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Heavy-to-heavy quark decays at next-to-next-to-leading order
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Details of a recent calculation of @(a?) corrections to the decay b — c{v,, taking into account the
c-quark mass, are described. Construction of the expansion in the mass ratio m./m; as well as the
evaluation of new four-loop master integrals are presented. The same techniques are applicable to the
muon decay, u — ev,, ,. Analytical results are presented, for the physical cases as well as for a model

with purely-vector couplings.
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L. INTRODUCTION

Because of the role that the semileptonic decay b —
ctv; and the muon decay u — ev, 7, play in the determi-
nation of the parameters of the standard model, it is war-
ranted to improve the theoretical description of their rates
and distributions. Recently, we have determined O(a?)
corrections (a? for the muon), including the effects of
the charm quark (electron) mass [1]. Since this was the
first analytical evaluation of such mass effects and required
an extension of known results, in this paper we describe
some technical details.

We made extensive use of earlier results obtained in the
massless case [2—4], in particular, of the master integrals
determined in those projects. It turned out, however, that
the massive case requires the knowledge of more terms of
the expansion of those integrals in the dimensional regu-
larization parameter € = “‘TD. To find them, we took a
different approach to the evaluation of those master inte-
grals. That approach is described below, together with the
list of new terms that are now known. Since the decays
considered here are a model for other beta-decaylike pro-
cesses, those integrals will likely find other applications in
the future.

Before presenting that calculation, in the following sec-
tion we introduce the notation and in Sec. III we describe
how the expansion around the massless case is constructed.
Our results for the corrections to the » — ¢ decay and to a
decay in a model with pure vector couplings, as well as for
the new terms in master integrals, are collected in three
appendices.

II. DECAY RATE AND RADIATIVE CORRECTIONS

The tree-level decay rate and the one-loop corrections
are known exactly [5]. Their expansion in p = m,./m;, <
1 and parametrization of two-loop corrections are
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where Ty = G%|V,,|?m3 /(1927°), G is Fermi constant,
and color factors are Cp = 3, Tg = 4, C4 = 3. Here N, =
3 is the number of massless quarks, and Ny - = 1 label,
respectively, the b-quark loop, and virtual and additional
real c-quark contributions; components X;, Xy, X, Xy,
and Xy, are separately gauge-invariant and finite. The
limit of these functions for m,. = 0 is known [3]. The
purpose of this paper is to obtain their mass dependence.
All calculations are performed in D = 4 — 2¢e dimensions,
and axial currents are treated according to the prescription
of [6]. General gluon gauge was used to ensure gauge
invariance of the results.

The presence of the logarithm of the mass ratio in the
lowest-order rate, Eq. (2), signals the presence of higher
powers of logarithms in the higher-order terms [indeed, we
see a quadratic logarithm in Eq. (3)]. It is for this reason
that the term p* requires more terms of the expansion of
Feynman integrals in powers of € mentioned in Sec. I.

Using the optical theorem, we find X, as the imaginary
part of 39 self-energy diagrams such as the examples
shown in Fig. 1. Each diagram is expanded in asymptotic
regions [7-9] to several orders in p and all contributions
are summed. Some details of that expansion are described
in the next section.

III. ASYMPTOTIC EXPANSION

As an example, we consider the rightmost diagram in
Fig. 1 which has the richest structure of asymptotic re-
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FIG. 1.
charged lepton and a neutrino, whose masses we neglect.

gions. Evaluating the traces and Wick rotating, we obtain a
number of terms proportional to integrals
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D¢ = 17, D, =P, Dg = 1>+ 2pl,
Dy=(p+k—q+r)?

(Fig. 2(a)), where the external momentum p is on shell
(p*> = —m3), and exponents a; are some integers. To re-
duce the problem to single-scale integrals, we investigate
all possible assignments of the two relevant scales—mm,,
(““hard”) or m, (*‘soft”’)—to the four-loop momenta, and
Taylor expand in every such “region” (Figs. 2(b)-2(1)).

Examples of O(a?) b-quark self-energy diagrams whose cuts describe the semileptonic decay. Dashed lines represent a

As an example, consider ¢ and / being soft, and k and r
hard. The denominators are Taylor expanded as
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producing, together with the remaining denominators,
case (i). Similar expansions in the other regions are sum-
marized in Table L.

