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Transverse polarization in the hyperon (�) production in the unpolarized deep inelastic scattering and

pp collisions is studied in the twist-three approach, considering the contribution from the quark-gluon-

antiquark correlation distribution in nucleon. We further compare our results for deep inelastic scattering

to a transverse momentum dependent factorization approach, and find consistency between the two

approaches in the intermediate transverse momentum region. We also find that in pp collisions, there are

only derivative terms contributions, and the nonderivative terms vanish.
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I. INTRODUCTION

Single transverse spin asymmetry (SSA) phenomena
have a long history, starting with the observation of the
large transverse polarization of hyperon (�) in unpolarized
nucleon-nucleon scattering [1,2]. It has imposed theoreti-
cal challenges to understand these phenomena in quantum
chromodynamics (QCD) [2,3]. In recent years, this physics
has attracted strong interest from both experiment and
theory sides. For example, the experimental observation
of SSAs in semi-inclusive hadron production in deep in-
elastic scattering (SIDIS), in inclusive hadron production
in pp scattering at collider energy at RHIC, and the
relevant azimuthal asymmetric distribution of hadron pro-
duction in eþe� annihilation have motivated theoretical
developments in the last few years [4–9]. Among these
developments, two mechanisms in the QCD framework
have been most explored to study the large SSAs observed
in the experiments. One is the so-called twist-three quark-
gluon correlation approach [3,10–15], and the other is the
transverse momentum dependent (TMD) approach where
the intrinsic transverse momentum of partons inside the
nucleon plays an important role [4–7,16,17]. Recent stud-
ies have shown that these two approaches are consistent
with each other in the intermediate transverse momentum
region where both apply [18].

In particular, theoretical developments have been made
to understand the � polarization in unpolarized hadronic
reactions [19–22]. Similar to the SSA in inclusive hadron
production in p"p ! �X, the hyperon polarization in un-

polarized pp scattering pp ! �"X receives the contribu-

tions from (naive)-time-reversal-odd effects in the
distribution and fragmentation parts [21,22]. In order to
understand the experimental observations of pp ! �"X,
one has to take into account both contributions.
On the other hand, in the deep inelastic scattering pro-

cess, one can separate these two contributions because they
have different azimuthal angle dependence [23]. To de-
scribe these effects, one can calculate the� polarization in
the twist-three approach [22] or use the TMD mechanism
[23]. For example, the contribution from the T-odd effects
in the distribution part is associated with the so-called
Boer-Mulders TMD quark distribution h?1 [23] multiplied

by the TMD transversity fragmentation functionH1T when
the transverse momentum of the produced � is much
smaller than the hard scale P�? � Q, where Q is the
virtuality of the virtual photon in DIS process. On the other
hand, we can also calculate this contribution from the
twist-three mechanism when the transverse momentum is
much larger than the nonperturbative scale �QCD: P�? �
�QCD. From our calculations, we find that these two ap-

proaches indeed provide a unique description for � polar-
ization at the intermediate transverse momentum region in
the semi-inclusive DIS. The large transverse momentum
Boer-Mulders function calculated in this context can also
be used in other processes, like Drell-Yan lepton pair
production in pp scattering [24].
The rest of the paper is organized as follows. In Sec. II,

we study the � polarization in semi-inclusive deep inelas-
tic scattering eþ p ! eþ�" þ X by calculating the con-

tribution from the twist-three quark-gluon-antiquark
correlation function from nucleon. We will then take the
limit of the small transverse momentum P�? � Q, and
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compare it to the prediction from the TMD factorization
approach. In the TMD picture, the polarization of� comes
from the Beor-Mulders function h?1 . We briefly discuss the
extension to pp collisions and conclude in Sec III.

II. � TRANSVERSE POLARIZATION IN SEMI-
INCLUSIVE DIS

In the SIDIS process ep ! e0�"X, the differential cross
section can be formulated as

d�ðS�?Þ
dxBdydzhd

2 ~P�

¼ 2��2
em

Q2
L��ðl; qÞW��ðP; q; P�; S�?Þ;

(1)

where �em is the electromagnetic coupling, l and P are
incoming momenta for the lepton and nucleon, q is the
momentum for the exchanged virtual photon with Q2 ¼
�q:q, P� and S�? are the momentum and transverse
polarization vector for the final state �, respectively, and
we have S�? � P� ¼ 0. The kinematic variables are de-

fined as xB ¼ Q2

2P�q , zh ¼ P�P�

P�q , y ¼ P�q
P�l . In the above equa-

tion, L�� and W�� are the leptonic and hadronic tensors,
respectively. They are given by

