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We analyze the electromagnetic and strong decay properties of the light scalars a0ð980Þ and f0ð980Þ
within a hadronic molecule interpretation. Both scalars are discussed within a covariant and gauge

invariant model which also allows for finite size effects due to their spatially extended structure in the

K �K-bound state picture. Allowing for f0-a0 mixing we also study its influence on the radiative decays

f0=a0 ! ��, f0=a0 ! �!, and f0=a0 ! �� as well as the � production of the f0 and a0. Furthermore,

we apply our formalism to describe the strong f0 ! �� and a0 ! �� decay properties.
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I. INTRODUCTION

Until now meson spectroscopy provides a valuable tool
to explore the structure and properties of mesons and,
extending the scope, to get further information on the
confinement regime of strong interaction. During the last
decade the meson mass spectrum showed a richer structure
than might be expected from the constituent quark model,
which decisively influenced our understanding of hadronic
structure in the past. In particular, the structure issue of the
lightest scalars has been under permanent discussion con-
cerning mesonic structure beyond the quark-antiquark pic-
ture. There exist different approaches concerning the
substructure of the f0ð980Þ and its ‘‘twin’’, the a0ð980Þ,
which range from q �q [1–3] to tetraquark q2 �q2 [4–6] inter-
pretations. In [7] the structure of the light scalar nonet
including f0ð980Þ was tested using radiative � decays.
The authors of Ref. [7] point out the difficulty to distin-
guish between the q �q and the qq �q �q picture for the light
scalar mesons. A possible admixture between �qq and
qq �q �q configurations for the low-lying scalar mesons has
been considered in Ref. [8] using the chiral approach. Both
scalars are also discussed in a clustered version of the
tetraquark configuration where the two quarks and anti-
quarks form a bound state of mesons—hadronic molecules
[9–11]. In addition, an isospin-violating mixture of the
f0ð980Þ and a0ð980Þ mesons has been originally discussed
in [12] and taken into consideration in [13–15] which
provides an interesting possibility to study its substructure.
f0-a0 mixing is on the one hand motivated by their near
degenerate masses, on the other hand by the mass gap
between the nearby charged and neutral K �K thresholds.
A crucial check for theoretical considerations will be fu-
ture experiments planning to investigate f0-a0 mixing (see
e.g. Ref. [16]).

In the present paper we study the electromagnetic and
strong decay properties of the f0ð980Þ and a0ð980Þmesons
which are assumed to be of a pure molecular meson

structure, that is bound states of two kaons. We discuss
the electromagnetic decays with the final states occupied
by photons and massive vector mesons S ! V�, S ! ��,
and � ! S�, where S ¼ f0, a0, and V ¼ �, !, as well as
the strong a0=f0 ! ��=�� decay properties.
For the description of the f0ð980Þ and a0ð980Þ as had-

ronic molecules we apply the theoretical framework devel-
oped in [17] based on the use of the compositeness
condition Z ¼ 0 [18,19] which implies that the renormal-
ization constant of the hadron wave function is set equal to
zero. Note that this condition was originally applied to the
study of the deuteron as a bound state of the proton and
neutron [18]. Then it was extensively used in the low-
energy hadron phenomenology as the master equation for
the treatment of mesons and baryons as bound states of
light and heavy constituent quarks (see Refs. [19,20]). In
Refs. [21] the compositeness condition has been success-
fully used in the description of the recently discovered
heavy mesons as hadronic molecules. In particular, within
the mesonic bound state interpretation, the compositeness
condition allows for a self-consistent determination of the
coupling of the scalar mesons to their constituents. The
advantage of our approach is that it has a clear and con-
sistent mathematical structure with a minimal amount of
free parameters. It also fulfills essential conditions such as
covariance and gauge invariance, while allowing to include
the spatially extended structure of the meson molecules
and isospin-violating mixing effects. Here we generate the
f0-a0 mixing due to the mass difference of intermediate
charged and neutral kaon loops; this mechanism was pro-
posed in [12] as the leading contribution to the f0-a0
mixing. Note that in our approach this mixing mechanism
is naturally generated due to the coupling of a0 and f0 to its
constituents—the kaons.
The paper is organized as follows. Our framework is

discussed in Sec. II. We derive the effective mesonic
Lagrangian for the treatment of f0 and a0 as K �K bound
states (molecules) in Sec. II A. In Sec. II B we discuss the
modification of f0K �K and a0K �K couplings due to the
f0-a0 mixing. In Sec. II C we include the electromagnetic
interactions and discuss the diagrams contributing to the
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radiative decays of f0 and a0. Our results are presented in
Sec. III, which we also compare with other approaches and
with experimental data. In Sec. IV we present a short
summary of our results.