As one can see, in most regions this topology factorizes
into known one- and two-loop integrals. Note the unusual
“eikonal” denominators such as 1/(2pl + i0) in cases (i)
and (1), which lead to odd powers of p in the end result.
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FIG. 2. Expansion of a double-scale topology (a) in all contributing asymptotic regions (b—1). Thick lines represent mass m,, thin
lines represent mass m,, dashed lines are massless, double lines correspond to eikonal (static) propagators. Different regions
correspond to expansions with different assignment of scales (hard, m,, or soft, m,) to the four-loop momenta.

TABLE I. Scale assignments and expansions of denominator factors corresponding to the regions in Figs. 2(b)-2(1).
(b) k’q’l’rwmb D2—>(q—F)Z,D3—’q2,D4—>(q+l)2,D5—>(q+l_I‘)2
() g—r~mek, g, 1 ~m, D3 — q*, Dy— (g + 1>, Ds — >, Dg — ¢*, Dy — (p + k)?
(d) q~me, k, I, r~m, Dy —*, Dy — 2, Ds— (I—1r)* Dg— (p + k +r)?
(e) qgtl~m,k 1, r~m, Dy,— (I+7r)? D3— 1 Ds—r*,Dyg— (p+k+1—r)?
(f) l+qg—r~m.,k, q, [ ~m,, Dy, — I, D3 — g*, Dy — (I + q)*, Dg — (I + q)*>, Dy — (p + [ + k)?
(2) r,q~meg k, [ ~my, D, — >, Ds — I?, Dy — (p + k)?
(h) g—r.q+l~m.k |~m, Dy — >, Ds — I?, Dg — I, Dg — (p + k)?
@) q,l~m., k, r~m, Dy — 12, Ds — 12, Dy — (p + k + r)?, Dg — (2pl + i0)
() gl+qg—r~m.,k, l~m, Dy, — 1>, D, — I?, Dg— I>, Dg — (p + k + [)?
(k) r,qg+1l~m.k, [ ~m, Dy, — >, Dy — >, Dy — (p + k+ 1)?
0 L, g, r~mgk~m, Dy — (p + k)?, Dg — (2pl + i0)
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One technical difficulty in this procedure is disentan-
gling the products of loop momenta in the numerator,
naturally appearing in the expansion. In the most difficult
cases, we employed the method of Ref. [10], leading to a
huge number of terms at higher orders in p. With inter-
mediate expression size reaching hundred gigabytes, some
tuning of the hardware and the computer algebra system
[11] was required.

The three-loop eikonal integrals in region (1) correspond
to topologies studied in Ref. [12]. Using the integration-by-
parts identities [13—15], we reduce the expressions to a few
“master integrals” found in Refs. [12,16], and a previously
unpublished integral calculated by V. A. Smirnov, Eq. (C1)

The four-loop ““all-hard” case (b) here is the most
challenging. To expand X, to O(p’), an implementation
of algorithm [15] was running for several weeks. Finally,
all diagrams were reduced to the 33 master integrals. Their
evaluation was the biggest challenge of this work.

IV. EVALUATION OF FOUR-LOOP MASTER
INTEGRALS

The results for master integrals given in [3] are sufficient
to obtain O(p°) and O(p?) terms of X,. However, in order
to find the following O(p*) contribution, many integrals
need to be expanded further. In [3], the initial terms of that
expansion were obtained in a series of steps. First, some of
the internal lines of the diagram, representing a given
master integral, were assigned a mass M much larger
than the mass of the external particle m. Next, the diagram
was expanded in m/M using a similar approach as de-
scribed in the previous section; several terms of that ex-
pansion were obtained in each order in €. Finally, and most
nontrivial, a pattern in that expansion was recognized and
the expansion was now summed analytically. The value of
the result at M = m gave the desired value of the integral.

In higher orders in €, the recognition of the expansion
pattern may be very difficult. Instead, we evaluate these
integrals using the method of differential equations [17].
We start by choosing a few artificial double-scale topolo-
gies, related in some limit to the needed integrals. We
illustrate this approach with the topology shown in
Fig. 3. It involves an artificial mass \/l/_x, and in the on
shell limit x — 1 reproduces the topology needed for the
first diagram shown in Fig. 1 (where we also introduce the

PHYSICAL REVIEW D 78, 114015 (2008)

This function is chosen due to several reasons. First, if
0 < x = 1, the cuts are the same as in the on shell limit,
and we may discard the real part in all calculations.
Second, large mass expansion to a few orders in x and €
is relatively simple [3]. And third, the associated differen-
tial equations have a structure convenient for an iterative
solution; this property will be explained later.

