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Branching ratios and CP asymmetries of B — K7 decays in the perturbative QCD approach
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We calculate the branching ratios and CP-violating asymmetries of the four B — K5 decays in the
perturbative QCD (pQCD) factorization approach. Besides the full leading-order contributions, the partial
next-to-leading-order (NLO) contributions from the QCD vertex corrections, the quark-loops, and the
chromomagnetic penguins are also taken into account. The NLO pQCD predictions for the CP-averaged
branching ratios are Br(B* — K" n) = 3.2 X 107° Br(B* — K~ 7') = 51.0 X 107%, Br(B* — K%) =
2.1 X 107°, and Br(B® — K%%’) = 50.3 X 10~°. The NLO contributions can provide a 70% enhancement
to the LO Br(B — K7'), but a 30% reduction to the LO Br(B — K7), which play the key role in
understanding the observed pattern of branching ratios. The NLO pQCD predictions for the CP-violating
asymmetries, such as AUL(K%9') ~2.3% and ADX(K3n') ~ 63%, agree very well with currently
available data. This means that the deviation AS = ADX(K)n') — sin2B in pQCD approach is also

very small.
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L. INTRODUCTION

The B — K7 decays are very interesting two-body
charmless hadronic B meson decays. In 1997, the CLEO
collaboration first reported unexpectedly large branching
ratios for B — Kn' decays [1]. Eleven years later, three of
the four B — K7 decays have been measured with high
precision. The world averages as given by HFAG [2] are
the following (in units of 107%):

Br(B* — K*7n) = 2.7+ 0.3,
Br(B® — K*7') =70.2 + 2.5,
Br(B* — K'%) < 1.9,
Br(B® — K%¢/) = 64.9 + 3.1.

)

From the above data one can see that: (a) the measured
Br(B — Kn') are much larger than the early standard
model (SM) expectations, i.e., the so-called kn’-puzzle;
and (b) the large disparity between the branching ratios for
B — K7’ and B — K7 decays: Br(B — Kn') > Br(B —
Kn).

Besides the branching ratios, the CP-violating asymme-
tries for B* — K=" and B® — K% decays have been
measured very recently [2,3]:

A (BT — K n) = —0.27 £ 0.09,

PACS numbers: 13.25.Hw, 12.38.Bx, 14.40.Nd

It may be noted that the average of the measured
ADX(B® — K%n') is now more than 8¢ away from zero,
so that CP violation in this decay is well established; while
A (B — K%%') is not in conflict with zero as expected
in the SM. The data for A% (B* — K*7")) have less
precision, but are consistent with general expectations.

The measurements of time-dependent CP asymmetries
in B meson decays, such as B" — J/WK" via b — c¢s
“tree” transition and B® — K%' via b — sqg penguin
transition, have provided crucial tests of the mechanism
of CP violation in the SM. Within the SM the mixing-
induced CP-violating asymmetry ADX(BY — K%7') =
—n¢Sy should be comparable with sin2 = 0.685 ob-
tained from the tree-dominated B® — J/WK?° decay; this
point has been confirmed by the data in Eq. (3).

In the SM the decay B — K7 is believed to proceed
dominantly through gluonic penguin processes [4,5] and
has been evaluated by employing various methods [6—16].
Although great progress has been made during the past
decade, the predictions for Br(B — K7') from both the
QCD factorization (QCDF) approach [14,17] and the per-
turbative QCD (pQCD) approach [16,18] in the Feldmann-
Kroll-Stech (FKS) mixing scheme of n — 1’ system
[19,20] are smaller than the data.

For the pattern of branching ratios in Eq. (1), many
possible solutions have been proposed. These include, for

: 2 exampl
dir L KT = + ple,
AcCHB K=7) = 0.016 £ 0.019, (a) Conventional b — sqg with constructive (destruc-
A tive) interference between the uii, dd and s§ com-
A 8B — K7') = 0.09 = 0.06, 3 ponents of.n’.('q) [4]; /
mix(RO0 _, g0\ — . (b) Large intrinsic charm content of 7’ through the
Acp(B K’n') = 0.61 = 0.07. chain b — sc¢c — sn' [7] or through b — scc —
sg*g" — s(n, ') due to the QCD anomaly [8];
*Xiaozhenjun@njnu.edu.cn (c) The spectator hard-scattering mechanism through
Tguolibo@njnu.edu.cn the anomalous coupling of gg — 7' [9-11];
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(d) A significant flavor-singlet contribution [10,14];
(e) A strong penguin b — sg enhanced by new physics
[12,13].
But the data of branching ratio in Eq. (1) are still not
completely understood. For the CP violation of B —
K7 decays, the theoretical studies is still under way.

In Ref. [16], the authors calculated the branching ratios
of B— K7 decays by employing the pQCD approach at
leading order. They considered the large corrections from
SU(3) flavor symmetry breaking as well as the possible
gluonic component of the 5’ meson, but their prediction for
Br(B° — K%%') (Br(B° — K°7)) is much smaller (larger)
than the measured value.

A sizable gluonic content in the 5’ meson may provide a
large enhancement to the decay rate of B— K7'. In
Ref. [21], the authors examined the possible gluonic con-
tribution to the B — 7’ transition form factor and found
that such a contribution is constructive with those from the
quark-content of 7/, but numerically very small and can be
neglected safely. This point has also been confirmed by the
QCD sum-rule analysis [22].

In the quark-flavor mixing scheme, the physical n and
1’ meson are linear combinations of flavor state 7, =
(uit + dd)/~/2 and n, = s5 with the “mass” of mg, and
my, respectively. In Ref. [23], the effect of a large chiral
scale m{ = m,zlq/(qu) with ¢ = (u, d) for the meson 7,
has been evaluated although we do not know which mecha-
nism is responsible to achieve a large value of m,,. When
one uses m,, = 0.22 GeV [23] instead of its generally
accepted value of m,, = 0.11 GeV, a larger B — K7,
decay amplitude can be obtained. Consequently, the LO
pQCD predictions for Br(B — K7') become consistent
with the data.

In Ref. [24], the authors examined the possible way to
increase the value of m,,. They found that a few-percent
violation of the Okubo-Zweig-lizuka (OZI) rule can en-
hance m,, a few times, which then leads to the consistency
of the LO predictions with the data for B — K7 decays.

Besides the possible mechanisms mentioned above, we
here consider a new and natural solution: the effects of the
next-to-leading-order (NLO) contributions in the pQCD
approach. As shown in Ref. [25], the NLO contributions
to B — K decays can play the key rule to explain the so-
called “K7”’-puzzle. We expect here that the NLO con-
tributions could help us to resolve the “Kn’”-puzzle.

For the CP asymmetries of B’ — K%', the deviation
AS; = —m;S; — sin23 has been estimated, for example,
in the QCDF approach [15,26] and the soft collinear ef-
fective theory [27]. The resultant bound is |AS f| = 0.05.
Since the source of the CP violation in the pQCD approach
is very different from those in the QCDF/SCET approach,
we here try to calculate the CP asymmetries of B — K7
decays by employing the pQCD approach at LO and NLO
level, to check if we can accommodate the data of CP
asymmetries.
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In this paper we will calculate the next-to-leading-order
contributions to the branching ratios and CP-violating
asymmetries of the four B — K7 decays. We first calcu-
late the decay amplitudes of the B — Kn') decays by
employing the pQCD factorization approach at the leading
order, as have been done in previous studies for other two-
body charmless B meson decays [28-31]. And then we
evaluate the NLO contributions to these decays.

The NLO contributions considered here include: QCD
vertex corrections, the quark-loops and the chromomag-
netic penguins. We expect that they are the major part of
the full NLO contributions in the pQCD approach [25]. Of
course, remaining NLO contributions in the pQCD ap-
proach, such as those from factorizable emission diagrams,
hard-spectator and annihilation diagrams, should be calcu-
lated as soon as possible.

This paper is organized as follows. In Sec. II, we give a
brief review about the pQCD factorization approach. In
Sec. III, we calculate analytically the relevant Feynman
diagrams and present the various decay amplitudes for the
studied decay modes in leading order. In Sec. IV, the NLO
contributions from the vertex corrections, the quark loops
and the chromomagnetic penguin amplitudes are eval-
uated. We calculate and show the pQCD predictions for
the branching ratios and CP-violating asymmetries of B —
Kn" decays in Sec. V. The summary and some discussions
are included in the final section.

