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We analyze the sigma meson mass and width together with the pion-pion scattering parameters in the

context of nonlocal chiral quark models with wave function renormalization (WFR). We consider both

nonlocal interactions based on the frequently used exponential form factor, and on fits to the quark mass

and renormalization functions obtained in lattice calculations. In the case of the sigma properties, we

obtain results which are less dependent on the parametrization than in the standard local Nambu-Jona-

Lasinio model, and which are in reasonable agreement with the recently reported empirical values. We

also show that the inclusion of the WFR tend to improve the description of the �-� scattering parameters,

with the lattice inspired parametrization providing the best overall results. Finally, we analyze the

connection of the nonlocal quark models discussed here with chiral perturbation theory, and present

the model predictions for the low-energy constants relevant for �-� scattering to Oð4Þ in the chiral

expansion.
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I. INTRODUCTION

Although much effort has been made in trying to predict
low-energy hadron observables directly from QCD, one is
still far from reaching this goal due to the extremely
complex nonperturbative behavior of the theory in that
regime. In such a situation it proves convenient to turn to
the study of effective models. For two light flavors, it is
believed that QCD supports an approximate SU(2) chiral
symmetry which is dynamically broken at low energies,
and pions play the role of the corresponding Goldstone
bosons. A simple scheme including these properties is the
well known Nambu-Jona-Lasinio (NJL) model [1], pro-
posed more than four decades ago. The NJL model has
been widely used as an schematic effective theory for QCD
, allowing, e.g., the description of light mesons as fermion-
antifermion composite states. In the NJL model quarks
interact through a local, chiral invariant four-fermion cou-
pling. Because of the local nature of this interaction, the
corresponding Schwinger-Dyson and Bethe-Salpeter equa-
tions become relatively simplified. However, the main
drawbacks of the model are direct consequences of this
locality: loop integrals are divergent (and therefore have to
be regulated somehow), and the model is nonconfining. As
a way to improve upon the NJL model, extensions which
include nonlocal interactions have been proposed (see
Ref. [5] and references therein). In fact, nonlocality arises
naturally in quantum field theory and, particularly, in sev-

eral well-established approaches to low-energy quark dy-
namics, as, e.g., the instanton liquid model [6] and the
Schwinger-Dyson resummation techniques [7]. Lattice
QCD calculations [8–10] also indicate that quark interac-
tions should act over a certain range in the momentum
space. Moreover, it has been argued that nonlocal exten-
sions of the NJL model do not show some of the above
mentioned inconveniences of the local theory. Indeed, non-
local interactions regularize the model in such a way that
anomalies are preserved [11] and charges are properly
quantized, the effective interaction is finite to all orders
in the loop expansion and therefore there is no need to
introduce extra cutoffs [12], soft regulators such as
Gaussian functions lead to small next-to-leading order
corrections [13], etc.
In the present work, we will reconsider nonlocal models

adopting as the basic ingredient a reliable description of
the quark propagator as given from fundamental studies,
such as lattice QCD. In this sense, it should be noticed that,
except for Refs. [14,15], most of the calculations per-
formed so far using nonlocal chiral quark models have
neglected the wave function renormalization in the propa-
gator (see, e.g., Refs. [16–20]). Recent lattice QCD calcu-
lations suggest, however, that such renomalization can be
of the order of 30% (or even more) at zero momentum [8–
10]. Moreover, these calculations also show that the quark
masses tend to their asymptotic values in a rather soft way.
Thus, it is of importance to perform a detailed study on the
incorporation of these features in this type of model, and
analyze their role in the prediction for different hadronic
observables. The Lagrangian we will use is the minimal
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extension which allows to incorporate the full momentum
dependence of the quark propagator, through its mass and
wave function renormalization. Using this Lagrangian, we
explore which are the implications for some pion and
sigma meson properties originated by changes in the quark
propagator. In particular, we present here results for the
sigma meson mass and width, and for the pion-pion scat-
tering parameters. Studying these scattering parameters
close to the chiral limit, we are also able to obtain pre-
dictions for some of the low-energy constants of the chiral
perturbation theory (�PT) Lagrangian [21].

The present article is organized as follows. In Sec. II, we
present the model Lagrangian and the formalism necessary
to derive some selected pion and sigma meson properties.
In Sec. III, we discuss different ways to obtain the model
parameters and compare the resulting quark propagators
with available lattice data. In Sec. IV, we present and
discuss the predictions of the model for the selected pa-
rametrizations, paying special attention to the role played
by the incorporation of the wave function renormalization
and by the difference in the quark interaction momentum
dependence. In Sec. V, we analyze the connection of the
nonlocal quark models described here with �PT, and
present the predictions for the corresponding low-energy
constants relevant for �-� scattering to Oð4Þ in the chiral
expansion. Finally, in Sec. VI, our main conclusions are
summarized.

II. THE MODEL

A. Effective action

Let us begin by stating the Euclidean action for the
nonlocal chiral quark model in the case of two light flavors,

SE ¼
Z

d4x

�
�c ðxÞð�i@6 þmcÞc ðxÞ �GS

2
½jaðxÞjaðxÞ

þ jPðxÞjPðxÞ�
�
: (1)

Here mc is the current quark mass, which is assumed to be
equal for u and d quarks. The nonlocal currents jaðxÞ, jPðxÞ
are given by

jaðxÞ ¼
Z

d4z gðzÞ �c
�
xþ z

2

�
�ac

�
x� z

2

�
;

jPðxÞ ¼
Z

d4z fðzÞ �c
�
xþ z

2

�
i@6$
2ßp

c

�
x� z

2

�
:

(2)

Here, �a ¼ ð1; i�5 ~�Þ and uðx0Þ@$vðxÞ ¼ uðx0Þ@xvðxÞ �
@x0uðx0ÞvðxÞ. The functions gðzÞ and fðzÞ in Eq. (2), are
nonlocal covariant form factors characterizing the corre-
sponding interactions. The four standard quark currents,
jaðxÞ, require the same gðzÞ form factor to guarantee chiral
invariance. The new term, jPðxÞjPðxÞ, is self-invariant
under chiral transformations. The scalar-isoscalar compo-
nent of the jaðxÞ current will generate the momentum

dependent quark mass in the quark propagator, while the
‘‘momentum’’ current, jPðxÞ, will be responsible for a
momentum dependent wave function renormalization of
this propagator. For convenience, we take the same cou-
pling parameter, GS, for the standard chiral quark interac-
tion and for the new jPðxÞjPðxÞ term. Note, however, that
the relative strength between both interaction terms will be
controlled by the mass parameter ßp introduced in Eq. (2).

