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We calculate the branching ratios and CP-violating asymmetries of the four B ! K�ð0Þ decays in the

perturbative QCD (pQCD) factorization approach. Besides the full leading-order contributions, the partial

next-to-leading-order (NLO) contributions from the QCD vertex corrections, the quark-loops, and the

chromomagnetic penguins are also taken into account. The NLO pQCD predictions for the CP-averaged

branching ratios are BrðBþ ! Kþ�Þ � 3:2� 10�6, BrðB� ! K��0Þ � 51:0� 10�6, BrðB0 ! K0�Þ �
2:1� 10�6, and BrðB0 ! K0�0Þ � 50:3� 10�6. The NLO contributions can provide a 70% enhancement

to the LO BrðB ! K�0Þ, but a 30% reduction to the LO BrðB ! K�Þ, which play the key role in

understanding the observed pattern of branching ratios. The NLO pQCD predictions for the CP-violating

asymmetries, such as Adir
CPðK0

S�
0Þ � 2:3% and Amix

CP ðK0
S�

0Þ � 63%, agree very well with currently

available data. This means that the deviation �S ¼ Amix
CP ðK0

S�
0Þ � sin2� in pQCD approach is also

very small.
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I. INTRODUCTION

The B ! K�ð0Þ decays are very interesting two-body
charmless hadronic B meson decays. In 1997, the CLEO
collaboration first reported unexpectedly large branching
ratios for B ! K�0 decays [1]. Eleven years later, three of

the four B ! K�ð0Þ decays have been measured with high
precision. The world averages as given by HFAG [2] are
the following (in units of 10�6):

BrðB� ! K��Þ ¼ 2:7� 0:3;

BrðB� ! K��0Þ ¼ 70:2� 2:5;

BrðB0 ! K0�Þ< 1:9;

BrðB0 ! K0�0Þ ¼ 64:9� 3:1:

(1)

From the above data one can see that: (a) the measured
BrðB ! K�0Þ are much larger than the early standard
model (SM) expectations, i.e., the so-called k�0-puzzle;
and (b) the large disparity between the branching ratios for
B ! K�0 and B ! K� decays: BrðB ! K�0Þ � BrðB !
K�Þ.

Besides the branching ratios, the CP-violating asymme-

tries for B� ! K��ð0Þ and B0 ! K0�ð0Þ decays have been
measured very recently [2,3]:

A dir
CPðB� ! K��Þ ¼ �0:27� 0:09;

Adir
CPðB� ! K��0Þ ¼ 0:016� 0:019;

(2)

A dir
CPðB0 ! K0�0Þ ¼ 0:09� 0:06;

Amix
CP ðB0 ! K0�0Þ ¼ 0:61� 0:07:

(3)

It may be noted that the average of the measured
Amix

CP ðB0 ! K0�0Þ is now more than 8� away from zero,

so that CP violation in this decay is well established; while
Adir

CPðB0 ! K0�0Þ is not in conflict with zero as expected

in the SM. The data for Adir
CPðB� ! K��ð0ÞÞ have less

precision, but are consistent with general expectations.
The measurements of time-dependent CP asymmetries

in B0 meson decays, such as B0 ! J=�K0 via b ! c �cs
‘‘tree’’ transition and B0 ! K0�0 via b ! sq �q penguin
transition, have provided crucial tests of the mechanism
of CP violation in the SM. Within the SM the mixing-
induced CP-violating asymmetry Amix

CP ðB0 ! K0�0Þ ¼
��fSf should be comparable with sin2� ¼ 0:685 ob-

tained from the tree-dominated B0 ! J=�K0 decay; this
point has been confirmed by the data in Eq. (3).

In the SM the decay B ! K�ð0Þ is believed to proceed
dominantly through gluonic penguin processes [4,5] and
has been evaluated by employing various methods [6–16].
Although great progress has been made during the past
decade, the predictions for BrðB ! K�0Þ from both the
QCD factorization (QCDF) approach [14,17] and the per-
turbative QCD (pQCD) approach [16,18] in the Feldmann-
Kroll-Stech (FKS) mixing scheme of �� �0 system
[19,20] are smaller than the data.
For the pattern of branching ratios in Eq. (1), many

possible solutions have been proposed. These include, for
example,
(a) Conventional b ! sq �q with constructive (destruc-

tive) interference between the u �u, d �d and s�s com-
ponents of �0 (�) [4];

(b) Large intrinsic charm content of �0 through the
chain b ! sc �c ! s�0 [7] or through b ! sc �c !
sg�g� ! sð�;�0Þ due to the QCD anomaly [8];

(c) The spectator hard-scattering mechanism through
the anomalous coupling of gg ! �0 [9–11];
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(d) A significant flavor-singlet contribution [10,14];
(e) A strong penguin b ! sg enhanced by new physics

[12,13].
But the data of branching ratio in Eq. (1) are still not
completely understood. For the CP violation of B !
K�ð0Þ decays, the theoretical studies is still under way.

In Ref. [16], the authors calculated the branching ratios

of B ! K�ð0Þ decays by employing the pQCD approach at
leading order. They considered the large corrections from
SUð3Þ flavor symmetry breaking as well as the possible
gluonic component of the�0 meson, but their prediction for
BrðB0 ! K0�0Þ (BrðB0 ! K0�Þ) is much smaller (larger)
than the measured value.

A sizable gluonic content in the �0 meson may provide a
large enhancement to the decay rate of B ! K�0. In
Ref. [21], the authors examined the possible gluonic con-
tribution to the B ! �0 transition form factor and found
that such a contribution is constructive with those from the
quark-content of �0, but numerically very small and can be
neglected safely. This point has also been confirmed by the
QCD sum-rule analysis [22].

