�

i

ðP� qÞ2 �m2
� þ i�

i

ðk3 � qÞ2 �m2
� þ i�

: (43)

By making again the approximation that all the polarization vectors are spatial, we can rewrite the amplitude as

� itð��Þ ¼ ð ffiffiffi
2

p
gÞ4

Z d4q

ð2�Þ4 16qiqjqlqm�
ð1Þ
i �ð2Þj �ð3Þl �ð4Þm

1

q2 �m2
� þ i�

1

ðk1 � qÞ2 �m2
� þ i�

1

ðP� qÞ2 �m2
� þ i�

� 1

ðk3 � qÞ2 �m2
� þ i�

: (44)

Since the integral is logarithmically divergent, and in the
absence of data to fit the subtraction constant if using
dimensional regularization, we regularize it with a cutoff
in the three momentum, which should be of the order of
1 GeV, the basic scale at the energies that we are working.
This requires to perform the q0 integration analytically,
which is easily done by means of the residues, caring to
divide exactly by factors with undefined polarity (� i� in

factors of the denominator). The procedure proves more
practical in this case than using the Feynman parametriza-
tion, which requires three integrals, while here we need
only one. Furthermore, the cuts, or sources of the imagi-
nary part, show up explicitly and allow one to keep control
in the numerical evaluation. After some algebraic manipu-
lation we obtain

Vð��Þ ¼ ð ffiffiffi
2

p
gÞ4ð�ð1Þi �ð2Þi �ð3Þj �ð4Þj þ �ð1Þi �ð2Þj �ð3Þi �ð4Þj þ �ð1Þi �ð2Þj �ð3Þj �ð4Þi Þ 8

15�2

Z qmax

0
dq ~q6f10!2 � ðk03Þ2g

1

!3

�
1

k01 þ 2!

�
2

� 1

P0 þ 2!

1

k01 þ �
4 � 2!þ i�

1

k01 � �
4 � 2!þ i�

1

P0 � 2!þ i�
; (45)

FIG. 10. Diagrams considered for �� ! ��.
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with! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þm2

�

p
. We see the two sources of the imagi-

nary part in the cuts k01 � �
4 � 2! ¼ 0 and P0 � 2! ¼ 0,

corresponding to � ! �� and �� ! ��. The diagram of
Fig. 11 leads to a double pole for � ! ��, a decay channel
that is open at the energies that we study. But when the
mass distribution of the � is considered in the evaluation of
the amplitude, the degeneracy of the pole is removed. We
have performed such a calculation, but have observed that
a simpler approach, and accurate enough for our purposes,
is to substitute the double pole ð1=ðk01 � 2!þ i�ÞÞ2, which
appears in the calculation with fixed �masses, by ð1=ðk01 �
2!þ �

4 þ i�ÞÞð1=ðk01 � 2!� �
4 þ i�ÞÞ to approximately

account for the dispersion of � masses in the convolution.
We see in practice that the results barely change if we put
there �=2 instead of �=4 or some other reasonable number
of the size of the � width.

The spin structure projects over S ¼ 0, S ¼ 2, not over
S ¼ 1, which is obvious since the parity of the �� system
for � in s wave is positive which forces the two pions in
L ¼ 0, 2, equivalent to total J since the pions have no spin.
Hence, we find only the 0þ, 2þ quantum numbers.

The next step is to evaluate the diagrams shown in
Fig. 10 for �þ�� ! �þ�� in the case of �þ�� !
�0�0, etc., to obtain the isospin combinations. We are
only interested in I ¼ 0, for the two states found in the
former sections. So we obtain finally

tð2�;I¼0;S¼0Þ ¼ 20 ~Vð��Þ tð2�;I¼0;S¼2Þ ¼ 8 ~Vð��Þ; (46)

where ~Vð��Þ is given by Eq. (45) after removing the polar-
ization vectors.