We have chosen the relative sign between these terms in
order to have a real value for ßp for the case in which the

wave function renormalization ZðpÞ [explicitly defined in
Eq. (10) below] is less than 1. In what follows it is conve-
nient to Fourier transform gðzÞ and fðzÞ into momentum
space. Note that Lorentz invariance implies that the Fourier
transforms gðpÞ and fðpÞ can only be functions of p2.
In order to deal with meson degrees of freedom, one can

perform a standard bosonization of the theory. This is done
by considering the corresponding partition function Z ¼R
D �cDc exp½�SE�, and introducing auxiliary fields

�1ðxÞ, �2ðxÞ, ~�ðxÞ, where �1;2ðxÞ and ~�ðxÞ are scalar and
pseudoscalar mesons, respectively. Integrating out the
quark fields we get

Z ¼
Z

D�1D�2D ~� exp½�SbosE �; (3)

where

SbosE ¼ � lndetAþ 1

2GS

Z d4p

ð2�Þ4 ½�1ðpÞ�1ð�pÞ
þ ~�ðpÞ � ~�ð�pÞ þ �2ðpÞ�2ð�pÞ�: (4)

The operator A reads, in momentum space,

Aðp; p0Þ ¼ ð�p6 þmcÞð2�Þ4�ð4Þðp� p0Þ þ g

�
pþ p0

2

�
� ½�1ðp0 � pÞ þ i�5 ~� � ~�ðp0 � pÞ�

þ f

�
pþ p0

2

�
p6 þ p6 0

2ßp
�2ðp0 � pÞ: (5)

At this stage we assume that the �1;2 fields have non-

trivial translational invariant mean-field values ��1;2, while

the mean-field values of the pseudoscalar fields�i are zero.
Thus we write

�1ðxÞ ¼ ��1 þ ��1ðxÞ; (6)

�2ðxÞ ¼ ßp ��2 þ ��2ðxÞ; (7)

~�ðxÞ ¼ � ~�ðxÞ: (8)

Replacing in the bosonized effective action, and expanding
in powers of the meson fluctuations, we get

SbosE ¼ SMFA
E þ SquadE þ . . .

Here the mean-field action (MFA) per unit volume reads
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SMFA
E

Vð4Þ ¼ �2Nc

Z d4p

ð2�Þ4 tr ln½D�1
0 ðpÞ� þ ��2

1

2GS

þ ß2p ��2
2

2GS

;

(9)

where the quark propagator in the mean-field approxima-
tion D0ðpÞ is given by

D 0ðpÞ ¼ ZðpÞ
�p6 þMðpÞ (10)

with

ZðpÞ ¼ ð1� ��2fðpÞÞ�1 MðpÞ ¼ ZðpÞðmc þ ��1gðpÞÞ:
(11)

The quadratic terms can be written as

SquadE ¼ 1

2

Z d4p

ð2�Þ4 ½G�ðp2Þ��ðpÞ��ð�pÞ
þG�0 ðp2Þ��0ðpÞ��0ð�pÞ þG�ðp2Þ� ~�ðpÞ
� � ~�ð�pÞ�; (12)

where the � and �0 fields are related to �1 and �2 by

�� ¼ cos���1 � sin���2 (13)

��0 ¼ sin���1 þ cos���2; (14)

and the mixing angle � is defined in such a way that there is
no �� �0 mixing at the level of the quadratic action. The
function G�ðp2Þ introduced in Eq. (12) is given by

G�ðp2Þ ¼ 1

GS

� 8Nc

Z d4q

ð2�Þ4 g
2ðqÞ Zðq

þÞZðq�Þ
DðqþÞDðq�Þ

� ½qþ � q� þMðqþÞMðq�Þ� (15)

with q� ¼ q� p=2 andDðqÞ ¼ q2 þM2ðqÞ, while for the
�� �0 system we have

Gð�
�0Þðp2Þ ¼ G�1�1

ðp2Þ þG�2�2
ðp2Þ

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½G�1�2

ðp2Þ�2 þ ½G�1�1
ðp2Þ �G�2�2

ðp2Þ
2

�2
s

(16)

where

G�1�1
ðp2Þ ¼ 1

GS

� 8Nc

Z d4q

ð2�Þ4 g
2ðqÞ Zðq

þÞZðq�Þ
DðqþÞDðq�Þ ½q

þ � q� �MðqþÞMðq�Þ�

G�2�2
ðp2Þ ¼ 1

GS

þ 8Nc

ß2p

Z d4q

ð2�Þ4 q
2f2ðqÞ Zðq

þÞZðq�Þ
DðqþÞDðq�Þ

�
ðqþ � q�Þ �MðqþÞMðq�Þ þ ðqþÞ2ðq�Þ2 � ðqþ � q�Þ2

2q2

�

G�1�2
ðp2Þ ¼ � 8Nc

ßp

Z d4q

ð2�Þ4 gðqÞfðqÞ
ZðqþÞZðq�Þ
DðqþÞDðq�Þq � ½q�MðqþÞ þ qþMðq�Þ�:

(17)

B. Mean-field approximation and chiral condensates

In order to find the mean-field values ��1;2, one has to

minimize the action SMFA
E . A straightforward exercise leads

to the coupled gap equations

�� 1 � 8NcGS

Z d4p

ð2�Þ4 gðpÞ
ZðpÞMðpÞ

DðpÞ ¼ 0

��2 þ 8NcGS

Z d4p

ð2�Þ4
p2

ß2p
fðpÞ ZðpÞ

DðpÞ ¼ 0:

(18)

Now the chiral condensates are given by the vacuum
expectation values h �qqi ¼ h �uui ¼ h �ddi. They can be easily
obtained by performing the variation of ZMFA ¼
exp½�SMFA

E � with respect to the corresponding current
quark masses. This expression turns out to be divergent.
Thus, as customary, we regularize it by subtracting its
value for noninteracting quarks. We obtain

h �qqi ¼ �4Nc

Z d4p

ð2�Þ4
�
ZðpÞMðpÞ

DðpÞ � mc

p2 þm2
c

�
:

C. Meson masses and quark-meson coupling constants

The meson masses can be obtained by solving the equa-
tion

GMð�m2
MÞ ¼ 0: (19)

In the case of the �� �0 system the mixing angles is
given by �ð�m2

�;�0 Þ, where

tan2�ðp2Þ ¼ 2G�1�2
ðp2Þ

G�2�2
ðp2Þ �G�1�1

ðp2Þ : (20)

Finally, the on shell meson-quark coupling constants
gMq �q are given by

g�2
Mq �q � G�2

Mq �qð�m2
MÞ ¼

dGMðpÞ
dp2

��������p2¼�m2
M

: (21)

Note that due to the mixing, in the scalar meson channel
the corresponding vertex has two components. Thus for
�q �q vertex we have

