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We study the vector–axial-vector mixing in a hot medium and its evolution toward the chiral phase

transition using different symmetry restoration scenarios based on the generalized hidden local symmetry

framework. We show that the presence of the a1 meson reduces the vector spectral function around the �

meson mass and enhances it around the a1 meson mass. The coupling strength of a1 to � and � vanishes at

the critical temperature due to the degenerate �-a1 masses. This feature holds rigorously in the chiral limit

and still stays intact to good approximation for the physical pion mass.
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I. INTRODUCTION

In-medium changes of hadron properties are considered
to be indicators of the tendency towards chiral symmetry
restoration in hot and/or dense QCD. In particular, the
short-lived vector mesons like the � mesons are expected
to carry information on the modifications of hadrons in
matter [1]. In the presence of hot matter the vector and
axial-vector current correlators are mixed due to pions in
the heat bath. At low temperatures this process is described
in a model-independent way in terms of a low-energy
theorem based on chiral symmetry [2]. The vector spectral
function is then modified by axial-vector mesons through
the mixing theorem [3].

The validity of this theorem is, however, limited to
temperatures T � 2f�, where f� is the pion decay con-
stant in vacuum. At higher temperatures hadrons other than
pions are thermally activated. Thus one needs in-medium
correlators systematically involving those excitations.

In this paper we show the effects of the mixing (hereafter
V-A mixing), and how the axial-vector mesons affect the
spectral function near the chiral phase transition, within an
effective field theory. Our analysis will be carried out
assuming several possible patterns of chiral symmetry
restoration: dropping or nondropping � meson mass along
with changing a1 meson mass, both considered to be
options from a phenomenological point of view. The effect
of explicit chiral symmetry breaking is also examined.

II. GENERALIZED HIDDEN LOCAL SYMMETRY

Several models exist which explicitly include the axial-
vector meson in addition to the pion and vector meson
consistently with the chiral symmetry of QCD, such as the
massive Yang-Mills model [4], the antisymmetric tensor
field method [5] and the approach based on generalized
hidden local symmetry (GHLS) [6,7]. These models are
equivalent [7–9] for tree-level amplitudes in the low-
energy limit.

A. Lagrangian

The GHLS Lagrangian is based on a Gglobal �Glocal

symmetry, where Gglobal ¼ ½SUðNfÞL � SUðNfÞR�global is
the chiral symmetry and Glocal ¼ ½SUðNfÞL �
SUðNfÞR�local is the GHLS. The whole symmetry Gglobal �
Glocal is spontaneously broken to a diagonal SUðNfÞV . The
basic quantities are the GHLS gauge bosons, L� and R�,

identified with the vector and axial-vector mesons as V� ¼
ðR� þ L�Þ=2 and A� ¼ ðR� � L�Þ=2, and three matrix

valued variables �L, �R, and �M, which are combined in

an Nf � Nf special-unitary matrix U ¼ �y
L�M�R.

The fundamental objects are the Maurer-Cartan one-
forms defined by

�̂
�
L;R ¼ D��L;R � �y

L;R=i; �̂
�
M ¼ D��M � �y

M=ð2iÞ;
(2.1)

where the covariant derivatives of �L;R;M are given by

D��L ¼ @��L � iL��L þ i�LL�;

D��R ¼ @��R � iR��R þ i�RR�;

D��M ¼ @��M � iL��M þ i�MR�;

(2.2)

with L� and R� being the external gauge fields intro-

duced by gaugingGglobal. There are four independent terms

with lowest derivatives:

L V ¼ F2 tr½�̂k��̂
�
k �;

LA ¼ F2 tr½�̂?��̂
�
?�;

LM ¼ F2 tr½�̂M��̂
�
M�;

L� ¼ F2 tr½ð�̂?� þ �̂M�Þð�̂�
? þ �̂�

MÞ�;

(2.3)

where F is a parameter of dimension 1 and �̂�
k;? ¼

ð�M�̂
�
R�

y
M � �̂�

L Þ=2. The kinetic term of the gauge bosons
is given by
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L kinðL�; R�Þ ¼ � 1