The integral of Eq. (45) is logarithmically divergent, a
divergence that can be smoothly regularized with a cutoff
as we have done before. We have checked that with the

former cutoff the real part obtained from Vð��Þ is fairly
smaller than that obtained from the �� potentials of
Table I. On the other hand, there is also another source
of real part from the box diagram involving the �!�
anomalous coupling, which has a similar structure ( ~q6

factor in the integrand), and is also smaller than the poten-

tials of Table I and of opposite sign to Vð��Þ. Altogether,
we neglect the real parts of these box diagrams and take the
real part of the potential from the tree level potential of

Table I. In the next section we come back to these issues

with a detailed evaluation. However, Vð��Þ leads now to a
large imaginary part of the resonances because of the large
phase space for �� decay. The largest piece of the imagi-
nary part comes from the factor ðP0 � 2!þ i�Þ�1. Since
we are concerned about the width of the resonances, we,
thus, consider the � exchange between two � mesons in
the t channel as mostly off shell and implement empirical
form factors used in the decay of vector mesons in [41,42].
We use

FðqÞ ¼ �2 �m2
�

�2 � ðk� qÞ2 (47)

in each � ! �� vertex with

k0 ¼
ffiffiffi
s

p
2

~k ¼ 0 q0 ¼
ffiffiffi
s

p
2
; (48)

and ~q the running variable in the integral.
We shall evaluate the results for different values of �

around 1200–1300 MeV, which are the values chosen in
[41,42]. We also implement a global cutoff of qmax ¼
1:2 GeV in the integral of Eq. (45), although the form
factors already provide fast convergence around that
region.

IX. CONSIDERATION OF THE CROSSED-�� BOX
DIAGRAMS AND THE TWO OMEGA

INTERMEDIATE STATE

We can also have the crossed diagram of Fig. 12. By
following identical steps as for the diagram of Fig. 11 we
obtain at the end the expression

~V ðc;��Þ ¼ 16g4

15�2

Z qmax

0
dq ~q6f20!2 � ðk01Þ2g

1

!3

�
�

1

k01 þ 2!

�
3 1

k01 þ �
4 � 2!þ i�

� 1

k01 � �
4 � 2!þ i�

1

k01 � 2!þ i�
(49)

and

FIG. 11. Detail of one of the diagrams of Fig. 10.

FIG. 12. Crossed-box diagram for the four pion decay mode.

R. MOLINA, D. NICMORUS, AND E. OSET PHYSICAL REVIEW D 78, 114018 (2008)

114018-10



tð2�ðcÞ;I¼0;S¼0Þ ¼ 5 ~Vðc;��Þ tð2�ðcÞ;I¼0;S¼2Þ ¼ 2 ~Vðc;��Þ:
(50)

It is also interesting to evaluate the contribution of
intermediate !! state with anomalous couplings, given
by Fig. 13. The coupling �!�, with the renormalization
that we use, can be found in [33] and is given by

L VVP ¼ G0ffiffiffi
2

p ���	
h@�V�@	V
Pi (51)

with

G0 ¼ 3g02

4�2f
g0 ¼ �GVM�ffiffiffi

2
p

f2
;

where GV ’ 55 MeV and f� ¼ 93 MeV. Thus, the vertex
�þ�þ! gives

� it ¼ iG0���	
q�k1;	��ð!Þ�
ð�þÞ: (52)

At this point we use again the assumption that ~ki;j ’ 0

which forces the index 	 ¼ 0, and one obtains

� it ¼ iG0M��ijkqi�jð!Þ�kð�þÞ: (53)

The amplitude corresponding to the first diagram of Fig. 13
is given by

�itð!!Þ ¼
Z d4q

ð2�Þ4 M
4
�G

04�i1j1k1qi1�j1ð!Þ�k1ð�þ
1 Þ�i2j2k2qi2�j2ð!Þ�k2ð��

2 Þ�i3j3k3qi3�j3ð!Þ�k3ð��
4 Þ�i4j4k4qi4�j4ð!Þ�k4ð�þ

3 Þ

� 1

q2 �M2
! þ i�

1

ðP� qÞ2 �M2
! þ i�

1

ðk1 � qÞ2 �m2
� þ i�

1

ðk3 � qÞ2 �m2
� þ i�

; (54)

which upon the sum over the internal ! polarizations and simplifications done before, leads to

tð!!Þ ¼ �fð�iÞ 115M
4
�G

04 Z d3q

ð2�Þ3 ~q4ð�!3
� þ k0

2

3 !! � 4!2
�!! � 4!�!