II. THEORETICAL FRAMEWORK

A. Molecular structure of the f0ð980Þ and a0ð980Þ
mesons

The theoretical framework we use for our analysis is
based on the nonlocal strong Lagrangians [17,20–23]

L f0K �K ¼ gf0K �Kffiffiffi
2

p f0ðxÞ
Z

dy�ðy2Þ �K
�
x� y

2

�
K

�
xþ y

2

�
;

La0K �K ¼ ga0K �Kffiffiffi
2

p ~a0ðxÞ
Z

dy�ðy2Þ �K
�
x� y

2

�
~�K

�
xþ y

2

�
;

(1)

describing the interaction between the kaon-antikaon
bound state and its constituents. The kaon and scalar fields
are collected in the kaon isospin doublets and the scalar
meson triplet

K ¼ Kþ
K0

� �
; �K ¼ K�

�K0

� �
; and ~a0 ¼ ðaþ0 ; a00; a�0 Þ:

(2)

The vector ~� ¼ ð�þ; �0; ��Þ is characterized by the Pauli
matrices �i¼1;2;3, where �

� ¼ 1ffiffi
2

p ð�1 � i�2Þ and �0 ¼ �3.

Finite size effects are incorporated in our model by the

correlation function �ðy2Þ. Its Fourier transform ~�ðk2EÞ is
directly related to the shape and size of the hadronic
molecule and shows up as the form factor in the
Feynman diagrams. Here, we employ a Gaussian form

�ðy2Þ ¼
Z d4k

ð2�Þ4
~�ð�k2Þe�iky

with ~�ðk2EÞ ¼ expð�k2E=�
2Þ;

(3)

where the index E refers to the Euclidean momentum
space. The size parameter � controls the spatial extension
of the hadronic molecule and is varied around 1 GeV. In the
special case of pointlike interaction, which we refer to as
the local case, the correlation function�ðy2Þ is replaced by
the delta function lim�!1�ðy2Þ ¼ �ð4ÞðyÞ.

The couplings to the constituent kaons, gSK �K with S ¼
f0, a0, are determined self-consistently within our model
by using the compositeness condition. It provides a method
to fix the coupling strength between a bound state and its
constituents [18,19]; it therefore reduces the amount of free
input parameters and also allows for a clear and straight-
forward determination of the decay properties. Note that
this condition has also been used in the K �K molecule
approach in [10,24]. The coupling constant can be easily
extracted from the definition of the field renormalization
constant Zf0 which is set to zero

ZS ¼ 1� ~�0ðM2
f0
Þ ¼ 0: (4)

Here, ~�0ðM2
f0
Þ ¼ g2

f0K
�K

ð4�Þ2
~�0ðM2

f0
Þ is the derivative of the

mass operator

�ðp2Þ ¼
Z d4k

�2i
~�2ð�k2ÞS

�
kþ p

2

�
S

�
k� p

2

�
(5)

shown in Fig. 1. We stress that the Weinberg condition
applies only to the bound states. In general, meson-loop
diagrams are evaluated by using the free meson propaga-
tors given by

iSKðx� yÞ ¼ h0jTKðxÞKyðyÞj0i

¼
Z d4k

ð2�Þ4i e
�ikðx�yÞSKðkÞ; (6)

in case of scalar and pseudoscalar mesons, where

SKðkÞ ¼ 1

M2
K � k2 � i�

: (7)

For vector and axial-vector fields (H� ¼ V, A) we use

iS
	

H� ðx� yÞ ¼ h0jTH�	ðxÞH�
yðyÞj0i

¼
Z d4k

ð2�Þ4i e
�ikðx�yÞS	


H� ðkÞ (8)

with

S	

H� ðkÞ ¼ �g	
 þ k	k
=M2

H�

M2
H� � k2 � i�

: (9)

B. Inclusion of f0-a0 mixing

The isospin-violating mixture of the f0ð980Þ and
a0ð980Þ mesons was originally discussed in [12] and also
pursued later e.g. in Refs. [13–15]. In particular, in
Ref. [12] a model-independent result for the f0-a0 mixing
amplitude was derived due to the subtraction of charged
and neutral kaon-loop diagrams, which is valid for any
value of external momenta. In our approach this mixing
amplitude (see Fig. 2) is naturally generated due to the
coupling of f0 and a0 to their constituent kaons. In the
following we restrict the calculation to this leading con-
tribution of the f0-a0 mixing mechanism. The mixing
effect leads to a renormalization of the f0=a0 couplings
to the constituents. The modified f0K �K and a0K �K cou-
plings are shown in Fig. 3(a) and 3(b). For the f0 and a0
propagators we use the ones in the Breit-Wigner form:

FIG. 1 (color online). Mass operator of S ¼ f0, a0.
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DSðp2Þ ¼ 1

M2
S � p2 þ iMS�S

; (10)

where �S ¼ �ðM2
SÞ is the total width of the S ¼ f0ða0Þ

meson.
Note that the focus of the present considerations lie on

the electromagnetic and strong scalar decay properties,
where mixing modifies the coupling between the meson
molecule and the K �K constituents in the loop. In the
following we show that this mixing effect is not so dra-
matic for isospin allowed transitions. However, for consis-
tency we include such effects since the corresponding
f0-a0 mixing insertions are naturally generated by our
effective Lagrangian. We just stress that a more detailed
theoretical analysis of the f0-a0 mixing effects was done in
Refs. [12–15]. A direct access to the mixing strength can
be obtained from isospin-violating processes, such as the
J=c ! �f0 ! �a0 reaction, which is discussed in [16].