II. THEORETICAL FRAMEWORK

A. Theoretical framework
In the pQCD approach, the decay amplitude is separated
into soft (®,, ), hard (H(k; t)), and harder (C(My)) dy-
namics characterized by different energy scales (Aqcp, 1,
my, My) [18]. The decay amplitude A (B — M,M5) can
be written conceptually as the convolution,

ﬂ(B - M2M3) ~ fd4k1d4k2d4k3Tr[C(t)<I)B(k1)
X ©yy, (ko) Py, (k3)H Ky, oy, k3, 1)), (4)

where k;’s are momenta of light quarks included in each
meson, and Tr denotes the trace over Dirac and color
indices. C(z) is the Wilson coefficient evaluated at scale
t. In the above convolution, the Wilson coefficient C(r)
includes the harder dynamics at scale higher than My and
describes the evolution of local 4-Fermi operators from my,

(the W boson mass) down to 7 ~ O(yf AM3) scale, where
A=My— my,. The function H(k,, k,, k3, t) describes the
four-quark operator and the spectator quark connected by a
hard gluon whose ¢ is in the order of AMy, and includes

the @(\//_\M ) hard dynamics. Therefore, this hard kernel

H can be perturbatively calculated. The function @, is the
wave function which describes hadronization of the quark
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and antiquark in the meson M;. While the hard kernel H
depends on the processes considered, the wave function
®,,. is independent of the specific processes. Using the
wave functions determined from other well-measured pro-
cesses, one can make quantitative predictions here.

Since the b quark inside the B meson is rather heavy, we
consider the B meson at rest for simplicity. It is then
convenient to use light-cone coordinate (p*, p~, pr) to
describe the meson’s momenta: p~ = \/iz(p0 + p3) and

= (p', p?). Using the light-cone coordinates the B me-
son momentum Py and the two final state meson’s mo-
menta P, and P5 (for M, and Mj; respectively) can be
written as

Mpg
Py=—2(1-1r313,0p),

V2
r3,07),

M
Pp = Tg(l, 1, 0p),
M, )

N

P3— (}%,1

where r; = m;/Mpg. m, and m; are the mass of the two
final state mesons. For the case of B — PP decays, r, and
ry are small and could be neglected safely.

Putting the antiquark momenta in the B, M, and M;
meson as kq, k,, and ks, respectively, we can choose

ky = (X1P1+,0, le)’ ky = (X2P2:0 sz)

- (6)
ky = (0, x3P3, sz)-

Then, the integration over k', k, , and k; in Eq. (4) will
lead to

.ﬂ(B—’PV) ~/dxldxzdx3b1db1b2db2b3db3

‘T C(O D (xy, b)) Py, (X2, b)) Py, (x3, b3)
X H(x;, by, 1)S,(x;)e 7], (7)

where b, is the conjugate space coordinate of k;7. The large
logarithms (Inmy, /) coming from QCD radiative correc-
tions to four-quark operators are included in the Wilson
coefficients C(7). The large double logarithms (In’x;) on
the longitudinal direction are summed by the threshold
resummation, and they lead to S,(x;) which smears the
end-point singularities on x;. The last term, ¢ 5% is the
Sudakov form factor which suppresses the soft dynamics
effectively [18].

B. Effective Hamiltonian and Wilson coefficients

For the studied B — K71 decays, the weak effective

Hamiltonian H.; for b — s transition can be written as
[32]
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H o = T S v, :;s{[cl(mom + Co(w0Y(w)]
q=u,c

10
+y Ci(,u)O,-(,u)}, ®)
i=3

where G = 1.16639 X 107> GeV~? is the Fermi con-
stant, and V;; is the Cabibbo-Kobayashi-Maskawa
(CKM) matrix element, C;(u) are the Wilson coefficients
evaluated at the renormalization scale u, and O;(u) are the
four-fermion operators. For the case of b — d transition,
one simply makes a replacement of s by d in Eq. (8) and in
the expressions of O;(u) operators, which can be found
easily, for example, in Refs.[30-32].

In PQCD approach, the energy scale ¢ is chosen as the
largest energy scale in the hard kernel H(x;, b;, r) of a given
Feynman diagram, in order to suppress the higher-order
corrections and improve the reliability of the perturbative
calculation. Here, the scale “‘t”” may be larger or smaller
than the m,, scale. In the range of t <m, or t = m,, the
number of active quarks is Ny = 4 or Ny = 5, respectively.
For the Wilson coefficients C;(w) and their renormaliza-
tion group (RG) running, they are known at NLO level
currently [32]. The explicit expressions of the LO and NLO
C;(my) can be found easily, for example, in Refs. [29,32].

When the pQCD approach at leading-order is employed,
the leading-order Wilson coefficients C;(myy), the leading-
order RG evolution matrix U(t, m)© from the high scale m
down to t < m (for details see Eq. (3.94) in Ref. [32]), and
the leading-order «(f) are used:

_Am
:80 ln[tz/AéCD] '

where By = (33 — 2N;)/3, Agep = 0.225 GeV, and
Afep = 0.287 GeV.

When the NLO contributions are taken into account,
however, the NLO Wilson coefficients C;(my), the NLO
RG evolution matrix U(z, m, a) (for details see Eq. (7.22)
in Ref. [32]), and the a,(¢) at two-loop level are used:

4 . {1 B Inlin[# /AéCD]]}
Bo ln[tz/AéCD] B% ln[tz/A%)CD] ’
(10)

where By = (33 —2N,)/3, B, = (306 — 38N,)/3,
Afep = 0.225 GeV, and Al = 0.326 GeV.

From the general knowledge, the hard scale r must be
much larger than Agcp = 0.2 GeV in order to guarantee
the reliability of perturbative calculations. In previous
calculations based on the pQCD approach uy = 0.5 GeV
is chosen as the lower cutoff of the scale #. In our opinion, it
is indeed too low, because it may be conceptually incorrect
to evaluate the Wilson coefficients at scales down to
0.5 GeV [33]. The explicit numerical checks as done in

a(t) = )

a(t) =
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Ref. [34] also show that (a) the Wilson coefficient C,(0.5)
is close to —1 and clearly too large in size!; (b) the values
of the Wilson coefficients C3 456(n) at w = 0.5 GeV are
about 4 to 7 times larger than those at u = 1.0 GeV; and
(c) the pg-dependence of all Wilson coefficients becomes
relatively weak for g = 1.0 GeV. We therefore believe
that it is reasonable to choose uy = 1.0 GeV as the lower
cutoff of the hard scale ¢, which is also close to the hard-

collinear scale \/[_\mB ~ 1.3 GeV in SCET. In the numeri-

cal integrations we will fix the values C;(r) at C;(1.0)
whenever the scale ¢ runs below the scale ©y = 1.0 GeV
[34,35].

C. Wave functions

Since the b-quark is much heavier than the up or down
quark, the B meson is treated as a very good heavy-light
system. Although there are in general two Lorentz struc-
tures in the B meson distribution amplitudes, they obey to
the following normalization conditions:

d*k,
Q@)

d*k,

ot dpky) =0

Y

¢B( 1) =

2\/2N

However, it can be argued that the contribution of ¢ is
numerically small [36], thus its contribution can be nu-
merically neglected. In this approximation, we only con-
sider the contribution of Lorentz structure

1
by = ﬁ(f’g + mp)ysdp(ky), (12)
with
_ 2 2 M%xz 2
Bp(2.b) = Np(1 = 2 expf =525 = (@7
“’b
(13)

where w, is a free parameter and we take w;, = 0.4 =
0.04 GeV in numerical calculations, and Ng = 101.445 is
the normalization factor for w;, = 0.4.

The Kaon mesons are treated as a light-light system. The
wave function of K meson is defined as [37]

Qx(P, x, ) = \/—Ys[l”df‘ % () + mf p(x)
+ {mi (P — v - n)dp(x)] (14)

where P and x are the momentum and the momentum
fraction of K, respectively. The parameter ¢ is either +1
or —1 depending on the assignment of the momentum
fraction x.