In the quark-flavor mixing scheme, the physical � and

�0 meson are linear combinations of flavor state �q ¼
ðu �uþ d �dÞ= ffiffiffi

2
p

and �s ¼ s�s with the ‘‘mass’’ of mqq and

mss respectively. In Ref. [23], the effect of a large chiral
scale mq

0 ¼ m2
qq=ð2mqÞ with q ¼ ðu; dÞ for the meson �q

has been evaluated although we do not know which mecha-
nism is responsible to achieve a large value of mqq. When
one uses mqq ¼ 0:22 GeV [23] instead of its generally
accepted value of mqq ¼ 0:11 GeV, a larger B ! K�q

decay amplitude can be obtained. Consequently, the LO
pQCD predictions for BrðB ! K�0Þ become consistent
with the data.

In Ref. [24], the authors examined the possible way to
increase the value of mqq. They found that a few-percent
violation of the Okubo-Zweig-Iizuka (OZI) rule can en-
hancemqq a few times, which then leads to the consistency

of the LO predictions with the data for B ! K�ð0Þ decays.
Besides the possible mechanisms mentioned above, we

here consider a new and natural solution: the effects of the
next-to-leading-order (NLO) contributions in the pQCD
approach. As shown in Ref. [25], the NLO contributions
to B ! K� decays can play the key rule to explain the so-
called ‘‘K�’’-puzzle. We expect here that the NLO con-
tributions could help us to resolve the ‘‘K�0’’-puzzle.

For the CP asymmetries of B0 ! K0�0, the deviation
�Sf ¼ ��fSf � sin2� has been estimated, for example,

in the QCDF approach [15,26] and the soft collinear ef-
fective theory [27]. The resultant bound is j�Sfj & 0:05.

Since the source of the CP violation in the pQCD approach
is very different from those in the QCDF/SCET approach,

we here try to calculate the CP asymmetries of B ! K�ð0Þ
decays by employing the pQCD approach at LO and NLO
level, to check if we can accommodate the data of CP
asymmetries.

In this paper we will calculate the next-to-leading-order
contributions to the branching ratios and CP-violating

asymmetries of the four B ! K�ð0Þ decays. We first calcu-

late the decay amplitudes of the B ! K�ð0Þ decays by
employing the pQCD factorization approach at the leading
order, as have been done in previous studies for other two-
body charmless B meson decays [28–31]. And then we
evaluate the NLO contributions to these decays.
The NLO contributions considered here include: QCD

vertex corrections, the quark-loops and the chromomag-
netic penguins. We expect that they are the major part of
the full NLO contributions in the pQCD approach [25]. Of
course, remaining NLO contributions in the pQCD ap-
proach, such as those from factorizable emission diagrams,
hard-spectator and annihilation diagrams, should be calcu-
lated as soon as possible.
This paper is organized as follows. In Sec. II, we give a

brief review about the pQCD factorization approach. In
Sec. III, we calculate analytically the relevant Feynman
diagrams and present the various decay amplitudes for the
studied decay modes in leading order. In Sec. IV, the NLO
contributions from the vertex corrections, the quark loops
and the chromomagnetic penguin amplitudes are eval-
uated. We calculate and show the pQCD predictions for

the branching ratios and CP-violating asymmetries of B !
K�ð0Þ decays in Sec. V. The summary and some discussions
are included in the final section.

II. THEORETICAL FRAMEWORK

A. Theoretical framework

In the pQCD approach, the decay amplitude is separated
into soft (�Mi

), hard (Hðki; tÞ), and harder (CðMWÞ) dy-
namics characterized by different energy scales (�QCD, t,
mb, MW) [18]. The decay amplitude AðB ! M2M3Þ can
be written conceptually as the convolution,

AðB ! M2M3Þ �
Z

d4k1d
4k2d

4k3Tr½CðtÞ�Bðk1Þ
��M2

ðk2Þ�M3
ðk3ÞHðk1; k2; k3; tÞ�; (4)

where ki’s are momenta of light quarks included in each
meson, and Tr denotes the trace over Dirac and color
indices. CðtÞ is the Wilson coefficient evaluated at scale
t. In the above convolution, the Wilson coefficient CðtÞ
includes the harder dynamics at scale higher than MB and
describes the evolution of local 4-Fermi operators frommW

(the W boson mass) down to t�Oð
ffiffiffiffiffiffiffiffiffiffiffi
��MB

q
Þ scale, where

�� 	 MB �mb. The function Hðk1; k2; k3; tÞ describes the
four-quark operator and the spectator quark connected by a

hard gluon whose q2 is in the order of ��MB, and includes

the Oð
ffiffiffiffiffiffiffiffiffiffiffi
��MB

q
Þ hard dynamics. Therefore, this hard kernel

H can be perturbatively calculated. The function�Mi
is the

wave function which describes hadronization of the quark
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and antiquark in the meson Mi. While the hard kernel H
depends on the processes considered, the wave function
�Mi

is independent of the specific processes. Using the

wave functions determined from other well-measured pro-
cesses, one can make quantitative predictions here.

Since the b quark inside the Bmeson is rather heavy, we
consider the B meson at rest for simplicity. It is then
convenient to use light-cone coordinate ðpþ; p�;pTÞ to
describe the meson’s momenta: p� ¼ 1ffiffi

2
p ðp0 � p3Þ and

pT ¼ ðp1; p2Þ. Using the light-cone coordinates the B me-
son momentum PB and the two final state meson’s mo-
menta P2 and P3 (for M2 and M3 respectively) can be
written as

PB ¼ MBffiffiffi
2

p ð1; 1; 0TÞ; P2 ¼ MBffiffiffi
2

p ð1� r23; r
2
2; 0TÞ;

P3 ¼ MBffiffiffi
2

p ðr23; 1� r22; 0TÞ;
(5)

where ri ¼ mi=MB. m2 and m3 are the mass of the two
final state mesons. For the case of B ! PP decays, r2 and
r3 are small and could be neglected safely.