4g2
tr½L��L

�� þ R��R
���; (2.4)

where g is the GHLS gauge coupling and the field strengths
are defined by L�� ¼ @�L� � @�L� � i½L�; L�� and

R�� ¼ @�R� � @�R� � i½R�; R��.
Combining the terms (2.3) and (2.4), the GHLS

Lagrangian is given by

L ¼ aLV þ bLA þ cLM þ dL� þLkinðL�; R�Þ;
(2.5)

where a, b, c, and d are dimensionless parameters. Fields
for three types of Nambu-Goldstone bosons, ��;�? and
�p, are introduced as

�L;R ¼ eið����?Þ; �M ¼ e2i�p : (2.6)

The pion field �� is given by the combination

�� ¼ �? þ�p; (2.7)

while two remaining would-be Nambu-Goldstone bosons
[10], �� and

�q ¼ 1

bþ c
ðc�p � b�?Þ; (2.8)

representing the longitudinal vector and axial-vector de-
grees of freedom, are absorbed into the � and a1. The�,�,
and q fields are normalized by corresponding decay con-
stants:

�� ¼ �

F�

; �� ¼ �

F�

; �q ¼ q

Fq

: (2.9)

The pion decay constant, the meson bare masses, and the
coupling strength of the � and a1 to the vector and axial-
vector currents, J� and J

�
5 , are given by

F2
� ¼

�
dþ bc

bþ c

�
F2; M2

� ¼ g2F2
� ¼ ag2F2;

M2
a1 ¼ g2F2

q ¼ ðbþ cÞg2F2; g� ¼ agF2;

ga1 ¼ bgF2: (2.10)

B. Weinberg sum rules

The axial-vector and vector current correlators are de-
fined as

Z
d4xeiqxh0jTJ�5 ðxÞJ�5 ð0Þj0i ¼ GAðQ2Þðq�q� � q2g��Þ;

Z
d4xeiqxh0jTJ�ðxÞJ�ð0Þj0i ¼ GVðQ2Þðq�q� � q2g��Þ;

(2.11)

whereQ2 ¼ �q2 > 0 is the spacelike squared momentum.
When these correlators are saturated by the lowest lying
mesons at tree level, we have

GAðQ2Þ ¼ F2
�

Q2
þ F2

a1

M2
a1 þQ2

; GVðQ2Þ ¼ F2
�

M2
� þQ2

;

(2.12)

where the a1 and � decay constants are defined by

F2
a1 ¼

�
ga1
Ma1

�
2 ¼ b2

bþ c
F2; F2

� ¼
�
g�

M�

�
2 ¼ aF2:

(2.13)

The same correlators can be evaluated by the operator
product expansion (OPE), which shows that the difference
between two correlators scales as 1=Q6 [11]1:

GðOPEÞ
A ðQ2Þ �GðOPEÞ

V ðQ2Þ ¼ 32�

9

�sh �qqi2
Q6

: (2.14)

We require that the high-energy behavior of the differ-
ence between the two correlators in the GHLS agrees with
that in the OPE: GAðQ2Þ �GVðQ2Þ approaches �1=Q6.
This condition is satisfied only if the following relations
hold:

F2
� þ F2

a1 ¼ F2
�; F2

a1M
2
a1 ¼ F2

�M
2
�; (2.15)

which are nothing but the pole saturated forms of the
Weinberg first and second sum rules [12]. In terms of the
parameters of the GHLS Lagrangian, the above relations
can be traced back to

a ¼ b; d ¼ 0: (2.16)

In Ref. [10] it was shown that the parameter relations are
stable against the renormalization group evolution: This
implies the nonrenormalization of the Weinberg sum rules
expressed in terms of the leading order parameters in the
GHLS.2 In the following studies, we adopt the GHLS
Lagrangian with a ¼ b and d ¼ 0 as a reliable basis which
describes the spectral function sum rules.