V�q �q ¼ g0�q �q1þ g1�q �q
p6 þ p6 0

2ßp
(22)
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where

gð0Þ�q �q ¼ g�q �q cos�; gð1Þ�q �q ¼ g�q �q sin�: (23)

D. Pion weak decay constant

By definition the pion weak decay constant f� is given
by the matrix element of the axial current Aa

�ðxÞ between
the vacuum and the renormalized one-pion state at the pion
pole

h0jAa
�ð0Þj ~�bðpÞi ¼ i�abp�f�: (24)

In order to obtain an explicit expression for the axial
current, we have to ‘‘gauge’’ the effective action SE by
introducing a set of axial gauge fields Aa

�ðxÞ. For a local
theory this ‘‘gauging’’ procedure is usually done by per-
forming the replacement

@� ! @� þ i

2
�5 ~� � ~A�ðxÞ: (25)

In the present case—owing to the nonlocality of the in-
volved fields—one has to perform additional replacements
in the interaction terms. Namely,

c ðx� z=2Þ ! WAðx; x� z=2Þc ðx� z=2Þ
c yðxþ z=2Þ ! c yðxþ z=2ÞWAðxþ z=2; xÞ: (26)

Here x and z are the variables appearing in the definitions
of the nonlocal currents [see Eq. (2)], and the function
WAðx; yÞ is defined by

WAðx; yÞ ¼ P exp

�
i

2

Z y

x
ds��5 ~� � ~A�ðsÞ

�
; (27)

where s runs over an arbitrary path connecting x with y.
Once the gauged effective action is built, it is easy to get

the axial current as the derivative of this action with respect

to Aa
�ðxÞ, evaluated at ~A�ðxÞ ¼ 0. Performing the de-

rivative of the resulting expressions with respect to the
renormalized meson fields, we can finally identify the
corresponding meson weak decay constants. After a rather
lengthy calculation we obtain

f� ¼ mcg�q �q

m2
�

F0ð�m2
�Þ (28)

with

F0ðp2Þ ¼ 8Nc

Z d4q

ð2�Þ4 gðqÞ
ZðqþÞZðq�Þ
DðqþÞDðq�Þ

� ½qþ � q� þMðqþÞMðq�Þ�: (29)

It is important to notice that the integration over the path
variable s appearing in this calculation turns out to be
trivial and, thus, the result path independent. In the chiral
limit the expression Eq. (28) has a rather simple form [14]
given by

f� ¼ Mð0Þ
g�qqZð0Þ ; (30)

which connects with the Goldberger-Treiman relation.

E. The decay width of the sigma meson

To obtain the decay amplitude of the � meson into two
pion we need to calculate

�SbosE

��ðqÞ��aðq1Þ��bðq2Þ
¼ ð2�Þ4�4ðqþ q1

þ q2Þ�abG���ðq2; q21; q22Þ;
(31)

where the meson fields are assumed to be already renor-
malized. In terms of the unrenormalized fields and taking
into account the �1 � �2 mixing we have

G���ðq2; q21; q22Þ ¼ G�q �qðq2ÞG�q �qðq21ÞG�q �qðq22Þ
� ~G���ðq2; q21; q22Þ; (32)

where

~G���ðq2; q21; q22Þ ¼ G�1��ðq2; q21; q22Þ cos�ðq2Þ
�G�2��ðq2; q21; q22Þ sin�ðq2Þ; (33)

and the expressions of the unrenormalized �1 and �2

coupling constants to two � can be obtained by expanding
� to third order in the fluctuations. We get

G�1��ðq2; q21; q22Þ ¼ �16Nc

Z d4k

ð2�Þ4 g
�
k1 þ k2

2

�
g

�
kþ k1

2

�
g

�
kþ k2

2

�
ZðkÞZðk1ÞZðk2Þ
DðkÞDðk1ÞDðk2Þ ½MðkÞk1 � k2 �Mðk1Þk � k2

�Mðk2Þk � k1 �MðkÞMðk1ÞMðk2Þ� (34)

G�2��ðq2; q21; q22Þ ¼ � 8Nc

ßp

Z d4k

ð2�Þ4 f
�
k1 þ k2

2

�
g

�
kþ k1

2

�
g

�
kþ k2

2

�
ZðkÞZðk1ÞZðk2Þ
DðkÞDðk1ÞDðk2Þ ½k

2
2k � k1 þ k21k � k2

þ ðk1 þ k2Þ � ½Mðk1ÞMðkÞk2 �Mðk2ÞMðk1ÞkþMðk2ÞMðkÞk1��; (35)
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where k1 ¼ kþ q1 and k2 ¼ k� q2 and q2 ¼ ðq1 þ q2Þ2.
Similarly, for �0 we have

G�0��ðq2; q21; q22Þ ¼ G�0q �qðq2ÞG�q �qðq21ÞG�q �qðq22Þ
� ~G�0��ðq2; q21; q22Þ; (36)

where

~G�0��ðq2; q21; q22Þ ¼ G�1��ðq2; q21; q22Þ sin�ðq2Þ
þG�2��ðq2; q21; q22Þ cos�ðq2Þ: (37)

In terms of gM�� ¼ GM��ðm2
M;m

2
�;m

2
�Þ theM ¼ �, �0

width reads

�M!�� ¼ 3

2

g2M��

16�mM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

m2
M

s
: (38)

F. �-� scattering

In general, the total amplitude for the �-� scattering
process can be expressed as

A ð�	ðq1Þ þ �
ðq2Þ ! ��ðq3Þ þ ��ðq4ÞÞ
¼ �	
���Aðs; t; uÞ

þ �	��
�Aðt; s; uÞ
þ �	��
�Aðu; t; sÞ; (39)

where

s ¼ ðq1 þ q2Þ2; t ¼ ðq1 � q3Þ2; u ¼ ðq1 � q4Þ2:
(40)

Within the present model, this amplitude gets two contri-
butions. One corresponds to the box diagram and the other
to the scalar meson pole diagram. Thus,