2
! �!3

!Þ 1

ðk01 þ!! þ!�Þ2

� 1

ð!! þ!� � k01 � i�Þ
1

ð!! þ!� � k03 � i�Þ
1

!3
�

1

ðP0 � 2!! þ i�Þ
1

ðP0 þ 2!!Þ
1

!!

; (55)

where fð�iÞ ¼ 6ð ~�1 � ~�3Þð ~�2 � ~�4Þ þ ð ~�1 � ~�2Þð ~�3 � ~�4Þ þ ð ~�1 � ~�4Þð ~�2 � ~�3Þ. When we evaluate the �� interaction in I ¼ 0,
the only one in this case, fð�iÞ is changed to

FIG. 13. Anomalous-box diagrams for the two omega intermediate state.
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f00ð�iÞ ¼ 7ð ~�1 � ~�3Þð ~�2 � ~�4Þ þ 7ð ~�1 � ~�4Þð ~�2 � ~�3Þ þ 2ð ~�1 � ~�2Þð ~�3 � ~�4Þ; (56)

which allows the projection over S ¼ 0 and S ¼ 2, and we finally obtain

~V ð!!Þ ¼ � 1

30�2
M4

�G
04 Z qmax

0
dq ~q4ð�!3

� þ k0
2

3 !! � 4!2
�!! � 4!�!

2
! �!3

!Þ 1

ðk01 þ!! þ!�Þ2

� 1

ðk01 þ �
4 �!! �!� þ i�Þ

1

ðk03 � �
4 �!! �!� þ i�Þ

1

!3
�

1

ðP0 � 2!! þ i�Þ
1

ðP0 þ 2!!Þ
1

!!

(57)

and

tð!!;I¼0;S¼0Þ ¼ 30 ~Vð!!Þ tð!!;I¼0;S¼2Þ ¼ 21 ~Vð!!Þ:
(58)

In Fig. 14 we show the different contributions to the
potential that we have considered for I ¼ 0, S ¼ 0 and I ¼
0, S ¼ 2. In the evaluation of the integrals we have taken
the same cutoff of qmax ¼ 1200 MeV. For the sake of
simplicity, the calculations are done without form factors.
Their consideration does not change the conclusions that
follow. Concerning the real parts, in the case of S ¼ 2 we
observe that the most important contribution is the poten-
tial coming from the contact term and the � exchange,
which is very large and attractive, whereas the other terms
are practically zero. For S ¼ 0 we observe that the

individual contributions of the ��-box diagram,
crossed-��-box diagram, and !! term are comparatively
larger with respect to the contact plus �-exchange term
than in the case of S ¼ 2. Yet, we find a quite good
cancellation of the �� box plus crossed-�� box and
anomalous-!! box terms, and the interaction is dominated
by the contact plus �-exchange terms. However, the rela-
tively larger contribution of the subdominant terms indi-
cates that we should admit larger uncertainties in the
position of the f0ð1370Þ state than in the f2ð1270Þ one.
For the imaginary parts we see that the term of the�� box,
which allows for the decay of �� in ��, is considerably
larger than the others, and we obtain that the crossed-��
box (decay in 4�) only accounts for the 20% of the ��
box, whereas the anomalous-!! box is zero in our region
of interest.
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FIG. 14. Comparison of the real and imaginary parts of the different potentials for I ¼ 0, S ¼ 2 and I ¼ 0, S ¼ 0.
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As we see, the crossed terms are reasonably smaller than
the direct ones. We use this fact to omit the calculation of
the crossed pion terms corresponding to the convolution of
the two �0s. This convolution implicitly includes the con-
tribution of four intermediate pions when the two meson
decay each into two pions. We could make one of two
pions from one � to be reabsorbed by the other �. We saw
that the convolution of the �0s gave rise to a moderate
width compared with the direct �� box. Since the
crossed-�� box gives a smaller contribution than the
direct term, we can expect the same to occur with the
crossed terms from the convolution, giving rise to a small

correction to a width which is already much smaller than
the one obtained from the 2� decay. For this reason we
omit the evaluation of these terms.