L��ðl; qÞ ¼ 2

�
l�l0� þ l�l0� � g�� Q

2

2

�
; (2)

W��ðP; q; P�; S�?Þ ¼ 1

4zh

X
X

Z d4�

ð2�Þ4
� eiq�� hPjJ�ð�ÞjXP�S�?i
� hXP�S�?jJ�ð0ÞjPi; (3)

where l0 is the momentum for the final-state lepton, J� is
the quark electromagnetic current, and X represents all
other final-state hadrons other than the observed hyperon
�.

It is convenient to write the momentum of the virtual
photon in terms of the incoming and outgoing hadron
momenta,

q� ¼ q
�
t þ q � P�

P � P�

P� þ q � P
P � P�

P
�
�; (4)

where q�t is transverse to the momentum of the initial and
final hadrons: q�t P� ¼ q�t P�� ¼ 0. Here q�t is a spacelike

vector, and we define ~q2? � �q2t . In the hadron frame, the

final-state hadron will have the momentum

P�
� ¼ xB ~P2

�?
zhQ

2
Pþp� þ zh

Q2

2xBP
þ n� þ P�

�?; (5)

where P�? is the hyperon transverse momentum in the

hadron frame Pþ ¼ 1=
ffiffiffi
2

p ðP0 þ PzÞ, and we use the con-
ventional definition for light-cone vector p�, n�: p ¼
ð1þ; 0�; 0?Þ, n ¼ ð0þ; 1�; 0?Þ. From the above defini-

tions, we will find ~q2? ¼ ~P2
�?=z2h.

We will calculate the hadronic tensor W�� at large
transverse momentum in perturbative QCD, by radiating
a hard gluon in the final state. They are expressed in terms
of integrated parton distribution and fragmentation func-
tions or the quark-gluon-antiquark correlations, according
to a collinear factorization [25]. In the calculations, it is
convenient to decompose the hadronic tensorW�� in terms
of individual tensors [26,27],

W�� ¼ X9
i¼1

V
��
i Wi; (6)

where the Wi are structure functions, and can be projected

out from W�� by Wi ¼ W��
~V��
i with the corresponding

inverse tensors ~Vi. Both Vi, ~Vi can be constructed from
four orthonormal basis vectors [26]: T�, X�, Y�, Z� with
normalization T�T� ¼ 1, X�X� ¼ Y�Y� ¼ Z�Z� ¼
�1. These four vectors can be further constructed by P�,
q�, S

�
�?, q

�
t . In this paper, we choose a special frame,

where the q�t is parallel to X�, and the target proton and
final state � have spatial components only in the Z direc-
tion. In the small qt (P�?) region, we have checked that
this frame leads to the same result as that in the normal
hadron frame.
As mentioned in the introduction, in this paper, we are

interested in calculating the differential cross section in the
intermediate transverse momentum region, �QCD �
P�? � Q. In the calculations, we will utilize the power
counting method, and only keep the leading power contri-
butions and neglect all higher order corrections in terms of
P�?=Q. For the spin-average � production in SIDIS, the
differential cross section will be identical to any other
hadron production process except we have to change the
associated fragmentation function for the hyperon. This
cross section in the above limit will be consistent with the
TMD factorization approach in the intermediate transverse
momentum region as has been shown before, for example,
in the pion production in SIDIS [18].
For the � polarization dependent cross section, we have

two separate contributions from the twist-three quark-
gluon-antiquark correlations in the parton distribution or
fragmentation. In this paper, we will only focus on the
parton distribution part, whereas that from the fragmenta-
tion part can follow accordingly. We also note that these
two contributions will have different azimuthal angular
dependence in SIDIS in the small transverse momentum
limit. For the contribution from the parton distribution part,
following the Qiu-Sterman formalism, the corresponding
spin-dependent hadronic tensor can be written as [3]

W�� ¼
Z d4k1

ð2�Þ4

� d4k2
ð2�Þ4 T�ðk1; k2ÞH��;�ðk1; k2; P�?; S�?ÞH1TðzÞ;

(7)
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where T and H represent the twist-three function and the
partonic hard-scattering amplitude, respectively. These
two parts are connected by the two independent integrals
over the momentum k1 and k2 that they share. In the above
expansion, spinor and color indices connecting the hard
part and long-distance parts have already been separated,
which leads to the hard part Hðk1; k2; P�?; S�?Þ being
contracted with ð1=2Þp6 	�

?=ð2�Þ. The transversity frag-

mentation H1T for � production is defined as

H1TðzÞ ¼ 1

2z

X
X

Z dyþ

4�
e�iP�

�
yþ=zh0jc ð0þÞjP�S�?; Xi

� hP�S�?; Xj �c ðyþÞS?�i�
��	5j0i; (8)

where X represents all other particles in the final state
except for �, S�? is the transverse polarization vector of

the final-state hadron. The next step is to perform a col-
linear expansion of the expression:

k
�
i ¼ xiP

� þ k
�
i;?; (9)

where minus component has been neglected since it is
beyond the order in ki;? that we consider. The collinear

expansion enables us to reduce the four-dimensional inte-
gral to a integral convolution in the light-cone momentum
fractions of the initial partons. Expanding H�� in the
partonic momentum at k1 ¼ x1P and k2 ¼ x2P, we have

H��;�ðk1; k2; P�?; S�?Þ ¼ H��;�ðx1; x2; P�?; S�?Þ
þ @H��;�

@k�1
ðx1; x2Þðk1 � x1PÞ�

þ @H��;�

@k�2
ðx1; x2Þðk2 � x2PÞ�

þ . . . : (10)

The above expansion allows us to integrate over three of
the four components of each of the loop momenta ki, and
the hadronic tensor W�� will depend on the chiral-odd
spin-independent twist-three quark-gluon-antiquark corre-
lation function [3,22]

Tð�Þ
F ðx1; x2Þ ¼

Z dy�1 dy
�
2

4�
eiy

�
2
ðx2�x1ÞPþ�iy�

1
x1P

þ

� hPj �c ðy�1 Þ�þ�gFþ�ðy�2 Þc ð0ÞjPi; (11)

where the sums over color and spin indices are implicit, jPi
denotes the unpolarized proton state, c is the quark field,
Fþ� is the gluon field tensor, and the gauge link has been

suppressed. Because of parity and time-reversal invariance,

we have the relation Tð�Þ
F ðx1; x2Þ ¼ Tð�Þ

F ðx2; x1Þ.
Similar to the SSA in � production in SIDIS, the strong

interaction phase necessary for having a nonvanishing �
transverse polarization arises from the interference be-
tween an imaginary part of the partonic scattering ampli-
tude with the extra gluon and the real scattering amplitude
without a gluon. The imaginary part is due to the pole of

the parton propagator associated with the integration over
the gluon momentum fraction xg. Depending on which

propagator’s pole contributes, the amplitude may get con-
tributions from xg ¼ 0 (‘‘soft-pole’’) and xg � 0 (‘‘hard-

pole’’ or ‘‘soft-fermion-pole’’) [18]. The diagrams contrib-
uting to the � polarization in SIDIS will be the same as
those calculated for the SSA in � production. The only
difference is that we have to replace the Qiu-Sterman
matrix element TF with the above unpolarized quark-

gluon-antiquark correlation function Tð�Þ
F , and the unpolar-

ized fragmentation function DðzÞ for � with the transver-
sity fragmentation function for �. We further notice that
the soft-fermion-pole contribution is power suppressed in
the limit of P�? � Q, similar to the SSA in � production.
In Fig. 1, we show some examples of the soft-pole and
hard-pole diagrams. The calculations will be similar to
those in [3,12,18]. We perform the calculation in the co-
variant gauge. There are a total of eight diagrams contrib-
uting to the soft-pole and 12 diagrams for the hard-pole
contributions. Since the calculation formalism has been
well established, we only give the final result and refer
the reader to the references for details.
We are interested in obtaining the differential cross

section in the limit of P�? � Q. In this limit, we further
find that only V4 and V9 in Eq. (6) contribute in the leading
power of P�?=Q. V4 and V9 are defined as

V��
4 ¼ X�X� � Y�Y�; (12)

V��
9 ¼ X�Y� þ X�Y�; (13)

and the associated ~V4 and ~V9 are given by,

~V ��
4 ¼ 1

2
ðX�X� � Y�Y�Þ; (14)

~V
��
9 ¼ 1

2
ðX�Y� þ Y�X�Þ: (15)

These two terms contribute the same to the differential

(a) (b)