This topology has 40 master integrals. Derivative of any
such integral can be recast in terms of integrals with shifted
indices,
ag; x) as+1,...)

d as
—I(ay, ..., =—=1I(ay,...,
ox (1 xz (1

+%1(a1,...,a6 +1,..), (7
generating a system of 40 differential equations. It can be
split into independent subsystems of at most four equa-
tions, where the solution of one system enters the right-
hand side of the following one.

For  example, consider functions f(x, €) =
100,1,1,0,1,0,0,1,0;x), g(x,e) =1(—1,1,1,0,1,0,0,
1,0;x), and h(x, €) = 1(0, 1,1, —1, 1,0, 0, 1, 0; x), entering
a particularly simple system of relations

4x — 5+ €(7 — 6x) 9—1le 3e -3
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/= - n h
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We solve this system with respect to derivatives of f, and
expand f ) =1 1)+ folx) + efi(x) +....
Finally, the differential equations for f; become

p 9=6v , 18—6x 6 . _
o=l Tea=nli tea /i TR
R,IZO
6x—9 . 6x , 31
Ro= g/ e )f Pa—n’
9)

The three solutions of the homogeneous equation (with
R; = 0) can be guessed: 1/x, 1/x%, and (1 — x*(x + 6) +
6x(1 + x)Inx)/x3. Euler’s formula allows then to solve the

+ . . . .
loop factor F = (E‘(;)ng ). inhomogeneous equations. To fix the three integration
.- [d°K)[d”q][d"r] Dy “°
et Har,eanin) = i [ o
P ' o wF Dy Dy D3? D" D5” Dg® D7" Dy
R PP =—1,D1 =k, Dy =(k+p)? Ds=(k+aq+p)?
" D4:(k+(1+'r'+p)27 D5:(q+7'+p)2+1/:1:.
R D¢ = (r+p)®+1/x, Dr = q*, Ds =712, Do = 2gp.

FIG. 3. Auxiliary double-scale topology. Thick lines represent mass 4/1/x, thin lines represent unit mass propagators, and € labels a

denominator raised to a noninteger power.
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constants, we use the large mass expansion

1 1 15+ 41nx
- 4+ - 7
fwe ==t 8x
(2772 — 145 — 60Ilnx — 8ln®x 1 Inx
€ +o+—=
16x 4 12
X X2
+—+——F . )+ ... 10
144 " 1440 ) (10)

The general solution for f; is expanded and matched to
this series to find suitable constants. Finally, we obtain
x-dependent solutions:

1 1 15 + 41Inx
f—l__a, fo_ﬁ_T’
19 1 6> — 373  H(0;x)(x — 45)
fl =_—+ b}
36 12x 48x 12x
N H(1;x)(x* +9x* —9x— 1)  H(0, 1;x)
12x3 2x?
H .
_HOGx) (11)
X

Because of the fact that the answers can be expressed in
terms of harmonic polylogarithms (HPLs) H(...;x) [18],
the expansion can be continued as long as CPU resources
allow. (More accurately, this procedure works as long as
the solutions of the homogeneous equation, as well as their
inverse Wronskian and minors of Wronski matrix depend
on x in the denominators only through factors x and 1 * x,
and numerators contain HPLs and polynomials. This al-
lows to solve the inhomogeneous equation in terms of
HPLs.) Taking the limit x — 1, we obtain the required on
shell integral.

One integral of the topology shown in Fig. 3, u(x, €) =
1(0,1,1,1,1,1, 1, 1, 0; x), presents an additional difficulty.
Its x-dependent expression starts at O(e) and logarithmi-
cally diverges at x = 1. To find that integral, we evaluated
instead the infrared-safe function I(1,1,1,1,1,1,
I, 1, —1;x), took the on shell limit and then reduced to
u(1, €). This lead to finite @O(e®) and O(e) expressions:

PHYSICAL REVIEW D 78, 114015 (2008)

u(l, e) = 135 — (95{‘ + ””2{3 + %7375) As a trade off,
other integrals were needed to a higher order in €, involv-
ing harmonic polylogarithms up to weight six.