C. Explicit chiral symmetry breaking

Explicit chiral symmetry breaking due to the current
quark masses is introduced through

	̂ ¼ 2B�LM�y
R; (2.17)

whereM is the quark mass matrix and B is a constant with
dimension 1. The transformation property under the chiral
symmetry is

	̂ ! hL	̂hR; (2.18)

where hL;R 2 ½SUðNfÞL;R�local. Symmetry breaking terms

1We assume factorization of four-quark condensates.
2The GHLS Lagrangian does not include scalar �qq modes

which are assumed to be heavier than other mesons incorporated.
This may not be true near the critical point within the Ginzburg-
Landau picture of the phase transition. The scalar mesons thus
modify the renormalization group structure.
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relevant to the meson masses are found as3

L 	SB ¼ hV
g2

tr½ð�̂�
k �̂k� þ �̂�

?�̂?�Þð	̂�y
M þ �M	̂

yÞ�

þ hA � hV
g2

tr½�̂�
M�̂M�ð	̂�y

M þ �M	̂
yÞ�;

(2.19)

with coefficients hV and hA. The additional piece (2.19) in
the Lagrangian gives the meson masses and the pion decay
constant as

M2
� ¼ ag2F2 þ hVm

2
�; M2

a1 ¼ ðaþ cÞg2F2 þ hAm
2
�;

F2
� ¼

�
cF2 þ hA � hV

g2
m2

�

�
M2

�

M2
a1

; (2.20)

with nonzero pion mass m� and to leading order in the
symmetry breaking quark masses. Flavor symmetry leads
to the following relations in terms of light nonstrange ðs ¼
0Þ and strange meson masses

M2
� ¼ ag2F2 þ hVm

2
�; M2

K	 ¼ ag2F2 þ hVm
2
K:

(2.21)

One finds

hV ¼ M2
K	 �M2

�

m2
K �m2

�

: (2.22)

The isospin 1
2 states with JPC ¼ 1þ� are mixed. The

K1Að1þþÞ and K1Bð1þ�Þ are nearly equal mixtures of the
K1ð1270Þ and K1ð1400Þ (with a 45
 mixing angle) [13].
Thus, the hA is expressed as

hA ¼ M2
K1A

�M2
a1

m2
K �m2

�

: (2.23)

In the present model, the coupling of a1 to �-� is
determined by

ga1�� ¼ �g2F�; (2.24)

where F� is given in Eq. (2.20). For expressing the
�-photon mixing strength g� and �-�-� coupling g���

we introduce the higher derivative terms [9,14]. The re-
sultant expressions are given by

g�ðsÞ ¼ g

�
aF2 þ hV

g2
m2

� � z�s

�
;

g���ðsÞ ¼ g

2

�
1þ M2

�

M2
a1

� z���
s

F2
�

�
;

(2.25)

with the squared four-momentum s ¼ p2 and dimension-
less constants z� and z���. The parameters are fixed by

comparison with experimental values listed in Table I.

III. CHIRAL SYMMETRY RESTORATION

The critical temperature Tc for the restoration of chiral
symmetry in its Wigner-Weyl realization is defined as the
temperature at which the vector and axial-vector current
correlators coincide and their spectra become degenerate.
Expanding the correlators (2.12) in the meson rest frame,
one finds

GA �GV / M2
�ðM2

a1 �M2
�Þ ¼ M2

�
M
2: (3.1)

Then chiral symmetry restoration implies either 
M ¼ 0
or M� ¼ 0 (or both) at T ¼ Tc: Either the �-a1 mass

difference 
M or the � meson mass is identified as a
measure of spontaneous chiral symmetry breaking and
acts as an order parameter of the chiral phase transition.

