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The parton distribution function for a b quark in the B meson (called the shape function) plays an

important role in the analysis of the B ! Xs� and B ! Xu‘ �� data, and gives one of the dominant

uncertainties in the determination of jVubj. We introduce a new framework to treat the shape function,

which consistently incorporates its renormalization group evolution and all constraints on its shape and

moments in any short distance mass scheme. At the same time it allows a reliable treatment of the

uncertainties. We develop an expansion in a suitable complete set of orthonormal basis functions, which

provides a procedure for systematically controlling the uncertainties due to the unknown functional form

of the shape function. This is a significant improvement over fits to model functions. Given any model for

the shape function, our construction gives an orthonormal basis in which the model occurs as the first

term, and corrections to it can be studied. We introduce a new short distance scheme, the ‘‘invisible

scheme,’’ for the kinetic energy matrix element �1. We obtain closed form results for the differential rates

that incorporate perturbative corrections and a summation of logarithms at any order in perturbation

theory, and present results using known next-to-next-to-leading order expressions. The experimental

implementation of our framework is straightforward.

DOI: 10.1103/PhysRevD.78.114014 PACS numbers: 13.25.Hw, 11.10.Hi, 12.38.Bx

I. INTRODUCTION

The determination of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix element jVubj from inclusive semileptonic
B ! Xu‘ �� decays suffers from large B ! Xc‘ �� back-
grounds. In most regions of phase space where this back-
ground is kinematically forbidden, the hadronic physics
enters via unknown nonperturbative functions, so-called
shape functions. At leading order in �QCD=mb, there is

only one such function, which can be extracted from the
photon energy spectrum in B ! Xs� [1,2] and used to
predict various B ! Xu‘ �� spectra. In B ! Xs� it is the
main uncertainty in the effect of the cut on the photon
energy, which is near the border of the region where a local
operator product expansion (OPE) is applicable. Because
of experimental cuts, the shape function is also important
for B ! Xs‘

þ‘� [3,4].
The determination of jVubj received renewed attention

recently, since the measurement of sin2� favors a some-
what smaller value of jVubj than its determination from
inclusive decays. One of the most sensitive tests of the
standard model flavor sector comes from comparing the
sides and angles of the unitarity triangle, so it is important
to determine jVubj with minimal model dependence.
Refined calculations of the B ! Xs� rate [5] also provide
stringent constraints on new physics.

To obtain jVubj as precisely as possible, one should
combine all existing information on the shape function.
The shape function is constrained by the measurements of
the shape of the B ! Xs� photon energy spectrum [6–8]
and themX spectrum inB ! Xu‘ �� [9], and its moments are
related to the b quark mass,mb, and nonperturbative matrix

elements of local operators in the OPE, which are con-
strained by fits to B ! Xc‘ �� decay distributions [10–12].
In addition, the tail of the shape function as well as its
renormalization group evolution (RGE) can be calculated
perturbatively. A problem is that an arbitrarily small re-
normalization group running of the shape function devel-
ops a perturbative tail whose moments diverge [13].
Currently, there are several approaches to determine

jVubj. Often a model for the shape function is chosen,
which has a fixed functional form roughly consistent
with the B ! Xs� spectrum, and a few adjustable parame-
ters that are fixed by imposing constraints on the first few
moments of the shape function. A proposal [14] used by
many experimental analyses involves defining moments of
the shape function with a cutoff, and a particular procedure
to attach a perturbative tail to the model. Unfortunately,
there is no clear way to disentangle the shape function and
mb dependencies in this approach, and experimental un-
certainties in the shape of the measured B ! Xs� spectrum
are not easily incorporated. The issues related to modeling
the shape function can be avoided using model indepen-
dent relations between B ! Xu‘ �� partial rates and
weighted integrals of the B ! Xs� spectrum [15–18],
which use the measured B ! Xs� spectrum directly as
input to predict the B ! Xu‘ �� rates. Although this weight-
ing method allows one to take into account the experimen-
tal uncertainties from B ! Xs� straightforwardly, it is hard
to combine several measurements, and there is no way to
include the additional constraints on mb and the heavy
quark effective theory (HQET) matrix elements. Phase
space cuts for which the rate has only subleading depen-
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dence on the shape function are also possible [19], at the
expense of increasing the size of the expansion parameter.

A fully consistent method to combine all experimental
constraints on both the shape and moments of the shape
function, while also incorporating its known perturbative
and nonperturbative behavior, has not yet been given. The
framework proposed in this paper provides such a method.
It also allows one to obtain reliable error estimates by
(i) taking into account all experimental and theoretical
uncertainties and correlations and (ii) estimating the un-
certainty related to the unknown functional form of the
shape function in a systematic fashion.

The shape function Sð!;�Þ contains nonperturbative
physics and obeys the renormalization group equation

Sð!;�iÞ ¼
Z

d!0USð!�!0; �i; ��ÞSð!0; ��Þ; (1)

where the evolution kernelUSð!;�i; ��Þ sums logarithms
between the two scales �i > ��. The question is how to
determine the function Sð!;�Þ reliably, which can then be
used to extract jVubj from B ! Xu‘ ��, and to analyze B !
Xs� or B ! Xs‘

þ‘� in the low-q2 region. In Ref. [3] we
used the construction

Sð!;��Þ ¼
Z

dkC0ð!� k; ��ÞFðkÞ; (2)

where C0ð!;��Þ is the b quark matrix element of the
shape function operator calculated in perturbation theory,
and FðkÞ is a nonperturbative function that can be extracted
from data. Equation (2) has many advantages compared to
earlier treatments of the shape function. It ensures that:

(1) Sð!;��Þ has the correct �� dependence and RGE.
(2) Sð!;��Þ has the correct perturbative tail at large!,

while for small ! it is determined by FðkÞ.
(3) The moments of FðkÞ exist without a cutoff and FðkÞ

falls off exponentially at large k.
(4) Information about matrix elements of local opera-

tors in any short distance scheme can be incorpo-
rated via constraints on moments of FðkÞ.

A construction similar to Eq. (2) was also used to treat the
soft function that describes nonperturbative radiation in jet
production in Ref. [20].

The outline of this paper is as follows. In Sec. II we set
up our notation and discuss how the shape function enters
the decay rates. Our new treatment of the shape function
based on Eq. (2) is discussed in Sec. III, including the
procedure for incorporating moment constraints in any
short distance scheme and an analysis of perturbative
corrections in the shape function and decay rate up to
two-loop order with a resummation of large logarithms at
next-to-next-to-leading-logarithmic (NNLL) order. In
Sec. IV we introduce a systematic expansion of FðkÞ in
terms of a suitably chosen set of orthonormal basis func-
tions, which allows one to control the uncertainties arising
from its unknown functional form. In Sec. V, we summa-

rize our proposal of how to use all the available data to
extract the function FðkÞ and determine the shape function
Sð!;�Þwith reliable uncertainties, which can then be used
for the extraction of jVubj from B ! Xu‘ ��. Section VI
contains our conclusions. Details on perturbative correc-
tions and the invisible scheme for the kinetic energy matrix
element are summarized in three appendixes.

II. THE B ! Xs� AND B ! Xu‘ �� RATES IN THE
SHAPE FUNCTION REGIONS

We use the kinematic variables p�
X ¼ EX � j ~pXj. We

also define the partonic variable p� ¼ p�
X þmb �mB. In

B ! Xs�, p�
X ¼ mB (p� ¼ mb) and pþ

X ¼ mB � 2E�,

while in B ! Xu‘ �� they are independent variables with
pþ
X � p�

X � mB. There are three cases where it is known
how to carry out a systematic expansion of the decay rate

1: Nonperturbative shape function: �QCD � pþ
X � p�

X ;

2: Shape function OPE: �QCD � pþ
X � p�

X ;

3: Local OPE: �QCD � pþ
X � p�

X :

(3)

The region 2 was first studied in B ! Xu‘ �� in
Refs. [14,21], and for the B ! Xs� rate in Refs. [22,23].
In the soft collinear effective theory (SCET) regions 1 and
2, where pþ

X � p�
X , the decay rates �s � �ðB ! Xs�Þ and

�u � �ðB ! Xu‘ ��Þ are given by the factorization theo-
rems [24,25]

d�s

dE�

¼ 2�0sHsðpþ
X ;�iÞ

�
Z

d!mbJðmb!;�iÞSðpþ
X �!;�iÞ;

d�u

dE‘dp
þ
X dp

�
X

¼ �0uHuðE‘; p
�
X ; p

þ
X ;�iÞ

�
Z

d!p�Jðp�!;�iÞSðpþ
X �!;�iÞ;

(4)

where

�0s ¼ G2
Fm

5
b

8�3

�em

4�
jVtbV

	
tsj2; �0u ¼ G2

Fm
5
b

192�3
jVubj2:

(5)

Corrections are suppressed by �QCD=mb and it is known

how to include them in Eq. (4). Here we focus on the
leading term since the procedure to incorporate the sub-
leading terms follows the same method. The integration
limits are implicit in the support of the S and J functions in
Eq. (4), which are nonzero when their first argument is
positive. Both the hard functions Hu and Hs and the jet
function J in Eq. (4) are calculable in a perturbation series
in �s. We summarize results for them in Appendix A up to
two-loop order. Only Hu and Hs are process dependent,
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and they can sum logarithms between the hard scale and
�2

i � pþ
X p

�
X .

The shape function Sð!;�iÞ in Eq. (4) sums logarithms
between �i and �� through Eq. (1), where in case 1 in
Eq. (3) �� � 1 GeV, while in case 2 �� � pþ

X . In case 1
the shape function is nonperturbative, while in case 2 it can
be computed with an OPE to separate the scales �QCD �
pþ
X . A key feature of Eq. (2) is that it makes the expressions

for the decay rates in Eq. (4) simultaneously valid both for
cases 1 and 2. For example, it allows an analysis of the
photon energy cut in B ! Xs� without having to rely on
the expansion in region 2 in �QCD=p

þ
X , as was done in

Refs. [22,23]. This is important, since in practice, if the
momenta in region 2 are not well separated numerically,
the utility of expanding in �QCD=p

þ
X is unclear.

It is possible to make Eq. (4) valid for region 3 of Eq. (3),
by including appropriate power suppressed and perturba-
tive corrections. At tree level this was carried out in
Refs. [26,27], and all results presented below are valid in
region 3 at this order. At the level of perturbative correc-
tions these issues were studied in Ref. [28]. We do not
include the additional perturbative corrections needed in
region 3, since our primary interest is to study the SCET
regions 1 and 2. However, it is important that for the
perturbative corrections to be correct in region 3, it is
required to scale up the different �’s so that �� ¼ �i ¼
�b �mb, because there is only one scale � in the local
OPE. A procedure to carry out this scaling of the �’s is
discussed around Eq. (36). A dedicated study of the tran-
sition to region 3 is left for future work.

Combining Eqs. (1), (2), and (4), and switching the order
of convolutions we arrive at

d�s

dE�

¼ 2�0sHsðpþ
X ;�iÞ

�
Z

dkPðmb; p
þ
X � k;�iÞFðkÞ;

d�u

dE‘dp
þ
X dp

�
X

¼ �0uHuðE‘; p
�
X ; p

þ
X ;�iÞ

�
Z

dkPðp�; pþ
X � k; �iÞFðkÞ:

(6)

Here, the perturbatively calculable function P is process
independent,

Pðp�; k; �iÞ ¼
Z

d!
Z

d!0p�J½p�ðk�!Þ; �i

�USð!�!0; �i; ��ÞC0ð!0; ��Þ: (7)

At lowest order in perturbation theory

Pðp�; k; �iÞ ¼ �ðkÞ þOð�sÞ; (8)

and the result for P up to Oð�2
sÞ with NNLL resummation

is given in Appendix A.
Equation (6) can be used to determine the F function by

fitting to experimental B ! Xs� and B ! Xu‘� data. We

return to this in Sec. V. In the next two sections we explore
Eq. (2) in detail and construct a complete orthonormal
basis for FðkÞ that is suitable for carrying out these fits.

III. GENERAL TREATMENT OF THE SHAPE
FUNCTION

A. Master formula and OPE constraints

The shape function Sð!;�Þ is the B meson matrix
element

Sð!;�Þ ¼ hBjO0ð!;�ÞjBi � hO0ð!;�ÞiB; (9)

of the operator

O0ð!;�Þ ¼ �bv�ðiDþ � �þ!Þbv; (10)

where we defined

� ¼ mB �mb: (11)

Here, bv is the heavy quark effective theory (HQET) b
quark field and jBi is the full QCD B meson state, respec-
tively. (If we used the HQET jBvi state, this would corre-
spond to absorbing time-ordered products of O0ð!Þ with
all power corrections in the HQET Lagrangian into the
definition of Sð!;�Þ.) Also, Dþ ¼ n �D, v is a timelike
vector, and n is a lightlike vector with n � v ¼ 1. For our
application, v ¼ pB=mB is the four-velocity of the B me-
son, and ~n ¼ ~pX=j ~pXj is the direction of the light-quark jet.
The � dependencies of Sð!;�Þ and O0ð!;�Þ are the
same. In Eq. (10), our use of � ¼ mB �mb and the jBi
state ensures that Sð!;�Þ has support for ! � 0 with any
mass scheme formb [27]. Note that � explicitly depends on
the mass scheme. We will use the pole mass scheme first,
and discuss converting to short distance schemes in the
next subsection.
The information about the shape function that can be

obtained from perturbation theory arises from the fact that
when integrated over a large enough region, 0 � ! � �,
such that perturbation theory is reliable at the scale �, the
operator O0ð!Þ can be expanded in a sum of local opera-
tors,

O0ð!;�Þ ¼ X2
n¼0

Cnð!;�ÞQn þ � � �

¼ X2
n¼0

Cnð!� �;�Þ ~Qn þ � � � ; (12)

where we use either of the operator bases

Qn ¼ �bvðiDþ � �Þnbv; ~Qn ¼ �bvðiDþÞnbv: (13)

The Wilson coefficients Cnð!Þ for these two bases are
equivalent, because O0ð!Þ only depends on the combina-
tion iDþ � �þ!. The ellipses in Eq. (12) represent
operators of dimension six and higher (where four-quark
operators first appear). Taking the Bmeson matrix element
of Eq. (12),
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Sð!;�Þ ¼ X2
n¼0

Cnð!;�ÞhQniB þ � � � ; (14)

the moments of Sð!;�Þ with an upper cutoff can be
computedZ �

0
d!!kSð!;�Þ ¼ X

n

hQniB
Z �

0
d!!kCnð!;�Þ þ � � � ;

(15)

and are determined by the local matrix elements hQniB plus
the perturbative information in theCn [14]. For the first few
matrix elements, we have

hQ0iB ¼ 1; hQ1iB ¼ ��; hQ2iB ¼ ��1

3
þ �2;

(16)

where �1 � hBj �bvðiDÞ2bvjBi, with the matrix element
defined in dimensional regularization. With this definition
and the pole mass, the matrix elements in Eq. (16) are �
independent.