C. Inclusion of the electromagnetic interaction

The electromagnetic interaction terms are obtained by
minimal substitution @	K� ! ð@	 � ieA	ÞK� in the free
Lagrangian LK of charged kaons

L K ¼ @	K
þ@	K� �M2

KK
þK� (11)

and the Lagrangians which couple vector mesons and
kaons

LVK �K¼g�K �K ~�	ð �K ~�i@	K�K ~�i@	 �KÞ
þðg!K �K!

	þg�K �K�
	Þð �Ki@	K�Ki@	 �KÞ: (12)

The resulting electromagnetic interaction vertices are con-
tained in the decay diagrams (a) and (b) of Figs. 4 and 5. In
the local limit, the decay amplitude would be completely

described by these Feynman diagrams. In contrast, the
nonlocal strong interaction Lagrangians require special
care in establishing gauge invariance. In doing so the
charged fields are multiplied by exponentials [25] contain-
ing the electromagnetic field

K�ðyÞ ! e�ieIðy;x;PÞK�ðyÞ (13)

with Iðy; x; PÞ ¼ R
y
x dz	A

	ðzÞ, which gives rise to the

electromagnetic gauge invariant Lagrangian

LGI
f0K �K

¼ gf0K �Kffiffiffi
2

p f0ðxÞ
Z

dy�ðy2Þ

�
�
e�ieIðxþðy=2Þ;x�ðy=2Þ;PÞKþ

�
xþ y

2

�

� K�
�
x� y

2

�
þ K0

�
xþ y

2

�
�K0

�
x� y

2

��
; (14)

with a corresponding expression for the a0 meson. The

FIG. 3 (color online). Renormalization of f0K �K and a0K �K couplings due to f0-a0 mixing.

FIG. 4 (color online). Diagrams contributing to the electro-
magnetic f0 ! �� and a0 ! �� decays.

FIG. 2 (color online). Leading contribution to f0-a0 mixing.
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interaction terms up to second order in A	 are obtained by
expanding LGI

SK �K
in terms of Iðy; x; PÞ. Diagrammatically,

the higher order terms give rise to nonlocal vertices with
additional photon lines attached. The Feynman rules for
these vertices have been already derived in [20].
Altogether, we obtain further graphs (Fig. 4(c)–4(e)) gov-
erning the two-photon decay and the diagram of
Fig. 5(c) when massive vector mesons are involved. In a
slightly modified form the diagrams of Fig. 5 are also used
to calculate the� ! S� decay [26–28]. Quantitatively, the
decay amplitude is dominantly characterized by the tri-
angle diagram. The Feynman graphs containing contact
vertices arising due to the nonlocality only give a minor
contribution to the transition amplitude but are required in
order to fully restore gauge invariance.

The diagrams are evaluated by applying the technique
developed in [20,21,23], where each Feynman integral is
separated into a part obeying gauge invariance and a
remainder term. The remainder terms of each graph cancel
each other in total and only the gauge invariant structure of
the decay matrix element is left. The matrix element can
therefore be written by a linear combination of the form
factors Fðp2; q21; q

2
2Þ and Gðp2; q21; q

2
2Þ of the respective

decay

M 	
 ¼ e2ðFðp2; q21; q
2
2Þb	
 þGðp2; q21; q

2
2Þc	
Þ; (15)

where the tensor structures are given by

b	
 ¼ g	
ðq1q2Þ � q	1 q


2 ;

c	
 ¼ g	
q21q
2
2 þ q	1 q



2ðq1q2Þ � q	1 q



1q

2
2 � q	2 q



2q

2
1:

(16)

Here, p and q1 are the four-momenta of the scalar meson
and photon; q2 is the momentum of the vector meson or
second photon depending on the respective decay.

Since in the transition processes we deal with at least
one real photon, the second part of M	
 proportional to
c	
 vanishes. The decay constant is therefore characterized
by the form factor F which is obtained by evaluating the
Feynman integrals for on-shell initial and final states,
where V ¼ �, !, �, � represents the vector particle ap-
propriate for the respective decay. In order to allow for
f0-a0 mixing, we use gf0KþK� and ga0KþK� to compute the

couplings characterizing the electromagnetic decays

gS�� � FS��ðM2
S; 0; 0Þ ¼

2

ð4�Þ2 �
GSK �Kffiffiffi

2
p IS��ðM2

S; 0; 0Þ;

gS�V � FS�VðM2
S; 0;M

2
VÞ

¼ 2

ð4�Þ2 gVK �K

GSK �Kffiffiffi
2

p IS�VðM2
S; 0;M

2
VÞ;

g�S� � F�S�ðM2
�;M

2
S; 0Þ

¼ 2

ð4�Þ2 g�K �K

GSK �Kffiffiffi
2

p I�S�ðM2
�;M

2
S; 0Þ; (17)

where I denotes the loop integrals and Gf0K �K and Ga0K �K

are the dressed couplings due to f0-a0 mixing. The explicit
expressions for the loop integrals I are given in
Appendix A. The issue of gauge invariance is considered
in more detail in Appendix B and in the case of the two-
photon decay in [17,20]. In [17] we also considered non-
trivial K �K� interaction vertices, where these effects are
absorbed in monopole form factors FK �K�ðQ2Þ ¼ 1

1þQ2=�2
K �K�

depending on the photon momentum Q2. However, this
photon form factor does not influence the decay properties
when dealing with real photons as in the present
considerations.