A. Option A: dropping a1 and nondropping � masses

The GHLS theory describes the chiral symmetry resto-
ration with massless � and a1 mesons in the chiral limit
[10] (see also next subsection). The classification of pos-
sible restoration patterns relies on the renormalization
group equations (RGEs). The theory does not have explicit
scalar �qq modes which will be important in the vicinity of
the critical temperature. The scalar bosons may modify the
RGEs and the massless mesons, protected by the fixed
point of the RGEs, might not necessarily be uniquely
associated with the chiral symmetry restoration. This op-
tion suggests a symmetry restoration scenario in which
nonvanishing � and a1 masses become degenerate at T ¼
Tc.
For the case of nondropping � mass, we will examine


M changing with temperature intrinsically such that
GA �GV ¼ 0 at the chiral transition. To achieve GA ¼
GV with 
M ¼ 0 at the critical temperature, we adopt the
following ansatz of the temperature dependence of the bare

TABLE I. Upper line: input quantities taken from PDG [13]. The values of g� and g��� are estimated from the decay widths
�ð� ! eþe�Þ and �ð� ! ��Þ. Lower line: resulting model parameters.

F� [GeV] m� [GeV] mK [GeV] M� [GeV] MK	 [GeV] Ma1 [GeV] MK1A
[GeV] g� [GeV2] g���

0.0924 0.140 0.494 0.775 0.892 1.26 1.34 0.119 6.00

aF2 [GeV2] cF2 [GeV2] g hV hA z� � 103 z��� � 103

0.0133 0.0226 6.61 0.869 0.927 �7:09 �6:21

3In general, there are six independent terms including the two
of �̂k;? and �̂M in one trace. Here we use two terms which
contribute to the masses of vector and axial-vector mesons.
Furthermore, we neglect the correction to the kinetic term of
the gauge fields.
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axial-vector meson mass:

M2
a1 ¼ M2

� þ 
M2ðTÞ; 
M2ðTÞ ¼ cðTÞg2F2; (3.2)

with

cðTÞ ¼ c�ðTf � TÞ þ c�ðT � TfÞT
2
c � T2

T2
c � T2

f

;

gðTÞ ¼ g;

(3.3)

where we schematically introduce the ‘‘flash temperature’’
Tf [15] which controls how the mesons experience partial

restoration of chiral symmetry. The temperature depen-
dence of cðTÞ as well as the critical temperature Tc are in
principle determined by QCD, e.g. through the matching to
the QCD current correlators of finite temperature. We
adopt here a simplified parameterization of the T depen-
dence4 in which the values of Tc and Tf are taken in a

reasonable range as indicated, for example, by the onset of
the chiral crossover transition observed in lattice QCD
[17]. We take Tc ¼ 200 MeV and Tf ¼ 0:7Tc for our

numerical calculations.
For finite m� the temperature dependence of the a1

meson mass is given by

M2
a1ðTÞ ¼ ðaþ cðTÞÞg2F2 þ hAm

2
�; (3.4)

where m� is assumed to be independent of temperature.

B. Option B: dropping a1 and � masses

The phase structure of the GHLS theory in vacuum was
studied in detail based on the RG flows at one loop [10]
assuming that the scalar mesons are heavier than any other
mesons and are integrated out near the critical point. Here
we give a brief summary of the chiral symmetry restoration
with massless � and a1 mesons in the GHLS. In this case
chiral symmetry restoration can be realized only if the
gauge coupling vanishes at the critical point,

g ! 0; (3.5)

when one requires the first and second Weinberg sum rules
to be satisfied. This option leads to the � and a1 mesons
being massless:

M� ! 0; Ma1 ! 0: (3.6)

The vanishing masses are not renormalized at the critical
point since g ¼ 0 is the only fixed point of its RGE. This is
a field theoretical description of the dropping masses fol-
lowing Brown-Rho scaling [18]. Possible patterns of the
symmetry restoration are classified by the mass ratio

M�=Ma1 which flows into one of the following fixed

points5:

ðIÞ �� a1 chiral partners: M
2
�=M

2
a1 ! 1;

ðIIÞ �� � chiral partners: M2
�=M

2
a1 ! 0:

(3.7)

These cases correspond to the Lagrangian parameters as

ðIÞ a � 0; c ! 0; ðIIÞ a ! 0; c � 0: (3.8)