For the ') meson, the wave function for 1 4 components
of n’ meson are given as

PHYSICAL REVIEW D 78, 114001 (2008)

@, (P 0) = o VP, (0 + i8]

i~ vl (] (15)

where P and x are the momentum and the momentum
fraction of m,, respectively. We assumed here that the
wave function of 7, is the same as the 7 wave function.
The parameter ¢ is either +1 or —1 depending on the
assignment of the momentum fraction x. The n, = s§
component of the wave function can be defined in the
same way.

The expressions of the relevant distribution amplitudes
(DAs) of the K meson are the following [37]:

‘;}(x) 2\/2T6X(1 x)[1 + afC3/2(t) + G§C3/2(t)
+ay Ci/z(f)], (16)
5
Pi(x) = 2\/2—1—\,—{ (30773 - Ep%(>cé/2([)

9
— 3[n3w3 + Z—Op%((l + 6a§)]c}/2(t)}, (17)
drx) = — [1 + 6<5773 : N33 _lP2
K 2«/_ 2 1 207K
ipKat2 )(1 — 10x + 10x2):| (18)

with the mass ratio px = mg/mgyg. The Gegenbauer mo-
ments can be given as [37]:

ak =02 a¥=025  a¥=-0015 (19

The values of other parameters are 173 = 0.015 and w =
—3.0. At last the Gegenbauer polynomials C%() are given
as

1
C*(0 =56 = 1),
1
ci(n = g (3 =302 +350%)
(20)
(1) = 31,

3
G20 =568 - 1),

15
C20) = 5 (1= 142 + 2169,
with t = 2x — 1.
In the quark-flavor mixing scheme, the physical states 0
and 7’ are related to the flavor states , = (uii + dd)/ V2
and n, = 5§ through a single mixing angle ¢,

()= (58 )(3)
_ (F1(¢)(uﬁ + dd) + Fy(¢)ss

FI()(uia + dd) + Fg(qs)ss) @)
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with
cos .
Fi@) =2 Fy(¢) = —sing,
V2
(22)
Fi¢) =% pr(g) = cosg.
V2
The relation between the decay constants

o ff],, f‘;],) and (f,, f,,) can be written as

(J{% ;§f>=<§?§§ e ) e

The chiral enhancement mg and my associated with the
two-parton twist-3 7, and 7, meson distribution ampli-
tudes have been defined as [25]

2
m
md = a4

0 qu

= _——| m%cos’p + m?,sin’¢
2m, L " n

V21

7, (m%}, — m3})cos¢ sinqﬁ:l, (24)

2
ms = s
0 2my

I:m%],cosz¢ + mksin’¢

mS
— %(m%}, — m)cos¢ sin¢], (25)

by assuming the exact isospin symmetry m, = m, = m,.
The three input parameters f,, f, and ¢ have been ex-

tracted from the data of the relevant exclusive processes
[19]:

fo=(1L07£0.02)f,  f, =(134%006)f,
¢ = 39.3° = 1.0°.

26)

The distribution amplitudes ¢4 " represent the axial-

vector, pseudoscalar and tensor component of the wave
function respectively [37]. They are given as

f 3/2
Ax) = 2\/2%66);(1 — [ +al Ci?2x - 1)
+aliC?2x — 1) + aC?2x — 1] @27)
P (x) = 1+ (30ms - 202 )2 e — 1)
s zm TP )
9
- 3{773a)3 + 20,9,7 (1+ 6a ’“)}cl/z(z - 1)]

(28)
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1
r - —_
n, (¥) = 2\/W (a 2x)[1 Jr6(5773 RELE
! 02 al) (1 - 10x + 1022
zopnq gpnqaz ( X x) 5
(29)
where - p,, = 2my/mygai’ = a7 =0, ay" =aj =

0.44 = 0.22, aZ" = aj = 0.25, and the Gegenbauer poly-
nomials C%(7) have been given in Eq. (20). As to the wave
function and the corresponding DAs of the s5 components,
we also use the same form as gg but with some parameters
changed: p, =2m,/mg, a =a] fori=1,2,4.

The transverse momentum ky is usually converted to the
b parameter by Fourier transformation. The initial condi-
tions of leading twist ¢;(x), i = B, K, 1, 7', are of non-
perturbative origin, satisfying the normalization

1 1
,-x,b=0dx=— i 30
[ i = 00ax = ! (30)
with f; the meson decay constant.

III. DECAY AMPLITUDES AT LEADING ORDER

In the pQCD approach, the Feynman diagrams as shown
in Fig. 1 may contribute to B — K7 decays at leading
order. As mentioned previously, B® — K°n") decays have
been studied in Ref. [16] by employing the LO pQCD
approach. In this section, we first calculate the LO decay
amplitudes for four B — K7 decays, but in a rather
different way to treat the Feynman diagrams from that in
Ref. [16].

At the leading order in the pQCD approach, there are
three types of diagrams contributing to the B — Kn!
decays, the factorizable emission diagrams, the hard-
spectator diagrams, and the annihilation diagrams, as illus-
trated in Fig. 1. From the factorizable emission diagrams,
the corresponding form factors can be extracted by pertur-
bative calculation. First, we consider the B — K= decay
modes, and then extend the calculation to B — K7’
decays.

For the usual factorizable emission diagrams (Figs. 1(a)
and 1(b)) with the B — K transition, i.e., it is the K meson
pick up the spectator quark, the operators O, O,, O3 4, and
Oy 19 are (V — A)(V — A) currents, the sum of the individ-
ual amplitudes is given as

FeK=j§wGpcpmé [ axiaz, [ by bsabr(xi. )
XAL(1+ x0) (%) + (1 — 2x0) rie (PR ()
— k()] E (t,)h.(x1, x5, b1, b))
+2rg i (%2) - E(1))h,(x2, X1, by, by)}, (31)

where ry = m& /mg with m§ is the chiral scale, Cr = 4/3
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n[K]

B E K" B -
(a) (b)
K]

B Z . K" B .
(c) (d)

\/n(’)[K]
B B : Q
K[n"] /\\
(e) (f)
n[K]
B > < B > <
K[n")]
9) (h)

FIG. 1. Feynman diagrams which may contribute to the B —
K7 decays at leading order.

is a color factor, and X, = 1 — x,. The evolution function
E,(r) and hard function h, are displayed in the Appendix.
In the above equation, we do not include the Wilson
coefficients of the corresponding operators, which are
process dependent. They will be shown later in the expres-
sions of total decay amplitude.

Also for Figs. 1(a) and 1(b), the operators Os¢ and O7g
have a structure of (V —A)(V + A) currents. In some
decay channels, some of these operators contribute to the

|

16

PHYSICAL REVIEW D 78, 114001 (2008)

decay amplitude in a factorizable way. Since only the
axial-vector part of the (V + A) current contributes to the
pseudoscaler  meson  production, (K|V — A|B) X
(Vv + A|0) = —(K|V — A|BXn" |V — A|0), that is

Flt = —F . (32)

In some other cases, we need to do Fierz transformation for
those operators to get the right color structure for factori-
zation to work. In this case, we get (S — P)(S + P) opera-
tors from (V — A)(V + A) ones. For these (S — P)(S + P)
operators, the corresponding decay amplitude is

16 1 00
Fg[% =ﬁ7TGFCFm%'/;) dxldX2]0 bldblbzdb2¢3(x1)

X {rpldx (%) + (2 + 23) pR(F2) + X2k (5,))]
“E,(t,)h,(x1, X3, by, by) + 2rgr, dR (%)

' Ee(tiz)he(xb X1» b2: bl)}y (33)

— 4 /]
where r, = mgj/mg, and mj = m

defined in Eq. (24).

For the nonfactorizable diagrams (Figs. 1(c) and 1(d)),
all three meson wave functions are involved. The integra-
tion of b, can be performed using the & function §(b; —
b,), leaving only integration of b, and bs. For the (V —
A)(V — A) operators, the result is

is the chiral scale

M,y = %wGFCij; L i dydis L " bydb,bydby
X pp(xy, b)) dy (@[ —rexa(dk(Xy) + dk(%))
+ (1 = x3)px(%)] - EL(1)h,(xy, X5, 1 = x3, by, b3)
+ [0 + x3) % (%2) + rgxa(di (%) — k()]

' EQ(ZZ)hn(xly X2, X3, bl) bS)}) (34)

where ¢, denotes d’nq or ¢, .