Aðs; t; uÞ ¼ Aboxðs; t; uÞ
� g4�q �q

X
M¼�;�0

~G2
M��ðs; m2

�;m
2
�ÞG�1

M ðsÞ; (41)

where

Aboxðs; t; uÞ ¼ g4�q �q½Jðs; t; uÞ þ Jðs; u; tÞ � Jðu; t; sÞ�;
(42)

and

Jðs; t; uÞ ¼ 1
2½Jboxðq1; q2; q3Þ þ Jboxðq1;�q3;�q2Þ� (43)

with

Jboxðq1; q2; q3Þ ¼ 16Nc

Z d4k

2�
g

�
kþ k1

2

�
g

�
kþ k2

2

�
g

�
k1 þ k13

2

�
g

�
k2 þ k13

2

�
Zðk1ÞZðkÞZðk2ÞZðk13Þ
Dðk1ÞDðkÞDðk2ÞDðk13Þ

� f½k1 � kþMðk1ÞMðkÞ�½k2 � k13 þMðk1ÞMðk13Þ� � ½k1 � k2 þMðk1ÞMðk2Þ�½k � k13 þMðkÞMðk13Þ�
þ ½k1 � k13 þMðk1ÞMðk13Þ�½k � k2 þMðkÞMðk2Þ�g; (44)

where k1 ¼ kþ q1, k2 ¼ k� q2, k13 ¼ kþ q1 � q3.
It is customary to define the scattering amplitudes of

defined isospin

T0 ¼ 3Aðs; t; uÞ þ Aðt; s; uÞ þ Aðu; t; sÞ
T1 ¼ Aðt; s; uÞ � Aðu; t; sÞ
T2 ¼ Aðt; s; uÞ þ Aðu; t; sÞ:

(45)

In terms of these amplitudes the scattering lengths aI‘
and slope parameters bI‘ are defined by the partial wave

expansion at low q2

1

64�m�

Z 1

�1
dxP‘ðxÞTIðs; t; uÞ ¼ q2‘ðaI‘ þ bI‘q

2 þ . . .Þ;
(46)

where P‘ðxÞ is the Lagrange polynomial of order l.

III. DETERMINATION OF THE MODEL
PARAMETERS

In this section, we present in some detail the procedure
used to determine the model parameters as well as the form
factors gðqÞ and fðqÞ which characterize the nonlocal
interactions.
In our first model (scenario S1) we use exponential

functions to model the nonlocal interactions. These are
well behaved functions which have been often used in
the literature (see, e.g., [16–19]) to define gðqÞ. Here, we
also use such form for fðqÞ. Thus, for S1 we have

gðpÞ ¼ expð�p2=�2
0Þ; fðpÞ ¼ expð�p2=�2

1Þ: (47)

Note that the range (in momentum space) of the nonlocal-
ity in each channel is determined for the parameters�0 and
�1, respectively. From Eq. (11) we obtain

MðpÞ ¼ ZðpÞ½mc þ ��1 expð�p2=�2
0Þ�

ZðpÞ ¼ ½1� ��2 expð�p2=�2
1Þ��1:

(48)
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We fix the values of mc and hq �qi1=3 to reasonable values

mc ¼ 5:7 MeV and hq �qi1=3 ¼ �240 MeV determining
the rest of the parameters so as to reproduce the empirical
values f� ¼ 92:4 MeV and m� ¼ 139 MeV, and Zð0Þ ¼
0:7 which is within the range of values suggested by recent
lattice calculations [8,10].

For the second parametrization, we follow Ref. [14],
where a parametrization based on a fit to the mass and
renormalization functions obtained in a Landau gauge
lattice calculation was used. Such parametrization is

MðpÞ ¼ mc þ 	mfmðpÞ; ZðpÞ ¼ 1þ 	zfzðpÞ; (49)

with

fmðpÞ ¼ ½1þ ðp2=�2
0Þ3=2��1;

fzðpÞ ¼ ½1þ ðp2=�2
1Þ��5=2;

(50)

where the analytical form of fmðpÞ has been proposed in
Ref. [19]. The analytical form of fzðpÞ is chosen in order to
guarantee the convergence of the integrals. Some alterna-
tive parametrization of this type suggested from vector
meson dominance of the pion form factor can be found
in Ref. [22]. In terms of the functions fmðpÞ and fzðpÞ, and
the constantsmc, 	m, 	z the form factors gðqÞ and fðqÞ are
given by

gðpÞ ¼ 1þ 	z

1þ 	zfzðpÞ
	mfmðpÞ �mc	zfzðpÞ

	m �mc	z

;

fðpÞ ¼ 1þ 	z

1þ 	zfzðpÞ fzðpÞ;
(51)

and the mean-field values are

�� 1 ¼ 	m �mc	z

1þ 	z

��2 ¼ 	z

1þ 	z

: (52)

The parameters for this second model (scenario S2) are
determine as follows. As before we take Zð0Þ ¼ 0:7 and fix
�0 and�1 in such a way that the functions fmðpÞ and ZðpÞ
agree reasonable well with lattice results of Ref. [8]. Next
we fix mc and 	m in order to reproduce the physical values
of m� and f�. The resulting parameters are mc ¼
2:37 MeV, 	m ¼ 309 MeV, and with �0 ¼ 850 MeV
and �1 ¼ 1400 MeV.

Finally, in order to compare with previous studies where
the wave function renormalization of the quark propagator
has been ignored, we consider a third model (scenario S3).
In such scenario, we take ZðpÞ ¼ 1 and exponential pa-
rametrization for gðpÞ. Such model corresponds to the
‘‘Model II’’ discussed in Ref. [18], from where we take

the parameters corresponding to hq �qi1=3 ¼ �240 MeV.
The values of the model parameters for each of the

chosen scenarios are summarized in Table I. In Fig. 1,we
compare the quark mass function fmðpÞ and renormaliza-
tion function ZðpÞ as obtained from our three scenarios
with data extracted from the lattice results of Ref. [18]. The
main reason for comparing fmðpÞ [instead of MðpÞ] is that

analyzing lattice data from different groups using Landau
gauge fixing [8,10], and also results for MðpÞ obtained by
each group using different inputs, we observed that the
resulting functions fmðpÞ are very similar in spite of the
differently looking MðpÞ. On the other hand, the renomal-
ization functions ZðpÞ are much less sensitive to the choice
of lattice parameters, and in fact the two lattice groups

TABLE I. Model parameters and results for some alternative
parametrizations.

S1 S2 S3

mc MeV 5.70 2.37 5.78

Gs�
2
0 32.03 20.82 20.65

�0 MeV 814.42 850.00 752.2

ßp GeV 4.18 6.03 � � �
�1 MeV 1034.5 1400 � � �
��1 MeV 529 442 424

��2 �0:43 �0:43 � � �
Mð0Þ MeV 375 311 430

Zð0Þ 0.7 0.7 1.0

�hq �qi1=3 MeV 240 326 240

m� MeV 139 139 139

g�q �q 5.74 4.74 4.62

f� MeV 92.4 92.4 92.4

m� MeV 622 552 683

gð0Þ�q �q 5.97 4.60 5.08

gð1Þ�q �q �0:77 �0:26 � � �
���� MeV 263 182 347

FIG. 1 (color online). fmðpÞ (upper panel) and ZðpÞ (lower
panel) for various parametrization as compared with lattice
results of Ref. [8].
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[8,10] provide similar results. We observe that the func-
tions fmðpÞ and ZðpÞ for scenario S1, based on exponential
functions, decrease faster than the lattice data. For

scenario S2, however, they go to zero as ðp2Þ�3=2 and

ðp2Þ�5=2, respectively, following the lattice data in a closer
manner. Finally, in the case of S3 the exponential decrease
of fmðpÞ is even faster than that of S1.