The dropping � and a1 masses are described by the
T-dependent gauge coupling gðTÞ parameterized as [14]

gðTÞ ¼ g�ðTf � TÞ þ g�ðT � TfÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
c � T2

T2
c � T2

f

vuut : (3.9)

Two possible cases of chiral symmetry restoration are thus
distinguished by adopting the following parameterization
with Eq. (3.9):

ðIÞ : aðTÞ ¼ a;

cðTÞ ¼ c�ðTf � TÞ þ c�ðT � TfÞT
2
c � T2

T2
c � T2

f

; (3.10)

ðIIÞ : aðTÞ ¼ a�ðTf � TÞ þ a�ðT � TfÞT
2
c � T2

T2
c � T2

f

;

cðTÞ ¼ c: (3.11)

In the presence of explicit chiral symmetry breaking, the
� and a1 meson masses have the following temperature
dependence:

ðIÞ : M2
�ðTÞ ¼ ag2ðTÞF2 þ hVm

2
�;

M2
a1ðTÞ ¼ ðaþ cðTÞÞg2ðTÞF2 þ hAm

2
�;

(3.12)

ðIIÞ : M2
�ðTÞ ¼ aðTÞg2ðTÞF2 þ hVm

2
�;

M2
a1ðTÞ ¼ ðaðTÞ þ cÞg2ðTÞF2 þ hAm

2
�;

(3.13)

with the scaling behaviors given in Eqs. (3.9), (3.10), and
(3.11).

IV. VECTOR SPECTRAL FUNCTION

The vector current correlator Eq. (2.11) in GHLS is
expressed in terms of two-point functions of the vector
gauge field V� and the external field V� as [19]

GV ¼ �S
Vð�LT

V þ 2�LT
VkÞ

�S
V ��LT

V

þ�LT
k ; (4.1)

where �V;�Vk and �k are V-V, V-V , and V -V corre-
4The pion decay constant near the critical temperature Tc

behaves as f2� � T2
c � T2 in the chiral limit [16]. The parame-

terization in Eq. (3.3) describes this scaling. Here the F� denotes
the tree-level parameter given in Eq. (2.10), while the f�
indicates the physical quantity including hadronic corrections
which are generated from loop diagrams at finite temperature.

5Besides (I) and (II), the fixed pointM2
�=M

2
a1 ! 1=3 also leads

to a possible restoration pattern [10]. This is an ultraviolet fixed
point in any direction, so that it is not stable as to (I) and (II).
Thus, we will consider only type (I) and (II) in this paper.
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lation functions given explicitly in the appendix, with the
following generic tensor decomposition:

��� ¼ g���S þ
�
q�q�

q2
� g��

�
�LT: (4.2)

The vector spectral function is defined as the imaginary
part of the vector correlator in Eq. (4.1).

A. Option A: dropping a1 and nondropping � masses

We first show, in the case of nondropping � mass, the
spectral function in the chiral limit calculated in the GHLS
theory in Fig. 1 (left). Two cases are compared; one in-
cludes the V-A mixing and the other does not. The spectral
function has a peak at M� and a broad bump around Ma1

due to the mixing. The height of the spectrum at M� is

enhanced and a contribution above �1 GeV is gone when
one omits the a1 in the calculation. One observes that a
discrepancy between the two curves becomes larger above
Tf where partial restoration of chiral symmetry sets in. For

finite m� the energy of the virtual � meson for two pro-
cesses, �þ � ! a1 and � ! a1 þ �, are split into

ffiffiffi
s

p ¼
Ma1 �m� and

ffiffiffi
s

p ¼ Ma1 þm�. This results in the thresh-

old effects seen as a shoulder at
ffiffiffi
s

p ¼ Ma1 �m� and a

bump above
ffiffiffi
s

p ¼ Ma1 þm� in Fig. 1 (right). Note that

the enhancement of the spectrum for m� � 0 is due to the

change of the phase space factor ðs� 4m2
�Þ3=2.