There are two kinds of contributions from (V — A) X
(V + A) operators: MF} and MP2, corresponding to the
(V—-=A)V+A) and (S — P)(S + P) type operators re-
spectively:

Ml = —=7GpCpmy /01 dxydx,dx; jooo bydbybzdbsp(xy, by) - {[(1 — x3) P (%2)(P)(X3) — b7 (%3))

3

+ rg(1 = x3)(¢%(R2) + PL (@)@} (F3) — d7,(%3)) + rrxa(P(Fo) — P (F2))(P7(F3) + b7(%3))]
EL(tp)hy,(x1, X0, 1 = X3, by, b3) — [x30% () (@4 (X3) + d7(X3)) + raxs(df () + P (%)) (@4 (X3)

+ $1(3) + rxa(df (%) — P (E)) (DY (%3) — dL(R))] - EL(t))h,(xy, X2, X3, by, b3)},

(35)

114001-6



BRANCHING RATIOS AND CP ASYMMETRIES OF ...
16

PHYSICAL REVIEW D 78, 114001 (2008)

1 ()
MLz = \/—gﬂGFcFm%fo dxldxzdx3j; bydb bydbyp(xy, by) 5 (%3) - {[—(1 + xp — x3) P (%)

+ xrg (@R (%y) — L ()] EL(1p)h, (x1, x0, 1 = x3, by, b3) + [x30%(%2) — Xk (R (%)) + ¢ % (x,))]

: Ele(t;g)hn(xl) X2, X3, b]: b3)}

(36)

For the nonfactorizable annihilation diagrams (Figs. 1(e) and 1(f)) again all three wave functions are involved. Here we
have two kinds of contributions: M¥2 = 0, M, and M"] describe the contributions from the (V — A)(V — A) and (V —

A)(V + A) type operators, respectively,
16

Mo = GeComy [ duidiads [ bidbibadbbaen, by) {1 = x) )65 + riry (1 = x2) (5
+ k(X)) D5 (%3) — PL(R3)) + rgrpxs(dh (%) — dx (X)) (P (x3) + SL(R] -+ EL (1) R (xy, X2, X3, by, b3)
— [x3% (%) 5 (%3) + drgr, Pk (%2)ph(x3) — rir, (1 — x3)(h(%) + d%(%2)) - (dh(%3) — T (%))
— rgrpxa(@% (%) — ok (NP4 (X3) + ¢ (%3)] - EL(1L)hyq(x1, X2, X3, by, b3)}, (37)

16

Mi} = 2 mGyCym fo ' dnydas [O ® bydbybadbdp(ry, b~ (1 — 1) re A (E)(BEE) + HL(E))

+ ryx3%(%) (94 (3) — ¢ (R)IEL (1) (1, X3, X3, by, b3) — [(x2 + Drgdy(33)(%(F2) + Pf(E2)
+ rp(xs = 2) 5 (02)(dh (%3) — L (Z))IEL(11) My (1, X2, X3, by, b3)}. (38)

The factorizable annihilation diagrams (Figs. 1(g) and 1(h)) involve only K and 5"’ wave functions. There are also three
kinds of decay amplitudes for these two diagrams.,Fx, FF} and FF2:

— Pl
FaK_FaK

- %WGFCFWL%, j;l dx,dxs /;)‘” bydbybydbi{—[(1 — x) P4 (%y) 3 (%3) + dr,rx dR(Xy) Pl (x3)

= 2rgryXa (X3 (P (%2) + Pk ()] * E (10)hy(x3, 1 — x5, b3, by) + [x30%(%2) 5 (X3) + 21, rie e (2) (4 (X5)
+ ¢7(F3)) + 21, kX3 (%) (D1 (X3) — D7 (X3))] - E(£))h,(1 — X, x3, by, b3)}, (39)

16

Fli = A mGeCom [0 ' dydrs ﬁ ® badbybadby - {[r(1 = x)(BE(E) — L) BAS) + 2, () L (7))

“E (t9)h,(x3, 1 = x3, b3, by) + [2rg p (o) 5 (X3) + x37, P (%2) (4 (X3) + 1 (%3))]

“E (t))h,(1 = x5, X3, by, b3)}.

The evolution function E;(¢;) and hard function h; ap-
peared in Egs. (33)-(40) and are given explicitly in the
Appendix.

If we exchange the K and ) in Fig. 1, the correspond-
ing decay amplitudes for new diagrams will be similar with
those as given in Egs. (31)—(40), since the K and 77(’ ) are all
pseudoscalar mesons and have similar wave functions. The
decay amplitudes for new diagrams, say F,, Ff%’m, M,,,

Mf,g'm, Man,Mf,‘], Fan,Fg},'Pz, can be obtained from those

(40)

|
as given in Eqgs. (31)—(40) by the following replacements:

¢114< e ¢A(m ¢£ A d’P(/)’
., ; K 41)
¢K - ¢.’7(/)! rg < rn(/)-

For B® — K%% decay, by combining the contributions
from all possible configurations of Feynman diagrams, one
finds the total decay amplitude with the inclusion of the
corresponding Wilson coefficients as follows:
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M(K) = (KOl Hige| B
= FeK”:fuaz - f,(2a3 —2a5 — ;07 + 1a9>:|f1, §t<a3 +ay—as+ %a7 — %ag — %am)fﬁl}
Fent(as = 510 )P (@) =PIy + PSP U@ a6 — 3 03) = [FuFod) + FupFy(@)]
< 61— 3aw) + [FLFA8) + IR as ~ yas )i + Mol 62 - & (2004 5€0) i@
= (s + €= 560 = 3 Cu )} = Mg (€5 = 3G )Fi() — ML) + MEF ()
< &(Cs = 501) ~ Mize[ (260 + 36 )Fi(@) + (€ 3 R ] )

where £, = Vi, V., & =V, V.., and F|(¢), F,(¢) are the mixing factors as given in Eq. (22).
The coefficients a; in Eq. (42) are the combinations of the Wilson coefficients C;, and have been defined as usual:

C C C;
a1=C2+—1, 02=C1+—2, a,-=Ci+ l+1, fori=3,5,7,9,
3 3 3 (43)
Cioy :
ai=Ci+T, fOrl=4,6,8,10.

Similarly, the decay amplitude for B* — K 7 can be written as
M(K*n) = (K" nl|He| B°)

1 1 1 1 1
= FeK{I:fuaz - f,(2a3 —2as — 2% +5 a9)]fn fr(‘h tay—as+ 541 = 5d0 Ealo)fi,}
+ [Fe'r]Fl(d))fK + (FanFl((rb) + FaKF2(¢))fB]§ual - [FenFl(d))fK + (Fa‘r]Fl(qS) + FaKFZ((f)))fB]

X €as + a) ~ [FEF(@)fx + (FIF(@) + FIRFODSsléaq + ap) = P13 (o~ a)

- Mf)(fz(Cs - %Q) + MeK{I:fucz - §z<2C4 + %C10>]F1(¢) - §z<C3 +Cy — lC9 - %CIO)F2(¢)}

2
+ [MaKF2(¢) + (Men + Man)F1(¢)][§uC1 gt(C3 + C9)] - [M F2(¢) + (MPI + MPI)F1(¢)]
X &(Cs + Cq) — Mf[%fr[@Ce + %CS)FI(QS) +(Cs — ECS)F2(¢):|- (44)
|
The total decay amplitude for B — K°n/ and B — U(my, my)©, as defined in Ref. [32], will be used
K* n’ can be obtained easily from Egs. (42) and (44) by the here:
following replacements:
A= fh = Fi)— Fi(d) Ulmy, my, a) = U(my, my) + %R(mp m;) (46)
F(¢) = F3(¢h). where the function U(m,, m,) and R(m,, m,) repre-
sent the QCD and QED evolution and have been
introduce a cutoff ug = 1.0 GeV for the QCD run-
A. General discussion ning of C;(7) in the final integration.
The power counting in the pQCD factorization approach (2) The strong coupling constant a,(t) at two-loop level
[25] is different from that in the QCD factorization [14,17]. as given in Eq. (10) will be used.
When compared with the previous LO calculations in (3) Besides the LO hard kernel H”(«,), the NLO hard
pQCD [18,30,31], the following NLO contributions should kernel H(a?) should be included. All the
be considered: Feynman diagrams, which lead to the decay ampli-
(1) The LO Wilson coefficients C;(myy) will be replaced tudes proportional to a?2(f), should be considered.
by those at NLO level in the NDR scheme [32], and Such Feynman diagrams can be grouped into fol-
the NLO RG evolution matrix U(t, m, «) instead of lowing classes:
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FA RN

(a) (b) (c) (d)

FIG. 2. NLO vertex corrections to the factorizable amplitudes.

|
)

FIG. 3 (color online).