IV. NUMERICAL RESULTS

In this section, we present and discuss our numerical
results. In Table I, we give the results for the mean-field
properties, together with the pion and sigma masses and
decay parameters. As it can be seen in this table, while for
the exponential parametrizations (i.e., S1 and S3) the
empirical values of f� and m� are consistent with a quark
condensate which lies within the range of the usually

quoted phenomenological values �h �qqi1=3 ’
200–260 MeV [23,24], scenario S2 leads to a value of
the chiral condensate somewhat above such range. On
the other hand, the corresponding current quark mass is
quite smaller than those obtained for scenarios S1 and S3.
This issue deserves some comment. The chiral condensate,
as well as the current quark masses, are scale dependent
objects. In particular, the phenomenological values quoted
above for the condensate correspond to a choice of the
renormalization scale � ¼ 1 GeV. In the parametrization
S2, some parameters have been determined so as to obtain
a good approximation to the lattice mass renormalization
function ZðpÞ, a quantity which also depends on the renor-
malization point. In particular, we use the function ZðpÞ
obtained in Ref. [8] where the renormalization scale has
been chosen to be� ¼ 3 GeV. One might wonder whether
the fact that this renormalization point differs from the one
usually used to quote the values of the condensate can
account for the fact that the S2 prediction is outside the
empirical range. If one assumes that this difference is also
responsible for the rather low value of mc this can be
investigated in the following way. To leading order in the
chiral expansion, the current quark mass and the conden-
sate are related by the Gell-Mann-Oakes-Renner (GMOR)
relation

f2�m
2
� ¼ 2h �qqim̂; (53)

where m̂ ¼ ðmu þmdÞ=2. The validity of GMOR to that
order is well justified by the low-energy behavior of the
�� scattering amplitudes [25]. Using that, according to
Ref. [26], m̂ runs from 5.5 MeVat the scale � ¼ 1 GeV to
4.1 MeV at � ¼ 2 GeV. We expect that a typical value of

h �qqi1=3 ¼ �240 MeV at� ¼ 1 GeVwill run to h �qqi1=3 ¼
�270 MeV at � ¼ 2 GeV [27]. Lattice calculations pro-
vide an independent determination of quark masses and �qq
condensate [28–30]

mMS
ud ð2 GeVÞ ¼ 4:3� 0:4stat

þ1:1

�0:4sys
MeV (54)

h �qqið2 GeVÞ ¼ �ð265� 5stat � 22sys MeVÞ3; (55)

which confirms the � ¼ 2 GeV values given above. Note
that since these two lattice calculations are not connected,
the quoted values imply a verification of the GMOR rela-
tion. Since the GMOR relation is well satisfied by our
Lagrangian model [14], and in all our scenarios f� and
m� are fitted to their empirical values, it is clear that the
quality of the description of the quark condensate and the
current quark mass are closely related. Thus, a further
running up to � ¼ 3 GeV implies that the current quark
mass must be scaled by a factor of the
m̂ð2 GeVÞ=m̂ð3 GeVÞ ¼ 1:11. This value is rather differ-
ent from the factor 1.81 obtained from the ratio between
the lattice result at � ¼ 2 GeV and the value of mc for
scenario S2 given in Table I. This clearly indicates that
possible ambiguities related to the choice of renormaliza-
tion point cannot fully account for the rather high value of
the condensate for scenario S2. In fact, using the above

mentioned factors to reescale the value �h �qqi1=3 ’
326 MeV quoted in Table I down to � ¼ 1 GeV, we get

�h �qqi1=3 ’ 284 MeV which is about 10% above the em-
pirical upper limit. A possible way to reduce the value of
the quark condensate in S2 is to reduce the parameter �0.
For �0 � 600 MeV, we can obtain values for the quark
condensate and quark masses which are within the phe-
nomenological bounds.
The mass and width of the sigma meson display some

dependence on the parametrization. However, such depen-
dence is smaller than the one found in the local NJL model
[31]. The obtained values for the masses are somewhat
larger than the recently extracted empirical values
478þ24�23 � 17 MeV [32] and 390þ60

�36 MeV [33] while the

widths are compatible with the experimentally reported
values 324þ42

�40 � 21 MeV [32] and 282þ77
�50 MeV [33].

The situation concerning the �0 meson deserves some
comment. In general, for the nonlocal models under con-
sideration the quark propagators develop a series of poles
in the complex plane. In Euclidean space, such poles can
be purely imaginary (as in the NJL model which only has
one pole of this type) or fully complex. The existence of
these poles implies the appearance of ‘‘pinch points’’ [16]
in the calculation of the meson two-point functions. The
external momentum for which the first of such ‘‘pinch
points’’ appears is given by ppp ¼ 2Si where Si is the

imaginary part of the first pole of the quark propagator.
From this point on the functionsG in Eq. (17) do in general
develop an imaginary component related to the unphysical
decay into q �q pairs, which is usually associated with the
lack of confinement. In some cases, depending on the
regulator and/or parametrization, one can find a prescrip-
tion for the integration path along the complex plane such
that this imaginary component cancels out [16,17,34]. It is
clear, however, that the corresponding results turn out to be
prescription dependent and, unless the meson pole appears
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not far above ppp, not very reliable. For this reason, in this

work we take the point of view that ppp marks the limit of

validity of our model. For the three scenarios under con-
sideration, we have found ppp to be about 1 GeV, which

appears to be a reasonable scale for a low-energy effective
model of QCD. As for the �0 channel we have verified that
no pole corresponding to a meson of this type appears
below that scale.

We turn now to the low-energy parameters for �–�
scattering. These parameters have been a matter of much
attention in the recent past years. In particular, recent
results on Kl4 decays [35,36] have led to an improved
phenomenological determination [37,38] of the threshold

parameters for S, P, D, and F waves. Our results for the S
and P waves are displayed in Table II, while those corre-
sponding to D and F waves are in Table III. Since the
calculation of sigma pole contributions include off shell
quantities, it is not possible to perform a clear and unique
separation between � and �0 contributions. Thus, only the
sum of such contributions is given. In general, reasonable
estimates indicate that �0 contributions represent only a
few percent of this total value. The phenomenological
values extracted in Ref. [38] are also indicated. In compar-
ing our results with these values one should keep in mind
that the present model does not incorporate pion loops, and
hence there is still room for improvement. Finally, for

TABLE II. �-� scattering parameters for S and P waves.