In Fig. 2 we compare the vector spectrum for option A,
where the a1 bare mass changes with temperature, with
that for a constant bare mass. Figure 2 (left) shows that the
upper bump due to the presence of a1 appears at lower

ffiffiffi
s

p
than Ma1ðT ¼ 0Þ ¼ 1:26 GeV since partial restoration of

chiral symmetry sets in which makes the a1 mass decreas-
ing. In the case of constant a1 mass, this bump stays at the
same point as vacuumMa1 at any temperature. The thresh-

old effects for finite m� systematically go down for the
T-dependent a1 mass and show no shift for the constant a1
mass in Fig. 2 (right). The enhancement around

ffiffiffi
s

p
&

1 GeV will be a signal of the partial chiral restoration.
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FIG. 1 (color online). The vector spectral function for option A at temperature T=Tc ¼ 0:6 (upper) and at T=Tc ¼ 0:8 (lower) with
the critical temperature Tc ¼ 200 MeV, calculated in the �-meson rest frame. The left side figures are calculated for m� ¼ 0 and the
right side for m� ¼ 140 MeV. The solid curve is obtained in the full calculation. The dashed line is calculated eliminating the axial-
vector meson and hence V-A mixing from the theory.
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Figure 3 (left) shows the temperature dependence of the
vector spectral function in the chiral limit. One observes a
systematic downward shift of the enhancement around the
a1 mass with temperature, while the peak position corre-
sponding to the � pole mass moves upward due to the
hadronic temperature corrections. At T=Tc ¼ 0:9 two
bumps begin to overlap: the lower one corresponds to the
� pole, and the upper one to the a1-� contribution. Finally
at T ¼ Tc, Ma1 becomes degenerate with M� around

ffiffiffi
s

p ’
1 GeV and the two bumps are on top of each other. Note
that the V-A mixing eventually vanishes there. This feature
is a direct consequence of vanishing coupling of a1 to �-�,
as is easily seen from Eq. (2.24). It is unchanged even if an
explicit scalar field is present [20]. Figure 3 (right) shows
the temperature dependence of the vector spectrum for
finitem�. Below Tc one observes the previously mentioned
threshold effects moving downward with increasing tem-
perature. It is remarkable that at Tc the spectrum shows
almost no traces of a1-�-� threshold effects: Eq. (3.4)
together with the fact that hV ’ hA shows that the � to a1

mass ratio becomes almost 1 at T ¼ Tc:

M2
�

M2
a1

!T!Tc ag
2F2 þ hVm

2
�

ag2F2 þ hAm
2
�

’ 1; (4.3)

and the pion decay constant is very tiny there, F2
� � ðhA �

hVÞm2
�=g

2. Consequently, Eq. (2.24) implies that ga1�� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA � hV

p
m� � 0:06m�. This indicates that at Tc the a1

meson mass nearly equals the � meson mass and the
a1-�-� coupling almost vanishes even in the presence of
explicit chiral symmetry breaking.

B. Option B: dropping a1 and � masses

In case of dropping � and a1 masses, the spectral func-
tion is enhanced compared to that without dropping mass
since the � decay width is reduced [14]. Figure 4 shows the
vector spectrum using the type (I) parameterization at T ¼
0:8Tc. The feature that the a1 meson suppresses the vector
spectral function through the V-A mixing remains un-
changed [21]. Compared with Fig. 1 (lower-left), a bump
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FIG. 3 (color online). The vector spectral function (option A) for m� ¼ 0 (left) and for m� ¼ 140 MeV (right) at several
temperatures T=Tc ¼ 0:6–1:0.
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through the V-A mixing and the � peak are shifted down-
ward since both the � and a1 masses drop. The self-energy
has a cusp at the threshold 2M� and this appears as a dip atffiffiffi
s

p � 1:3 GeV. The influence of finitem� turns out to be in
threshold effects as before.

In Fig. 5 we compare type (I) with (II) at T ¼ 0:8Tc. In
type (II) the � meson mass drops faster than the a1 mass
which is clearly seen in the figure. The � coupling to the
vector current g� decreases faster than that for type (I) and

this makes the spectral function somewhat suppressed
compared with that for type (I).