An important tool was the software package HPL [19]
and additional software for the series expansion of har-
monic polylogarithms was developed [20]. As an indepen-
dent check, we used numerical integration of the Mellin-

Barnes representation of some integrals [21].

V. RESULTS AND SUMMARY

The rather lengthy expressions for X;, Xy, X, X4, and
Xya calculated through O(p’) are presented in
Appendix A. Their features, such as the logarithms and
even and odd powers of p, together with physics conse-
quences, have been discussed in [1]. Here we would like to
illustrate the convergence of the expansion. To this end,
Fig. 4 shows the plots of X; as functions of p, in two
versions: solid lines show all known terms while dashed
lines are obtained by leaving out the last known power of
p. We see that the convergence is excellent up to at least
p = 0.3 of interest in this study.

In addition to the integrated decay rate, precision fits to
experimental data are done for the moments of the lepton
energy E; and the hadronic-system energy E;, distributions
in the rest frame of the b quark, with the goal of accurately
measuring several parameters including |V, |, m,,, and the
Wilson coefficient of nonperturbative operators. Thus,
QCD corrections to those moments are also of interest.
These corrections are defined by

LW+ c ( ) L(”):I
T

f(m ) dl' =T [Lg">+c
b (12)

and similarly for the moments of Ej, described by coef-
ficients H(") the average is taken over the whole phase
space of decay products. One-loop spectra are known
exactly [22], and Fig. 5 presents NNLO corrections Lg’z)
and Hél’z). In [1], we discussed how the experimental cuts

0.1 02

FIG. 4. Mass-dependent corrections to X, of Eq. (1).
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FIG. 5. First two moments of lepton and hadron energy dis-
tributions.

can be approximately modeled by the analytical calcula-
tion. Finally, we present the analytical results for U [Eq.
(A6) and Fig. 6], an analogue of X in Eq. (1), describing
charm quark loop contribution to the process with a mass-
less quark in the final state, b — u{v.

The same method can be used in the model in which

chiral weak coupling of quarks, %yu(l — 7ys), are re-

placed with a pure vector vertex, % ¥~ This is a useful
toy model, e.g., for logarithmic resummation studies [23].
In parametrization similar to Eq. (1), the second-order
components V; are defined in Eqgs. (B1)-(B7). We eval-
uated terms to @(p’), and it is now easy to find more.

To summarize, in the process of this calculation, we
checked and confirmed the massless limit of the O(«a?)
corrections [2—4]. We extended those results to several
orders in the mass ratio of the final and initial quarks. To
complete this task, additional terms of master integrals
were required, and the differential-equation method was
applied to compute them. Our results agree excellently
with the numerical calculation [24]. An ultimate test of

PHYSICAL REVIEW D 78, 114015 (2008)

0.1 0.2 0.3 0.4 0.5 0.6 »

FIG. 6. Charm quark contribution to semileptonic b — u de-
cays.

the convergence of the mass expansion will be a corre-
sponding expansion around the opposite mass limit, m, =
my,. Work on this is in progress.
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APPENDIX A: ANALYTICAL RESULTS

Here we present the components of the total decay rate
evaluated to O(p’). In the case of the b-quark loop con-
tribution, Xy, Fig. 4 shows an extremum point around p =
0.2. This contrasts with the other contributions, that seem
to be monotonous functions of p. In order to double check
the convergence, also the @(p®) term has been computed.
The final results are
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The charm quark contribution to b — u{# decays through O(p’) is:

U _ 1009 8¢
¢ 288 3 216 4

3
365
+ <? + 6772)111,0 — 81n2p}p4 BT

APPENDIX B: AVECTOR MODEL

As a by-product of this project, for the purpose of
comparisons with [23], we have determined O(a?) correc-
tions to the decay rate in a model where the W boson has
only a vector, and no axial vector, coupling to fermions.
That is, its interaction vertex is obtained from the standard

(V — A) one by the substitution ;ﬁ Yl —ys) =Sy,

The results for this model are parametrized in analogy with
Egs. (1)—(4), with replacements X; — V;. Results for the
tree-level and first-order corrections, expanded through