X. RESULTS WITH Vð��Þ

In view of the results obtained in the former section, here
we show the results obtained considering only the contact
term plus the �-exchange term and the imaginary part of
the direct ��-box diagram. The 20% extra contribution to
the imaginary part of the ��-crossed-box term is small
compared with uncertainties in the width stemming from
the use of the form factor of Eq. (47).
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FIG. 15. jTj2 taking into account the �� box with � ¼ 1300 MeV, qmax ¼ 875, 1000 MeV for S ¼ 0 and S ¼ 2.
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FIG. 16. jTj2 taking into account the �� box for different values of � ¼ 1200, 1300, 1400 MeV and qmax ¼ 875, 1000 MeV for
S ¼ 0 and S ¼ 2.
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In Fig. 15 we show the results for jTj2 including the ��
box mechanism for a chosen value of � ¼ 1300 MeV and
the two values of the cutoff. What we observe is that the
peak positions are barely changed with respect to Fig. 9,
however, the widths are now considerably larger. For the
case of the S ¼ 0 state the width is of the order of � ¼
200 MeV, while for the case of the S ¼ 2 state is of the
order of 110 MeV. The experimental situation is the fol-
lowing. The f2ð1270Þ has a width of � ¼ 185 MeVmostly
(85%) coming from �� decay [37]. This means ��� ’
156 MeV, which should be considered in fair agreement
with our results. For the case of the f0ð1370Þ the width is
200–500 MeVaccording to the PDG [37], with about 50%
of the experiments providing a width around 200 MeV in
agreement with our findings. One might wonder whether
the scalar state that we obtain, which has a mass around
1500MeV, could not correspond to the f0ð1500Þ. However,
its width of about 100 MeV, out of which only 35% comes
from �� decay [37], clearly excludes it from being asso-
ciated to the state that we have obtained around 1500 MeV.
On the other hand, preliminary data from the Belle col-
laboration suggest that the peak of the mass of the f0ð1370Þ
appears rather around 1470 MeV [43], which would agree
better with our findings. Yet, one should also take into
consideration the thorough study of [44], making a strong
claim in favor of the f0ð1370Þ with a mass around the
nominal one of the PDG. Incidentally, this latter analysis
relies upon a dispersive term dominated by ��
components.

Our model provides some 4� decay coming from the
�� decay of each �, which has been taken into account by
means of the convolution with the � mass distribution.
Also the crossed-�� box diagram discussed in Sec. IX
gives rise to 4� decay. However, this cannot be the sole
contribution of 4� decay. In a recent paper [45], extra
decay channels of the type of �� are also considered
which would increase the total width.2

In order to show the sensitivity of the results to the
meson decay form factor, we show in Fig. 16 the results
for different values of �, in the range of values used in
[41,42]. We take � ¼ 1200, 1300, and 1400 MeV. We can

see that as � grows, the width becomes larger but the peak
position does not change. The dispersion on the values of
the width gives us an indication of the theoretical uncer-
tainties in this value. Yet, within these uncertainties in the
position and the width, one can claim a reasonable agree-
ment with data for these two states providing a big support
for the idea of the two states as being dynamically gen-
erated from the �� interaction given by the hidden gauge
formalism.

XI. CONCLUSIONS

We have made a study of the �� interaction using the
hidden gauge formalism. The interaction comes from con-
tact terms plus � meson exchange in the t channel.
Amongst all spin and isospin allowed channels in s
wave, we found strong attraction, enough to bind the
system, in I ¼ 0, S ¼ 0 and I ¼ 0, S ¼ 2. We also found
that in the case of I ¼ 0, S ¼ 2 the interaction was more
attractive, leading to a tensor state more bound than the
scalar. The consideration of the �mass distribution gives a
width to the two states, very small in the case of the tensor
state because of its large binding. However, the biggest
source of width comes from the decay into �� that we
have also studied within the same formalism. We found the
width much larger for the case of the scalar state. We also
studied the effect of the crossed-��-box diagrams and the
contribution of !!-intermediate states with anomalous
couplings, which were found to play a minor role. The
states obtained could be associated with the f0ð1370Þ and
f2ð1270Þ, for which we found a qualitative agreement on
the mass and width. The findings of the paper give support
to the idea that these two resonances are dynamically
generated from the �� interaction, or in other words, that
they qualify largely as �� molecules.
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