For finite pion mass, one finds from Eqs. (3.12) and
(3.13) the mass ratio near Tc

M2
�

M2
a1

!T!Tc hV
hA

’ 1; (4.4)

for both type (I) and (II). This leads to the nearly vanishing
V-A mixing as seen for the nondropping � mass, option A
[see Eq. (4.3)].

It should be noted that the vector meson becomes the
chiral partner of the pion and vector-meson dominance is
strongly violated when the chiral symmetry is restored in
the VM [type (II)] [22]. This induces a significant reduc-
tion of the vector spectral function [14,23]. On the other
hand, the pion form factor is still vector-meson dominated
at Tc if the dropping � and a1 join in the same chiral
multiplet [type (I)] [10].

V. CONCLUSIONS

We have performed a detailed study of V-A mixing in
the current correlation functions and its evolution with
temperature, guided by three possible scenarios of chiral
symmetry restoration: dropping � and a1 masses with
type (I) and (II), and alternatively dropping a1 mass be-
coming degenerate with a nonzero �meson mass at critical
temperature. In the chiral limit the axial-vector meson
contributes significantly to the vector spectral function;
the presence of the a1 reduces the vector spectrum around
M� and enhances it around Ma1 . For physical pion mass
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m�, the a1 contribution above
ffiffiffi
s

p �Ma1 still survives

although the bump is somewhat reduced. A major change
with both dropping � and a1 masses is a systematic down-
ward shift of the vector spectrum. We observe a different
evolution of the spectrum depending on type (I) or (II)
before reaching the critical temperature. The a1-�-� cou-
pling vanishes at the critical temperature Tc and thus the V-
A mixing also vanishes. A remarkable observation is that
even for physical m� the � and a1 meson masses are well
degenerate at Tc. The vanishing V-A mixing at Tc stays
almost intact.

One interesting application of this thermal spectral func-
tion is to study dilepton production in relativistic heavy-ion
collisions. The change of the V-Amixing in the presence of
matter and its influence on dilepton production has been
evaluated based on a virial expansion for T <m� and � <
3�0 (with normal nuclear matter density �0) [24].
However, important modifications of the a1-meson prop-
erties near critical temperature have not been treated so far
in dilepton processes in the context of chiral symmetry
restoration. Of course, in order to deal with dileptons
realistically one needs to account for other collective ex-
citations and many-body interactions as well as the time
evolution of the created fireball [25]. Such effects can
screen signals of chiral restoration [23] and make an inter-
pretation of broad in-medium spectral functions in terms of
a changing chiral order parameter quite difficult [26]. The
situation at the Relativistic Heavy Ion Collider and/or the
LHC might be very different from that at the Super Proton
Synchrotron (SPS). At SPS energies many-body effects
come from the presence of baryons. These effects are
expected to be much reduced in very hot matter with
relatively low baryon density. The present study may
then be of some relevance for the high temperature, low

baryon density scenarios encountered at the Relativistic
Heavy Ion Collider and the LHC.
One caveat in the present treatment is about the lack of a

genuine �qq scalar meson which becomes the chiral partner
of the pion in the Ginzburg-Landau picture of chiral sym-
metry restoration. The scalar modes are expected to be
important near the chiral critical temperature and may
modify the current correlators. This can be quantified by
introducing explicit scalar modes in a GHLS invariant way.
Work concerning the finite temperature evolution of both
vector and axial-vector spectral functions in this general-
ized framework is in progress and will be reported else-
where [20].
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APPENDIX: TWO-POINT FUNCTIONS AT ONE
LOOP

A systematic derivative expansion based on the GHLS
was adopted in Ref. [10] where one finds details of its
construction and quantization procedure. In the following,
we list the expressions for three relevant two-point
functions.
We define the Feynman integrals by

A0ðMÞ ¼ T
X1

n¼�1

Z d3k

ð2�Þ3
1

M2 � k2
; B0ðp;M1;M2Þ ¼ T

X1
n¼�1

Z d3k

ð2�Þ3
1

½M2
1 � k2�½M2

2 � ðk� pÞ2� ;

B��ðp;M1;M2Þ ¼ T
X1

n¼�1

Z d3k

ð2�Þ3
ð2k� pÞ�ð2k� pÞ�

½M2
1 � k2�½M2

2 � ðk� pÞ2� ;
(A1)

where the zeroth component of the loop momentum is taken as k0 ¼ i2n�T and that of the external momentum p0 ¼
i2n0�T ½n; n0: integer� in the standard Matsubara formalism.