The matching coefficients Cnð!;�Þ in the OPE in
Eq. (12) can be determined at fixed order in perturbation
theory by taking a partonic matrix element of both sides of
Eq. (12). Consider [21]

hbvjO0ð!þ �;�Þjbvi ¼
X
n

Cnð!;�Þhbvj ~Qnjbvi

¼ C0ð!;�Þ; (17)

where the bv states have zero residual momentum, and we

used hbvj ~Qnjbvi ¼ �0n. The n � 1matrix elements vanish

in MS because there is no dimensionful quantity they can
be proportional to. To determine Cnð!;�Þ for n � 1, con-
sider the matrix element between bv states with residual
momentum k� where v � k ¼ 0 but kþ ¼ n � k � 0. The
right-hand side of Eq. (12) gives [21]

hbvðkþÞjO0ð!þ �;�ÞjbvðkþÞi
¼ hbvð0ÞjO0ð!þ kþ þ �;�Þjbvð0Þi

¼ C0ð!þ kþ; �Þ ¼ X
n

knþ
n!

dnC0ð!;�Þ
d!n : (18)

Comparing this with the left-hand side of Eq. (12),

hbvðkþÞjO0ð!þ �;�ÞjbvðkþÞi

¼ X2
n¼0

Cnð!;�ÞhbvðkþÞj ~QnjbvðkþÞi þ � � �

¼ X2
n¼0

Cnð!;�ÞðkþÞn þ � � � ; (19)

gives for n ¼ 0; 1; 2

Cnð!;�Þ ¼ 1

n!

dnC0ð!;�Þ
d!n : (20)

In Eq. (19), the matrix elements of ~Qn for n � 2 inMS are
given by their tree-level values knþ, because loop graphs
have dimension � 1, but are scaleless and vanish.
The coefficients of Q1 and Q2 are related by Eq. (20) to

the same perturbative coefficient function as Q0 to all
orders in perturbation theory. This is no longer the case
at dimension six and higher, where the operator basis
includes four-quark operators, and more than one matrix
element must be computed.
Our key point is to write the renormalized shape func-

tion at the scale � as in Eq. (2),

Sð!;�Þ ¼
Z

dkC0ð!� k;�ÞFðkÞ; (21)

where the function C0ð!;�Þ ¼ hbvjO0ð!þ �;�Þjbvi has
an expansion in �s and contains perturbatively accessible
information about Sð!;�Þ. Equation (21) defines the func-
tion FðkÞ, which is a nonperturbative object that can be
extracted from data. To see that Eq. (21) uniquely specifies

FðkÞ, note that in Fourier space ~Sðy;�Þ ¼ ~C0ðy;�Þ ~FðyÞ, so
~FðyÞ ¼ ~Sðy;�Þ= ~C0ðy;�Þ.
An important feature of Eq. (21) is that it is consistent

with the OPE result in Eq. (14). Expanding its right-hand
side in k gives

Sð!;�Þ ¼ X
n

1

n!

dnC0ð!;�Þ
d!n

Z
dkð�kÞnFðkÞ; (22)

and comparing with Eqs. (14) and (20) one finds for n ¼
0; 1; 2 Z

dkknFðkÞ ¼ ð�1ÞnhQniB: (23)

Thus, the first few moments of FðkÞ are determined by the
matrix elements of the local operators hQniB, reproducing
the OPE for these terms. [The decomposition in Eq. (21)
can be extended such that it works for the OPE terms with
n � 3 as well, although we will not do so explicitly here.]
Unlike for Sð!;�Þ, for FðkÞ all moments without a cutoff
exist, so FðkÞ falls faster than any power of k at large k.
Furthermore, the characteristic width over which FðkÞ has
substantial support is of order �QCD.

Equation (21) also ensures that Sð!;�Þ has the correct

dependence on � in theMS scheme, since it is determined
by C0ð!;�Þ, which satisfies the shape function RGE in
Eq. (1). As shown in Eq. (A23) of Appendix A, a simple
formula valid to all orders in �s can be derived, which
combines Sð!;��Þ from Eq. (21) with the evolution from
�� up to �i in Eq. (1),

Sð!;�iÞ ¼ ESð!;�i;��Þ

� X1
j¼�1

Xjþ1

‘¼�1

Vj
‘ð	ÞSj

�
�sð��Þ; !��

�

�
Z 1

0
dzL	

‘ ðzÞF½!ð1� zÞ
: (24)
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Here, L	
‘ ðzÞ ¼ ½ln‘ðzÞ=z1�	
þ is defined in Eq. (B9), and

Sj, ES, 	 ¼ 	ð�i;��Þ, and Vj
‘ð	Þ are given in Eqs. (A12),

(A16), (A17), and (B17), respectively. The Sj coefficients

are determined by partonic fixed-order calculations of
C0ð!;�Þ, and at Oð�2

sÞ the sum is bounded by j � 3.
The RGE factors 	 and ES are determined using the
anomalous dimensions at various orders. The RGE here
has Sudakov double logarithms, implying that the ‘‘cusp’’
anomalous dimension �cusp must be included at one higher

order than the standard anomalous dimensions �x. There is
no large hierarchy between the scales �b > �i > ��, so
the optimal procedure for combining fixed order and re-
summation is debatable. We adopt the following conven-
tions for our analysis:

LL: 1-loop �cusp; tree-level matching;

NLL: 2-loop �cusp; 1-loop matching; 1-loop �x;

NNLL: 3-loop �cusp; 2-loop matching; 2-loop �x:

(25)

Our construction ensures that Sð!;�iÞ has the correct
perturbative tail for large !, specified by both the constant
and logarithmic terms in C0ð!;�iÞ, while for small ! it is
controlled by the nonperturbative function FðkÞ. Thus
Eqs. (21) and (24) build in all the information that can be
obtained from considering region 2 in Eq. (3) without
having to carry out an expansion of the decay rate in this
region in �QCD=p

þ
X .

A common approach for modeling a parton distribution
function is to specify a model for Sð!;��Þ at a fixed scale
�� and then run it up to a higher �i. In this case, �� must
be treated as a model parameter, and changing it can cause
significant changes in the model. Furthermore, for ! 
�QCD the perturbative tail of Sð!;�iÞ obtained in this

approach will not be consistent with carrying out the
OPE at �i. The perturbative logarithms are reproduced,
but the constant terms are not (and the latter are sizable
contributions to the OPE for the scales considered here). In
Fig. 1 we compare this approach (dashed curves), with the
superior approach of describing the shape function via
Eq. (24) (solid curves) at NNLL. In each case we use a

model for FðkÞ, F̂modðkÞ given below in Eq. (34), whose
first three moments correspond to mb ¼ 4:7 GeV and
�1 ¼ �0:31 GeV2. The thin dashed curve with the highest

peak shows Sð!;�iÞ ¼ F̂modð!Þ. The other three dashed

curves show the result of fixing Sð!;��Þ ¼ F̂modð!Þ at
�� ¼ 1:0; 1:3; 1:8 GeV (from bottom to top near the
peaks) and running up to �i ¼ 2:5 GeV using Eq. (1).
The resulting tails at large ! are clearly inconsistent with
each other. The solid curves show the result of our ap-
proach, using Eq. (24) to obtain Sð!;��Þ at �� ¼
1:0; 1:3; 1:8; 2:5 GeV and running up to �i ¼ 2:5 GeV.
In our approach, Sð!;�iÞ is independent of the initial scale
��, up to subleading corrections in �sð��Þ, and the tails at

large! are consistent with one another. The negative dip at
small ! is an artifact of using the pole mass scheme, and
will be removed by switching to short distance schemes in
the next section. Another feature of the solid curves in
Fig. 1 is that their tails become negative for ! * 2:5 GeV.
It was noted in Ref. [14] that most of this negative tail is
canceled by the perturbative corrections from the jet func-
tion. We discuss in Sec. III C that this negative tail also
disappears if �� is increased as ! increases.
To obtain the correct perturbative tail, the procedure

used in Ref. [28] for jVubj analyses is to take the perturba-
tive computation of C0ð!;�Þ for ! � !0 and a model for
Sð!;�Þ for ! � !0, and these two pieces are glued to-
gether, choosing !0 so that the result is continuous. The
advantage of our construction in Eq. (21) is that the tail
automatically turns on in a smooth manner when it domi-
nates over the nonperturbative function FðkÞ and provides
the proper � dependence for Sð!;�Þ at any !.
Imposing the moment constraints on FðkÞ in Eq. (23)

provides a clean way to incorporate the information on the
local OPE matrix elements, mb, �1, etc., from B ! Xc‘ ��.
It is possible to use a shape function scheme in which
moments of Sð!;�Þ with a cutoff define the nonperturba-
tive parameters [14]. Our approach has the advantage of
allowing one to use any desired short distance scheme, as
we discuss next.

B. Short distance schemes

The most precise information on the matrix elements in
Eq. (16) is provided by fitting OPE results to B ! Xc‘ ��
decay distributions. This directly constrains FðkÞ through

FIG. 1 (color online). Scale independence of our shape func-
tion construction. The thin dashed curve with the highest peak
shows the model function Sð!;�iÞ ¼ F̂modð!Þ given in Eq. (34).
The other dashed curves show the result of taking Sð!;��Þ ¼
F̂modð!Þ at �� ¼ 1:0; 1:3; 1:8GeV (from bottom to top near the
peaks) and running up to �i ¼ 2:5 GeV with NNLL accuracy.
The solid curves use Eq. (24) with �� ¼ 1:0; 1:3; 1:8; 2:5GeV
and running up to �i ¼ 2:5 GeV at NNLL. Note the stable tails
of the solid curves. The dip at small ! is discussed in the next
section.
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Eq. (23). Ideally, we would like to incorporate these con-
straints on F in a manner that is independent of the order in
perturbation theory used to calculate P in Eq. (7).
However, if we define the moment parameters � and �1

from Eq. (16) in an infrared sensitive manner such as the
pole mass scheme, then the dependence on the order in �s

will not be small—infrared renormalon ambiguities in the
perturbation series will cancel against ambiguities in the
parameters � and �1. In practice, this means that the values
of � and �1 may change substantially when the fit in B !
Xc‘ �� is done at different orders in perturbation theory. In B
physics, cancellations between perturbative corrections are
significant already at low orders in perturbation theory.
Thus, it is preferable to define FðkÞ and C0ð!;�Þ so that
they are individually free of renormalon ambiguities,
which should make the values of � and �1 more stable to
the inclusion of perturbative corrections.

Consider shifting to a new perturbative kernel Ĉ0ð!;�Þ
and nonperturbative function F̂ðkÞ that are free from re-
normalons. To implement this we let

C0ð!Þ ¼ Ĉ0ð!Þ þ �C0ð!Þ; FðkÞ ¼ F̂ðkÞ þ �FðkÞ;
(26)

such that

Sð!Þ ¼
Z

dkC0ð!� kÞFðkÞ ¼
Z

dkĈ0ð!� kÞF̂ðkÞ:
(27)

These shifts move a series of perturbative corrections
between FðkÞ andC0ð!;�Þ. The shift �FðkÞwill be chosen
such that the moments of F̂ðkÞ are given by renormalon-
free parameters, and Eq. (27) then determines the corre-
sponding shift �C0ð!Þ.

We switch from the pole mass mb and �1 to short

distance parameters m̂b and �̂1,

mb ¼ m̂b þ �mb; �1 ¼ �̂1 þ ��1; (28)

where �mb and ��1 consist of series in �sð�Þ with the
same renormalon as mb and �1, respectively. The freedom
to choose these series corresponds to the freedom to choose

different schemes for m̂b and �̂1. To obtain F̂ðkÞ with

moments only depending on m̂b and �̂1, we pick �FðkÞ
such that

�FðkÞ ¼ FðkÞ � Fðk� �mbÞ ��FðkÞ;
F̂ðkÞ ¼ Fðk� �mbÞ þ �FðkÞ: (29)

Shifting the argument allows us to switch to m̂b. To imple-

ment �̂1, �FðkÞ has to satisfyZ
dk�FðkÞ ¼

Z
dkk�FðkÞ ¼ 0;

Z
dkk2�FðkÞ ¼ ��1

3
:

(30)

The most general solution to Eq. (30) is �FðkÞ ¼
ð��1=6ÞF00

1 ðkÞ, where F1ðkÞ is an arbitrary function, nor-
malized as

R
dkF1ðkÞ ¼ 1.