D. Strong decays

In order to calculate the strong decays of the f0 and a0
mesons we proceed in analogy with the computation of the
f0 ! �� decay in [17]. In the present paper we extend the
formalism by including the a0 ! �� decay and, addition-
ally, by considering mixing between both scalars.
According to the interaction Lagrangians

L K�K� ¼ gK�K�ffiffiffi
2

p K�y
	 ~� ~� i@

$	
K þ H:c; (18)

L K�K� ¼ gK�K�ffiffiffi
2

p K�y
	 �i@

$	
K þ H:c:; (19)

the final-state interaction effect in the t-channel proceeds
via K� exchange (see Fig. 6(a)), where the massive vector
meson is described by the antisymmetric tensor field
W	
 ¼ �W
	. Therefore, the phenomenological

Lagrangian which generates the contributing meson-loop
diagrams is characterized by the Lagrangian

LWðxÞ ¼ �1
2hr�W�	r
W


	 þ iGVW	
½u	u
�i; (20)

S

K

K

K
p

q1

q2

γ

V

(a)

S

K

K

γ

V

p
q1

q2

(b)

p
S

K

K

γ
q1

V
q2

(c)

FIG. 5 (color online). Diagrams describing the S ! �V decays.
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which involves vector mesons in the tensorial representa-
tion [29–31]. By using low-energy theorems GV can be

expressed through the leptonic decay constant GV ¼
F=

ffiffiffi
2

p
. The K� propagators in vector representation

SVK�;	
;�
ðxÞ and tensorial description SWK�;	
;�
ðxÞ differ

by a term which is reflected in a second diagram containing
an explicit four meson vertex (see Fig. 6(b))

SWK�;	
;�
ðxÞ ¼ SVK�;	
;�
ðxÞ þ
i

M2
K�

½g	�g



� g	
g
���4ðxÞ: (21)

Note that we include the interaction of four pseudoscalar
mesons at leading Oðp2Þ order in the chiral expansion
given by chiral perturbation theory (ChPT) [29,32]:

L UðxÞ ¼ F2

4
hD	UðxÞD	UyðxÞ þ �UyðxÞ þ �yUðxÞi;

(22)

which leads to the four meson ��K �K interaction vertex.
Inclusion of e.g. scalar resonances in the s-channel is of
higher order, Oðp4Þ. In the t-channel we include the im-
portant vector meson exchange which also is of higher
order, Oðp4Þ, but is important for the inclusion of final-
state interactions. Here we use the standard notations of
ChPT. The fields of pseudoscalar mesons are collected in
the chiral matrix U ¼ u2 ¼ expðiPi�i�i=FÞ with F ¼
92:4 MeV being the leptonic decay constant and D	 is

the covariant derivative acting on the chiral field.
Furthermore � ¼ 2BMþ � � � , where B is the quark vac-
uum condensate parameter B ¼ �h0j �uuj0i=F2 ¼
�h0j �ddj0i=F2 and M ¼ diagfm̂; m̂;MSg is the mass ma-
trix of current quarks with m̂ ¼ ðMu þMdÞ=2. In the
leading order of the chiral expansion the masses of pions
and kaons are given byM2

� ¼ 2m̂B,M2
K ¼ ðm̂þMSÞB. In

summary, second order ChPT gives rise to a second dia-
gram being of the same structure as graph (b) but opposite
in sign. Therefore, the triangle diagram (a) gives the domi-
nant contribution to the decay amplitude.

The couplings for the strong decays are defined by

gf0�� ¼ gf0�þ�� ¼ 2gf0�0�0 ¼ GðM2
f0
;M2

�;M
2
�Þ; (23)

ga0�� ¼ GðM2
a0 ;M

2
�;M

2
�Þ; (24)

where, in the case of the two-pion decay, we have to

consider the ratio between the charged and neutral decay
modes. Here, Gðp2; q21; q

2
2Þ is the structure integral of the

f0 ! �� and a0 ! �� transitions, which are convention-

ally split into the two terms GðaÞðp2; q21; q
2
2Þ and

GðbÞðp2; q21; q
2
2Þ. They refer to the contributions of the dia-

grams of Figs. 6(a) and 6(b), respectively, with

Gðp2; q21; q
2
2Þ ¼ GðaÞðp2; q21; q

2
2Þ þGðbÞðp2; q21; q

2
2Þ; (25)

where

Gðp2; q21; q
2
2Þ ¼

GSK �Kffiffiffi
2

p � ðIðM2
K� ; p2; q21; q

2
2Þ

þ IðM2
K0 ; p

2; q21; q
2
2ÞÞ; (26)

and IðM2
K; p

2; q21; q
2
2Þ denotes the contributions from the

intermediate charged and neutral kaons.
The expressions for the decay widths are finally given by

�ðf0 ! ��Þ ¼ �f0�
þ�� þ �f0�

0�0 ¼ 3

2
�f0�

þ��

¼ 3

32�

g2f0��
Mf0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

�

M2
f0

vuut ; (27)

�ða0 ! ��Þ ¼ 1

16�

g2a0��
Ma0

�1=2ðM2
a0 ;M

2
�;M

2
�Þ

M2
a0

; (28)

with the Källen function �ðx; y; zÞ ¼ x2 þ y2 þ z2 �
2xy� 2xz� 2yz.