Putting the antiquark momenta in the B, M2 and M3

meson as k1, k2, and k3, respectively, we can choose

k1 ¼ ðx1Pþ
1 ; 0;k1TÞ; k2 ¼ ðx2Pþ

2 ; 0;k2TÞ;
k3 ¼ ð0; x3P�

3 ;k3TÞ:
(6)

Then, the integration over k�1 , k�2 , and kþ3 in Eq. (4) will

lead to

AðB!PVÞ�
Z

dx1dx2dx3b1db1b2db2b3db3


Tr½CðtÞ�Bðx1;b1Þ�M2
ðx2;b2Þ�M3

ðx3;b3Þ
�Hðxi;bi; tÞStðxiÞe�SðtÞ�; (7)

where bi is the conjugate space coordinate of kiT . The large
logarithms ( lnmW=t) coming from QCD radiative correc-
tions to four-quark operators are included in the Wilson
coefficients CðtÞ. The large double logarithms (ln2xi) on
the longitudinal direction are summed by the threshold
resummation, and they lead to StðxiÞ which smears the

end-point singularities on xi. The last term, e�SðtÞ, is the
Sudakov form factor which suppresses the soft dynamics
effectively [18].

B. Effective Hamiltonian and Wilson coefficients

For the studied B ! K�ð0Þ decays, the weak effective
Hamiltonian Heff for b ! s transition can be written as
[32]

H eff ¼ GFffiffiffi
2

p X
q¼u;c

VqbV
�
qs

�
½C1ð�ÞOq

1ð�Þ þ C2ð�ÞOq
2ð�Þ�

þX10
i¼3

Cið�ÞOið�Þ
�
; (8)

where GF ¼ 1:16639� 10�5 GeV�2 is the Fermi con-
stant, and Vij is the Cabibbo-Kobayashi-Maskawa

(CKM) matrix element, Cið�Þ are the Wilson coefficients
evaluated at the renormalization scale�, andOið�Þ are the
four-fermion operators. For the case of b ! d transition,
one simply makes a replacement of s by d in Eq. (8) and in
the expressions of Oið�Þ operators, which can be found
easily, for example, in Refs.[30–32].
In PQCD approach, the energy scale ‘‘t’’ is chosen as the

largest energy scale in the hard kernelHðxi; bi; tÞ of a given
Feynman diagram, in order to suppress the higher-order
corrections and improve the reliability of the perturbative
calculation. Here, the scale ‘‘t’’ may be larger or smaller
than the mb scale. In the range of t < mb or t � mb, the
number of active quarks isNf ¼ 4 orNf ¼ 5, respectively.

For the Wilson coefficients Cið�Þ and their renormaliza-
tion group (RG) running, they are known at NLO level
currently [32]. The explicit expressions of the LO and NLO
CiðmWÞ can be found easily, for example, in Refs. [29,32].
When the pQCD approach at leading-order is employed,

the leading-order Wilson coefficients CiðmWÞ, the leading-
order RG evolution matrixUðt; mÞð0Þ from the high scalem
down to t < m (for details see Eq. (3.94) in Ref. [32]), and
the leading-order �sðtÞ are used:

�sðtÞ ¼ 4�

�0 ln½t2=�2
QCD�

; (9)

where �0 ¼ ð33� 2NfÞ=3, �ð5Þ
QCD ¼ 0:225 GeV, and

�ð4Þ
QCD ¼ 0:287 GeV.

When the NLO contributions are taken into account,
however, the NLO Wilson coefficients CiðmWÞ, the NLO
RG evolution matrix Uðt; m; �Þ (for details see Eq. (7.22)
in Ref. [32]), and the �sðtÞ at two-loop level are used:

�sðtÞ ¼ 4�

�0 ln½t2=�2
QCD�



�
1� �1

�2
0


 ln½ln½t
2=�2

QCD��
ln½t2=�2

QCD�
�
;

(10)

where �0 ¼ ð33� 2NfÞ=3, �1 ¼ ð306� 38NfÞ=3,
�ð5Þ

QCD ¼ 0:225 GeV, and �ð4Þ
QCD ¼ 0:326 GeV.

From the general knowledge, the hard scale t must be
much larger than �QCD � 0:2 GeV in order to guarantee

the reliability of perturbative calculations. In previous
calculations based on the pQCD approach �0 ¼ 0:5 GeV
is chosen as the lower cutoff of the scale t. In our opinion, it
is indeed too low, because it may be conceptually incorrect
to evaluate the Wilson coefficients at scales down to
0.5 GeV [33]. The explicit numerical checks as done in
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Ref. [34] also show that (a) the Wilson coefficient C1ð0:5Þ
is close to �1 and clearly too large in size!; (b) the values
of the Wilson coefficients C3;4;5;6ð�Þ at � ¼ 0:5 GeV are

about 4 to 7 times larger than those at � ¼ 1:0 GeV; and
(c) the �0-dependence of all Wilson coefficients becomes
relatively weak for �0 � 1:0 GeV. We therefore believe
that it is reasonable to choose �0 ¼ 1:0 GeV as the lower
cutoff of the hard scale t, which is also close to the hard-

collinear scale
ffiffiffiffiffiffiffiffiffiffiffi
��mB

q
� 1:3 GeV in SCET. In the numeri-

cal integrations we will fix the values CiðtÞ at Cið1:0Þ
whenever the scale t runs below the scale �0 ¼ 1:0 GeV
[34,35].

C. Wave functions

Since the b-quark is much heavier than the up or down
quark, the B meson is treated as a very good heavy-light
system. Although there are in general two Lorentz struc-
tures in the B meson distribution amplitudes, they obey to
the following normalization conditions:

Z d4k1
ð2�Þ4 �Bðk1Þ ¼ fB

2
ffiffiffiffiffiffiffiffiffi
2Nc

p ;
Z d4k1

ð2�Þ4
��Bðk1Þ ¼ 0:

(11)

However, it can be argued that the contribution of ��B is
numerically small [36], thus its contribution can be nu-
merically neglected. In this approximation, we only con-
sider the contribution of Lorentz structure

�B ¼ 1ffiffiffiffiffiffiffiffiffi
2Nc

p ðP6 B þmBÞ�5�Bðk1Þ; (12)

with

�Bðx; bÞ ¼ NBx
2ð1� xÞ2 exp

�
�M2

Bx
2

2!2
b

� 1

2
ð!bbÞ2

�
;

(13)

where !b is a free parameter and we take !b ¼ 0:4�
0:04 GeV in numerical calculations, and NB ¼ 101:445 is
the normalization factor for !b ¼ 0:4.