Using Eqs. (29) and (30) with Eq. (23), one can easily

check that F̂ðkÞ has renormalon-free moments, as desired,

Z
dkF̂ðkÞ ¼ 1;

Z
dkkF̂ðkÞ ¼ �þ �mb ¼ �̂;

Z
dkk2F̂ðkÞ ¼ � �̂1

3
þ �̂2;

(31)

where �̂ ¼ mB � m̂b. Thus the experimental values of the

b quark mass and �̂1 extracted in any short distance scheme
can be used as inputs in our framework via the moment
constraints in Eq. (31).
To determine the corresponding shift in C0ð!Þ, we note

that Eq. (27) implies
R
dk½C0ð!� kÞ�FðkÞ þ �C0ð!�

kÞF̂ðkÞ
 ¼ 0. To solve for �C0ð!Þ, we take the Fourier

transform � ~C0ðyÞ ¼ � ~C0ðyÞ� ~FðyÞ= ~̂FðyÞ and thus

� ~C0ðyÞ ¼
�
1� eiy�mb � ��1

6
y2

~F1ðyÞ
~̂FðyÞ

�
~C0ðyÞ: (32)

Here, any �mb��1 cross terms only have higher-order
renormalon ambiguities and are dropped. Any choice of
F1ðkÞ is equally good for incorporating the ��1 shift. We

adopt the simplest choice F1ðkÞ ¼ F̂ðkÞ, which is unique in
that it keeps Ĉ0ð!Þ independent of the precise form of

F̂ðkÞ.1 In this case, in momentum space, we have

Ĉ0ð!Þ ¼ C0ð!þ �mbÞ � ��1

6

d2

d!2
C0ð!Þ

¼
�
1þ �mb

d

d!
þ
�ð�mbÞ2

2
� ��1

6

�
d2

d!2

�
C0ð!Þ

þ � � � ; (33)

where C0ð!Þ is determined by the perturbative calculation
of hbvjO0ð!þ �;�Þjbvi, and the ellipsis denotes terms
that are eitherOð�3

sÞ or beyond the order we are working at
for the moments of F̂ðkÞ. The same strategy to determine

F̂ðkÞ and derive the corresponding Ĉ0ð!Þ can be applied to
higher moments if in the future terms with n � 3 in
Eq. (23) are included in the analysis.
In the remainder of this paper we use the convolution

formula for Sð!;�Þ in terms of Ĉ0ð!;�Þ and F̂ðkÞ in

Eq. (27). We shall regard F̂ðkÞ as the fundamental non-
perturbative object to be extracted from data. In particular,

1There are other possible choices. For example, taking F1ðkÞ /
k2F̂ðkÞ would ensure that the ��1 shift does not change the
small-k behavior of F̂ðkÞ. However, if F1ðkÞ � F̂ðkÞ, the shift
�C0ð!Þ depends on F̂ðkÞ, and must be recomputed each time
F̂ðkÞ changes. Hence other choices are more difficult to imple-
ment when performing a fit to data to extract F̂ðkÞ.
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in Sec. IV we will build a complete basis of functions for

F̂ðkÞ.

C. Numerical results for Sð!;�Þ
To illustrate the effect of using our method to include the

perturbative corrections to the shape function through Ĉ0

we choose a model for F̂ðkÞ,

F̂ modðkÞ ¼ 1

�

�X2
n¼0

cnfn

�
k

�

��
2
: (34)

Here � ¼ 0:8 GeV, fnðxÞ is given below in Eq. (48), and
the three parameters c0, c1, and c2 are fixed to satisfy the
constraints in Eq. (31) for the appropriate short distance
scheme. For our numerical analysis we use the input values
collected in Table I. With fm1S

b ; �1g we have fc0; c1; c2g ¼
f0:949;�0:309; 0:064g, while for fm1S

b ; �i
1g we have

fc0; c1; c2g ¼ f0:949;�0:307; 0:075g, and for fmkin
b ; �1g

we have fc0; c1; c2g ¼ f0:988;�0:120;�0:095g.
First, we switch from the pole mass to a short distance

mass. We use the 1S mass [30] and the kinetic mass [31]
schemes,

�̂ � �1S ¼ mB �m1S
b ; �̂ � �kin ¼ mB �mkin

b ;

(35)

to fix the first moment in Eq. (31), and �1 to determine the

second moment. The choice of mass scheme enters Ĉ0ð!Þ
through the �mb and ��1 in Eq. (33), which must be
expanded in �s to avoid the renormalons. Details of the
implementation of short distance schemes and the expres-
sions for �m1S

b and �mkin
b are discussed in Appendix A 3. In

Fig. 2 we show the result for Sð!;�iÞ obtained from
C0ð!;��Þ with �� ¼ 1:3 GeV, run up to �i ¼ 2:5 GeV
at next -to-leading logarithmic (NLL) order (dashed) and
NNLL order (solid). The dark, medium, and light curves
show the results in the pole 1S and kinetic mass schemes,
respectively. In both short distance mass schemes the
negative dip present in the pole scheme is removed, while
the perturbative tail at large ! remains unchanged. The
removal of the negative dip is similar to what was observed
for the soft function for jets in Ref. [20].

In Fig. 3 we illustrate the perturbative convergence and
residual �� scale dependence of the result of Eq. (24)
order by order, using the 1S mass scheme and �1. We
show Sð!;�i ¼ 2:5 GeVÞ run up from �� at leading
logarithmic (LL) (dotted), NLL (dashed) and NNLL
(solid). For each order, the three curves correspond to
�� ¼ 1:0; 1:3; 1:8GeV. As expected, the �� dependence
is significantly reduced by going from LL to NLL to
NNLL. For the lowest scale,�� ¼ 1:0 GeV, an oscillation
begins to build up at small !, which is clear at NNLL
where the curves for the two larger scales are quite stable.
Although we continue to explore �� as low as 1.0 GeV in

TABLE I. Central values of the input parameters. The last
three entries are computed from m1S

b and �1 at order �2
s .

Parameter Value

�sðmZÞ [29] 0.1176

�sð4:7 GeVÞ 0.2155

mB 5.279 GeV

m1S
b [12] 4.70 GeV

�1 [12] �0:31 GeV2

�i
1 �0:32 GeV2

mkin
b ð1 GeVÞ 4.57 GeV

�kin
1 ð1 GeVÞ �0:47 GeV2

FIG. 2 (color online). Sð!;�iÞ obtained from Ĉ0ð!;��Þ with
�� ¼ 1:3 GeV and run up to �i ¼ 2:5 GeV at NLL (dashed)
and NNLL (solid) order. Shown are results using the pole mass
scheme and the 1S and kinetic short distance mass schemes.
Switching to the short distance schemes, the result becomes
more stable going from NLL to NNLL, the negative dip at small
! in the pole scheme is removed, while the perturbative tail at
large ! remains unchanged.

FIG. 3 (color online). �� dependence of Sð!; 2:5 GeVÞ in the
peak region obtained from Ĉ0ð!;��Þ at LL (dotted), NLL
(dashed), and NNLL (solid) order, using m1S

b and �1. The three

curves in each case are for �� ¼ 1:0; 1:3; 1:8GeV. The ��

dependence is significantly reduced at each higher order.
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this section, we take this as evidence that slightly larger
values of �� should be used to ensure a convergent ex-

pansion for Ĉ0. Therefore, we will use �� ¼
1:2; 1:5; 1:9GeV in Sec. III D for the decay rate.

Next, we switch to short distance schemes for �1. Note
that the NLL results in Fig. 2 with �1 defined in dimen-
sional regularization are already quite stable. Unlike for the
pole mass, there is not much numerical evidence for the
importance of switching to a short distance scheme for �1,
and adding a sizable ��1 �Oð�sÞ correction may over-
subtract. The u ¼ 1 renormalon in �1 is related to the
large-order behavior of perturbation theory, and it is un-
clear how much numerical impact it has on the perturbative
coefficients computed atOð�sÞ andOð�2

sÞ. In Appendix C
we show that schemes with ��1 ¼ Oð�sÞ appear to over-
subtract, causing large oscillations in the shape function at
small !. This is shown explicitly for the kinetic scheme
�kin
1 ð¼ ��2

�Þ. Therefore, in Appendix C we introduce a

new short distance scheme with ��1 ¼ Oð�2
sÞ, which we

call the invisible scheme and denote by �i
1. The expression

for ��i
1 is given in Eq. (A37). In this short distance scheme,

the NLL results are unchanged. In Fig. 4 we compare
results at NNLL for m1S

b and �1 versus using m1S
b and �i

1.

One sees that the invisible scheme has only a small effect
on the NNLL shape function, which is entirely at small !.
It damps the oscillation that occurs when �� ¼ 1:0 GeV
and modifies the slope.

In Fig. 5 we show the �� scale dependence at NLL
(dashed) and NNLL (solid) order in the tail region. The
lower six curves use the same scale variation as in Fig. 3.
Here, as one uses the SCET expansion, but enters the local
OPE region, the scale dependence increases with !, and
the tail becomes negative. This is due to increasing
lnð!=��Þ terms, for which the above choices of �� are
inappropriate. To avoid potentially large logarithms, we

can increase �� as we increase ! by taking, for example,

�0
�ð!Þ ¼ aþ b arctanð!� 2:5 GeVÞ: (36)

To vary the scales, we take three functions of this form,
with a and b chosen such that for ! ¼ 0 they give �0

� ¼
1:0; 1:3; 1:8 GeV and for ! ¼ 4:7 GeV they give �0

� ¼
2:35; 4:7; 9:4 GeV. In Fig. 5, the six upper curves show

Sð!;�iÞ obtained with these �0
�ð!Þ choices, taking �i ¼

�0
ið!Þ ¼ ½�0

�ð!Þm1S
b 
1=2 with the central �0

�ð!Þ.
Comparing the upper and lower curves shows that increas-
ing �� with ! significantly reduces the �� scale depen-
dence to a similar level as in the peak region shown in
Fig. 3. (We have checked that using the running �0

�ð!Þ
does not have an effect on the size of the scale uncertainty
in the peak region.) The upper curves in Fig. 5 also have a
much less negative tail, which is caused predominantly by
increasing �� with !, and only partially by increasing the
reference scale �i. This means that the dominant part of
the negative tail in the lower curves is caused by large
logarithms of!=��. Hence, increasing �� with! will be
important to obtain a positive rate in the tail region. The
importance of increasing�with a kinematic variable in the
tail region was also pointed out for jet production in
Ref. [32], where it was required to avoid a negative tail
for the cross section.
In the decay rate the �i dependence of Sð!;�iÞ cancels

against corrections from the jet function, so the intermedi-
ate scale �i should also run with increasing !. This is

accomplished by taking �i ¼ �0
ið!Þ ¼ ½�0

�ð!Þ�b
1=2 for
each of the three running �0

�ð!Þ’s from Eq. (36). This

treatment of the tail has the advantage that we obtain�� ¼
�i ¼ �b for !�mb, and by construction the standard
factor of 2 scale variation, mb=2<�b < 2mb. Hence it

FIG. 5 (color online). �� dependence of Sð!; 2:5 GeVÞ in the
tail region (lower six curves) and of Sð!;�0

iÞ (upper six curves)
at NLL (dashed) and NNLL (solid) order, using m1S

b and �i
1. For

the lower six curves we vary �� ¼ 1:0; 1:3; 1:8GeV, while for
the upper ones we use the running scale parameters �0

�ð!Þ in
Eq. (36) and �0

ið!Þ described in the text.

FIG. 4 (color online). The effect of using the invisible scheme
for �1 on Sð!; 2:5 GeVÞ at NNLL order. The solid lines are the
same as those in Fig. 3, using m1S

b and �1, while the dashed lines

use m1S
b together with �i

1. The three curves in each case are for

the same values of �� as in Fig. 3.

ZOLTAN LIGETI, IAIN W. STEWART, AND FRANK J. TACKMANN PHYSICAL REVIEW D 78, 114014 (2008)

114014-8



is consistent with the local OPE treatment for region 3 in
Eq. (3). The rate at which equality is approached can be
controlled by multiplying the argument of the arctan in
Eq. (36) by a scaling factor, and the center of the transition
region can be adjusted by modifying the 2.5 GeV value
shown there.

D. Perturbative results for the B ! Xs� spectrum

In this section we explore the scale dependence of the
perturbative corrections to the B ! Xs� spectrum in the
SCET regions 1 and 2 in Eq. (3). The rate depends on three

scale parameters �� * 1 GeV, �i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mb�QCD

q
, and

�b �mb. In a short distance scheme the decay rate in
Eq. (6) becomes

d�s

dpþ
X

¼ �0sHsðpþ
X ;�bÞUHðmb;�b;�iÞ

�
Z

dkP̂ðmb; k;�iÞF̂ðpþ
X � kÞ; (37)

whereHs andUH are given in Eqs. (A1) and (A14), and the

notation P̂ and F̂ indicate that these are given in a short
distance scheme. From the analysis in Appendix A, all
perturbative corrections can be organized into a simple
series of plus distributionsL	

j ðzÞ, defined in Eqs. (B9) and
(B10). The integral of the perturbative function P with the
F function is thenZ

dkPðp�; k; �iÞFðpþ
X � kÞ

¼ X1
j¼�1

Pjðp�; pþ
X ;�i; ��Þ

Z 1

0
dzL	

j ðzÞF½pþ
X ð1� zÞ
;

(38)

where explicit results for the coefficients Pj are given in

Eq. (A25). The additional terms generated by transforming

Eq. (38) into the integral over the short distance P̂ and F̂
are described in detail in Appendix A 3.

In Figs. 6–8, we study the ��, �i, and �b dependencies
of the pþ

X spectrum for B ! Xs�, namely
ðd�s=dp

þ
X Þ=½�0sjCincl

7 ð0Þj2
. Recall that this has a simple
relation to the photon energy spectrum pþ

X ¼ mB � 2E�.