III. RESULTS

In this section we present our predictions for the elec-
tromagnetic and strong decay properties of the scalars f0,
a0 and its sensitivity to finite size as well as mixing effects
due to isospin violation.
For all the numerical determinations we explicitly use

the charged and neutral kaon masses MK� ¼493:677MeV
and MK0 ¼ 497:648 MeV, since we consider isospin
breaking effects.
For the coupling constants between the hadronic mole-

cules and the constituent kaons we obtain

Gf0K �K;Lffiffiffi
2

p ¼ 2:87 Gev ðlocalÞ;
Gf0K �Kffiffiffi

2
p ¼ 3:06 Gev ð� ¼ 1 GeVÞ;

Ga0K �K;Lffiffiffi
2

p ¼ 2:44 Gev ðlocalÞ;
Ga0K �Kffiffiffi

2
p ¼ 2:55 Gev ð� ¼ 1 GeVÞ;

(29)

where the index L refers to the local case. For the compu-
tation of the radiative decay properties we use the vector
meson masses quoted in [33]

FIG. 6 (color online). Diagrams contributing to the strong
decays.
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M� ¼ 0:7755 GeV; M! ¼ 0:782 65 GeV;

M� ¼ 1:02 GeV:
(30)

The respective gVK �K and g!K �K couplings are fixed using
the SUð3Þ symmetry constraint:

g�K �K ¼ g!K �K ¼ g�K �Kffiffiffi
2

p ¼ g���
2

¼ 3 (31)

with g�K �K ¼ 6 extracted from data on the � ! �þ��

decay. Note that the SUð3Þ value for the g�K �K coupling

(4.24) is close to the one predicted by data on the � !
KþK� decay. In particular, using the formula for the � !
KþK� decay width

�ð� ! KþK�Þ ¼
g2
�K �K

48�
M�

�
1� 4M2

K

M2
�

�
3=2

(32)

and the central value for �ð� ! KþK�Þ ¼ 2:10 MeV we
deduce g�K �K ¼ 4:48. The expressions for the electromag-

netic decay widths are given by

�S�� ¼ �2�

4
M3

Sg
2
S��;

�S��=! ¼ �

8

ðM2
S �M2

�Þ3
M3

S

g2S��=!;

��S� ¼ �

24

ðM2
� �M2

SÞ3
M3

S

g2�S�;

(33)

where the coupling constants describing the radiative de-
cays are related to the form factor F as described in (17).

Within our hadronic molecule approach we obtain for
the two-photon decay width of the f0ð980Þ

�ðf0 ! ��Þ ¼ 0:29ð0:29Þ keV ðlocalÞ;
�ðf0 ! ��Þ ¼ 0:24ð0:25Þ keV ð� ¼ 1 GeVÞ: (34)

The value in brackets refers to the corresponding value
when neglecting f0-a0 mixing effects. The sensitivity of
the f0 ! �� decay properties on finite size effects has
been intensely studied in [17], even in the case of virtual
photons, and leads to a variation of �ðf0 ! ��Þ with the
result

�ðf0 ! ��Þ ¼ 0:21 keVð� ¼ 0:7 GeVÞ
–0:26 keVð� ¼ 1:3 GeVÞ: (35)

In Tables I and II we draw the comparison with data and
other approaches, respectively. The f0 ! �� width pre-
dicted by our model matches the range of values currently
deduced by the experiment.
For the two-photon decay of the a0 meson our results lie

between

�ða0 ! ��Þ ¼ 0:26ð0:23Þ keV ðlocalÞ;
�ða0 ! ��Þ ¼ 0:21ð0:19Þ keV ð� ¼ 1 GeVÞ; (36)

where again results without mixing are put in parentheses.
By considering in addition the f0-a0 mixing contributions
our estimates are in good agreement with the experimental
result 0:3� 0:1 keV of Crystal Barrel [41]. Finite size
effects play a comparable role as f0-a0 mixing since the
variation of � from 0.7 GeV to 1.3 GeV changes �ða0 !
��Þ by

�ða0 ! ��Þ ¼ 0:16 keVð� ¼ 0:7 GeVÞ
� 0:21 keVð� ¼ 1:3 GeVÞ: (37)

The decay widths obtained in other approaches are com-
bined in Table III and show a large discrepancy even for
models with the same structure assumptions.
The radiative � decay widths calculated in the local

limit within the framework of our formalism are given by

�ð� ! f0�Þ ¼ 0:63 keV; �ð� ! a0�Þ ¼ 0:41 keV;