The Kaon mesons are treated as a light-light system. The
wave function of K meson is defined as [37]

�KðP; x; 	Þ 	 1ffiffiffiffiffiffiffiffiffi
2NC

p �5½P6 �A
KðxÞ þmK

0 �
P
KðxÞ

þ 	mK
0 ðv6 n6 � v 
 nÞ�T

KðxÞ�; (14)

where P and x are the momentum and the momentum
fraction of K, respectively. The parameter 	 is either þ1
or �1 depending on the assignment of the momentum
fraction x.

For the�ð0Þ meson, the wave function for�q components

of �0 meson are given as

��q
ðP; x; 	Þ 	 1ffiffiffiffiffiffiffiffiffi

2NC

p �5½P6 �A
�q
ðxÞ þmq

0�
P
�q
ðxÞ

þ 	mq
0ðv6 n6 � v 
 nÞ�T

�q
ðxÞ�; (15)

where P and x are the momentum and the momentum
fraction of �q, respectively. We assumed here that the

wave function of �q is the same as the � wave function.

The parameter 	 is either þ1 or �1 depending on the
assignment of the momentum fraction x. The �s ¼ s�s
component of the wave function can be defined in the
same way.
The expressions of the relevant distribution amplitudes

(DAs) of the K meson are the following [37]:

�A
KðxÞ ¼

fK
2
ffiffiffiffiffiffiffiffiffi
2Nc

p 6xð1� xÞ½1þ aK1 C
3=2
1 ðtÞ þ aK2 C

3=2
2 ðtÞ

þ aK4 C
3=2
4 ðtÞ�; (16)

�P
KðxÞ ¼

fK
2
ffiffiffiffiffiffiffiffiffi
2Nc

p
�
1þ

�
30�3 � 5

2

2
K

�
C1=2
2 ðtÞ

� 3

�
�3!3 þ 9

20

2
Kð1þ 6aK2 Þ

�
C1=2
4 ðtÞ

�
; (17)

�T
KðxÞ ¼ � fK

2
ffiffiffiffiffiffiffiffiffi
2Nc

p t

�
1þ 6

�
5�3 � 1

2
�3!3 � 7

20

2
K

� 3

5

2
Ka

K
2

�
ð1� 10xþ 10x2Þ

�
; (18)

with the mass ratio 
K ¼ mK=m0K. The Gegenbauer mo-
ments can be given as [37]:

aK1 ¼ 0:2; aK2 ¼ 0:25; aK4 ¼ �0:015: (19)

The values of other parameters are �3 ¼ 0:015 and ! ¼
�3:0. At last the Gegenbauer polynomials C�

nðtÞ are given
as

C1=2
2 ðtÞ ¼ 1

2
ð3t2 � 1Þ;

C1=2
4 ðtÞ ¼ 1

8
ð3� 30t2 þ 35t4Þ;

C3=2
1 ðtÞ ¼ 3t; C3=2

2 ðtÞ ¼ 3

2
ð5t2 � 1Þ;

C3=2
4 ðtÞ ¼ 15

8
ð1� 14t2 þ 21t4Þ;

(20)

with t ¼ 2x� 1.
In the quark-flavor mixing scheme, the physical states �

and �0 are related to the flavor states �q ¼ ðu �uþ d �dÞ= ffiffiffi
2

p
and �s ¼ s�s through a single mixing angle �,

�
�0

� �
¼ cos� � sin�

sin� cos�

� �
�q

�s

� �

¼ F1ð�Þðu �uþ d �dÞ þ F2ð�Þs�s
F0
1ð�Þðu �uþ d �dÞ þ F0

2ð�Þs�s
� �

(21)
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with

F1ð�Þ ¼ cos�ffiffiffi
2

p ; F2ð�Þ ¼ � sin�;

F0
1ð�Þ ¼ sin�ffiffiffi

2
p ; F0

2ð�Þ ¼ cos�:

(22)

The relation between the decay constants
ðfq�; fs�; fq�0 ; fs�0 Þ and ðfq; fs; Þ can be written as

fq� fs�
fq
�0 fs

�0

 !
¼ cos� � sin�

sin� cos�

� �
fq 0
0 fs

� �
: (23)

The chiral enhancement mq
0 and ms

0 associated with the

two-parton twist-3 �q and �s meson distribution ampli-

tudes have been defined as [25]

mq
0 ¼

m2
qq

2mq

¼ 1

2mq

�
m2

�cos
2�þm2

�0sin2�

�
ffiffiffi
2

p
fs

fq
ðm2

�0 �m2
�Þ cos� sin�

�
; (24)

ms
0 ¼

m2
ss

2ms

¼ 1

2ms

�
m2

�0cos2�þm2
�sin

2�

�
ffiffiffi
2

p
fq

fs
ðm2

�0 �m2
�Þ cos� sin�

�
; (25)

by assuming the exact isospin symmetry mq ¼ mu ¼ md.