" (K)
b b é /
B OSg‘ K(n(’)) B _
(a)

Quark-loop amplitudes.

(b)

FIG. 4 (color online). Chromomagnetic penguin amplitudes
(Og,). There are nine relevant Feynman diagrams as shown in
Ref. [38]. Here we show the first two only, which provide
dominant contribution of such diagrams.

(I) The vertex corrections, as illustrated in Fig. 2, the
same set as that studied in the QCDF approach.

(II) The NLO contributions from quark-loops, as illus-
trated in Fig. 3.

(III) The NLO contributions from chromomagnetic pen-
guins, i.e. the operator Og,, as illustrated in Fig. 4.
There are a total of nine relevant Feynman diagrams
as given in Ref. [38], if the Feynman diagrams
involving the three-gluon vertex are also included.
We here show the first two only, and they provide the
dominant NLO contributions, according to Ref. [38].

(IV) The NLO contributions to the Feynman diagrams
(Figs. 1(a) and 1(b)) corresponding to the extraction
of factors, as illustrated in Fig. 5. There area total of
13 relevant Feynman diagrams We here show four of
them only.

(V) The NLO contributions to the hard-spectator
Feynman diagrams (Figs. 1(c) and 1(d)) as illus-
trated in Fig. 6. There are a total of 56 relevant
Feynman diagrams We here show four only.

(VI) The NLO contributions to the annihilation Feynman
diagrams (Figs. 1(e) and 1(h)) as illustrated in Fig. 7.
We here show only four such diagrams.

For the last four classes (III-VI), the Feynman diagrams
involving a three-gluon vertex should be included. At

PHYSICAL REVIEW D 78, 114001 (2008)

T & uhan i i S A

FIG. 5 (color online). The four typical Feynman diagrams,
which contribute to the form factors at NLO level.

ui ﬁ“”’Zﬁ

FIG. 6 (color online). The four typical hard-spectator Feynman
diagrams, which contribute at NLO level.

€ IR

FIG. 7 (color online). The four typical annihilation Feynman
diagrams, which contribute at NLO level.

0

onn o/

B

OQQ

lonn 0

present, the calculations for the vertex corrections, the
quark-loops and chromomagnetic penguins have been
available and will be considered here. For the Feynman
diagrams as shown in Figs. 5-7, however, the analytical
calculations have not been completed yet. What we can do
here is to include the NLO contributions to the hard kernel
H.

B. Vertex corrections

The vertex corrections to the factorizable emission dia-
grams, as illustrated by Fig. 2, were calculated years ago in
the QCD factorization approach [14,15,17].

For the emission diagram, there are four kinds of single
gluon exchange responsible for the effective vertex as
labeled in Fig. 2. The contributions from the soft gluons
and collinear gluons are power suppressed, that is to say the
total contributions of these four figures are infrared finite.
For charmless B meson decays, these corrections can be
calculated without considering the transverse momentum
effects of the quark at the end-point in the collinear facto-
rization theorem. Therefore, there is no need to employ the
ky factorization theorem. In fact, the difference of the
calculations induced by considering or not considering
the parton transverse momentum is rather small [25], say
less than 10%, and therefore can be neglected.
Consequently, one can use the vertex corrections as given
in Ref. [15] directly. The vertex corrections can then be
absorbed into the redefinition of the Wilson coefficients
a;(u) by adding a vertex-function V;(M) to them [15,17]

114001-9
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(,u) C i)

a;i(p) = a(p) + 222 yp 3

a,(u) C j+1(,U~)

aj(,U«) - aj(#) + 4 F 3

ag(p) C ijl(M)

aj(M) - aj(,Ua) + 4 F 3

PHYSICAL REVIEW D 78, 114001 (2008)

fori=1,2;
Vj(M), for j =3,5,7,9,
VM), for j=4,6,8, 10, 47)

where M is the meson emitted from the weak vertex. When M is a pseudoscalar meson, the vertex functions V;(M) are

given (in the NDR scheme) in Refs. [15,25]:

12 InZe —
I
Vi(M) =

where f); is the decay constant of the meson M; ¢4, (x) and
P (x) are the twist-2 and twist-3 distribution amplitude of
the meson M, respectively. The hard-scattering functions
g(x) and h(x) in Eq. (48) are

glx) = 3( 2; Inx — iw) + |:2Li2(x) In’x + 121nx
—B+2im)hx—(x—1- x)] (49)

h(x) = 2Liy(x) — In’x — (1 + 2im)Inx — (x = 1 — x),

(50

where Li,(x) is the dilogarithm function. As shown in
Ref. [25], the u-dependence of the Wilson coefficients
a;(u) will be improved generally by the inclusion of the
vertex corrections.

C. Quark loops

The contribution from the so-called “quark loops™ is a
kind of penguin correction with the four quark operators
insertion, as illustrated by Fig. 3. In fact this is generally
called the BSS mechanism [39], which provides the strong
phase needed to induce the CP violation in the QCDF
approach. We here include quark-loop amplitude from
the operators O, and O;_g only. The quark loops from
07_1o will be neglected due to their smallness.

For the b — s transition, the contributions from the
various quark loops are given by

18+ 28 [1 dxgpfy (x)g(v)
— 121" + 6 — 22 [Laxgly(x0)g(1 —x), fori=>57, (48)
—6 + 25 [l dxepf (x)h(x),

fori=1-409, 10,

fori =6, 8§,

ql) _ 1% A(M)C ( 2
e - /J/;l )
Ve T T
X (5y,(1 = y)T*D)(G' y*T*q), (51)

where 2 is the invariant mass of the gluon, which attaches
the quark loops in Fig. 3. The functions C%(u, I?) are
written as

Co(u, 1) = [Gq(u, P) - —]Cz(M) (52)
for ¢ = u, c and
CO(u, ) = [G@(M, P) - —]cg(m

+ ) G, PCy(p) + Co(w)]

qll=u,d,s,c
(53)

The function G'9(u, %) for the loop of the quark g(g =
u, d, s, c) is given by [25]

_ 2
GO (u, )= —4 [ dxx(1 —x)lnM, (54)
,u

m, is the possible quark mass. The explicit expressions of
the function G@(u, I2) after the integration can be found,
for example, in Ref. [25].

It is straightforward to calculate the decay amplitude for
Figs. 3(a) and 3(b). We find two kinds of topological decay
amplitudes:

Mo — -85 2 Chm f dx,dxyds [ bydbybydbyd(xy, by) - L1 + 1) dA(E) b4 (55) + re(1 — 26,)(bL ()

- ¢K(x2))

¢ E(q)(tq, lz)he()Cz, X1, b2, bl) + [2TK¢2()_C2)¢Ax(.)_C3) + 4rKrm

for B — K transition, and

2 (%) +2r, dR (X))t (%3) + 2rgr, (2 + x2)Pk(%2) + X2k (%2)) P (%3)]

P9l (x3)]- E9D(t), I”)h,(xy, X2, by, b))}, (55)
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1 o
- \/—EC%m“BL dx dx,dxs '[0 bydbbydbypy(xy, by) - {[(1 + Xz)d’?,q(xz)ﬁb?}()_fs) + (1 — 2x,)

X (7, (%) — @3 ()3 () + 2rk @y ()b (F3) + 2ry 1k (2 + x2) @7 (R) + X207 (32)) i (%3)]

' E(q)(tqr lz)he(XZr X1, b2) b

for B— m transition. Here r, = m {/mg and r, =
m§/mpg. The evolution factors in Eqgs. (55) and (56) take
the form of

ED(t, 12) = CO(t, P)a3(t) - exp[—Squp]  (57)

with the Sudakov factor S,, and the hard function
h.(xy, x5, by, by) as given in Eqgs. (A2) and (A9) respec-
tively, and finally the hard scales and the gluon invariant
masses are

ty = max(yxamp, \x13mp, /(1 = x3)x3mp, 1/b1, 1/b,),

ty = max(xymg, X1X3mp, \/|x3 — xi|lmp, 1/by,1/b,),
(58)

Ko — kspl? = (1 — xp)x3m3,

|k —

= (1 = x))xzm} —

112 —

(X3 - xl)mB - k3T| ~ (X3 - xl)mB. (59)
For B — K 7' decays, we find the same decay amplitude.
Finally, the total “quark-loop” contribution to the consid-

ered B — Kn(’) (K = K° K™) decays can be written as

M) = <1<n|5#‘f|3>

Z A MG Fy(p) + M Fi(¢)] (60)

q u,c,t
|

1)+ [2”n¢f,q(552)¢?<(?_€3) + 4r,7rK¢f,q(5c2)¢§(fc3)] “ED(t], I”)h,(x), x5, by, by)}, (56)

M = <Kn/|ﬂ§qf?|3>
Z A M Fi(h) + MP Fi()] (61)
q u,c,t
where A, ;- The mixing parameters F(¢), F|(¢),

Fy (o) and F 2(ng) have been defined in Egs. (22).