Contribution S1 S2 S3 NJL Empirical

Ref. [39] Ref. [40] Ref. [38]

ðm�Þ � a00 Box �1:536 �1:279 �1:618
� 1.718 1.470 1.798

Total 0.182 0.191 0.180 0.18 0.19 0:223� 0:009

ðm3
�Þ � b00 Box 0.114 0.117 0.114

� 0.116 0.146 0.107

Total 0.230 0.263 0.221 0.22 0.27 0:290� 0:006

ðm5
�Þ � c00 Box �0:0086 0.0233 �0:0076

� 0.0412 0.0663 0.0302

Total 0.0326 0.0897 0.0226

ðm7
�Þ � d00 Box 0.0005 0.065 0.0004

� 0.0087 0.019 0.0051

Total 0.0092 0.085 0.0055

ðm�Þ � a20 Box �0:6851 �0:5790 �0:7170
� 0.6404 0.5346 0.6721

Total �0:0447 �0:0444 �0:0449 �0:046 �0:044 �0:0444� 0:0045

ðm3
�Þ � b20 Box �0:053 �0:049 �0:051

� �0:031 �0:034 �0:033
Total �0:084 �0:083 �0:084 �0:091 �0:079 �0:081� 0:003

ðm5
�Þ � c20 Box 0.0080 0.0078 0.0082

� 0.0042 0.0056 0.0034

Total 0.0121 0.0134 0.0116

ðm7
�Þ � d20 Box �0:0005 �0:0006 �0:0005

� �0:0006 �0:0011 �0:0004
Total �0:0011 �0:0017 �0:0009

m� � ð2a00 þ 7a20Þ 0.052 0.072 0.046 0.04 0.072 0:135� 0:036
ðm3

�10
3Þ � a11 Box 25.1 23.9 24.7

� 10.5 11.3 11.1

Total 35.7 35.2 35.7 37 34 38:1� 0:9

ðm5
�10

3Þ � b11 Box 5.56 4.60 5.34

� �2:10 �2:85 �1:72
Total 3.45 1.75 3.62 5:13� 0:15

ðm7
�10

3Þ � c11 Box 0.21 �2:70 0.15

� 0.38 0.63 0.25

Total 0.59 �2:06 0.40
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comparison, in Tables II and III the existing results for the
local SU(2) NJL model [39,40] are given. Results obtained
in alternative QCD-based quark models can be found, e.g.,
in Ref. [41]

We analyze first the results corresponding to the S and P
waves. Let us recall that to leading order in the chiral
expansion the corresponding length and slope parameters
can be obtained from the Weinberg amplitude

Aðs; t; uÞ ¼ s� f2�
m2

�

(56)

which leads to the predictions

8

7
a00 �m� ¼ �4a20 �m� ¼ b00 �m3

� ¼ �2b20 �m3
�

¼ 6a11 �m3
� ¼ m2

�

4�f2�
: (57)

Since our three different scenarios lead to the same values
of f� and m�, the predictions for these five scattering
parameters are expected to be quite similar. In fact, results
in Table II confirm this, although those of S2 are in slightly
better agreement with empirical data. This is particularly
interesting in the case of a20, which results from a rather

strong cancellation between box and sigma contributions.
In order to be more sensitive in the comparison between
scenarios, we also give in Table II the combination of the S
wave isospin 0 and 2 parameters 2a00 þ 7a20 which vanish

in the chiral limit. We observe that in all scenarios the
correction goes in the right direction. Moreover, in the case
of S2 its magnitude is larger providing therefore a better
description of the experimental result. Another way to

improve on the discrimination between the different pa-
rametrizations of our model is to consider corrections up to
q6 order in the expansion Eq. (46). Thus, we calculate the
parameters cIl and dIl corresponding to the q4 and q6

corrections, respectively. We observe that in each partial
wave the exponential interaction produces scattering pa-
rameters which decrease rather fast with the power of q2.
On the other hand, the scenario S2 predicts coefficients
which are of the same order of magnitude in each partial
wave.
We consider now the scattering lengths and slope pa-

rameters for D and F waves displayed in Table III. These
results, together with the scattering lengths and slope
parameters of S and P waves given in Table II, complete
all cases for which there are phenomenological determi-
nations available. For S1 and S3, we observe that the signs
of the parameters are correctly predicted, except for b02 in
S3. The absolute values for the scattering lengths are off by
a factor between 1.5 and 2.5, whereas the slope parameters
fail by 1 order of magnitude. On the other hand, scenario
S2 gives the right sign and order of magnitude in all cases,
deviating only by a factor of 3 in the worse case, b13.
From the previous results, we can conclude that

although the exponential interaction might be able to re-
produce the scattering lengths parameters rather well, the
description of higher power coefficients is, in general,
expected to be less accurate as the power in q2 increases.
This is particularly so for the higher partial waves. On the
other hand, the momentum dependence of scenario S2
seems to be better adapted for the description of the higher
power parameters. In fact, the only case where this scenario

TABLE III. Scattering lengths and slope parameters for D and F waves.

Contribution S1 S2 S3 NJL Empirical

Ref. [39] Ref. [40] Ref. [38]

ðm5
�10

4Þ � a02 Box 9.71 9.76 9.93

� 4.20 5.67 3.44

Total 13.91 15.43 13.37 13.7 16.7 18:33� 0:36

ðm7
�10

4Þ � b02 Box 0.98 0.85 1.04

� �1:28 �2:20 �0:86
Total �0:30 �1:34 0.18 �3:82� 0:25

ðm5
�10

4Þ � a22 box �2:74 �2:95 �2:43
� 4.20 5.67 3.44

Total 1.46 2.72 1.01 1.1 3.2 2:46� 0:25

ðm7
�10

4Þ � b22 Box 0.08 0.07 0.13

� �1:28 �2:20 �0:86
Total �1:19 �2:14 �0:73 �3:59� 0:18

ðm7
�10

5Þ � a13 Box 0.82 1.15 0.7

� 1.82 3.09 1.2

Total 2.65 4.24 1.9 6:05� 0:29

ðm9
�10

5Þ � b13 Box 0.06 0.0 0.07

� �0:70 �1:6 �0:40
Total �0:64 �1:6 �0:33 �4:41� 0:36
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gives a worse result than the exponential ones is in the
prediction for b11, where a strong cancellation between the
box and sigma contribution takes place.

Comparing scenarios S1 and S3, we can observe the
effect on the scattering parameters of taking into account
the wave function renormalization. Except for the parame-
ters listed in Eq. (57), we observe that as the power in q2

increases the associated parameters obtained in scenario S3
decrease faster than in scenario S1. We can conclude that
the effect of the wave function renormalization term goes
in the right direction, even if this effect is less important
than the one produced by the difference in the momentum
dependence of the interactions. It should be noticed that
our scenario S3 is very similar to the model used in
Ref. [42]. In fact, in both cases the wave function renor-
malization is not included, exponential parametrizations
are used and the values of m� and f� are fitted. The
difference comes from the way in which the third parame-
ter of the model is determined. In Ref. [42] the rather
sensitive value of a22 was used, while here we choose to
fix the chiral condensate.