We show the pþ
X spectrum to facilitate easier comparison

with the results for the shape function in the previous
section. Sincewe are interested in studying the perturbative

corrections, we keep F̂modðkÞ fixed to be our default model
in Eq. (34). In each of Figs. 6–8, we show results at LL
(dotted curves), NLL (dashed curves), and NNLL (solid
curves) order, for three different values of the scales, and
using the 1S mass and �i

1 scheme. The central values are
�� ¼ 1:5 GeV, �i ¼ 2:5 GeV, and �b ¼ 4:7 GeV, two
of which are held fixed in each plot. In Fig. 6 the three
curves at each order show �� ¼ 1:2; 1:5; 1:9 GeV, in
Fig. 7 they show �i ¼ 2:0; 2:5; 3:0 GeV, and in Fig. 8

FIG. 6 (color online). �� dependence of the B ! Xs� spec-
trum in terms of m1S

b and �i
1, using F̂modðkÞ. Shown are the LL

(dotted), NLL (dashed), and NNLL (solid) spectra for �� ¼
1:2; 1:5; 1:9GeV. The long dashed curves are the NNLL spectra
with m1S

b and �1, showing less convergence at small !.

FIG. 7 (color online). �i dependence of the B ! Xs� spec-
trum in terms of m1S

b and �i
1, using F̂modðkÞ, at LL (dotted), NLL

(dashed), and NNLL (solid) order for �i ¼ 2:0; 2:5; 3:0GeV.

FIG. 8 (color online). �b dependence of the B ! Xs� spec-
trum in terms of m1S

b and �i
1, using F̂modðkÞ, at LL (dotted), NLL

(dashed), and NNLL (solid) order for �b ¼ 2:35; 4:7; 9:4GeV.
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they show �b ¼ 2:35; 4:7; 9:4 GeV. Since the scales
should obey the hierarchy�� <�i < �b, it is not possible
to vary each by a factor of 2. For illustration, we do vary�b

by a factor of 2, but keep �� and �i in ranges suitable to
the physical shape function and jet function regions, re-
spectively. The largest effect going from LL to NLL to
NNLL is the change in the normalization. Although it is
not captured by our range of scale variation, the normal-
ization still exhibits reasonable convergence. Rescaled to a
common normalization, the shape of the spectrum shows
very nice convergence, and the range of scales used is
clearly suitable here. We find a reduction in the scale
dependence order by order for most values of pþ

X .
In Fig. 6 we show three additional NNLL curves (long

dashed) that usem1S
b and �1 instead of �

i
1. Comparing these

curves to the solid curves (m1S
b and �i

1), we see that the

overall effect of using �i
1 instead of �1 is small. However,

one can clearly observe that the invisible scheme improves
the perturbative convergence of the spectrum at small pþ

X .
Although we do not show results here for the spectrum

in the local OPE region 3 in Eq. (3), we checked that the
same effects as in the tail of Sð!;�iÞ in Fig. 5 appear in the
tail of the spectrum. To avoid a large�� dependence in the
tail, the scales must be increased with ! as discussed
below Eq. (36), and this also helps to obtain a positive
tail for the spectrum in region 3.

It is important to emphasize that in the common ap-
proach to model distribution functions corresponding to
the dashed curves in Fig. 1, where a fixed model for
Sð!;��Þ is specified at the scale �� and then run up to
�i, the spectrum will have a large dependence on ��,
which must be considered a model parameter. Thus, there
is no analog to the�� independence of the rate obtained in
our construction, and illustrated in Fig. 6. Note that the
dependence of the B ! Xs� rate for pþ

X � ðpþ
X Þcut on the

soft and intermediate scales �� and �i has so far been
studied only by performing an expansion in �QCD=ðpþ

X Þcut
in region 2 of Eq. (3) [22,23], as in Eqs. (12) and (14). In
this case, one can combine the same perturbative ingre-
dients as in our approach, depending on the three scales
��,�i, and�b. As mentioned before, the advantage of our
framework is that it does not rely on performing an expan-
sion in region 2.

IV. EXPANSION OF THE F FUNCTION

A. Complete orthonormal basis

So far in the literature the uncertainty related to the
unknown functional form of the shape function has been
either neglected or estimated by using a few model func-
tions for Sð!;�Þ, and varying their parameters or distort-
ing them [3,28,33,34], subject to constraints on their first
few moments. To obtain a systematic estimate of the
uncertainty related to the unknown functional form of the
shape function, we construct a suitable set of complete

orthonormal basis functions for the function F̂ðkÞ defined
by Eq. (27). The uncertainty in the functional form is then
determined by the uncertainty in the coefficients of this
basis. This expansion will also be convenient to extract

F̂ðkÞ from experimental data, including experimental and
theoretical uncertainties and correlations.

Since F̂ðkÞ has mass dimension �1, it is convenient to
introduce a dimension-one parameter � and use the dimen-
sionless variable x ¼ k=�. By power counting, ���QCD.

We expect on physical grounds that F̂ðkÞ is positive, so we
can expand its square root,

F̂ð�xÞ ¼ 1

�

�X1
n¼0

cnfnðxÞ
�
2
; (39)

where fnðxÞ are a complete set of orthonormal functions,

Z 1

0
dxfmðxÞfnðxÞ ¼ �mn: (40)

Since F̂ðkÞ is normalized to unity, the coefficients cn satisfy

1 ¼
Z

dkF̂ðkÞ ¼
Z

dx

�X
n

cnfnðxÞ
�
2 ¼ X

n

c2n: (41)

Although F̂ðkÞ is independent of the choice of basis func-
tions fnðxÞ when summing over all n, in practice only a
finite number of terms can be kept. Therefore, we want to
choose basis functions fnðxÞ such that the first few terms in

Eq. (39) provide a good approximation to F̂ðkÞ.
Unfortunately, most of the well-known orthonormal func-
tions on ½0;1Þ become broader with increasing n, and
hence have moments whose values increase with n [35].

By dimensional analysis, the n-th moment of F̂ðkÞ scales as
�n

QCD, and we would like the basis functions to satisfy this

constraint, at least for the low-n moments.
To construct a suitable orthonormal basis fnðxÞ on

½0;1Þ, we consider orthonormal functions 
ðyÞ on
½�1; 1
 and a variable transformation yðxÞ, which maps
x 2 ½0;1Þ to y 2 ½�1; 1
. We choose yðxÞ to be increas-
ing, y0ðxÞ> 0. Then, for any orthonormal basis 
nðyÞ on
½�1; 1
,

fnðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
y0ðxÞ

q

n½yðxÞ
 (42)

provides an orthonormal basis on x 2 ½0;1Þ. Choosing
different 
n’s and different yðxÞ’s allows us to change
the basis functions. It is natural to choose 
nðyÞ to be
polynomials of degree n, and we find it convenient to use
the normalized Legendre polynomials


nðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

2

s
PnðyÞ; PnðyÞ ¼ 1

2nn!

dn

dyn
ðy2 � 1Þn:

(43)
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To determine yðxÞ, note that for a positive definite func-
tion YðxÞ, such that

R1
0 dxYðxÞ ¼ 1, the function

yðxÞ ¼ �1þ 2
Z x

0
dx0Yðx0Þ; (44)

satisfies yð0Þ ¼ �1 and yð1Þ ¼ þ1. Since y0ðxÞ ¼ 2YðxÞ,
the first basis function is simply

½f0ðxÞ
2 ¼ y0ðxÞ
2
0½yðxÞ
 ¼ YðxÞ: (45)

To obtain a good approximation to F̂ðkÞ with the first few
terms in Eq. (39), one should choose YðxÞ to be ‘‘similar’’

to �F̂ð�xÞ. This gives an intuition about suitable choices,
and once YðxÞ and � are fixed, the full basis is specified. A
convenient choice for YðxÞ is

Yðx; pÞ ¼ ðpþ 1Þpþ1

�ðpþ 1Þ xpe�ðpþ1Þx (46)

for any p > 0 real parameter. Constructing a basis from
Yðx; pÞ yields basis functions for which the first and second
moments of fmðxÞfnðxÞ are order one or smaller.
Therefore, the terms in the expansion in Eq. (39) have
n-th moments of order �n or smaller. Choosing the scaling
parameter ���QCD, the first few terms in the expansion

in the resulting basis gives a good approximation to the
shape function.

The function in Eq. (46) is similar to those used to model
Sð!;�Þ in the literature. In fact, by choosing YðxÞ to be a
specific model shape function, our construction allows one
to expand about it, and systematically study corrections to
an assumed functional form. We emphasize, however, that
in our approach the only role of 
nðyÞ and YðxÞ is to
specify the basis functions fnðxÞ. The functional form for
YðxÞ affects how quickly the expansion in Eq. (39) con-
verges, but not the fact that it is a convergent expansion.
The completeness of the basis 
nðyÞ on ½�1; 1
 implies
that any square integrable function on ½0;1Þ can be ex-
panded in terms of the bases fnðxÞ resulting from the above
construction.

Using Eq. (46) gives basis functions that behave as
f2nðxÞ � xp as x ! 0. Because of the short distance sub-
tractions in Eq. (33), to ensure that Sð!;�Þ goes to zero at

! ¼ 0, we need F̂ðkÞ to go to zero at least as k3 for k ! 0.
Thus, we find it convenient to use Yðx; 3Þ as our default
choice, with

yðx; 3Þ ¼ 1� 2

�
1þ 4xþ 8x2 þ 32

3
x3
�
e�4x; (47)

which gives the orthonormal functions

fnðxÞ ¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x3ð2nþ 1Þ

3

s
e�2xPn½yðx; 3Þ
: (48)

For numerical calculations we use � ¼ 0:8 GeV as default.

These functions are also convenient because they allow
analytic calculations of the decay spectra. The first five
basis functions in Eq. (48) are shown in Fig. 9. In Fig. 10

we use these to illustrate the uncertainty remaining in F̂ðkÞ
if its first three moments are fixed. We fix c3 and c4 to nine
different combinations, and choose the first three coeffi-
cients c0;1;2 to satisfy the moment constraints in Eq. (31).

All the nine functions shown have 0:92< c0 < 0:95,
�0:35< c1 <�0:28, and 0:01< c2 < 0:14. Even this
plot makes the uncertainties look smaller than they are,
since at small k the k3 behavior of these models appears to
imply a small uncertainty. Including the short distance
subtractions from Eq. (33), these models yield a signifi-
cantly wider variation in Sð!;�Þ for small !. Figure 10
shows that even with small errors of the B ! Xc‘ �� mo-
ments, more information on the shape function can be
extracted from the B ! Xs� or B ! Xu‘ �� data.

FIG. 9 (color online). The first five orthonormal basis func-
tions in Eq. (48).

FIG. 10 (color online). Nine functions with identical first three
moments. For each curve, we fix c3 and c4 and then choose c0,
c1, c2 to satisfy the moment constraints in Eq. (31) with m1S

b and

�i
1. The thick solid curve (c3 ¼ c4 ¼ 0) corresponds to the

default model used in Sec. III.
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B. Truncation uncertainties

Equation (39) provides a model independent description

of F̂ðkÞ for any choice of the basis. Since the basis is
complete for any value of �, we will regard � along with
the function YðxÞ as part of the convention that defines the
basis. In practical applications one has to truncate the
series in Eq. (39) after the first N þ 1 terms,

F̂ ðNÞðkÞ � 1

�

�
fðNÞ

�
k

�

��
2 ¼ 1

�

�XN
n¼0

cnfn

�
k

�

��
2

¼ 1

�

XN
m;n¼0

cmcnfm

�
k

�

�
fn

�
k

�

�
; (49)

and use F̂ðNÞðkÞ in the actual calculations.
Figure 11 illustrates how the expansion converges. Both

plots show a toy Gaussian model function (thick solid
curve), which we expand in terms of the first n basis
functions in Eq. (48) for n � 4. In the top panel, we use
the default value � ¼ 0:8 GeV to define the basis. The

truncated series in Eq. (49) quickly approaches the model
function, even for small values of N. In the bottom panel,
we show the same expansion using � ¼ 0:6 GeV to define
the basis, which illustrates how the value of � affects the
convergence of the expansion.
To quantify the uncertainties, we would like to have a

systematic way to estimate the error due to the neglected
terms in the truncated sum in Eq. (49). The truncation error
is affected by the choice of N, YðxÞ, and �, providing
several handles on this uncertainty. A virtue of adding
one more term from our orthonormal basis, compared to
adding one more parameter to a generic model, is that due
to the orthogonality of the basis functions the additional
parameter provides independent information and should
avoid large parameter correlations. By varying N, one
can change the number of coefficients, and study how
sensitive the results are to the truncation. As a consistency
check, one can use a different basis, or change YðxÞ or �,
and check that the difference is within the previous trun-
cation error estimate.
A feature of our construction is that the truncation error

can be estimated using
P1

n¼0 c
2
n ¼ 1. We defineffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�F̂ð�xÞ
q

� fðxÞ ¼ fðNÞðxÞ þ crfrðxÞ; (50)

where

cr ¼
�
1� XN

n¼0

c2n

�
1=2

; (51)

and the remainder function frðxÞ is orthogonal to f0;...;NðxÞ,

frðxÞ ¼
X1
n¼1

rnfNþnðxÞ; (52)

and normalized

Z 1

0
dx½frðxÞ
2 ¼ 1;

X1
n¼1

r2n ¼ 1: (53)

In terms of frðxÞ, the truncation error from approximating

F̂ðkÞ by F̂ðNÞðkÞ is
F̂ ðNÞ

trunc½fr
ðkÞ � jF̂ðkÞ � F̂ðNÞðkÞj

¼ 1

�

��������2crfr
�
k

�

�
fðNÞ

�
k

�

�
þ c2rf

2
r

�
k

�

���������:
(54)

Although Eq. (53) implies jrnj � 1, it provides no bound
on

P
njrnj. Therefore, one cannot derive a rigorous bound

on jfrðxÞj from Eq. (52) for all x > 0, and it is not possible

to obtain a rigorous bound on the truncation error F̂ðNÞ
trunc

either. However, for practical purposes, it is sufficient to

estimate F̂ðNÞ
trunc. Its size is controlled by cr in Eq. (51),

which is determined by the first N þ 1 coefficients, and
can be minimized by choosing a good basis. Thus, as long
as enough coefficients are included in the basis so that the

FIG. 11 (color online). Top: expansion of a Gaussian model
function F̂GaussðkÞ ¼ ð2=aÞðk=aÞ3 exp½�ðk=aÞ2
 with a ¼
0:639 GeV, corresponding to mb ¼ 4:7 GeV, using the first
five basis functions fnðxÞ in Eq. (48). Bottom: same as on the
top, except that in the definition of the basis � is changed from
0.8 GeV to 0.6 GeV.
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estimated truncation uncertainty is small compared to
other uncertainties, any reasonable estimate of frðxÞ pro-
vides a useful estimate of the truncation uncertainty.