The three input parameters fq, fs, and � have been ex-

tracted from the data of the relevant exclusive processes
[19]:

fq ¼ ð1:07� 0:02Þf�; fs ¼ ð1:34� 0:06Þf�;
� ¼ 39:3� � 1:0�:

(26)

The distribution amplitudes �A;P;T
�q

represent the axial-

vector, pseudoscalar and tensor component of the wave
function respectively [37]. They are given as

�A
�q
ðxÞ ¼ fq

2
ffiffiffiffiffiffiffiffiffi
2Nc

p 6xð1� xÞ½1þ a
�q

1 C3=2
1 ð2x� 1Þ

þ a
�q

2 C3=2
2 ð2x� 1Þ þ a

�q

4 C3=2
4 ð2x� 1Þ�; (27)

�P
�q
ðxÞ ¼ fq

2
ffiffiffiffiffiffiffiffiffi
2Nc

p
�
1þ

�
30�3 � 5

2

2
�q

�
C1=2
2 ð2x� 1Þ

� 3

�
�3!3 þ 9

20

2
�q
ð1þ 6a

�q

2 Þ
�
C1=2
4 ð2x� 1Þ

�
;

(28)

�T
�q
ðxÞ ¼ fq

2
ffiffiffiffiffiffiffiffiffi
2Nc

p ð1� 2xÞ
�
1þ 6

�
5�3 � 1

2
�3!3

� 7

20

2
�q

� 3

5

2
�q
a
�q

2

�

 ð1� 10xþ 10x2Þ

�
;

(29)

where 
�q
¼ 2mq=mqq,a

�q

1 ¼ a�1 ¼ 0, a
�q

2 ¼ a�2 ¼
0:44� 0:22, a

�q

4 ¼ a�4 ¼ 0:25, and the Gegenbauer poly-

nomials C�
nðtÞ have been given in Eq. (20). As to the wave

function and the corresponding DAs of the s�s components,
we also use the same form as q �q but with some parameters

changed: 
�s
¼ 2ms=mss, a

�s

i ¼ a
�q

i for i ¼ 1, 2, 4.

The transverse momentum kT is usually converted to the
b parameter by Fourier transformation. The initial condi-
tions of leading twist �iðxÞ, i ¼ B, K, �, �0, are of non-
perturbative origin, satisfying the normalization

Z 1

0
�iðx; b ¼ 0Þdx ¼ 1

2
ffiffiffi
6

p fi; (30)

with fi the meson decay constant.

III. DECAYAMPLITUDES AT LEADING ORDER

In the pQCD approach, the Feynman diagrams as shown

in Fig. 1 may contribute to B ! K�ð0Þ decays at leading

order. As mentioned previously, B0 ! K0�ð0Þ decays have
been studied in Ref. [16] by employing the LO pQCD
approach. In this section, we first calculate the LO decay

amplitudes for four B ! K�ð0Þ decays, but in a rather
different way to treat the Feynman diagrams from that in
Ref. [16].
At the leading order in the pQCD approach, there are

three types of diagrams contributing to the B ! K�ð0Þ
decays, the factorizable emission diagrams, the hard-
spectator diagrams, and the annihilation diagrams, as illus-
trated in Fig. 1. From the factorizable emission diagrams,
the corresponding form factors can be extracted by pertur-
bative calculation. First, we consider the B ! K� decay
modes, and then extend the calculation to B ! K�0
decays.
For the usual factorizable emission diagrams (Figs. 1(a)

and 1(b)) with the B ! K transition, i.e., it is the K meson
pick up the spectator quark, the operatorsO1,O2,O3;4, and

O9;10 are ðV � AÞðV � AÞ currents, the sum of the individ-

ual amplitudes is given as

FeK¼ 8ffiffiffi
2

p �GFCFm
4
B

Z 1

0
dx1dx2

Z 1

0
b1db1b2db2�Bðx1;b1Þ

�f½ð1þx2Þ�A
Kð �x2Þþð1�2x2ÞrKð�P

Kð �x2Þ
��T

Kð �x2ÞÞ� 
EeðtaÞheðx1;x2;b1;b2Þ
þ2rK�

P
Kð �x2Þ 
Eeðt0aÞheðx2;x1;b2;b1Þg; (31)

where rK ¼ mK
0 =mB withmK

0 is the chiral scale, CF ¼ 4=3
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is a color factor, and �x2 ¼ 1� x2. The evolution function
EeðtÞ and hard function he are displayed in the Appendix.
In the above equation, we do not include the Wilson
coefficients of the corresponding operators, which are
process dependent. They will be shown later in the expres-
sions of total decay amplitude.

Also for Figs. 1(a) and 1(b), the operators O5;6 and O7;8

have a structure of ðV � AÞðV þ AÞ currents. In some
decay channels, some of these operators contribute to the

decay amplitude in a factorizable way. Since only the
axial-vector part of the ðV þ AÞ current contributes to the

pseudoscaler meson production, hKjV � AjBi�
h�ð0ÞjV þ Aj0i ¼ �hKjV � AjBih�ð0ÞjV � Aj0i, that is

FP1
eK ¼ �FeK: (32)

In some other cases, we need to do Fierz transformation for
those operators to get the right color structure for factori-
zation to work. In this case, we get ðS� PÞðSþ PÞ opera-
tors from ðV � AÞðV þ AÞ ones. For these ðS� PÞðSþ PÞ
operators, the corresponding decay amplitude is

FP2
eK ¼ 16ffiffiffi

2
p �GFCFm

4
B

Z 1

0
dx1dx2

Z 1

0
b1db1b2db2�Bðx1Þ

� fr�½�A
Kð �x2Þ þ rKðð2þ x2Þ�P

Kð �x2Þ þ x2�
T
Kð �x2ÞÞ�


 EeðtaÞheðx1; x2; b1; b2Þ þ 2rKr��
P
Kð �x2Þ


 Eeðt0aÞheðx2; x1; b2; b1Þg; (33)

where r� ¼ mq
0=mB, and mq

0 ¼ m
�q

0 is the chiral scale

defined in Eq. (24).
For the nonfactorizable diagrams (Figs. 1(c) and 1(d)),

all three meson wave functions are involved. The integra-
tion of b2 can be performed using the � function �ðb3 �
b2Þ, leaving only integration of b1 and b3. For the ðV �
AÞðV � AÞ operators, the result is

MeK ¼ 16ffiffiffi
3

p �GFCFm
4
B

Z 1

0
dx1dx2dx3

Z 1

0
b1db1b3db3

��Bðx1; b1Þ�A
�ð �x3Þf½�rKx2ð�P

Kð �x2Þ þ�T
Kð �x2ÞÞ

þ ð1� x3Þ�A
Kð �x2Þ� 
 E0

eðtbÞhnðx1; x2; 1� x3; b1; b3Þ
þ ½�ðx2 þ x3Þ�A

Kð �x2Þ þ rKx2ð�P
Kð �x2Þ ��T

Kð �x2ÞÞ�

 E0

eðt0bÞhnðx1; x2; x3; b1; b3Þg; (34)

where �� denotes ��q
or ��s

.