O(p>), are

Vo=1—2p —8p> — {18 + 241Inp}p> — 24p*Inp

+ {18 — 241np}p’, (B1)

2 2
L —§77'2p + {21 +8l}p2 +{

12, {7804+647T2 8
675

=0 A5
33075 315 (A5)
64In2 95 32 4375 2572
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336 3 “p}”” 573 6
64 24
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77 T3 e 9np}p 77P (A0)
25 2 ) 2
+ {1372 — 90 — 811np — 36In2p}p?
273
+ {24772 e + 36Inp — 721n2p]>p4
36
+ {13772 - 79 + 135Inp — 721n2p}p5. (B2)

The difference with the standard decay is seen already at
the tree level: odd powers of p are present in V{;, while in
the V — A decay they appeared only in the first-order
corrections. The reason for this is a contribution of a
four-quark operator, as discussed in [1,23]. In the V — A
decay, a similar operator contributes only through its
O(a,) matrix element. As a result, the second-order cor-
rections in the vector case are even more complicated than
in the V — A decay. They read
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APPENDIX C: MASTER INTEGRALS J3 32 N (2561n2 448 6477)
— = = ————]e
In this appendix, we collect new results for master m F? 3 3 3 (C1)
integrals that were obtained in this project. _ I'a+e
For the three-loop integrals needed for the factorized F= (4m)P/2 "
diagrams of the type shown in Fig. 2(1), the O(e) term of _ . o
the integral J; of Ref. [12] was needed. It was privately For the unfactorized four-loop diagrams in Fig. 2(b), the
communicated to us by V. A. Smirnov, master integrals have already been classified and largely

TABLE II.

evaluated in Ref. [3]. Using the approach described in

Additional terms for master integrals of Ref. [3], as defined in Eq. (C2).

A1, 1,1,1,0,1,1,1,1,1,0)
A (1,1,1,0,1,0,1,1,1,0,0)
A,(1,0,1,1,0,1,0,1,0, 1,0)
A (1,1,1,1,0,1,0,1,0, 1,0)
A,(1,0,1,0,1,1,1,0,1,0,0)
A (1,1,1,0,1,1,1,0,1,0,0)
A (1,0,1,1,1,1,0,0, 1, 1,0)
A (1,0,1,1,0,1,1,1,1,0,0)
A (1,1,1,0,0,1,1,1,1,0,0)
Ap(,L,L,1,1,1,1,1,1,1,1)
Ap(1,1,1,1,1,1,0,1,1,1,0)
Ag(1,0,1,0,1,1,1,0,1,1,0)
Ag(1,0,1,0,1,1,1,0,1,1,0)
Ap(1,1,1,0,1,0,1,1,1,1,0)
Ap(1,1,1,0,1,1,1,0,1,0,0)
Ag(1,0,1,1,1,1,0,0,2, 2, 0)

Ac(1,0,1,1,1,0,0,1,1,1,0)
Ac(1,0,1,1,1,1,0,1,1,1,0)

Ac(1,0,1,1,1,1,0,1,1,1,0)
Ag(1,1,1,0,1,1,1,1,1,1,0)
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Ap(1,1,1,1,1,1,0,0,1,1,0)
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HEAVY-TO-HEAVY QUARK DECAYS AT NEXT-TO- ...

Sec. IV, we obtained additional terms of their expansion in
€. To save space, we present here only those additional
terms, using the notation of Ref. [3], in particular,
Egs. (5.7-11) of that paper. Instead of repeating here the
long expressions already known, we define Ay, N = A..F,
to denote the new terms. For any affected master integral,

its improved value can be found as follows,
Im[/y(ay,...,a,;)] = mws/(N.)*terms already known

+ AN(al,...,aH)], (Cz)

PHYSICAL REVIEW D 78, 114015 (2008)
where, as defined in Ref. [3], N, = % % and s
denotes the square of the momentum flowing into the
diagram. Its power j depends on the integral considered
and, for each one, can be found in Ref. [3]. Table II shows
the extra terms Ay.

We use the following notation for transcendental con-
stants, A, =Li,1, n=4.6, and sq =0.9874414....
Here Li, denotes polylogarithms [25], Li,x = >, ;L
and sq = S_s5 _1(00) is certain harmonic sum [19,26].
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