FIG. 1 (color online). The example diagrams for the soft-pole
(a) and hard-pole (b) contributions to � transverse polarization
in the semi-inclusive DIS process. The short bars indicate the
pole contribution from the propagators.
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cross sections except the azimuthal angular dependence.
The contribution from V4 is proportional to cosð2
l

�Þ�
sinð
l

s �
l
�Þ, where 
l

� and 
l
s are the azimuthal angles

of the transverse momentum P�? and the polarization
vector S�? of � relative to the lepton scattering plane.
On the other hand, the V9 contribution is proportional to

sinð2
l
�Þ cosð
l

s �
l
�Þ. The total contributions from

these two terms will be proportional to sinð
l
� þ
l

sÞ.
Summing up both soft-pole and hard-pole contributions

from all the diagrams similar to those in Fig. 1, we obtain
the following � polarization dependent differential cross
section from the contributions from V4 and V9:

d�ðS�?Þ
dxBdydzhd

2 ~P�?

��������V4þV9

¼ � 4��2
ems

Q4
xBð1� yÞ sinð
l

� þ
l
sÞ 1
z2h

�s

2�2

2

j ~q?j
Z dxdz

xz
�

�
~q2? �Q2ð1� �Þð1� �̂Þ

��̂

�

�
�
x
@

@x
Tð�Þ
F ðx; xÞ 1

2Nc

�ð�þ �̂� 1Þ
�̂ð1� �̂Þ

�
� Tð�Þ

F ðx; xÞ 1

2Nc

�ð�̂� �2 þ 2�� 1Þ
ð1� �Þð1� �̂Þ�̂

�

þ Tð�Þ
F ðx; xBÞ

�
1

2Nc

þ �̂CF

��
1

ð1� �Þð1� �̂Þ
��
H1TðzÞ; (16)

where � ¼ xB=x and �̂ ¼ zh=z. In the above result, the first
term in the bracket is the derivative term coming from the
soft-gluon pole, the second term is the nonderivation con-
tribution from soft-gluon pole, and the third is the hard-
pole contribution whose derivative term vanishes.

In order to compare to the TMD factorization formalism,
we will extrapolate our results into the region of �QCD �
Ph? � Q. In doing the expansion, we only keep the terms
leading in Ph?=Q, and neglect all higher powers. For small
Ph?, the delta function can be expanded as

�

�
~q2? �Q2ð1� �Þð1� �̂Þ

��̂

�
¼ ��̂

Q2

�
�ð�� 1Þ
ð1� �̂Þþ

þ �ð�̂� 1Þ
ð1� �Þþ

þ �ð�� 1Þ�ð�̂� 1Þ lnQ
2

~q2?

�
:

(17)

With this expansion, the spin-dependent cross section in
the small Ph? limit can be written as

d�ðS�?Þ
dxBdydzhd

2 ~P�?

��������P�?�Q
¼�4��2

ems

Q4
xBð1� yÞ

� sinð
l
h þ
l

stÞ 1
z2h

�s

2�2

1

j ~q?j3

�
Z dxdz

xz
H1TðzÞfA�ð�̂� 1Þ

þB�ð�� 1Þg; (18)

where

A ¼ 1

2Nc

��
x
@

@x
Tð�Þ
F ðx; xÞ

�
2�þ Tð�Þ

F ðx; xÞ 2�ð�� 2Þ
ð1� �Þþ

�

þ CA

2
Tð�Þ
F ðx; xBÞ 2

ð1� �Þþ ;

B ¼ CFT
ð�Þ
F ðx; xÞ

�
2�̂

ð1� �̂Þþ
þ 2�ð�̂� 1Þ lnQ

2

~q2?

�
: (19)

On the other side, the transverse momentum dependent
factorization can be applied in the small Ph? � Q.
Therefore one expects the above result can be reproduced
in this approach. The � polarization dependent cross sec-
tion can be factorized as the following form [8,9]:

d�ðS�?Þ
dxBdydzhd

2 ~P�?
¼ 4��2

ems

Q4
xBð1� yÞ sinð
l

� þ
l
sÞ

�
Z k? � ~̂P�?