There are two kinds of contributions from ðV � AÞ�
ðV þ AÞ operators: MP1

eK and MP2
eK, corresponding to the

ðV � AÞðV þ AÞ and ðS� PÞðSþ PÞ type operators re-
spectively:

MP1
eK ¼ 16ffiffiffi

3
p �GFCFm

4
B

Z 1

0
dx1dx2dx3

Z 1

0
b1db1b3db3�Bðx1; b1Þ 
 f½ð1� x3Þ�A

Kð �x2Þð�P
�ð �x3Þ ��T

�ð �x3ÞÞ

þ rKð1� x3Þð�P
Kð �x2Þ þ�T

Kð �x2ÞÞð�P
�ð �x3Þ ��T

�ð �x3ÞÞ þ rKx2ð�P
Kð �x2Þ ��T

Kð �x2ÞÞð�P
�ð �x3Þ þ�T

�ð �x3ÞÞ�

 E0

eðtbÞhnðx1; x2; 1� x3; b1; b3Þ � ½x3�A
Kð �x2Þð�P

�ð �x3Þ þ�T
�ð �x3ÞÞ þ r2x3ð�P

Kð �x2Þ þ�T
Kð �x2ÞÞð�P

�ð �x3Þ
þ�T

�ð �x3ÞÞ þ r2x2ð�P
Kð �x2Þ ��T

Kð �x2ÞÞð�P
�ð �x3Þ ��T

�ð �x3ÞÞ� 
 E0
eðt0bÞhnðx1; x2; x3; b1; b3Þg; (35)

(a) (b)

(c) (d)

(e) (f )

(g ) (h)

FIG. 1. Feynman diagrams which may contribute to the B !
K�ð0Þ decays at leading order.
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MP2
eK ¼ 16ffiffiffi

3
p �GFCFm

4
B

Z 1

0
dx1dx2dx3

Z 1

0
b1db1b3db3�Bðx1; b1Þ�A

�ð �x3Þ 
 f½�ð1þ x2 � x3Þ�A
Kð �x2Þ

þ x2rKð�P
Kð �x2Þ ��T

Kð �x2ÞÞ� 
 E0
eðtbÞhnðx1; x2; 1� x3; b1; b3Þ þ ½x3�A

Kð �x2Þ � x2rKð�P
Kð �x2Þ þ�T

Kð �x2ÞÞ�

 E0

eðt0bÞhnðx1; x2; x3; b1; b3Þg: (36)

For the nonfactorizable annihilation diagrams (Figs. 1(e) and 1(f)) again all three wave functions are involved. Here we
have two kinds of contributions: MP2

aK ¼ 0, MaK, and MP1
aK describe the contributions from the ðV � AÞðV � AÞ and ðV �

AÞðV þ AÞ type operators, respectively,
MaK ¼ 16ffiffiffi

3
p �GFCFm

4
B

Z 1

0
dx1dx2dx3

Z 1

0
b1db1b3db3�Bðx1; b1Þ 
 f½ð1� x2Þ�A

Kð �x2Þ�A
�ð �x3Þ þ rKr�ð1� x2Þð�P

Kð �x2Þ

þ�T
Kð �x2ÞÞð�P

�ð �x3Þ ��T
�ð �x3ÞÞ þ rKr�x3ð�P

Kð �x2Þ ��T
Kð �x2ÞÞð�P

�ð �x3Þ þ�T
�ð �x3ÞÞ� 
 E0

aðtcÞhnaðx1; x2; x3; b1; b3Þ
� ½x3�A

Kð �x2Þ�A
�ð �x3Þ þ 4rKr��

P
Kð �x2Þ�P

�ð �x3Þ � rKr�ð1� x3Þð�P
Kð �x2Þ þ�T

Kð �x2ÞÞ 
 ð�P
�ð �x3Þ ��T

�ð �x3ÞÞ
� rKr�x2ð�P

Kð �x2Þ ��T
Kð �x2ÞÞð�P

�ð �x3Þ þ�T
�ð �x3ÞÞ� 
 E0

aðt0cÞhnaðx1; x2; x3; b1; b3Þg; (37)

MP1
aK ¼ 16ffiffiffi

3
p �GFCFm

4
B

Z 1

0
dx1dx2dx3

Z 1

0
b1db1b3db3�Bðx1; b1Þf½�ð1� x2ÞrK�A

�ð �x3Þð�P
Kð �x2Þ þ�T

Kð �x2ÞÞ

þ r�x3�
A
Kð �x2Þð�P

�ð �x3Þ ��T
�ð �x3ÞÞ�E0

aðtcÞhnaðx1; x2; x3; b1; b3Þ � ½ðx2 þ 1ÞrK�A
�ð �x3Þð�P

Kð �x2Þ þ�T
Kð �x2ÞÞ

þ r�ðx3 � 2Þ�A
Kð �x2Þð�P

�ð �x3Þ ��T
�ð �x3ÞÞ�E0

aðt0cÞhnaðx1; x2; x3; b1; b3Þg: (38)

The factorizable annihilation diagrams (Figs. 1(g) and 1(h)) involve onlyK and �ð0Þ wave functions. There are also three
kinds of decay amplitudes for these two diagrams.,FaK, F