In our scenarios, which include wave function renormal-
ization, we have fixed Zð0Þ ¼ 0:7. As it can be seen in
Fig. 1, however, for small values of p the errors in the
lattice results are rather large. Thus, Zð0Þ is not well con-
strained by lattice calculations. In order to test the sensi-
tivity of our results to these kinds of uncertainties, we have
reduced it to Zð0Þ ¼ 0:6, and considered scenario S2 for
two alternative situations. In the first case, we varied the
model parameters so that f� and m� remain at their
empirical values, while in the second case we kept the
model parameters fixed. In both cases, we found that
most of our results change by less that 10%, the most
notorious exception being the �� scattering length a22
which changes about 15%. It is interesting to note that in
the second case the pion mass and decay constant, as well
as the chiral condensate, get reduced. We obtain m� ¼
138:7 MeV, f� ¼ 91:2 MeV, and �h �qqi1=3 ¼ 323 MeV.

V. COMPARISON WITH CHIRAL PERTURBATION
THEORY

In the previous section, we have focused our attention on
the ability of our quark model to reproduce the phenome-
nological �-� scattering parameters. An alternative point
of view (see, for example, Refs. [39,43–47]) is to consider
the quark models as the generators of the pion chiral
perturbation theory (�PT) Lagrangian [21]. �PT describes
the low-energy physics of pions in a universal way, once
the order in the momentum and chiral breaking expansion
(i.e., the order in the chiral expansion) is specified.
Different scenarios for quark models will lead to �PT
Lagrangians with different values of the so-called low-
energy constants (LECs). In this section, we analyze the
connection between our quark scenarios and the �PT
Lagrangian up to the fourth order in the chiral expansion.

To perform this connection we introduce the pionic
Lagrangian

L ¼ L2 þL4; (58)

where

L 2 ¼ f2

4
h@�Uy@�UþUy�þ �yUi; (59)

L4 ¼ ‘1h@�Uy@�Ui2 þ ‘2h@�Uy@�Uih@�Uy@�Ui2
þ ‘3h�Ui2 þ ‘4h@��@�Ui2 þ . . . ; (60)

and

U ¼ exp

�
i
~�: ~�

f

�
; � ¼ m2 1 0

0 1

� �
: (61)

Note that among all possible Oð4Þ terms only those rele-
vant for �-� scattering to that order have been explicitly
given. To the order we are working, the parameters f andm
can be related with the predicted values for f� and m�

through

f� ¼ f

�
1þ

�
m�

f�

�
2
‘4

�
; (62)

m2
� ¼ m2

�
1þ 2

�
m�

f�

�
2
‘3

�
: (63)

Using (62) and (63), we can express the scattering parame-
ters resulting from Eq. (58) in terms of the ‘i coupling
constants and the m� and f� values as follows

m�a
0
0 ¼

7

32�

�
m�

f�

�
2
�
1þ 1

7

�
m�

f�

�
2½40‘1 þ 40‘2

þ 10‘3 þ 14‘4�
�

m�a
2
0 ¼ � 1

16�

�
m�

f�

�
2
�
1�

�
m�

f�

�
2½8‘1 þ 8‘2

þ 2‘3 � 2‘4�
�

m3
�b

0
0 ¼

1

4�

�
m�

f�

�
2
�
1þ 1

4

�
m�

f�

�
2½64‘1 þ 48‘2 þ 8‘4�

�

m3
�b

2
0 ¼ � 1

8�

�
m�

f�

�
2
�
1� 1

2

�
m�

f�

�
2½16‘1 þ 24‘2 � 4‘4�

�

m3
�a

1
1 ¼

1

24�

�
m�

f�

�
2
�
1þ

�
m�

f�

�
2½�8‘1 þ 4‘2 þ 2‘4�

�

m5
�b

1
1 ¼

1

6�

�
m�

f�

�
4f�2‘1 þ ‘2g

m5
�a

0
2 ¼

1

15�

�
m�

f�

�
4f‘1 þ 2‘2g

m5
�a

2
2 ¼

1

30�

�
m�

f�

�
4f2‘1 þ ‘2g: (64)

As already mentioned, the Lagrangian (58) is valid up to
fourth order in the chiral expansion, therefore it can be
fully equivalent to our quark model scenarios only when
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they are treated to the same order of approximation. Thus,
to extract the LECs defining the pionic Lagrangian from
the values of the scattering parameters, f� andm� obtained
in each of our quark scenarios, we should analyze the
values of these parameters for small values of mc. In
fact, we have verified that close to the chiral limit the
scattering parameters display, as a function of ðm�=f�Þ2,
the quadratic behavior expected from Eqs. (64). From the
determination of the corresponding linear and quadratic
coefficients it is possible to obtain the numerical values of
LECs ‘i. It should be noticed that this procedure for
obtaining ‘i is completely equivalent to the bosonization
of the quark Lagrangian followed by a covariant gradient
expansion (see Ref. [39] for the application of such a
method to the NJL model). At this stage, we are connecting
our quark model at the one loop level to the pionic
Lagrangian at the tree level. Our next step is to make the
connection with the �PT Lagrangian. The main difference
between the Lagrangian (58) and the �PT Lagrangian is
that our ‘i parameters are finite and no pion loop contri-
bution is present. The scattering parameters in �PT [21]
include pion loop contributions, and are written in terms of
renormalized LECs ‘ri . As expected, Eqs. (64) coincide
with the ones obtained from �PT if the corresponding pion
loop contributions are neglected. In this approximation the
coupling constants ‘i can be identified with the ‘ri con-
stants at some given renormalization scale �.