For suitable choices of the basis, we expect the series to
converge fairly quickly, since the higher basis functions
oscillate more and more rapidly, and we do not expect
significant structure in the momentum distribution of the b
quark in the B meson over momentum scales � �QCD.

Hence, one way to estimate frðxÞ is to assume that one term
in Eq. (52) saturates the sum. It is natural to take that to be
the first (possibly the second) term, which corresponds to

frðxÞ ¼ �fNþ1ðxÞ: (55)

Another possibility is to assume that jfrðxÞj & f0ðxÞ and
take

frðxÞ ¼ �f0ðxÞ: (56)

This is motivated by the fact that, except for small and
large values of x, f0ðxÞ gives roughly an envelope for the
higher basis functions, as can be seen from Fig. 9. In each

case, the sign of frðxÞ is undetermined. For small cr, the
second term in Eq. (54) can be neglected and the sign of
frðxÞ is irrelevant.
To illustrate these methods for estimating the truncation

error we consider again the toy model used in Fig. 11, with
� ¼ 0:6 in our basis as in the bottom panel. In Fig. 12, the

thick solid curve shows F̂ðkÞ � F̂ðNÞðkÞ for N ¼ 2 (top
panel) and N ¼ 4 (bottom panel). The dashed curves
show the estimate using Eq. (55), taking the point-by-point

maximum of F̂ðNÞ
trunc½�fNþ1
ðkÞ, while the thin solid curves

use Eq. (56) instead. As expected, the former correlates
more with the absolute value of the point-by-point devia-
tions, while the latter roughly envelopes the difference. As
can be seen, we obtain reasonable estimates of the devia-

tion of F̂ðNÞðkÞ from F̂ðkÞ. The overall sizes of the trunca-
tion errors are well estimated in both plots, because they
are proportional to cr. For the top plot cr ¼ 0:088 and for

the bottom plot cr ¼ 0:025. If the expansion of F̂ðkÞ con-
verges reasonably fast, then frðxÞ will be an oscillatory
function, as shown in Fig. 12. Ultimately we are interested
in how the shape function impacts the uncertainty in the
extraction of jVubj or that in determining the B ! Xs�
event fraction above a certain photon energy cut. These

depend on weighted integrals of F̂ðkÞ, so their uncertainties
will be much smaller than the point-by-point errors in

approximating F̂ðxÞ by F̂ðNÞðxÞ shown in Fig. 12.

C. Subleading shape functions

Any precision analysis of differential spectra in B !
Xs� or B ! Xu‘ �� must incorporate power corrections that
go beyond Eq. (4). At order �QCD=mb, six subleading

shape functions enter the description of the most general
inclusive spectra in B ! Xs� and B ! Xu‘ �� [36–39]. We
refer to these as the primary subleading shape functions. In
addition there are terms in B ! Xs� that enter from op-
erators other than O7 and are related to the photon’s
hadronic structure, whose contribution to the total rate is
not calculable in the OPE [40,41]. Considering only the
primary subleading shape functions and using suitably
weighted integrals of the B ! Xu‘ �� differential rate to-
gether with B ! Xs�, the Oð�QCD=mbÞ shape functions

can be canceled in the determination of jVubj [42].
However the same drawbacks apply to the weighting
method at subleading order as those mentioned already in
the introduction, so it is interesting to consider how our
analysis can be extended to include these subleading shape
functions.
The appropriate factorization theorem for the primary

subleading shape functions, analogous to Eq. (4), is known
from Ref. [39]. Thus, when one-loop partonic calculations
of these functions and their corresponding jet functions are
available, a construction analogous to Eq. (21) can be
carried out to build in the proper large-! tail, �� depen-
dence, etc. However, it should be cautioned that a large

FIG. 12 (color online). Truncation error estimates. The thick
solid curves show F̂GaussðkÞ � F̂ðNÞðkÞ corresponding to the bot-
tom plot in Fig. 11, for N ¼ 2 (top) and N ¼ 4 (bottom). The

dashed curves show �maxfF̂ðNÞ
trunc½�fNþ1
g, and the thin solid

curves show �maxfF̂ðNÞ
trunc½�f0
g, i.e., the error estimates using

Eqs. (55) and (56), respectively.
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number of additional shape functions enter in the matching
at Oð�s�QCD=mbÞ [39,43,44], so the utility of extending

our full analysis to this level is unclear.
Here, we simply discuss how a complete basis can be

constructed for the primary subleading shape functions.
We know less about these shape functions than about the
leading order one. Their moments are still related to HQET
matrix elements. In particular, the zeroth moment of the
Oð�QCD=mbÞ shape functions vanishes, which means they

must be negative for some values of k, and their first
moments either vanish or are given by linear combinations
of �1 and �2. The zeroth moments no longer vanish for the
Oð�2

QCD=m
2
bÞ shape functions and beyond [26,27,37].

For simplicity, we define the sign of each Oð�QCD=mbÞ
shape function such that its first nonzero moment is posi-
tive. A convenient expansion for the functions with vanish-
ing first moment is given by

Hð�xÞ ¼ � d

dx

�X
n

dnfnðxÞ
�
2
; (57)

while the four-quark operator shape functions, whose ze-
roth and first moments vanish, can be expanded as

H4qð�xÞ ¼ d2

dx2

�X
n

dnfnðxÞ
�
2
: (58)

With this form,
R1
0 dkHð4qÞðkÞ ¼ R1

0 dkkH4qðkÞ ¼ 0. The
first nonzero moments provide constraints on the coeffi-
cients, similar to Eq. (41), for exampleZ 1

0
dkkHðkÞ ¼ �2

X
n

d2n; (59)

which can be set to the appropriate linear combinations of
�1 and �2. Note that a different set of coefficients dn occurs
for each subleading shape function.

V. EXTRACTING THE F FUNCTION AND
PREDICTING DECAY RATES

For a given basis for the leading and subleading shape
functions wewant to extract the basis coefficients ci and di,
including their uncertainties and correlations. This extrac-
tion will use data on the B ! Xs� and B ! Xu‘ �� spectra
and data that determines moments of the shape functions
from B ! Xc‘ ��. To simplify our discussion, we adopt a
notation that is suitable for the coefficients fc0; . . . ; cNg of
the function F̂ðkÞ appearing in the leading shape function.
The generalization to incorporate subleading shape func-
tions is straightforward. All results in this section are exact
for N ! 1 and for finiteN one has to take into account the
truncation error discussed in Sec. IVB.

Since the function F̂ðkÞ enters the decay spectra linearly,
we can independently compute the contributions of the
product of any two basis functions fmðxÞfnðxÞ in the ex-

pansion of F̂ðkÞ, which we denote by d�mn. The differen-

tial spectra d�s ¼ d�s=dE� or d�u ¼ d�u=dE‘dp
þ
X dp

�
X

are then given by

d� ¼ XN
m;n¼0

cmcnd�mn; (60)

where from combining Eq. (6) and (39), the d�mn are

d�mn ¼ �0Hðp�Þ

�
Z pþ

X

0
dk

P̂ðp�; kÞ
�

fm

�
pþ
X � k

�

�
fn

�
pþ
X � k

�

�
:

(61)

For simplicity, we suppress the scale� in the arguments of

H and P̂, and the u or s subscripts on H. The d�mn in
Eq. (61) act as a basis for the physically measurable dis-
tributions, and the result in Eq. (60) is a quadratic poly-
nomial in each of the fit parameters ci.
In practice, experimental spectra are binned. Integrating

Eq. (60) the rate in the i-th bin is

�i ¼ XN
m;n¼0

cmcn�
i
mn; (62)

where �i
mn is the integral of d�mn in Eq. (61) over the phase

space region of the i-th bin. In addition, we can impose

constraints on the moments of F̂ðkÞ,

Mj ¼
Z 1

0
dkkjF̂ðkÞ ¼ XN

m;n¼0

cmcnM
j
mn: (63)

Here,Mj are given in terms of experimental measurements

of �̂ and �̂1 from B ! Xc‘ ��, while M
j
mn is

Mj
mn ¼ 1

�

Z 1

0
dkkjfm

�
k

�

�
fn

�
k

�

�
: (64)

One can determine the coefficients fc0; . . . ; cNg by fitting
Eqs. (62) and (63) to the experimental data. It is straight-
forward to combine several different spectra and measure-
ments by different experiments. Doing a simultaneous fit to
Eqs. (62) and (63) allows one to combine the B ! Xs�
shape information [6–8] and information on the mX spec-
trum in B ! Xu‘ �� [9] with the information on mb and
matrix elements of local operators known from B ! Xc‘�

[10–12]. Given the theoretical input �i
mn and Mj

mn com-
puted in this paper, one needs to simply fit quadratic
polynomials in the fit parameters cn to the data. The
experimental uncertainties and correlations in �i and Mj

and the theoretical uncertainties and correlations in �i
mn

and Mj
mn will translate to uncertainties of the coefficients

cn. In this approach, the uncertainty in the functional form
of the F function is automatically and straightforwardly
determined by the uncertainties of the coefficients
fc0; . . . ; cNg, and the truncation error from approximating

F̂ðkÞ by F̂ðNÞðkÞ discussed in Sec. IVB.
Finally, in Fig. 13 we combine our results to show the

B ! Xs� spectrum ðd�s=dE�Þ=½�0sjCincl
7 ð0Þj2
 in the B
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meson restframe. The results are shown using the short
distance parameters m1S

b and �i
1, and the nine shape func-

tion models plotted in Fig. 10, which have fixed zeroth,
first, and second moments. The thick solid curve is our

default model, F̂modðkÞ in Eq. (34). In the current and future
experimental analyses mB � 2E� & 2 GeV. Our formal-

ism has the virtue that we do not need to distinguish
regions 1 and 2 in Eq. (3), i.e., it is simultaneously valid
for both mB � 2Ecut

� ��QCD and  �QCD. The variation

of the curves near maximal E� indicates that in the peak

region the first few moments of the shape function are not
sufficient to predict the spectrum. However, for E� &

2:1 GeV, the uncertainty in the prediction becomes sig-
nificantly smaller, and the leading order shape function
model uncertainty diminishes. The spectrum in this region
is also affected by subleading shape functions and addi-
tional perturbative corrections not studied here. (Note that
the measured spectrum is somewhat broadened by experi-
mental effects.) We found the same conclusion using many
other shape function models, constructed from different
bases, and expect that this will also be substantiated by an
actual experimental analysis in which the space of shape
functions is explored by allowing for more components in
our orthonormal basis and a simultaneous fit to all relevant
data. This will have important implications for the B !
Xs� rate in the presence of an experimental cut, the ex-
traction of jVubj from inclusive semileptonic B decays, and
the analysis of the inclusive B ! Xs‘

þ‘� rate in the small
q2 region.

VI. CONCLUSIONS

In this paper, we introduced new methods for calcula-
tions relevant for inclusive B decays which involve the
parton distribution function of the b quark in a B meson,
called the shape function. On the theoretical side, our
results allow for an improved description of the decay rates
and a more reliable assessment of the uncertainties than

earlier studies. On the experimental side, they are straight-
forward to implement and provide a transparent way to
combine constraints on the shape and moments of the
shape function, with controllable uncertainties.
The shape function is constrained by the measurements

of the shape of the B ! Xs� photon energy spectrum [6–8]
and themX spectrum in B ! Xu‘ �� [9], and its moments are
related to the b quark mass mb and nonperturbative matrix
elements of local operators in the OPE, which are con-
strained by fits to B ! Xc‘ �� decay distributions [10–12].
The first key ingredient in our analysis is the new

description of the shape function, given in Eq. (2) and
discussed in detail in Sec. III, which is by construction
consistent with the renormalization group evolution and
the perturbative result for the tail of the shape function. It
allows combining all experimental information from the
shape of B ! Xs� and B ! Xu‘ �� spectra, and mb and �1

constrained by B ! Xc‘ �� distributions. Any short distance
scheme for the b quark mass and the kinetic energy matrix
element can be implemented. We presented a simple for-
mula for the differential rates which incorporates re-
summed perturbative corrections, with details of the
derivation given in Appendixes A and B.
The second key ingredient in our analysis is the expan-

sion of the F function, describing the nonperturbative part
of the shape function, in a complete set of orthonormal
functions in Sec. IV. This gives a new way to quantify
uncertainties in the functional form of the shape function,
which was previously not explored fully systematically.
Choosing YðxÞ in Eq. (44) to coincide with any of the
models used in the literature [28,33,34,45,46] gives an
orthonormal basis for the shape function in which the first
function is the model and corrections can be studied.
One should use renormalon-free short distance defini-

tions for input parameters, such as the b quark mass,mb, or
the kinetic energy matrix element �1. We found that in our
framework the kinetic scheme definition of �kin

1 seems to

oversubtract from the HQET definition of �1 in dimen-

sional regularization, numerically similar to using the MS
mass for inclusive spectra. To solve this problem, in
Appendix C we introduced a new short distance invisible
scheme �i

1, which is renormalon-free and only differs from

the usual definition starting at order �2
s . While it does not

improve the behavior of the perturbation series decisively,
being almost invisible, at least it does not make it worse.
It should be emphasized that all developments presented

in this paper are consistent with and incorporate all pre-
dictions that follow from QCD, without recourse to models
or relying on any ad hoc assumptions. In fact, any method
consistent with the factorization theorem and the OPE
discussed in Sec. II can be cast in our framework.
Our results lead to the following strategy to determine

jVubj with optimal and reliable uncertainties:
(1) Fix a basis for the expansion of the F function by

choosing a suitable YðxÞ and a value for �.