P1
aK and FP2

aK:

FaK ¼ FP1
aK

¼ 8ffiffiffi
2

p �GFCFm
4
B

Z 1

0
dx2dx3

Z 1

0
b2db2b3db3f�½ð1� x2Þ�A

Kð �x2Þ�A
�ð �x3Þ þ 4r�rK�

P
Kð �x2Þ�P

�ð �x3Þ

� 2rKr�x2�
P
�ð �x3Þð�P

Kð �x2Þ þ�T
Kð �x2ÞÞ� 
 EaðtdÞhaðx3; 1� x2; b3; b2Þ þ ½x3�A

Kð �x2Þ�A
�ð �x3Þ þ 2r�rK�

P
Kð �x2Þð�P

�ð �x3Þ
þ�T

�ð �x3ÞÞ þ 2r�rKx3�
P
Kð �x2Þð�P

�ð �x3Þ ��T
�ð �x3ÞÞ� 
 Eaðt0dÞhað1� x2; x3; b2; b3Þg; (39)

FP2
aK ¼ 16ffiffiffi

2
p �GFCFm

4
B

Z 1

0
dx2dx3

Z 1

0
b2db2b3db3 
 f½rKð1� x2Þð�P

Kð �x2Þ ��T
Kð �x2ÞÞ�A

�ð �x3Þ þ 2r��
A
Kð �x2Þ�P

�ð �x3Þ�


 EaðtdÞhaðx3; 1� x2; b3; b2Þ þ ½2rK�P
Kð �x2Þ�A

�ð �x3Þ þ x3r��
A
Kð �x2Þð�P

�ð �x3Þ þ�T
�ð �x3ÞÞ�


 Eaðt0dÞhað1� x2; x3; b2; b3Þg: (40)

The evolution function EiðtjÞ and hard function hi ap-
peared in Eqs. (33)–(40) and are given explicitly in the
Appendix.

If we exchange the K and �ð0Þ in Fig. 1, the correspond-
ing decay amplitudes for new diagrams will be similar with

those as given in Eqs. (31)–(40), since theK and �ð0Þ are all
pseudoscalar mesons and have similar wave functions. The

decay amplitudes for new diagrams, say Fe�, F
P1;P2
e� , Me�,

MP1;P2
e� , Ma�,M

P1
a�, Fa�,F

P1;P2
a� , can be obtained from those

as given in Eqs. (31)–(40) by the following replacements:

�A
K $ �A

�ð0Þ ; �P
K $ �P

�ð0Þ ;

�T
K $ �T

�ð0Þ ; rK $ r�ð0Þ :
(41)

For B0 ! K0� decay, by combining the contributions
from all possible configurations of Feynman diagrams, one
finds the total decay amplitude with the inclusion of the
corresponding Wilson coefficients as follows:
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MðK0�Þ ¼ hK0�jHeffjB0i
¼ FeK

��
ua2 � t

�
2a3 � 2a5 � 1

2
a7 þ 1

2
a9

��
fq� � t

�
a3 þ a4 � a5 þ 1

2
a7 � 1

2
a9 � 1

2
a10

�
fs�

�

� Fe�t

�
a4 � 1

2
a10

�
fKF1ð�Þ � ½FP2

eKf
s
� þ FP2

e�fKF1ð�Þ�t

�
a6 � 1

2
a8

�
� ½FakF2ð�Þ þ Fa�F1ð�Þ�

� t

�
a4 � 1

2
a10

�
þ ½FP2

aKF2ð�Þ þ FP2
a�F1ð�Þ�t

�
a6 � 1

2
a8

�
fB þMeK

��
uC2 � t 


�
2C4 þ 1

2
C10

��
F1ð�Þ

� t

�
C3 þ C4 � 1

2
C9 � 1

2
C10

�
F2ð�Þ

�
�Me�t

�
C3 � 1

2
C9

�
F1ð�Þ � ½MP1

eKF2ð�Þ þMP1
e�F1ð�Þ�

� t

�
C5 � 1

2
C7

�
�MP2

eKt

��
2C6 þ 1

2
C8

�
F1ð�Þ þ ðC6 � 1

2
C8ÞF2ð�Þ

�
(42)

where u ¼ V�
ubVus, t ¼ V�

tbVts, and F1ð�Þ, F2ð�Þ are the mixing factors as given in Eq. (22).
The coefficients ai in Eq. (42) are the combinations of the Wilson coefficients Ci, and have been defined as usual:

a1 ¼ C2 þ C1

3
; a2 ¼ C1 þ C2

3
; ai ¼ Ci þ Ciþ1

3
; for i ¼ 3; 5; 7; 9;

ai ¼ Ci þ Ci�1

3
; for i ¼ 4; 6; 8; 10:

(43)

Similarly, the decay amplitude for Bþ ! Kþ� can be written as

MðKþ�Þ ¼ hKþ�jHeffjB0i
¼ FeK

��
ua2 � t

�
2a3 � 2a5 � 1

2
a7 þ 1

2
a9

��
fq� � t

�
a3 þ a4 � a5 þ 1

2
a7 � 1

2
a9 � 1

2
a10

�
fs�

�

þ ½Fe�F1ð�ÞfK þ ðFa�F1ð�Þ þ FaKF2ð�ÞÞfB�ua1 � ½Fe�F1ð�ÞfK þ ðFa�F1ð�Þ þ FaKF2ð�ÞÞfB�
� tða4 þ a10Þ � ½FP2

e�F1ð�ÞfK þ ðFP2
a�F1ð�Þ þ FP2

aKF2ð�ÞÞfB�tða6 þ a8Þ � FP2
eKf

s
�t

�
a6 � 1

2
a8

�

�MP1
eKt

�
C5 � 1

2
C7

�
þMeK

��
uC2 � t

�
2C4 þ 1

2
C10

��
F1ð�Þ � t

�
C3 þ C4 � 1

2
C9 � 1

2
C10

�
F2ð�Þ

�

þ ½MaKF2ð�Þ þ ðMe� þMa�ÞF1ð�Þ�½uC1 � tðC3 þ C9Þ� � ½MP1
aKF2ð�Þ þ ðMP1

e� þMP1
a�ÞF1ð�Þ�

� tðC5 þ C7Þ �MP2
eKt

��
2C6 þ 1

2
C8

�
F1ð�Þ þ ðC6 � 1

2
C8ÞF2ð�Þ

�
: (44)