(38)

where without mixing we obtain �ð� ! f0�Þ ¼ 0:64 keV
and �ð� ! a0�Þ ¼ 0:37 keV.
Our result for the � ! f0� decay overestimates the

value quoted by PDG (2007) [43], where the branching
ratio �ð� ! f0�Þ=�total ¼ ð1:11� 0:07Þ � 10�4 yields
�ð� ! f0�Þ ¼ 0:44–0:51 keV. In the 2008 edition of
PDG [33], the ratio is increased �ð� ! f0�Þ=�total ¼
ð3:22� 0:19Þ � 10�4 which gives 1.28–1.47 keV for the
� ! a0� decay width. However our results lie within the
error bars of the CMD-2 data [44] �ð� ! f0�Þ ¼
0:48–2:00 keV.

TABLE I. Electromagnetic decay width f0ð980Þ ! ��: experimental data.

Experiment [33] [34] [35] [36]

�ðf0 ! ��Þ [keV] 0:29þ0:07
�0:09 0:205þ0:095þ0:147

�0:083�0:117 0:31� 0:14� 0:09 0:29� 0:07� 0:12

TABLE II. Electromagnetic decay width f0ð980Þ ! ��: theoretical approaches.

Reference [19] [37] [38] [39] [6] [40] [10]

Meson structure ðq �qÞ ðq �qÞ ðq �qÞ ðq �qÞ ðq2 �q2Þ (hadronic) (hadronic)

�ðf0 ! ��Þ [keV] 0.24 0:28þ0:09
�0:13 0.31 0.33 0.27 0.20 0:22� 0:07
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The decay width for the � ! a0� decay slightly over-
estimates the PDG (2008) average value 0.3–0.35 keV
(�ð� ! a0�Þ=�total ¼ ð0:76� 0:06Þ � 10�4) but is in
agreement with the experimental data of [45] predicting
0.30–0.45 keV for �ð� ! a0�Þ.

Because of the self-consistent determination of the
ga0K �K coupling constant our result in the case of the a0
production is smaller than the width �ð� ! a0�Þ quoted in
[11,27], but we have quite good agreement with the pre-
dictions for the � production of the f0.

For the decays involving � and ! mesons we predict:

�ðf0 ! ��Þ ¼ 7:93ð8:09Þ keV ðlocalÞ and

7:44ð7:58Þ keV ð� ¼ 1 GeVÞ;
�ðf0 ! !�Þ ¼ 7:43ð7:57Þ keV ðlocalÞ and

6:99ð7:12Þ keV ð� ¼ 1 GeVÞ;
�ða0 ! ��Þ ¼ 7:94ð7:18Þ keV ðlocalÞ and

7:29ð6:59Þ keV ð� ¼ 1 GeVÞ;
�ða0 ! !�Þ ¼ 7:47ð6:76Þ keV ðlocalÞ and

6:88ð6:22Þ keV ð� ¼ 1 GeVÞ;

(39)

The deviations from the predicted widths of Ref. [11] for
the a0=f0 ! ��=! decays arise because of different as-
sumptions for the scalar masses and couplings. In [46] the
decay width a0 ! ��=! calculated within the framework
of a chiral unitarity approach is larger than our result
because of the additional inclusion of vector mesons in
the loop diagrams.

In Appendix C our full results for the radiative decays of
the neutral scalars a0 and f0 are collected in Table VII. In
the nonlocal case we have chosen � ¼ 1 GeV. For com-
parison we also indicate the decay properties when mixing
effects are neglected. For simplicity the calculations for the
� decay are restricted to the local limit.

In summary, our results for the electromagnetic f0 and
a0 decay properties are in quite good agreement with
present experimental data. Therefore, the hadronic mole-
cule approach is suitable to describe radiative f0 and a0
decays. However, other structure components besides the
K �K configuration can possibly be realized. Therefore,
current data do not allow any definite and final conclusion
concerning the substructure of the scalar mesons since
calculations based on other approaches give similar results
and even overlap with each other as demonstrated in
Tables II and III.

A further step forward would be a more precise experi-
mental determination of the decay properties but also of the
f0-a0 mixing strength to shed light on the isospin-violating
mixing mechanisms. A possible access to mixing is given
by the ratio between charged and neutral a0 meson decays
since the coupling to the charged a�0 mesons is not affected

by mixing.
In the numerical computations of the strong f0 ! ��

and a0 ! �� decays we restrict to the charged pion mass
(M� � M��139:57 MeV) but consider explicit kaon
masses MK0 � MK� . Assuming � ¼ 1 GeV we obtain
the results listed in Table VIII. Our result for the strong
f0 decay

�ðf0 ! ��Þ ¼ 57:4 MeV; (40)

is consistent with the experimental data listed in Table IV.
Further theoretical predictions are indicated in Table V

which, unfortunately, cover a large range of values, even
for the same structure assumption. Again, the present
situation for �ðf0 ! ��Þ does not allow for a clear state-
ment concerning the f0 structure.
For the strong a0 ! �� decay we obtain

�ða0 ! ��Þ ¼ 61:0 MeV (41)

which also matches with the experimental results listed in
Table VI. Here, the quarkonium models of [38,42] clearly
deliver larger results compared to the molecular interpre-
tation and data. In the strong decay sector f0-a0 mixing
also generates the isospin-violating decays f0 ! �� and
a0 ! ��. In the context of our approach we obtain the
results

TABLE III. Electromagnetic decay width a0ð980Þ ! ��:
theoretical approaches.