FIG. 13 (color online). The B ! Xs� photon spectrum in the B
restframe using the nine shape function models shown in Fig. 10.
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(2) Do a combined fit to the binned B ! Xs� and/or
B ! Xu‘ �� spectra, and to the information on mb

and �1 from B ! Xc‘ �� (and possibly higher mo-
ments) to extract the basis coefficients fc0; . . . ; cNg.

(3) Verify that the truncation error is small compared to
other uncertainties.

(4) Use the values and covariance matrix of the ex-
tracted basis coefficients to make predictions with
reliable uncertainties.

More details on the shape function fitting procedure, on
extracting jVubj from various B ! Xu‘ �� differential decay
distributions, and predictions for the B ! Xs� rate will be
presented elsewhere.
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APPENDIX A: PERTURBATIVE RESULTS

In this appendix we collect the known results for the
hard functions Hu;sðp�

X ;�iÞ in Eq. (4), and derive an

analytic result for the function Pðp�; pþ
X ;�iÞ in Eq. (7),

which includes perturbative corrections from the jet and
soft functions as well as the shape function RGE. In
Ref. [32] it was shown in the context of dijet production
that the convolution form for the soft function analogous to
Eq. (21) allows all factors associated with perturbative
corrections and RGE to be evaluated analytically. Here
we show that this is also true for inclusive B decays. Our
calculation differs from Ref. [32] in that we develop a
method that avoids using an imaginary part at intermediate
steps. (An alternative analytic method that avoids the plus
distributions by using moments was developed in

Ref. [47].) Furthermore, with our basis for F̂ðkÞ, we show
that the integrals over the basis function can be written in
terms of hypergeometric functions.

We discuss fixed order results in Sec. A 1, the RGE in
Sec. A 2, and the rate in short distance schemes in Sec. A 3.
The definitions of the required plus distributions and many
useful relations are collected in Appendix B.

1. Fixed order results

In Eqs. (4) and (6) the leading order hard function
Hsðpþ

X ;�iÞ for B ! Xs� is

Hsðpþ
X ;�iÞ ¼ ðmB � pþ

X Þ3
m3

b

jCincl
7 ð0Þj2

� hsðmb;�bÞUHðmb;�b;�iÞ; (A1)

where the evolution factor UHðmb;�b;�iÞ is given below
in Eq. (A14), and has the boundary condition
UHðmb;�b;�bÞ ¼ 1. The Wilson coefficient Cincl

7 in Hs

contains the weak scale matching of the full theory onto the
effective Hamiltonian from which the W and t are inte-
grated out, and resums perturbative corrections between
the weak scale and the scale��mb. It does not depend on
�b and is defined by the split matching procedure in
Ref. [4], which separates the perturbation series above
and below the scale mb. It can be written as [48]

Cincl
7 ð0Þ ¼ C7 þ F7ð0Þ þG7ð0Þ; (A2)

with the central values Cincl
7 ð0Þ ¼ �0:341� 0:015i and

C7 ¼ �0:261. The Wilson coefficient C7 and the functions
F7ðq2Þ and G7ðq2Þ are defined to be separately � indepen-

dent. Here, C7 contains the dependence on the MS b quark
mass and the Wilson coefficient C7ð�Þ from the operator
O7 in the weak Hamiltonian,

C7 ¼ C7ðuÞ �mbð�Þ
mb

þ Cið�Þ�i7

� �sð�Þ
4�

ln
�

mb

�
8

3
C7ð�Þ �mbðuÞ

mb

� 32

9
C8ð�Þ

þ CiðuÞð�ð0Þ
ij �j7 þ �ð0Þ

i7 Þ
�
þOð�2

sÞ: (A3)

The Wilson coefficients Cið�Þ, �i7, and the anomalous

dimensions �ð0Þ
ij are with respect to the operator basis of

Ref. [49] and are given explicitly in Ref. [48]. The function
F7ðq2Þ contains perturbative corrections from other opera-
tors in the weak Hamiltonian, while G7ðq2Þ contains non-
perturbative corrections from intermediate cc states. They
are given in Eqs. (A5) and (A12) in Ref. [48].
The coefficient hsðmb;�bÞ in Eq. (A1) corresponds to

the matching coefficient for the tensor current in SCET. At
Oð�sÞ it was computed in Ref. [50]. To determine the hard
matching coefficient at Oð�2

sÞ we take the two-loop com-
putation of the jC7j2 terms in the b ! s� rate and spectrum
from Refs. [51] and subtract the terms in the partonic two-
loop spectrum in SCET coming from the jet and shape
functions [given by Pðmb; k;�bÞ in Eq. (A30) below].
Because of the split matching, the �b dependence in
hsðmb;�bÞ cancels entirely against the �b dependence in
UHðmb;�b;�iÞ in Eq. (A1), and does not depend on the �
dependence of the coefficients in the electroweak
Hamiltonian. We obtain
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hsðmb;�bÞ ¼ 1� �sð�bÞ
�

CF

�
ln2

�b

mb

þ 5

2
ln
�b

mb

þ 3þ �2

24

�
þ �2

sð�bÞ
�2

CF

�
1

2
CFln

4 �b

mb

þ
�
5

2
CF � 1

6
�0

�
ln3

�b

mb

þ
��

49

8
þ �2

24

�
CF þ

�
�2

12
� 1

3

�
CA � 25

24
�0

�
ln2

�b

mb

þ
��

117

16
þ 17�2

48
� 3�3

�
CF þ

�
�2

12
� 29

72
þ 11�3

4

�
CA �

�
341

144
þ �2

12

�
�0

�
ln
�b

mb

þ 3:88611CF þ 5:89413CA

�
�
7859

3456
þ 109�2

576
þ 13�3

48

�
�0 þ 3563

1296
� 29�2

108
� �3

6

�
: (A4)

Our expressions here agree with the corresponding numerical results in Eq. (99) of Ref. [52]. Note that the inverse powers
of mb in Eqs. (A1), (A3), and (A5) below cancel the m5

b factors in �0s;u in Eq. (5), and any mass scheme can be used. The
mb appearing in hsðmb;�bÞ and UHðmb;�b;�iÞ is defined in the pole scheme. Here, the pole mass renormalon ambiguity
is less relevant, because mb only appears as a reference scale for �b, so the effect of changing mb is included in the
variation of �b. For numerical calculations, we use mb ¼ 4:7 GeV.

The hard function HuðE‘; p
�
X ; p

þ
X ;�iÞ for B ! Xu‘ �� in Eqs. (4) and (6) is given by

HuðE‘; p
�
X ; p

þ
X ;�iÞ ¼ 24

m5
b

ðmB � pþ
X Þð2E‘ þ p�

X �mBÞ
�
ð2mB � pþ

X � p�
X � 2E‘Þhu1ðmb; p

�; �bÞ

þ ðmB � pþ
X � 2E‘Þ

�
hu2ðmb; p

�; �bÞ þmB � pþ
X

p�
X � pþ

X

hu3ðmb; p
�; �bÞ

��
UHðp�; �b;�iÞ; (A5)

where the huiðmb; p
�; �bÞ correspond to the matching coefficients of the V � A current in SCET. To order �s [14,21,50]

hu1ðmb; p
�; �bÞ ¼ 1� �sð�bÞ

�
CF

�
ln2

�b

p� þ 5

2
ln
�b

mb

þ Li2

�
1� p�

mb

�
þ 3p� � 2mb

2mb � 2p� ln
p�

mb

þ �2

24
þ 3

�
;

hu2ðmb; p
�; �bÞ ¼ �sð�bÞ

2�
CF

mb

mb � p�

�
p�

mb � p� ln
p�

mb

þ 1

�
;

hu3ðmb; p
�; �bÞ ¼ �sð�bÞ

2�
CF

p�

mb � p�

�
mb � 2p�

mb � p� ln
p�

mb

� 1

�
:

(A6)

The corresponding two-loop results for Hu will be easy to
implement once they become available. Finally, the evo-
lution factorUHðp�; �b;�iÞ in Eq. (A1) is identical forHs

and Hu, and is given below in Eq. (A14).
We now turn to the function Pðp�; k; �iÞ in Eq. (7).

Changing variables ! ! !0 þ k�!, we have

Pðp�; k; �iÞ ¼
Z

d!USðk�!;�i; ��Þ

�
Z

d!0p�J½p�ð!�!0Þ; �i
C0ð!0; ��Þ:
(A7)

To incorporate the fixed order �s corrections to the jet
function Jðp2; �iÞ, and the shape function kernel
C0ð!;��Þ, we will first carry out the !0 convolution
integral. The evolution factor USðpþ

X ;�i; ��Þ, which

sums logarithms between the scales �i and ��, and the
integral over ! are discussed later.
To all orders in perturbation theory the jet function and

shape function kernel can be written as

Jðp2; �iÞ ¼ 1

�2
i

X1
n¼�1

Jn½�sð�iÞ
Lnðp2=�2
i Þ;

C0ð!;��Þ ¼ 1

��

X1
n¼�1

Sn½�sð��Þ
Lnð!=��Þ;
(A8)

where the LnðxÞ are plus distributions defined in Eq. (B6)
for n � 0 and in Eq. (B10) for n ¼ �1, and the coeffi-
cients Jnð�sÞ and Snð�sÞ have expansions in �s. The jet
function coefficients are known at one [21] and two loops
[53], and are given by
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J�1ð�sÞ ¼ 1þ �s
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�
;
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�
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�
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s
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�
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CF�0

�
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s

�2

1

2
C2
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(A9)

The shape function coefficients to one [21] and two loops [54] are

S�1ð�sÞ ¼ 1� �s

�

�2

24
CF � �2

s

�2

��
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þ 3�4
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CF þ �2
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24
þ 4�3

�
C2
F þ

�
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4

�
CFCA � 1
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CF�0

�
;

S1ð�sÞ ¼ ��s

�
2CF þ �2

s

�2

��
1� 7�2
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�
C2
F þ

�
� 2

3
þ �2

6

�
CFCA � 1

3
CF�0

�
;

S2ð�sÞ ¼ �2
s

�2

�
3C2

F þ 1

2
CF�0

�
;

S3ð�sÞ ¼ �2
s

�2
2C2

F:

(A10)

All other coefficients in J and C0 start at higher orders in �s.
To convolute Ln½p�ð!�!0Þ=�2

i 
 with Lmð!=��Þ we first rescale them to have the same dimensionless arguments.
Using Eq. (B13), J and C0 satisfy the rescaling identities

Jðp�!;�Þ ¼ 1

p� 

X1
n¼�1

Jn

�
�sð�Þ; p

�
�2

�
Ln

�
!



�
;

C0ð!;�Þ ¼ 1



X1
n¼�1

Sn

�
�sð�Þ; 

�

�
Ln

�
!



�
;

(A11)

where  is an arbitrary dimension-one parameter that we will choose at our convenience later on, and the rescaled
coefficients are

J�1ð�s; xÞ ¼ J�1ð�sÞ þ
X1
n¼0

Jnð�sÞ ln
nþ1x

nþ 1
;

Jnð�s; xÞ ¼
X1
k¼0

ðnþ kÞ!
n!k!

Jnþkð�sÞlnkx;

S�1ð�s; xÞ ¼ S�1ð�sÞ þ
X1
n¼0

Snð�sÞ ln
nþ1x

nþ 1
;

Snð�s; xÞ ¼
X1
k¼0

ðnþ kÞ!
n!k!

Snþkð�sÞlnkx:

(A12)

Using Eq. (A11), the convolution of J and C0 in Eq. (A7) becomes
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d!0p�J½p�ð!�!0Þ; �i
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Z
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LnðxÞ
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�
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�
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�
�sð��Þ; 
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�
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�
: (A13)

In the last step we used Eq. (B16) to perform the x integral,
yielding a sum of plus distributions, whose coefficients
Vmn
‘ are given in Eq. (B17).

2. Renormalization group evolution

Next, we summarize results for the renormalization
group evolution, and then carry out the ! integral in
Eq. (A7). The factor UHðp�; �b;�iÞ which describes the
evolution of the hard functions in Eqs. (A1) and (A5)
between the hard scale �b, and the jet scale �i, is [50]

UHðp�; �b;�iÞ ¼ eKHð�i;�bÞ
�
p�

�b

�
	ð�i;�bÞ

; (A14)

where definitions of	ð�i;�bÞ andKHð�i;�bÞ are given in
Eq. (A17) below. The soft evolution factor USð!;�i; ��Þ
in Eq. (A7) sums logarithms between the jet scale �i, and
soft scale ��. To all orders in perturbation theory it can be
written as

USð!;�i;��Þ ¼ eKSð�i;��Þ e
��E	

�ð	Þ
1

��

�
�ð!=��Þ
ð!=��Þ1�	

�
Ref: ½32


þ

¼ ESð;�i;��Þ 1
�
	L	

�
!



�
þL�1

�
!