The two-point function of the vector gauge field V� is given by

�
��
V ¼

Z
d4xeipxhTV�ðxÞV�ð0Þi

¼ Nf�g
��A0ðm�Þ þ 2Nfg

��A0ðM�Þ þ Nfð�2 � 2� þ 3ÞA0ðMa1Þ þ
Nf

8
ð1þ �Þ2B��ðp;m�;m�Þ

� Nf½M2
�g

�� � 4ðp2g�� � p�p�Þ�B0ðp;M�;M�Þ þ
9Nf

8
B��ðp;M�;M�Þ

� Nf½M2
��g

�� � 4ðp2g�� � p�p�Þ�B0ðp;Ma1 ;Ma1Þ þ
Nf

8
ð�2 � 4� þ 12ÞB��ðp;Ma1 ;Ma1Þ

� NfM
2
�ð1� �Þg��B0ðp;Ma1 ; m�Þ þ

Nf

4
�ð1� �ÞB��ðp;Ma1 ; m�Þ; (A2)
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where we introduce a temperature-dependent parameter �
as

�ðTÞ

¼
8><
>:

M2
�

M2
a1
ðTÞ for droppinga1and non-dropping� ðoptionAÞ

M2
�ðTÞ

M2
a1
ðTÞ for droppinga1and�: typeðIÞ or ðIIÞ ðoptionBÞ:

(A3)

The relevant one-loop diagrams to the V-A mixing are
shown in Fig. 6. The left diagram is proportional to
B0ðp;Ma1 ; m�Þ and the right to B��ðp;Ma1 ; m�Þ. One

easily finds that the V-A mixing generated from those
diagrams vanishes at the critical temperature indepen-
dently of the pattern of chiral restoration, i.e., type (I): � ¼
1, type (II): � ¼ 0 forMa1 ¼ M� ¼ 0, or � ¼ 1 forMa1 ¼
M� � 0 at Tc.

The two-point function of V� and the external vector
field V �, like a photon, is found as

���
Vk ¼

Z
d4xeipxhTV�ðxÞV �ð0Þi

¼ Nf

2
ð1� �Þg��A0ðm�Þ þ

Nf

2
g��A0ðM�Þ þ

Nf

2
�g��A0ðMa1Þ þ

Nf

8
ð1� �2ÞB��ðp;m�;m�Þ

þ NfM
2
�g

��B0ðp;M�;M�Þ þ
Nf

8
B��ðp;M�;M�Þ þ NfM

2
��g

��B0ðp;Ma1 ;Ma1Þ þ
Nf

8
ð2� �ÞB��ðp;Ma1 ;Ma1Þ

þ NfM
2
�ð1� �Þg��B0ðp;Ma1 ; m�Þ �

Nf

4
�ð1� �ÞB��ðp;Ma1 ; m�Þ: (A4)

The two-point function of V� is

�
��
k ¼

Z
d4xeipxhTV�ðxÞV �ð0Þi

¼ Nf

8
ð1� �Þ2B��ðp;m�;m�Þ �

Nf

8
M2

�g
��B0ðp;M�;M�Þ þ

Nf

8
B��ðp;M�;M�Þ � NfM

2
��B0ðp;Ma1 ;Ma1Þ

þ Nf

8
�2B��ðp;Ma1 ;Ma1Þ � NfM

2
�ð1� �Þg��B0ðp;Ma1 ; m�Þ þ

Nf

4
�ð1� �ÞB��ðp;Ma1 ; m�Þ: (A5)
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