Equations (64) imply several relations between the scat-
tering parameters. We focus on two of them

Test 1 ¼ m�ð2a00 � 5a20Þ þm3
�

�
� 9

2
a11 � b00 þ

5

2
b20

�

¼
� 0 usingð64Þ

mp
�

16�4f2�

17�
12 using �PT

(65)

Test 2 ¼ 5

2
m�a

2
2 þ

3

10
m�b

1
1 �m�a

0
2

¼
�
0 usingð64Þ

1
16�4f2�

17�
450 using �PT : (66)

Obviously, these two relations vanish when we use our
pionic Lagrangian (58) at the tree level. Therefore, a non-
vanishing value obtained for these two quantities in any
other calculation must be originated by loop corrections or
by higher order terms in the chiral expansion. As indicated
in Eqs. (65) and (66), in the case of the �PT Lagrangian
both relations have corrections from pionic loops. On the
other hand, the deviation from zero of Test 1 and Test 2
when evaluated using the scattering parameters obtained in
our quark scenarios at the physical value of m� is origi-
nated by higher order terms in the chiral expansion. In
Table IV, we show the results for these two relations in our
scenarios. Also indicated are the �PT Lagrangian results,
which corresponds to the pion loop contribution of the
order ðm�=2�f�Þ4. From this table we observe that the
quark scenarios previously studied give results for Test 1
and Test 2 which are of the same order of magnitude than
the pion loop contributions. This implies that the studied
quark models include higher order contributions [i.e.,Oð6Þ
or higher] which are as important as the chiral loops. The
effect of these higher order contributions is more important
for scenario S2, due to its different behavior for large
momenta.
In Table V, we give the ‘i values corresponding to our

different scenarios. It is interesting to note that in the case
of ‘1 the listed values result, in all cases, from an important
cancellation between the box and the sigma contributions.
For ‘2, only box contribution is present since no scalar
meson contribution is possible [48]. Also, given in Table V
are the values of the renormalized LECs ‘ri ð�Þ obtained
[37] in the framework of �PT at some particular values of
the renormalization scale � [49]. We observe that the sign
and order of magnitude of the most accurately known
LECs ‘r2 and ‘r4 are well reproduced for small values of
�. In fact, in the case of scenarios S1 and S2, the agree-
ment is remarkable good for � around 2m� which is a
reasonable scale since we have integrated out degrees of
freedom from below the sigma mass. In the case of the
LECs ‘r1 and ‘

r
3, even though it is not so good in the case of

S2, the agreement is still acceptable given the existing

TABLE V. Values of ‘i obtained in our different scenarios. The �PT values of ‘ri as a function of � are obtained from Ref. [37]. The
last two columns correspond to the NJL predictions from Ref. [39] for two different constituent quark mass: M ¼ 220, 264 MeV.

Nonlocal Quark Model �PT (‘ri ð�Þ) NJL

S1 S2 S3 � ¼ m� � ¼ 2m� � ¼ m� M ¼ 220 M ¼ 264

‘1 � 103 �1:39 0.26 �2:07 �4:0� 0:6 �1:9� 0:6 �0:4� 0:6 �0:63 �2:28
‘2 � 103 6.46 6.41 6.51 1:9� 0:2 6:2� 0:2 9:1� 0:2 6.29 6.18

‘3 � 103 �2:3 �4:1 �1:1 1:5� 4:0 �1:8� 4:0 �4:0� 4:0 �8:50 �3:48
‘4 � 103 17.2 20.3 15.0 6:2� 1:3 19:1� 1:3 27:9� 1:3 22.73 12.16

TABLE IV. Results for Test 1 and Test 2 defined in Eqs. (65)
and (66), as obtained in our quark scenarios (S1, S2, and S3) and
chiral perturbation theory to Oð4Þ (�PT). The results obtained
using the empirical values of Ref. [38] (empirical) are also given.

S1 S2 S3 �PT Empirical [38]

Test 1� 102 �1:2 �2:5�1:1 1.5 0:40� 4:4
Test 2� ðm4

�10
4Þ 0.1 �3:3 0.006 1.6 3:21� 1:4
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uncertainties in the determination of the empirical values.
Finally, as a reference, some typical values obtained within
the local NJL model taken from Ref. [39] are also listed in
Table V.

VI. CONCLUSIONS

In this work, we have analyzed the sigma meson mass
and width together with the �-� scattering parameters in
the context of nonlocal chiral quark models with the wave
function renormalization (WFR) term. We have considered
two types of momentum dependence for the quark inter-
actions. The first one (scenario S1) is based on the fre-
quently used exponential form factors. The second one
(scenario S2) corresponds to a fit to the mass and renor-
malization functions obtained in lattice calculations [8],
and gives rise to a softer momentum dependence (e.g., at

large momentum, the quark mass decreases as ðp2Þ�3=2

instead of exponentially). In order to test the influence of
the WFR, we also considered a third scenario (S3) which
corresponds to an exponential interaction but where this
renormalization is absent.

Our results for the sigma mass are relatively stable,
ranging from 552 MeV for S2 to 683 MeV for S3. We
observe that the coupling between the scalar term of the
standard chiral interaction and the new scalar term asso-
ciated with the WFR term reduces the value of the lower
sigma mass, as it must be expected. Comparing the S3 and
S1 results, we observe a reduction of 10%, while in the
case of the S2 interaction there is a further reduction of
10% originated by the softer momentum dependence of the
interaction. The width of the sigma follows the same
reduction as its mass, as one goes from one scenario to
another. These results are less dependent on the parame-
trization than in the standard NJL model. The predicted
mass and width are reasonably close to the recently re-
ported empirical values [32,33].

Regarding the�–� scattering parameters, we have com-
pared our results with the phenomenological determination
made in Ref. [38]. Although the existence of the chiral
limit relations, Eqs. (57), for the S and P wave scattering
length and slope parameters reduces the sensitivity of these
parameters to the choice of the different quark interactions,
we have been able to discriminate between these interac-
tions by going to higher order in the momentum expansion

or to higher partial waves. We conclude that although the
exponential interaction is able to reproduce the scattering
length parameters rather well, the description of higher
power coefficients turns out to be, in general, less accurate
as the power in q2 increases. This can be clearly seen in the
case of higher partial waves. On the other hand, the mo-
mentum dependence of scenario S2 seems to be better
adapted for the description of the existing empirical data.
Comparing the predictions of the scenarios based on ex-
ponential interactions, S1 and S3, we observe that the
presence of the WFR term tends to improve the results,
even though its effect is less noticeable that the one pro-
duced by the difference on the momentum dependence of
the interactions.
Finally, we have analyzed the relation of our quark

scenarios with the chiral Lagrangian up to Oð4Þ in the
chiral expansion. In particular, we have obtained predic-
tions for the low-energy constants ‘i involved in �-�
scattering within our scenarios. The procedure we fol-
lowed, using the scattering parameters, is equivalent to
the standard method of bosonization followed by covariant
gradient expansion. Our predicted values for ‘i are in
relative good agreement with the values for the renormal-
ized ‘ri constants defined in the �PT calculations [21] for a
� value about 2m�. They are also in the range of values
obtained in the NJL model calculation of Ref. [39]. We
have been able to define combinations of the scattering
parameters which allow to discriminate between higher
chiral corrections [Oð6Þ or higher] and pion loop correc-
tions. We observe that the higher order corrections in-
cluded in our nonlocal quark model calculations at
physical m� are of the same order that the pion loop
corrections not considered in this work. The effect of
such corrections in our predictions for the mesonic observ-
ables is an issue that deserves further investigation.
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