It is worth noting that the quark-loop corrections are
mode dependent. The assumption of a constant gluon
invariant mass in FA introduces a large theoretical uncer-
tainty in making predictions. In the pQCD approach, how-
ever, the gluon invariant mass is related to the parton
momenta unambiguously and will disappear after the
integration.

D. Magnetic penguins

This is another kind of penguin correction but with the
magnetic-penguin operator insertion. The corresponding
weak effective Hamiltonian contains the b — sg transition,

Gr .
Hy" = — N Vi VisCy Os,s (62)
with the chromomagnetic penguin operator,
g a a
088 = 87;2 (1 + VS)TijGMVbj, (63)

where i, j are the color indices of quarks. The correspond-

ing effective Wilson coefficient Cg‘;f = Cg, + Cs5 [25].
The decay amplitudes obtained by evaluating the

Feynman diagrams, Fig. 4(a) and 4(b), can be written as

Mg, = 2o [ dxidsads, [T bidbibadbadhy(o, by U1~ )23 + reBoRLE) — B (E)

+ rxo(dg(E) + ¢k (R2))]d%, (F3) — rpy (1 + x2)x305% (%) B3 (X3) + @F (%3)) — rgry, (1 — x2)(E(X,)

+ ¢x(%2)) 37 (%3) — b3 (53)) — rgry x3(1 = 2x0) (@ (X)) — P (%2)) (37 (F3) + b7, (%3))}

“Eg(t,)hy(A, B, C, by, by, by, xp) — [Arg pk (%) 5y (%3) + 2rgr, x30% (%) B (%3) + ¢ (x3))]

CE (1) (A", B, C', by, by, ba, 3y, (64)
My = %CM [ dxidrads [ brdbibadbs it bi) - (1 = 208, (0 + 1y (3%, (52) — &1, ()

+ (@ (%) + @7 ()R (F3) — rx(l + x)x3dy (2) 3Pk (R3) + Pk (F3)) — ryri(1 — x3)(94 (2)

+ ¢, () Bi(F3) — di(F3)) — ryrxs(l — 2x,)(h) (52) — ¢y (52)) Bk (T3) + P (F3))}

“Ey(t)hy(A, B, C, by, by, b3, x,) — [4r, ¢ () p3(%3) + 2ryriexs ) (32)(3hk(R3) + i (F3))]

“E (t))hg(A', B!, C', by, by, b3, x1)}. (65)
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Here r,, = m{/mg, r, = m/mp. The evolution factors in
Egs. (64) and (65) take the form of

EQ(1, 12) = aX(t)C(1) exp[ =S, (1)] (66)

4

with the Sudakov factor S,,,

Sg(t) = S(x1m3/\/§; by) + S(x2mB/\/§’ b,)
+ 5((1 = x)mp/V2, by) + s(x3mp /N2, b3)

TSN PRIEY (AU

,3— —In(b;A)
In(t/A) In(t/A)
+ ln_ In(b,A) + ln_ ln(b3A)j|' (67)

The hard function 4, in the chromomagnetic penguin
amplitude is given by

hy(A, B, C, by, by, b3, x;) = —S,(x;)Ko(Bb,)K((Chbs)
X ﬁ ™ 40 tanbJ(Ab, tan)
X Jo(Ab, tand)J(Abs tanf)
(68)
with the index i = 1, 2; the threshold resummation func-

tion S,(x;) is given in Eq. (A7), and

A= fxymg, B=B'= xix;mg, C= i\/(l — X)X3mp,
A= /ximp, B'=B, C’=\/|x1 — x3|mp. (69)

Here the scale 7,, ;,, and the gluon invariant mass /* and /"
have been given in Eqgs. (58) and (59).

Finally, the total chromomagnetic penguin contribution
to the considered B — K1) (K = K°, K™) decays can be
written as

M = (K| H P |B)

_Gr
V2

MME) Fo($) + M F($)] - (T0)

Mg = (K| HGPIB)
G
= — L NIME, Fi() + MEF($)] D)

N

The mixing parameters F(¢), Fi(¢), Fo(¢) and Fi(¢p)
have been defined in Egs. (22) and (45).

V. NUMERICAL RESULTS AND DISCUSSIONS

A. Input parameters

We use the following input parameters [2,40] in the
numerical calculations:

PHYSICAL REVIEW D 78, 114001 (2008)

fz=021GeV,  fxr=0.16 GeV,
m, = 5475 MeV,  m, = 957.8 MeV,
mg = 0.49 GeV,  mpx = 1.7 GeV,
(72)
My =5279 GeV,  my, = 4.8 GeV,
My = 80.41 GeV, 74 = 1.527 ps,

T+ = 1.643 ps.

For the CKM quark-mixing matrix elements, we use the
values as given in Refs. [2,40]:

Via = 0.9745, V. = A = 0.2200,
|Vl = 4.31 X 1073, Vg = —0.224,

V.4 = 0.996, V., = 0.0413, (73)
|Vl = 7.4 X 1073, Ve = —0.042,

Vi = 0.9991,

with the CKM angles 8 = 21.6°, y = 60° = 20° and @ =
100° = 20°.

B. Branching ratios

Using the known wave functions and the central values
of relevant input parameters, we find the LO pQCD pre-
dictions for the corresponding form factors at zero mo-
mentum transfer:

F§(g? = 0) = 0.21 = 0.03(w,),
F(l)?—'”'l/(q2 =0)=0.17 = 0.03(w),), (74)
FBK(g2 = 0) = 0.3770%(w,,),

for w, = 0.40 £ 0.04 GeV, which agree well with those
obtained in QCD sum rule.

In the B-rest frame, the branching ratio of a general B —
PP decay can be written as

Br(B — M,M;) = 73 XIM(B — MyM;)?,

1
167mpg
(75)

where 75 is the lifetime of the B meson, and y is the phase
space factor and will equal to one when the masses of final
state light mesons are neglected. The total decay amplitude
in Eq. (75) is defined as

M (B — MyMs) = (MyMs| H op + H'D + H ™| B),
(76)

Using the wave functions and the input parameters as
specified in previous sections, it is straightforward to cal-
culate the CP-averaged branching ratios for the considered
four B— K7 decays, which are listed in Table I. For
comparison, we also list the corresponding updated experi-
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TABLE 1.

PHYSICAL REVIEW D 78, 114001 (2008)

The pQCD predictions for the branching ratios (in units of 107°). The label

LOniowc means the LO results with the NLO Wilson coefficients, and +VC, +QL, +MP,
NLO means the inclusion of the vertex corrections, the quark-loops, the magnetic penguin, and
all the considered NLO corrections, respectively.

Mode LO LOyowe +VC +QL +MP NLO Data QCDF
Bt —K'n 47 4.7 4.3 4.9 3.1 32 26*06  1.9%3)
Bt —K*'n' 302 46.8 746 481 302 510 70.5*35 49.17%72
B’ — K% 32 3.4 3.1 3.8 2.3 2.1 <2.0 11734
B — K%' 313 46.5 69.7 485 207 503 68 4 4657310

mental results [2] and numerical results evaluated in the
framework of the QCDF approach [15].