Reference [37] [42] [6] [40]

Meson structure ðq �qÞ ðq �qÞ ðq2 �q2Þ (hadronic)

�ða0 ! ��Þ [keV] 0:3þ0:11
�0:10 1.5 0.27 0.78

TABLE IV. Strong decay width f0ð980Þ ! ��: experimental
data.

Data PDG [33] BELLE [34] [47]

�ðf0 ! ��Þ [MeV] 40–100 51:3þ20:8þ13:2
�17:7�3:8 80� 10

TABLE V. Strong decay width f0ð980Þ ! ��: theoretical ap-
proaches.

Reference [19] [48] [49] [38] [50] [51]

Meson structure q �q q �q q �q q �q q �q hadronic

�ðf0 ! ��Þ [MeV] 20 28 52–58 53 56 18.2

TABLE VI. Strong decay width a0ð980Þ ! ��: data and theo-
retical approaches.

Reference [33] [52] [53] [42] [38]

experimental

data

q �q q �q

�ðf0 ! ��Þ [MeV] 50–100 50� 13� 4 61� 19 225 138
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�ðf0 ! ��Þ ¼ 0:57 MeV; (42)

�ða0 ! ��Þ ¼ 1:59 MeV; (43)

which, since the processes are forbidden by isospin sym-
metry, are strongly suppressed compared to the dominant
strong decays discussed above.

IV. SUMMARY

The present framework, where the scalars are assumed
to be hadronic K �K molecules, provides a straightforward
and consistent determination of the decay properties, in
particular, the coupling constants and decay widths. The
radiative decay properties of the a0 and f0 mesons have

been studied comprehensively within a clear and consistent
model for hadronic bound states. At the same time essen-
tial criteria such as covariance and full gauge invariance
with respect to the electromagnetic interaction are
satisfied.
Despite that we deal with a rather simple model, it

allows to study the influence of the spatial extension of
the meson molecule and isospin-violating mixing. The
coupling of the hadronic bound state to the constituent
kaons, including f0-a0 mixing effects, has been deter-
mined by the compositeness condition which reduces the
number of free parameters to only one, the size parameter
�.
Our results for the electromagnetic decays (a0=f0 ! ��

and� ! �a0=f0) and, in addition, the strong decay widths
(f0 ! �� and a0 ! ��) are analyzed with respect to
f0-a0 mixing and finite size effects.
We come to the conclusion that the hadronic molecule

interpretation is sufficient to describe both the electromag-
netic and strong a0=f0 decays, based on the current status
of experimental data. Furthermore, the f0-a0 mixing
strength could be determined by a precise measurement
of the ratio of the charged and neutral a0 meson decays.
The f0-a0 mixing strength could deliver new insights into
the contributions being responsible for isospin-violating
mixing and the meson structure issue.
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APPENDIX A: LOOP INTEGRALS

Here we give a short presentation of the structure inte-
grals and its evaluation relevant for the derivation of the
transition form factors. For simplicity we restrict to the
diagrams of Figs. 4(a) and 4(b) and 5(a) and 5(b), which do
not contain contact vertices. The additional diagrams gen-
erated due to nonlocal effects are discussed in detail in
[17,20]. The full structure integrals characterizing the
electromagnetic decays are given by

I
	

S�VðM2

S; 0;M
2
VÞ ¼

Z d4k

�2i
~�ð�k2Þ

�
ð2kþ p� qÞ	ð2k� qÞ
SK

�
kþ p

2

�
SK

�
k� p

2

�
SK

�
kþ p

2
� q

�

þ g	
SK

�
kþ p

2

�
SK

�
k� p

2

��
;

I
	

�S�ðM2

�;M
2
S; 0Þ ¼

Z d4k

�2i
~�ð�k2Þ

� ð2k� q� pÞ
ð2k� qÞ	
SKðkþ p

2ÞSKðk� p
2ÞSKðk� p

2 � qÞ þ
g	


SKðkþ p
2ÞSKðk� p

2Þ
�
; (A1)

where q is the photon momentum and p of the scalar. In the case of the two-photon decay the expressions corresponding to

TABLE VIII. Strong a0 and f0 decay properties.

g [GeV] � [MeV]

f0 ! �� 1.40 57.4

a0 ! �� 2.15 61.0

f0 ! �� 0.208 0.57

a0 ! �� 0.234 1.59

TABLE VII. f0 and a0 decay properties with and without
f0-a0 mixing for local and nonlocal (� ¼ 1 GeV) interaction.