M
h?1;DISðx; k?ÞH1Tðz; p?Þ

� ðSð?ÞÞ�1HUUTðQ2Þ; (20)

where ~̂P�? is the unit vector in direction of ~P�?, h?1;DIS is
the TMD Boer-Mulders function for DIS process, and H1T

the TMD transversity fragmentation for �. Sð?Þ and
HUUTðQ2Þ are the soft factor and hard factor, respectively.
The simple integral symbol represents a complicated in-

tegral:
R ¼ R

d2 ~k?d2 ~p?d2 ~?�2ðz ~k? þ ~p? þ ~? �
~P�?Þ. We have suppressed the sum over all flavors and
factorization scale dependence in the parton distribution
function and fragmentation function.
When the k? is of the order of �QCD, the TMD depen-

dent parton distribution functions are entirely nonpertur-
bative objects. But in the region �QCD � k? � Q, the

TMD factorization still holds and at the same time k?
dependent parton distribution function h?1 can be calcu-
lated in terms of the twist-three parton correlation function
within the perturbative QCD. This provides us a chance to
make contact with the result from the collinear factoriza-
tion formalism. The perturbative calculation follows the
similar procedure as that in [18]. Finally, one obtains

h?1;DISðxB; k?Þ ¼ � �s

2�2

Mp

ð ~k2?Þ2
Z dx

x

�
Aþ CFT

ð�Þ
F ðx; xÞ

� �ð�� 1Þ
�
ln
x2B�

2

~k2?
� 1

��
; (21)

where A is given in Eq. (19), and � ¼ xB=x. We note that
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the native-time-reversal-odd TMD Boer-Mulders function
is process dependent. The above result is for SIDIS. When
we apply the above to the Drell-Yan process, the Boer-
Mulders function shall change the sign. Similarly, for the
TMD transversity fragmentation function, we have

H1Tðzh; p?Þ ¼ �s

2�2

1

~p2
?
CF

Z dz

z
H1TðzÞ

�
2�̂

ð1� �̂Þþ
þ �ð1� �̂Þ

�
ln
�̂2

~p2
?
� 1

��
; (22)

where H1TðzÞ is the integrated transversity quark fragmen-

tation function defined in Eq. (8), and �̂ ¼ zh=z.
To obtain the final result, we let one of the transverse

momentum ~k?, ~p?, ~l? be of the order of ~P? and the others
are much smaller. After integrating the delta function, one
has

d�ðS�?Þ
dxBdydzhd

2 ~P�?
¼ � 4��2

ems

Q4
xBð1� yÞ sinð
l

� þ
l
sÞ

� zh

j ~P�?j3
�s

2�2

Z dxdz

xz
H1TðzÞ

� fA�ð�̂� 1Þ þ B�ð�� 1Þg; (23)

where we have used the relation Tð�Þ
F ðx; xÞ ¼

�R
d2k?

jk?j2
Mp

h?1;DISðx; k2?Þ [7,28]. Obviously, we repro-

duce the differential cross sections from the collinear
factorization calculation.

This clearly demonstrates that in the intermediate trans-
verse momentum region, the twist-three collinear factori-
zation approach and the TMD factorization approach
provide a unique picture for the � polarization in the
unpolarized semi-inclusive DIS process. This is because
the observable we calculated above is the leading contri-
bution in the limit of P�?=Q, and the TMD factorization is
valid [8,9].

III. CONCLUSION

In summary, in this paper, we studied the � polarization
in the unpolarized semi-inclusive DIS and pp collisions. In
the SIDIS process, we compared the twist-three approach

with the TMD factorization approach and found that they
are consistent with each other at the intermediate trans-
verse momentum region. We have also calculated the large
transverse momentum behavior for the naive time-reversal-
odd Boer-Mulders quark distribution in the twist-three
approach from the quark-gluon-antiquark correlation func-
tion in an unpolarized nucleon. This distribution has a
number of important applications in the Drell-Yan lepton
azimuthal distribution in pp scattering. For example, the
cos2
 angular distribution has a contribution from two
Boer-Mulders functions from the incoming nucleons [24].
From our calculations above, we shall be able to study the
large transverse momentum behavior for this cos2
 angu-
lar distribution.
The extension to the � polarization in hadronic scatter-

ing is straightforward. The diagrams will be similar to what
have been calculated for the SSA in inclusive hadron
production in pp" ! �X collisions [12]. Similar to what

we have calculated in the last section, we will have both
derivative and nonderivative contributions. The derivative
terms have been calculated in [22]. Using the same method
as that in [12], we calculated the nonderivative terms, and
found that the nonderivative terms vanish for � polariza-
tion in hard partonic scattering processes. This indicates
that the compact formula [12] containing both derivative
and nonderivative contributions may not work in general,
and shows a counterexample of the derivation of the com-
pact formula in [15]. It will be interesting to further inves-
tigate the reason for this observation. These extensions will
be presented elsewhere.
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