It is worth stressing that the theoretical predictions in the
pQCD approach have relatively large theoretical errors
induced by the still large uncertainties of many input
parameters, such as quark masses (m, 4, m;), chiral scales
(mog, md, m§)), Gegenbauer coefficients (aE-K’"), ceY), W,
and the CKM angles («, ), etc. The NLO pQCD predic-
tions for the CP-averaged branching ratios with the major
theoretical errors are the following:

Br (Bt — K1)

= [3.25 03 (wp) 3 (m)  i(a)] X 1076, (77)
Br(B* — K™

= [51.05 3% (w,) 52 (ms) T42(a7)] X 1076,

(78)

Br (B — K%n) = [2.1703(w,) 73 (my) T {9(a))] X 1076,

(79)
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s [ e
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= I .

(=1 I -
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= 2 E

m o 4
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FIG. 8 (color online).

Br (B’ — K%%/)
=[50.3758(w,) T L5 (my) T33(a7)] X 1076, (80)

The major errors are induced by the uncertainties of w;, =
0.4 = 0.04 GeV, my; = 130 = 30 MeV and Gegenbauer
coefficient aj = 0.44 * 0.22 (here aj denotes a,’ or
ay’), respectively.

In Figs. 8 and 9, we show the parameter dependence of
the pQCD predictions for the branching ratios of B* —
K*n" and B°— K9 decays for w, =04+
0.04 GeV, y = [0°, 180°].

From the numerical results about the branching ratios,
one can see that

(i) The decay amplitude B — K7, and B — K1), inter-
fere constructively for B — K7’ decays, but destruc-
tively for B — Kn decays. This mechanism results
in a factor of 6-10 disparity for the branching ratios
of B— K%' and B — K% decays.

The LO pQCD predictions for branching ratios are

much smaller (larger) than the measured values for

B— K7n' (B— Kn) decays, and show the same

tendency as found in Ref. [16].

(iii)) The NLO contributions can interfere constructively
(destructively) with the corresponding LO part for

(ii)

80 _I TTT TTTT TTTT TTTT TTTT TTTT TTTT TTTT TTT I_
70 |- i
i PP L i
o 6L
e r |
= f |
X 50 _
= n
m B _
40 =_ ___________ -
30 C 11 1 1 I 11 1 1 I 11 1 1 I 11 1 1 I 11 1 1 I 11 1 1 ]
0 30 60 90 120 150 180

Y (degree)

The vy dependence of the branching ratios (in units of 107°) of B — K%%() decays for w, = 0.36 GeV

(dotted curve), 0.40 GeV (solid curve), and 0.44 GeV (dashed curve).
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FIG. 9 (color online). The y dependence of the branching ratios (in units of 107¢) of B* — K* ") decays for w, = 0.36 GeV
(dotted curve), 0.40 GeV (solid curve), and 0.44 GeV (dashed curve).

B— Kn' (B— Kn) decays. For B — K%y’ and
B* — K*n' decays, the NLO contributions provide
a 70% enhancement to their branching ratios . For
B — K% and B* — K*n decays, on the other
hand, the NLO contributions give rise to a 30%
reduction to their branching ratios and result in the
good agreement between the pQCD predictions and
the data.

The NLO pQCD predictions for branching ratios
Br(B — K1) agree very well with the measured
values within 1 standard deviation. The NLO con-
tributions play an important role in understanding
the observed pattern of branching ratios of the four
B — Kn" decays.

@iv)

C. CP-violating asymmetries

Now we turn to the evaluations of the CP-violating
asymmetries of B — K7 decays in the pQCD approach.
For BT — K* ") decays, the direct CP-violating asym-
metries A ~p can be defined as

| M1 — M2

Adn =200 TS
MR+ M

(81)

Using Eq. (81), it is easy to calculate the direct
CP-violating asymmetries for the considered decays,
which are listed in Table II. As a comparison, we also

TABLE II.

list currently available data [2] and the corresponding
QCDF predictions [15].

The NLO pQCD predictions for AYL(BT — K+ 5)
(in units of 10~2) with the major theoretical errors are

A B = K= ) = —1LT*§30m,) 120 222,

AGB* — K*n) = =627 17 (m) 15 (y) [ 5(a)"),

(82)
where the dominant errors come from the variations of
mg = 130 £30 MeV, y = 60° £20° and Gegenbauer
coefficient ag = 0.44 = 0.22, respectively.

As to the CP-violating asymmetries for the neutral
decays B — K9, the effects of B — B® mixing should
be considered. The CP-violating asymmetry of B°(B%) —
K°n") decays are time-dependent and can be defined as

_ D(BY(A) = fep) = T(BYAD = fep)
P T(BYAN = fep) + T(BYAD — fep)

= A% cos(AmAT) + AR sin(AmAt),

(83)

where Am is the mass difference between the two Bg mass
eigenstates, At = fcp — t,, is the time difference between
the tagged BY (B°) and the accompanying B° (B®) with
opposite b flavor decaying to the final CP-eigenstate f-p at
the time 7¢p. The direct and mixing-induced CP-violating
asymmetries A, (or A ; in terms of Belle Collaboration)
and A DX can be written as

The pQCD predictions for the direct CP asymmetries in the NDR scheme (in units

of 1072), the QCDF predictions [15], and the world average as given by HFAG [2].

Mode

LO LOyowe +VC +QL +MP

NLO Data QCDF

AEBT—K*n) 93
AdL(B* — K*n/) —10.1

10.3
-7.3

31.1

—10.6 =59 —104

76 —11.7
—6.2

—27*9
1.6 = 1.9

7.8 —18.97300

— +10.6
9'0—16.2
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TABLE III.
(in units of 1072) for B® — K%9") decays, and

PHYSICAL REVIEW D 78, 114001 (2008)

The pQCD predictions for the direct, mixing-induced and total CP asymmetries

the world average as given by HFAG [2].

Mode LO LOnLowce +VC +QL +MP NLO Data
AdL(BY — Kin) —4.2 —15 —11.2 —0.9 —-1.9 —12.7
Adr(pd — KOy 14 0.0 1.5 0.7  —0.1 23 9+6
ADX(B® — K9n) 61.6 67.3 64.4 66.9 67.9 61.9 e
Anx(B* — Kdn') 64.6 63.5 63.4 63.2 63.2 62.7 61 =7
ALL(BY — Kin) 272 31.7 242 31.9 31.7 22.1 s
AW(B'— Kn) 321 30.8 3.7 310 305 318
Al = A, = Acpl” — 1 AEB® — Kgn) = —12.7 = 4.1(m) 33(y) 153 (a"),
cp 27 .
L el (4 AGE — KSn) = 23°530m) 30083,
4 2Im(A i
A =S =TT AP |(A C”ll, AL (B — Kim) = 6191350 G(@)
c .
ith the CP-violati ter A P ALB° — K§n') = 627333 (1) 35 (@), 87
ith the CP-violating parameter
v Y &p P B where the dominant errors come from the variations of
Ay = (g) (feplHet| BY) ®5) M= 130 = 30 MeV, y = 60° = 20°, a = 100° * 20°,
P \pla FeplHe| B and the Gegenbauer coefficient a,’ = 0.44 = 0.22,

By integrating the time variable ¢, one finds the total CP
asymmetries for B — K°7) decays,

tot — dir
CP 4 x27°CF

— AT (86)

1 + x?
where x = Am/I" = 0.775 [40].

In Table III, we show the pQCD predictions for the
central values of the direct, mixing-induced, and total CP
asymmetries for B" — K97 decays, obtained by using
the LO or NLO Wilson coefficients, and adding the vertex
corrections, the quark-loops, the magnetic penguin, or
include all the mentioned NLO corrections, respectively.

The NLO pQCD predictions for AL (BY — K%7) and
ADX(B® — K°%"Y) (in units of 1072) with the major
theoretical errors are

10 — T T T T T T T T 1

-20

o

30 60 90

Y (degree)

120 150 180

respectively.

In Fig. 10, we show the y-dependence of the pQCD
predictions for direct CP-violating asymmetries of B’ —
K9n" and B — K* 1" decays. In Fig. 11, we show the
a-dependence of the total CP-violating asymmetries for
B% — K97 (solid curve) and B® — K97’ (dotted curve),
respectively.

From the pQCD predictions and currently available
experimental measurements for the CP-violating asymme-
tries of the four B — K7 decays, one can see the follow-
ing points:

(a) For B" — K™ n decay, the measured direct CP

asymmetry is 3 standard deviations from zero. The
LO pQCD prediction changed its sign and becomes
consistent with the measured one due to the inclu-
sion of NLO contributions.