Without mixing With mixing

local nonlocal local nonlocal

f0 ! �� g [GeV�1] 0.086 0.079 0.085 0.078

� [keV] 0.29 0.25 0.29 0.24

f0 ! �� g [GeV�1] 0.425 0.411 0.421 0.407

� [keV] 8.09 7.58 7.93 7.44

f0 ! !� g [GeV�1] 0.431 0.418 0.427 0.414

� [keV] 7.57 7.12 7.43 6.99

� ! f0� g [GeV�1] 1.97 1.95

� [keV] 0.64 0.63

a0 ! �� g [GeV�1] 0.076 0.069 0.080 0.073

� [keV] 0.23 0.19 0.26 0.21

a0 ! �� g [GeV�1] 0.388 0.372 0.408 0.391

� [keV] 7.18 6.59 7.94 7.29

a0 ! !� g [GeV�1] 0.394 0.378 0.414 0.398

� [keV] 6.76 6.22 7.47 6.88

� ! a0� g [GeV�1] 1.82 1.91

� [keV] 0.37 0.41
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all the diagrams of Fig. 4 are quoted in [17]. We use the
expression for the S ! V� decay [Eq. (A1)] as an example
to demonstrate the technique for the derivation of the loop
integral IS�VðM2

S; 0;M
2
VÞ. In the first step we separate the

gauge invariant part of the full expression I	
 by writing

I	

S�VðM2

S; 0;M
2
VÞ ¼ IS�VðM2

S; 0;M
2
VÞb	


þ Ið2ÞS�VðM2
S; 0;M

2
VÞc	
 þ �IS�V;

(A2)

where the remainder term �IS�V contains the noninvariant
terms. The tensor structures b	
 and c	
 have already been
defined in (16). Since we deal with real photons, only the
first term of (A2), proportional to b	
, is relevant. In the
second step Feynman parametrization is introduced and the

integration over the four-momentum k is performed. For
instance, in the local limit we obtain

IS�VðM2
S; 0;MVÞ ¼

Z 1

0
d3��

�
1�X

i

�i

�

� 4�1�3

M2
K �M2

S�1�3 �M2
V�2�3

:

(A3)

The mathematical treatment of the diagrams including
contact vertices is straightforward and in complete analogy
with the above example.
The loop integrals of the diagrams contributing to the

strong decays (Fig. 6(a) and 6(b)) read as

IðaÞðM2
K; p

2; q21; q
2
2Þ ¼

g�g�ð�Þ
ð4�Þ2

Z d4k

�2i
~�ð�k2Þ

�
k� p

2
� q2

�
	

�
kþ p

2
þ q1

�


SK

�
kþ p

2

�
SK

�
k� p

2

�
S	

K�

�
kþ p

2
� q1

�
;

IðbÞðM2
K; p

2; q21; q
2
2Þ ¼ � 1

M2
K�

g�g�ð�Þ
ð4�Þ2

Z d4k

�2i
~�ð�k2Þ

�
k� p

2
� q2

��
kþ p

2
þ q1

�
SK

�
kþ p

2

�
SK

�
k� p

2

�
: (A4)

Again, we evaluate the above expressions by introducing
Feynman parameters and integrating over the loop momen-
tum k.

APPENDIX B: GAUGE INVARIANCE

In this appendix gauge invariance is demonstrated by
means of the charged a0 meson decays. The kaon-loop
integral corresponding to the diagrams (a) and (b) of Fig. 5
is given by

I
	

4 ¼

Z d4k

�2i
~�ð�k2Þ

�
S

�
kþ p

2

�
S

�
k� q

2

�
S

�
k� p

2

�

� ð2kþ q2Þ	ð2k� q1Þ
 þ g	
S

�
kþ p

2

�
S

�
k� p

2

��
;

(B1)

where q ¼ q1 � q2. The part I	

4? being gauge invariant

with respect to the photon momentum q
	
1 is separated from

the so-called remainder term �I
	

4 by using

ð2kþ q2Þ	 ¼ ð2kþ q2Þ	?q1
þ q1ð2kþ q2Þq

	
1

q21
;

g	
 ¼ g	

?q1

þ q
	
1 q



1

q21
:

(B2)

Therefore, the noninvariant term is given by

�I	
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Z d4k
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��
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1
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1
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(B3)

For the bubble diagram (c) of Fig. 5 the loop integral
reads as (see [20])

I
	

bub ¼ �

Z d4k

�2i

�
2kþ q1

2

�
	
k


�
Z 1

0
dt ~�0

�
�
�
kþ q1

2

�
2
t� k2

�
1� t

��
: (B4)

This leads to the remainder

�I
	

bub ¼

Z d4k

�2i
~�ð�k2Þq

	
1

q21
ð2k� q1Þ
S

�
k� p

2

�
S

�
k� q

2

�

(B5)

which cancels with �I
	

� and therefore

�I	
 ¼ �I
	

� þ �I

	

bub ¼ 0: (B6)

APPENDIX C: SUMMARY TABLE

For completeness we indicate in the following tables
(VII and VIII) the full list of couplings and transition
widths for electromagnetic and strong decays.
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