��
;

(A15)

where 	 � 	ð�i;��Þ, and we defined

ESð;�i; ��Þ ¼ eKSð�i;��Þ
�


��

�
	 e��E	

�ð1þ 	Þ : (A16)

To go from the first to the second line in Eq. (A15) we used

Eqs. (B8) and (B12). An expression forUSð!;�i; ��Þ was
first found in Ref. [13] and extended to all orders in
Ref. [22]. The form with the plus distribution derived in
Ref. [32] makes the formula valid without having to re-
quire �i > ��.
In Eqs. (A14) to (A16), 	ð�;�0Þ and Kxð�;�0Þ for x ¼

H or S are given to all orders by

	ð�;�0Þ ¼ 2
Z �sð�Þ

�sð�0Þ
d�s

�cuspð�sÞ
�ð�sÞ ;

Kxð�;�0Þ ¼ �2
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�
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Z �s
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�ð�0
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þ �xð�sÞ
�ð�sÞ

�
: (A17)

Here, �cusp is the universal cusp anomalous dimension. The

only difference between KH and KS are the hard and soft
anomalous dimensions �x ¼ �S or �H. Expanding the �
function and anomalous dimensions as usual,

�ð�sÞ ¼ �2�s
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(A18)

the integrals in Eq. (A17) to NNLL are
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(A19)

with r ¼ �sð�Þ=�sð�0Þ. When using 	ð�;�0Þ and Kxð�;�0Þ at LL, NLL, and NNLL according to our conventions in
Eq. (25), we do not reexpand the results in Eqs. (A14) and (A16), but keep their full expressions everywhere. For the
running coupling we always use the three-loop expression
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(A20)

where X � 1þ �sð�0Þ�0 lnð�=�0Þ=ð2�Þ, and we evolve
to lower scales using the reference value �sð�0 ¼
4:7 GeVÞ ¼ 0:2155 as in Table I with nf ¼ 4. Up to
three-loop order, the coefficients of the � function in the
MS scheme are

�0 ¼ 11

3
CA � 2

3
nf;

�1 ¼ 34

3
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3
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CA

�
n2f:

(A21)

The cusp [55,56], soft [57,58], and hard anomalous dimen-
sion coefficients are

�0 ¼ 4CF;
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9
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To determine �H
1 we used �H

1 ¼ ��J
1 � �S

1 , which follows
from the � independence of d�s=dE�. We use the two-
loop computation of �J

1 in Ref. [53].
The evolution of the shape function kernel C0ð!;�Þ

from �� to �i can be written as the sum of a finite number
of terms,

C0ð!;�iÞ ¼
Z

d!0USð!�!0; �;��ÞC0ð!0; ��Þ

¼ ESð;�i; ��Þ
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‘¼�1
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L	
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!



�
: (A23)

In the last step, we used Eq. (B16) to perform the x integral.
The coefficients of the resulting plus distributions Vn

‘ ð	Þ
are defined in Eq. (B17). If C0ð!;�Þ is known to Oð�k

sÞ
accuracy, then the terms contributing in Eq. (A23) are
bounded by n � 2k� 1. To obtain the shape function
evolved up to �i, Sð!;�iÞ, we combine Eq. (21) with
(A23) taking for convenience  ¼ ! and changing the
integration variable to z via k ¼ !ð1� zÞ. This gives the
result for Sð!;�iÞ that is quoted in Eq. (24) in the text.
Returning to Pðp�; k; �iÞ in Eq. (A7), to perform the !

integral we can now apply the same steps as in Eq. (A23) to
compute the convolution of USð!;�i;��Þ with the result
of Eq. (A13). This yields

Pðp�; k; �iÞ ¼
X1
j¼�1

Pjðp�; ; �i;��Þ 1L
	
j

�
k



�
; (A24)

where 	 ¼ 	ð�i;��Þ, and the coefficients are

Pjðp�; ; �i; ��Þ

¼ ESð;�i; ��Þ
X1

m;n��1
mþnþ2�j

� Xmþnþ1

‘��1
‘�j�1

Vmn
‘ V‘

j ð	Þ

� Jm

�
�sð�iÞ; p

�
�2

i

�
Sn

�
�sð��Þ; 

��

��
; (A25)

with V‘
j ð	Þ and Vmn

‘ given in Eqs. (B17) and (B18). The jet

and shape function coefficients Jm and Sn have perturba-
tive expansions in �sð�iÞ and �sð��Þ, respectively, given
by Eqs. (A9) and (A10) together with Eq. (A11). ToOð�sÞ
we have m, n � 1, so dropping cross terms of Oð�2

sÞ and
higher, we need �1 � ‘ � 1 and �1 � j � 2. To Oð�2

sÞ,
we have m, n � 3, and we need cross terms between Jm
and Sn up to �1 � ‘ � 3 and �1 � j � 4.
The final step now is to compute the convolution of

Pðp�; k; �iÞ with some function FðkÞ,Z
dkPðp�; k; �iÞFðpþ

X � kÞ

¼ X1
j¼�1

Pjðp�; pþ
X ;�i; ��Þ

Z 1

0
dzL	

j ðzÞF½pþ
X ð1� zÞ
:

(A26)
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In both Eqs. (24) and (A26) the remaining integral that
needs to be performed is L	

j ðzÞ with F½!ð1� zÞ
. For
j � 0 it is convenient to simplify this integral toZ 1

0
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0
dt lnjt fF½!ð1� t1=	Þ
 � Fð!Þg; (A27)

where the second line is valid for 	>�1, but the last line
only for 	> 0. For j ¼ �1 the integral is trivial since
L	

�1ðzÞ ¼ �ðzÞ. Our basis for FðkÞ involves a series of
terms of the form

FðkÞ ¼ X
r;s

Crs

�
k

�

�
r
exp

�
�s

k

�

�
; (A28)

where r and s are integers. For each term in the series the
integral in Eq. (A27) can be performed analytically usingZ 1

0
dz½ð1� zÞ‘ebz � 1
zaþ	�1

¼ � 1

aþ 	
þ �ðaþ 	Þ�ð1þ ‘Þ

�ð1þ aþ 	þ ‘Þ
� 1F1ðaþ 	; 1þ aþ 	þ ‘; bÞ: (A29)

By taking derivatives of this result with respect to a
one can obtain the integral with ðlnzÞj on the left-hand
side. In practice, we find that the numerical integration of
Eq. (A27) is sufficiently fast that using Eq. (A29) is
unnecessary.

Finally, we comment on a special case of the above
results that was used to carry out the B ! Xs� matching
computation to derive Eq. (A4). Here we used the SCET
computation of the decay rate with �b ¼ �i ¼ �� ¼ mb

and 	 ¼ 0, which depends on Pðmb; p
þ
X ;mbÞ. For this

special case, the choice  ¼ mb is convenient and
Eqs. (A24) and (A25) then reduce to

Pðmb;p
þ
X ;mbÞ ¼

X1
j¼�1

Pjðmb;mb;mb;mbÞ 1

mb

Lj

�
pþ
X

mb

�
;

Pjðmb;mb;mb;mbÞ ¼
X1

m;n��1
mþnþ2�j

Vmn
j Jm½�sðmbÞ
Sn½�sðmbÞ
:

(A30)

Thus Pjðmb;mb;mb;mbÞ is the coefficient of the plus

distribution or � distribution Lj in the fixed-order compu-

tation evaluated at � ¼ mb.

3. Changing to short distance schemes

To change the scheme from the pole scheme to a short

distance scheme, we define a perturbative function P̂ as in

Eq. (7), but with C0 replaced by Ĉ0, and in the differential

spectrumP andF are replaced by P̂ and F̂. Displaying only
the integration variables,

d�q ¼ �0qHq

Z
dkP̂ðkÞF̂ðpþ

X � kÞ; (A31)

with

P̂ðkÞ ¼
Z

d!USðk�!Þ
Z

d!0Jð!�!0ÞĈ0ð!0Þ

¼
�
1þ �mb

d

dk
þ
�ð�mbÞ2

2
� ��1

6

�
d2

dk2

�
PðkÞ;
(A32)

and �mb and ��1 defined in Eq. (28). This result has

exactly the same form as Eq. (33), which relates Ĉ0ð!Þ
and C0ð!Þ, so the analysis we carry out below also holds

for determining P̂ðkÞ and Ĉ0ð!Þ. To be definite, we use

P̂ðkÞ below. The results for Ĉ0ð!Þ are obtained by substi-
tuting PðkÞ ! C0ð!Þ.
To ensure the proper cancellation of renormalon ambi-

guities, the perturbative series in �mb, ��1, and PðkÞ have
to be reexpanded to the desired order. Denoting

PðkÞ ¼ X1
n¼0

�nPðnÞðkÞ;

�mb ¼
X1
n¼1

�n�mðnÞ
b ð��Þ;

��1 ¼
X1
n¼1

�n��ðnÞ
1 ð��Þ;

(A33)

where the dummy variable � ¼ 1 counts the order in the
perturbative expansion. As indicated, the scale for �s in
�mb and ��1 must be set to�� to ensure that renormalons
cancel. To illustrate this, the �� variation in Fig. 3
yields the numbers 0:74; 0:76; 0:72 GeV�1 for Sð! ¼
0:5 GeV; �Þ at NNLL. However, holding �� in �mb fixed
at the central value the result becomes 0:81; 0:76;
0:68 GeV�1, with a much larger scale dependence.
For PðkÞ, we count both �sð�iÞ � � and �sð��Þ � � in

Sn and Jm, i.e., we expand the cross terms between Jm and
Sn. Note that we do not expand the cross terms in the

product of Hq and P̂ in Eq. (A31). Then, to Oð�2Þj
P̂ðkÞ ¼ �0Pð0ÞðkÞ þ �1Pð1ÞðkÞ þ �2Pð2ÞðkÞ

þ
�
�mð1Þ

b

d

dk
� ��ð1Þ

1

6

d2

dk2

�
½�Pð0ÞðkÞ þ �2Pð1ÞðkÞ


þ �2
�
�mð2Þ

b

d

dk
þ
�ð�mð1Þ

b Þ2
2

� ��ð2Þ
1

6

�
d2

dk2

�
Pð0ÞðkÞ;
(A34)

and integrating by parts we can move the derivatives to act

on F̂ðkÞ,
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Z
dkP̂ðkÞF̂ðpþ

X � kÞ ¼
Z

dk½Pð0ÞðkÞ þ �Pð1ÞðkÞ þ �2Pð2ÞðkÞ
F̂ðpþ
X � kÞ

þ ½ð��mð1Þ
b þ �2�mð2Þ

b ÞPð0ÞðkÞ þ �2�mð1Þ
b Pð1ÞðkÞ
F̂0ðpþ

X � kÞ

þ
��
��

��ð1Þ
1

6
þ �2

3ð�mð1Þ
b Þ2 � ��ð2Þ

1

6

�
Pð0ÞðkÞ � �2

��ð1Þ
1

6
Pð1ÞðkÞ

�
F̂00ðpþ

X � kÞ: (A35)

For mb, we mostly use the 1S scheme [30], in which

�mð1S;1Þ
b ¼ R1S �sðuÞCF

8
; �mð1S;2Þ

b ¼ R1S �
2
sð�ÞCF

8�

��
ln

�

R1S
þ 11

6

�
�0 � 4

3
CA

�
; (A36)

where R1S ¼ m1S
b �sð�ÞCF. For �1, we use our invisible scheme, in which

��ði;1Þ
1 ¼ 0; ��ði;2Þ

1 ¼ R2 �
2
sð�Þ
�2

CFCA

4

�
�2

3
� 1

�
: (A37)

By default we take R ¼ 1 GeV.
We also list the corresponding expressions in the kinetic scheme [31], defining �kin

1 ¼ ��2
� and using R for the

momentum cutoff,

��ðkin;1Þ
1 ¼ R2 �sð�Þ

�
CF; ��ðkin;2Þ

1 ¼ R2 �
2
sð�Þ
�2

CF

2

��
ln
�

2R
þ 13

6

�
�0 þ

�
13

6
� �2

3

�
CA

�
;

�mðkin;1Þ
b ¼ R

�sð�Þ
�

4

3
CF þ ��ðkin;1Þ

1

2mb

; �mðkin;2Þ
b ¼ R

�2
sð�Þ
�2

2

3
CF

��
ln
�

2R
þ 8

3

�
�0 þ

�
13

6
� �2

3

�
CA

�
þ ��ðkin;2Þ

1

2mb

:

(A38)

By default in the kinetic scheme R ¼ 1 GeV.

APPENDIX B: PLUS DISTRIBUTIONS AND
CONVOLUTIONS

We define a general plus distribution for some function
qðxÞ, which is less singular than 1=x2 as x ! 0, as

½qðxÞ
½x0
þ � ½�ðxÞqðxÞ
½x0
þ ¼ lim
�!0

d

dx
½�ðx� �ÞQðx; x0Þ


¼ lim
�!0

½�ðx� �ÞqðxÞ þ �ðx� �ÞQðx; x0Þ
; (B1)

with

Qðx; x0Þ ¼
Z x

x0

dx0qðx0Þ: (B2)

Since Qðx0; x0Þ ¼ 0, the point x0 should be thought of as a
boundary condition for the plus distribution. Integrating
against a test function fðxÞ, we haveZ xmax

�1
dx½�ðxÞqðxÞ
½x0
þ fðxÞ ¼

Z xmax

0
dxqðxÞ½fðxÞ � fð0Þ


þ fð0ÞQðxmax; x0Þ: (B3)

Taking fðxÞ ¼ 1 in Eq. (B3) one sees that the integral of
the plus distribution vanishes only when integrated over a
range with xmax ¼ x0. Plus distributions with different
boundary conditions are related to each other by

½�ðxÞqðxÞ
½x0
þ ¼ ½�ðxÞqðxÞ
½x1
þ þ �ðxÞQðx1; x0Þ: (B4)

We will almost exclusively use the boundary condition
x0 ¼ 1, and will drop the superscript ½x0
 on the plus
distributions when this default choice is used.
Taking the special case qðxÞ ¼ 1=x1�a with a >�1, we

define

L aðxÞ ¼
�
�ðxÞ
x1�a

�
þ
¼ lim

�!0

d

dx

�
�ðx� �Þ x

a � 1

a

�
: (B5)

With our boundary condition, LaðxÞ for a ¼ 0 reduces to
the standard definition of ½�ðxÞ=x
þ. For qðxÞ ¼ lnnx=x
with integer n � 0 we define

L nðxÞ ¼
�
�ðxÞlnnx

x

�
þ
¼ lim

�!0

d

dx

�
�ðx� �Þ ln

nþ1x

nþ 1

�
:

(B6)

Since both LaðxÞ and LnðxÞ are defined with the same
boundary condition x0 ¼ 1, they are related by

L nðxÞ ¼ dn

dan
LaðxÞja¼0: (B7)