10 LI I L I L I L L L
0
I
§£8 -10r
< I
-20 -
_3°-I 11 | I 111 1 I 111 1 I 111 1 I 111 1 I 11 | I-
0 30 60 90 120 150 180
Y (degree)

FIG. 10 (color online). The NLO pQCD predictions for direct CP asymmetries (in percentage) of B — Kgnm and B* — K="

decays.
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(b)

[=2]
o
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FIG. 11 (color online). The y-dependence (a) and the a-dependence (b) of the total CP-asymmetries of B — Kgn (solid curve) and

B® — K97’ (dotted curve) decays.

(b) For AL (B* — K*7'), the pQCD prediction is
changed from —10% to —6% due to the inclusion
of NLO contributions, which is consistent with the
measured zero result within 1 standard deviation.
For B — K% decay, the effects of NLO contri-
butions to their CP asymmetries are rather small, as
can be seen from the numerical results as given in
Table III.

For neutral B — K%5() decays, the PQCD predic-
tions are  AI(B'— K%9') =~23%  and
ADX(B® — K%n') =~ 63%, which agree very well
with the data: (9 = 6)% and (61 = 7)%. This means
that the deviation AS = —n,S; — sin2 for B® —
K°%' decay is also very small in the pQCD
approach.

(©)

(d)

VI. SUMMARY

In this paper, we calculated the branching ratios and
CP-violating asymmetries of B* — K" 5" and B’ —
K%7" decays in the pQCD approach. The partial NLO
contributions considered here include QCD vertex correc-
tions, the quark-loops, and the chromomagnetic penguins.

From our calculations and phenomenological analysis,
we found the following results:

(a) For branching ratios, the NLO pQCD predictions (in

units of 107°) are

Br(B* — K'n) = 3.2532
Br(B~ — K*n') = 51.07135,
Br(B® — K%n) = 2.17%¢,

Br(B" — K%7') = 50.3*168, (88)

where the individual theoretical errors have been
added in quadrature. The decay amplitude B —

Kn, and B — K7, interfere constructively for B —
Kmn' decays, but destructively for B — K7 decays.
The NLO contributions in the pQCD approach,
furthermore, can provide a 70% enhancement to
Br(B— K7’'), but a 30% reduction to Br(B —
K ). The large branching ratio of B — K7’ decays,
as well as the large disparity Br(B — K7') >
Br(B — Kn) can therefore be understood naturally.
The pQCD predictions for the CP asymmetries of
B— K1 decays are consistent with currently
available data. For neutral B — K7 decays, for
example, the PQCD predictions are AL (B0 —
K9n') =23% and ADX(B®— Kin') =~ 63%,
which agree very well with the measured values of
(9 = 6)% and (61 = 7)%, respectively.

In this paper, only the partial NLO contributions in
the pQCD approach have been taken into account.
These considered NLO contributions may be the
dominant part of the whole NLO corrections. To
achieve a complete NLO calculation in the pQCD
approach, of course, the still-missing pieces from
the emission diagrams, hard-spectator and annihila-
tion diagrams, should be evaluated as soon as
possible.

(b)

(©
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APPENDIX: RELATED FUNCTIONS

We show here the function 4;s, coming from the Fourier
transformations of the hard kernel H (x;, b;),
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ho(xy, x5, by, by) = Ko(\/X1x3mpb)[0(by — by)Ko(\/xampby)Io(\/xympb,)

+ 60(by — b)) Ko(\fxampby)Io(\xympby)]S,(xy),

(AD)

hy(xa, X3, by, b3) = Ko(iyf(1 = x2)x3mpby)[0(b3 — by) Ko(iy/x3mpb3)Io(iy/x3mpb,)

+ 0(by — b3)Ky(i/x3mpby) Iy (i\/x3mpb3)]S,(x3),

(A2)

hf(xl» Xy, X3, by, b3) = {0(by — b3)KO(MB\/x1x2bl)IO(MB\/x1x2b3) + 0(bs — bl)KO(MB'\/Xlx2b3)IO(MB\/xlx2bl)}

. (%Ho(\/(m(}@ — x1))Mgb;), for x; — x3 < 0) )

KE)I)(V (02 (xy — x3)Mphs),

for x; —x3>0

3 (x1, X3, x3, by, b3) = {0(by — b3)Ko(igf (1 — x)x3b Mp) o iy (1 — x3)x3b3M )
+(0(bs — b1)Ko(iyf (1 = x2)x303Mp) I (i) (1 — x2)x35,Mp)}

(A4)

_ Ko(Mp[(x; — x3)(1 — x3)by),
%iH(()l)(MB\/()@ —x1)(1 — xp)b;), for x; — x3 <0

for x; —x3>0)

R (xy, o, X3, by, by) = {0(by — b3)Ko(igf (1 = x2)x301Mp)1o(igf (1 — x2)x363M}p)

+ 0(bs — b)Ko(iyf(1 — x2)x3b3M )1 (iyf (1 — x2)x3b Mp)} - (

where J,, is the Bessel function and K, I, are modified
Bessel functions with Ky(—ix) = —(7/2)Y,(x) +
i(7/2)Jy(x), and F(;)’s are defined by

F2 _1_X2(1_XI_X3).

= (A6)

The threshold resummation form factor S,(x;) is adopted
from Ref. [41]. It has been parametrized as

2142T(3/2 + ¢)
Jml(1 + ¢)

where the parameter ¢ = 0.3. This function is normalized
to unity.

Si(x) = [x(1 = 2], (A7)

The evolution factors E(g/), and Eg), appeared in the
decay amplitudes are given by

E, (1) = a,(t)exp[—S,,(1)],
E (1) = a(t)exp[—S.4()]lp,=p,»
EL (1) = ay (1) exp[—S,/(D)]lp,=p,»

Eu(t) = av(t) exp[_Sgh([)] (AS)

KO(MBFlhl)’ fOI'F%>0
T H (My/|F2|by), for F2<0 )

(A5)

The Sudakov factors used in the text are defined as
Sap(t) = s(xymp/N2, b)) + s(xamp/2, by)
+ s((1 — xz)mg/ﬁ, by)

—il:h‘ In(z/A)
Bi ‘_ln(blA)

In(r/A)
Rl A)], (A9)

Sea(t) = s(xymp/~2, b)) + s(xamp/ 2, by)
+ (1 = x2)mp/~2, b)) + s(x3mp/~2, b)
+ (1 = x3)mp/2, by)

1 [2ln In(z/A)

B L7 —In(b,A)

B 5 o In(t/A)

“—In(b3A)

:I, (A10)

Ser(t) = s(eymp/N2, b)) + s(xmp /N2, bs)
+ 5((1 = x)mp/2, b3) + s(x3mp /N2, bs)
+ s((1 — x3)m3/\/§’ bs)

s [1p In(t/A)
BiL —In(b,A)

In(1/A)
TN

], (A11)
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Sen(t) = s(ramp /N2, by) + s(czmp/ V2, bs) + s(1 = x2)mp/~2, by) + s(1 = x3)mp//2, by)

_ 1 I:h“ In(z/A)
BiL —In(b;A)

In(z/A)
+m—mmm}

(A12)

where the function s(g, b) is defined in Appendix A of Ref. [29]. The scale ¢;s in the above equations are chosen as

t, = max(\/x;mp, \Jx1x;mp, 1/by, 1/by),
t, = max(/xymg, \Jx;x;mp, 1/by, 1/b,),

1, = max(yxa|1 — x3 — xy|mp, /X1x3mp, 1/by, 1/b3),

1, = max(Vx2|x3 = xy|lmp, JxiX3mp, 1/by, 1/b3),

(1]
(2]

(31

[14]

(‘r‘
I

max(\/(l — Xp)X3mp, \/le = x3|(1 = xp)mp, 1/by, 1/b3),

(A13)

te = max(\/ll — (1 = x3 = x))lmp, \/(1 — x2)x3mp, 1/by, 1/b3),

g = max(\/(l — X)xX3mp, \/(1 — Xp)mp, 1/by, 1/b3),

~
O~

= max(\/(l — Xp)x3mp, \Jx3mp, 1/b,, 1/b3).
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