This makes it easy to derive identities involving LnðxÞ
from identities involving LaðxÞ by taking derivatives
with respect to a.
The definitions in Eqs. (B5) and (B6) can be contrasted

with those in Ref. [32], where the same boundary condition
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x0 ¼ 1 is used for ½�ðxÞlnnx=x
þ ¼ LnðxÞ, but x0 ¼ 1 and
x0 ¼ 0 are used for ½�ðxÞ=x1�a
þ with a < 0 and a > 0,
respectively. This is the form appearing in the soft evolu-
tion factor Eq. (A16), where it comes multiplied by a factor
of a, so the limit for a ! 0 exists. Using Eq. (B4) to
convert to our definitions, we have

�
�ðxÞ
x1�a

�
Ref: ½32


þ
¼ LaðxÞ þ 1

a
�ðxÞ: (B8)

Finally, we define the ‘‘mixed’’ distribution

L a
nðxÞ ¼

�
�ðxÞlnnx
x1�a

�
þ
¼ dn

dbn
LaþbðxÞjb¼0; (B9)

which satisfies L0
nðxÞ � LnðxÞ and La

0ðxÞ � LaðxÞ. For
convenience we also define

L�1ðxÞ � La
�1ðxÞ � �ðxÞ: (B10)

The following identities are useful

LmþnðxÞ ¼ dm

dam
La

nðxÞ
��������a¼0

;

Lmþnþ1ðxÞ ¼ ðmþ 1Þ dm

dam
La

nðxÞ �LnðxÞ
a

��������a¼0
;

La
mþ1ðxÞ ¼ ðmþ 1Þ dm

dbm
LaþbðxÞ �LaðxÞ

b

��������b¼0
:

(B11)

The LaðxÞ satisfies the rescaling identity (for � > 0)

�Lað�xÞ ¼ lim
�!0

d

dx

�
�ðx� �Þ ð�xÞ

a � 1

a

�

¼ �aLaðxÞ þ �a � 1

a
�ðxÞ; (B12)

from which we can obtain the rescaling identity for LnðxÞ,

�Lnð�xÞ ¼ dn

dan
�aLaðxÞ

��������a¼0
þ lnnþ1�

nþ 1
�ðxÞ

¼ Xn
k¼0

n
k

� �
lnk�Ln�kðxÞ þ lnnþ1�

nþ 1
�ðxÞ: (B13)

This agrees with the result in Eq. (C3) of Ref. [32]. We will
also need convolutions of two plus distributions,

Z
dyLaðx� yÞLbðyÞ ¼ lim

�!0

d

dx

�
�ðx� �Þ

�
xaþb

aþ b
Vða; bÞ þ xa � 1

a

xb � 1

b

��

¼
�
LaþbðxÞ þ �ðxÞ

aþ b

�
Vða; bÞ þ

�
1

a
þ 1

b

�
LaþbðxÞ � 1

b
LaðxÞ � 1

a
LbðxÞ: (B14)

In the second step we used the definition in Eq. (B5). Here Vða; bÞ is defined by

Vða; bÞ ¼ �ðaÞ�ðbÞ
�ðaþ bÞ �

1

a
� 1

b
; (B15)

which satisfies Vð0; 0Þ ¼ 0. Taking derivatives with respect to a and b we can get the corresponding formulas for
convolutions involving Ln,Z

dyLaðx� yÞLnðyÞ ¼ dn

dbn

�
LaþbðxÞ þ �ðxÞ

aþ b

�
Vða; bÞ

��������b¼0
þLa

nþ1ðxÞ
nþ 1

þLa
nðxÞ �LnðxÞ

a

� 1

a

Xnþ1

k¼�1

Vn
k ðaÞLa

kðxÞ �
1

a
LnðxÞ;

Z
dyLmðx� yÞLnðyÞ ¼ dm

dam
dn

dbn

�
LaþbðxÞ þ �ðxÞ

aþ b

�
Vða; bÞ

��������a¼b¼0
þ
�

1

mþ 1
þ 1

nþ 1

�
Lmþnþ1ðxÞ

� Xmþnþ1

k¼�1

Vmn
k LkðxÞ:

(B16)

The result in the second line of Eq. (B16) reproduces a result given in Eq. (B6) of Ref. [59]. The coefficients Vn
k ðaÞ and Vmn

k

are related to the Taylor series expansion of Vða; bÞ around a ¼ 0 and a ¼ b ¼ 0. The nonzero terms for n � 0 are

Vn
k ðaÞ ¼

8>>>>>>>><
>>>>>>>>:

a dn

dbn
Vða;bÞ
aþb

��������b¼0
; k ¼ �1;

a
n

k

 !
dn�k

dbn�k Vða; bÞ
��������b¼0

þ�kn; 0 � k � n;

a
nþ1

; k ¼ nþ 1:

(B17)
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The term �kn in V
n
k ðaÞ and the last coefficient Vn

nþ1ðaÞ arise from the boundary terms in the convolution integral. The Vmn
k

are symmetric in m and n, and the nonzero terms for m, n � 0 are

Vmn
k ¼

8>>>>>>>><
>>>>>>>>:

dm

dam
dn

dbn
Vða;bÞ
aþb

��������a¼b¼0
; k ¼ �1;

Pm
p¼0

Pn
q¼0

�pþq;k

m

p

 !
n

q

 !
dm�p

dam�p
dn�q

dbn�qVða; bÞ
��������a¼b¼0

; 0 � k � mþ n;

1
mþ1þ

1
nþ1 ; k ¼ mþ nþ 1:

(B18)

The last coefficient Vmn
mþnþ1 again contains the boundary

term. Using Eq. (B10) we can extend the results in
Eq. (B16) to include the cases n ¼ �1 or m ¼ �1. The
relevant coefficients are

V�1�1 ðaÞ ¼ 1; V�1
0 ðaÞ ¼ a; V�1

k�1ðaÞ ¼ 0;

V�1;n
k ¼ Vn;�1

k ¼ �nk:
(B19)

APPENDIX C: THE INVISIBLE SCHEME FOR �1

In this appendix we define a new scheme for �1, which
we call the invisible scheme. It is a short distance scheme,
free of the u ¼ 1 renormalon ambiguity, and it only de-
viates from the standard HQET definition of �1 at Oð�2

sÞ.
Since the renormalon in �1 depends on the regularization
scheme and, in particular, its symmetries [60,61], it is
desirable to define �1 using a scheme which has the same
symmetries as the multiloop dimensional regularization
calculations of its coefficient function.

For a general ultraviolet (UV) regulator �UV, the bare
kinetic energy operator is

½ �bvðiD?Þ2bv
bare ¼ Z1
�bvbv þ Zkin

�bvðiD?Þ2bv þ � � � ;
(C1)

where ZI / �2
UV and the ellipses denote higher dimension

operators whose coefficients vanish as �UV ! 1. Usually
the kinetic energy matrix element in HQET is defined by

�1 ¼ hBj �bvðiD?Þ2bvjBi; (C2)

where UV divergences are regulated in dimensional regu-
larization (we follow our convention of using full B states
even if this is not always the practice in HQET). In that
case, power divergences do not appear, so in Eq. (C1) Z1 ¼
0. Furthermore, since this scheme respects reparametriza-
tion invariance [62], Zkin ¼ 1 and �1 is � independent.
Nonperturbatively �1 can still be sensitive to the quadratic
UV divergence of Z1 through a u ¼ 1 renormalon. The
presence of this renormalon implies that there is an

Oð�2
QCDÞ ambiguity in the definition in Eq. (C2). In ob-

servables like a decay rate this �1 ambiguity cancels
against a corresponding infrared renormalon ambiguity in
the large-order behavior of the perturbation series in the
leading order Wilson coefficients [63].

We use the notation �̂1 for a generic short distance
definition, which does not suffer from the renormalon

ambiguity. Any �̂1 can be related to �1 by a perturbative

series ��1 � �s þ �2
s þ � � � , where �̂1 ¼ �1 � ��1. For

the kinetic scheme the u ¼ 1 renormalon ambiguity is
avoided by defining �kin

1 using the second moment of a
time-ordered product of currents with an explicit hard
cutoff regulator �f [64]. Here Z1 and ��1 / �2

f�s. Since

the kinetic energy operator mixes into �bvbv, it modifies the
perturbation series multiplying �bvbv, and it is believed that
this removes the corresponding u ¼ 1 infrared renormalon
in the Wilson coefficients. In Ref. [14], a ‘‘shape function’’
scheme for �1 was introduced based on the second moment
of Sð!;�Þ with a cutoff, which also has ��1 / �2

f�s. A

potential problem with these schemes is that they resolve
an issue with the large-order behavior of perturbation
theory by introducing a series that starts with a term ��1 �
�s. While the inclusion of an Oð�sÞ term is known to
provide good numerical stability when removing the

FIG. 14 (color online). Effect of the short distance subtractions
��kin

1 for the kinetic scheme at NLL (dashed) and NNLL (solid)

on Sð!; 2:5 GeVÞ for �� ¼ 1:0 GeV. The dark lines correspond

to using mkin
b together with �

pole
1 , while light lines use both mkin

b

and �kin
1 .
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u ¼ 1=2 renormalon from the pole mass, far less numerical
analysis has been done on the low-order impact of the u ¼
1 renormalon in �1. If the low-order series is not yet
influenced by the u ¼ 1 renormalon, then schemes with
anOð�sÞ correction may oversubtract, and not improve the
perturbation series. In Fig. 14 we show that in our shape
function analysis there is evidence that this is the case.2

The dashed and solid curves are the NLL and NNLL
results, respectively. The curves show Sð!;�i ¼
2:5 GeVÞ with the kinetic mass scheme, but use either
�kin
1 (lighter solid and dashed curves) or �1 from

Eq. (C2) (darker solid and dashed curves). In the �kin
1

scheme the oscillatory behavior near the origin at both
NLL and NNLL order is indicative of an oversubtraction.

Some understanding of the weakness of the u ¼ 1 re-
normalon can be obtained from analytic computations. For
Lorentz invariant regulators the u ¼ 1 renormalon for �1 is
invisible [60,61], namely, the ambiguity for �1 is smaller
than dimensional analysis indicates. In perturbation theory
renormalon ambiguities appear as a divergent series with
terms �n!�nþ1

s . However, the leading renormalon series
�n!�n

0�
nþ1
s is absent, hence the renormalon ambiguity at

lowest order in �1 is invisible [60]. Correspondingly, at
one-loop order ZI ¼ 0 for Lorentz invariant regulators
(even for a hard cutoff), and generically Z1 / CA�

2
s [61].

In the kinetic scheme the regulator is not Lorentz invariant,
and hence not suppressed by invisibility. The same holds
for definitions of �1 involving a lattice spacing regulator
[60].

To avoid oversubtractions from �1 at low orders in
perturbation theory, we would like to define a short dis-
tance scheme with ��1 � �2

s . This can be achieved by
finding a scheme that is consistent with the suppression
indicated by the invisible renormalon. To construct an
invisible scheme for �1 we define

�i
1ðRÞ ¼ �1 � ��i

1ðRÞ; (C3)

where the series in �s is obtained by evaluating the matrix
element

��i
1ðRÞ ¼ hbvj �bvðiD?Þ2bvjbvijR: (C4)

Here, R is a Lorentz invariant hard cutoff UV regulator,
ensuring that ��i

1ðRÞ � R2�2
s . The definition in Eq. (C3)

states that the invisible scheme �i
1ðRÞ is the kinetic energy

of the b quark in the Bmeson minus the free kinetic energy
of the b quark. Since theOð�2

QCDÞ ambiguity in �1 is a UV

effect caused by the mixing of the kinetic operator into
�bvbv, it is the same for the Bmeson and b quark states, and
cancels out in the difference. This can be seen explicitly by
using Eq. (C1) and noting that our states are normalized so
that hBvj �bvbvjBvi ¼ hbvj �bvbvjbvi ¼ 1. The Oð�2

QCDÞ
ambiguity is universal to the definition of �1 and indepen-
dent of R. Although a precise definition of R is needed to
define the scheme, the u ¼ 1 renormalon ambiguity can-
cels out in �1 � ��i

1 for any such regulator. We adopt a
definition that allows us to use the computation in
Ref. [61], where it was shown that Z1 � 0 at Oð�2

sÞ in a
Lorentz invariant cutoff scheme. We define

��i
1 ¼ lim

v0!v
Avv0 ð0; 0ÞjR

¼ lim
v0!v

Z R

0

Z R

0

dwdw0

ð2�iÞ2ww0 Discw Discw0Avv0 ðw;w0Þ;
(C5)

where

Avv0 ðv � k; v0 � k0Þ ¼ 3hbv0 ðk0Þj �bv0v�v
0
�igG

��bvjbvðkÞi
ðv � v0Þ2 � 1

;

(C6)

and as usual the discontinuity of a function is given by
DiscwfðwÞ ¼ lim�!0½fðwþ i�Þ � fðw� i�Þ
. Note that it
is sufficient to consider the �bv0igG��bv operator due to the
virial theorem in HQET, which relates limv0!vAvv0 ð0; 0Þ to
the corresponding matrix element of the kinetic energy
operator in Eq. (C4). The result for the cutoff matrix
element from Ref. [61] implies

��i
1ðRÞ ¼ R2CFCA

�
�2

3
� 1

�
�2
sð�Þ
4�2

¼ 0:232R2�2
sð�Þ:

(C7)

Equation (C7) gives the relation of the invisible �i
1 to the

HQET �1 in Eq. (C2), which was used in the text. We use
R ¼ 1 GeV as our default value. Equations (C3) and (C5)
provide a � independent definition for �i

1ðRÞ, so the �
dependence in �2

sð�Þ will cancel against a higher order
R2�3

sð�Þ lnð�=RÞ term in ��i
1ðRÞ.

2This observation relies on our use of F1ð!Þ ¼ F̂ð!Þ in
Eq. (33) to determine �C0ð!Þ. It would be interesting to explore
if a different choice would change the conclusions drawn from
Fig. 14.
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