The total decay amplitude for B0 ! K0�0 and Bþ !
Kþ�0 can be obtained easily from Eqs. (42) and (44) by the
following replacements:

fd� ! fd
�0 ; fs� ! fs

�0 ; F1ð�Þ ! F0
1ð�Þ;

F2ð�Þ ! F0
2ð�Þ:

(45)

IV. NLO CONTRIBUTIONS IN PQCD APPROACH

A. General discussion

The power counting in the pQCD factorization approach
[25] is different from that in the QCD factorization [14,17].
When compared with the previous LO calculations in
pQCD [18,30,31], the following NLO contributions should
be considered:

(1) The LOWilson coefficientsCiðmWÞwill be replaced
by those at NLO level in the NDR scheme [32], and
the NLO RG evolution matrix Uðt; m; �Þ instead of

Uðm1; m2Þð0Þ, as defined in Ref. [32], will be used
here:

Uðm1; m2; �Þ ¼ Uðm1; m2Þ þ �

4�
Rðm1; m2Þ (46)

where the function Uðm1; m2Þ and Rðm1; m2Þ repre-
sent the QCD and QED evolution and have been
defined in Eq. (6.24) and (7.22) in Ref. [32]. We also
introduce a cutoff �0 ¼ 1:0 GeV for the QCD run-
ning of CiðtÞ in the final integration.

(2) The strong coupling constant �sðtÞ at two-loop level
as given in Eq. (10) will be used.

(3) Besides the LO hard kernel Hð0Þð�sÞ, the NLO hard

kernel Hð1Þð�2
sÞ should be included. All the

Feynman diagrams, which lead to the decay ampli-
tudes proportional to �2

sðtÞ, should be considered.
Such Feynman diagrams can be grouped into fol-
lowing classes:
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(I) The vertex corrections, as illustrated in Fig. 2, the
same set as that studied in the QCDF approach.

(II) The NLO contributions from quark-loops, as illus-
trated in Fig. 3.

(III) The NLO contributions from chromomagnetic pen-
guins, i.e. the operator O8g, as illustrated in Fig. 4.

There are a total of nine relevant Feynman diagrams
as given in Ref. [38], if the Feynman diagrams
involving the three-gluon vertex are also included.
We here show the first two only, and they provide the
dominant NLO contributions, according to Ref. [38].

(IV) The NLO contributions to the Feynman diagrams
(Figs. 1(a) and 1(b)) corresponding to the extraction
of factors, as illustrated in Fig. 5. There area total of
13 relevant Feynman diagramsWe here show four of
them only.

(V) The NLO contributions to the hard-spectator
Feynman diagrams (Figs. 1(c) and 1(d)) as illus-
trated in Fig. 6. There are a total of 56 relevant
Feynman diagrams We here show four only.

(VI) The NLO contributions to the annihilation Feynman
diagrams (Figs. 1(e) and 1(h)) as illustrated in Fig. 7.
We here show only four such diagrams.

For the last four classes (III–VI), the Feynman diagrams
involving a three-gluon vertex should be included. At

present, the calculations for the vertex corrections, the
quark-loops and chromomagnetic penguins have been
available and will be considered here. For the Feynman
diagrams as shown in Figs. 5–7, however, the analytical
calculations have not been completed yet. What we can do
here is to include the NLO contributions to the hard kernel
H.

B. Vertex corrections

The vertex corrections to the factorizable emission dia-
grams, as illustrated by Fig. 2, were calculated years ago in
the QCD factorization approach [14,15,17].
For the emission diagram, there are four kinds of single

gluon exchange responsible for the effective vertex as
labeled in Fig. 2. The contributions from the soft gluons
and collinear gluons are power suppressed, that is to say the
total contributions of these four figures are infrared finite.
For charmless B meson decays, these corrections can be
calculated without considering the transverse momentum
effects of the quark at the end-point in the collinear facto-
rization theorem. Therefore, there is no need to employ the
kT factorization theorem. In fact, the difference of the
calculations induced by considering or not considering
the parton transverse momentum is rather small [25], say
less than 10%, and therefore can be neglected.
Consequently, one can use the vertex corrections as given
in Ref. [15] directly. The vertex corrections can then be
absorbed into the redefinition of the Wilson coefficients
aið�Þ by adding a vertex-function ViðMÞ to them [15,17]

(a) (b) (c) (d)

FIG. 2. NLO vertex corrections to the factorizable amplitudes.

(a) (b)

FIG. 3 (color online). Quark-loop amplitudes.

(a) (b)

FIG. 4 (color online). Chromomagnetic penguin amplitudes
(O8g). There are nine relevant Feynman diagrams as shown in

Ref. [38]. Here we show the first two only, which provide
dominant contribution of such diagrams.

B

FIG. 5 (color online). The four typical Feynman diagrams,
which contribute to the form factors at NLO level.

B

FIG. 6 (color online). The four typical hard-spectator Feynman
diagrams, which contribute at NLO level.

FIG. 7 (color online). The four typical annihilation Feynman
diagrams, which contribute at NLO level.
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aið�Þ ! aið�Þ þ �sð�Þ
4�

CF

Cið�Þ
3

ViðMÞ; for i ¼ 1; 2;

ajð�Þ ! ajð�Þ þ �sð�Þ
4�

CF

Cjþ1ð�Þ
3

VjðMÞ; for j ¼ 3; 5; 7; 9;

ajð�Þ ! ajð�Þ þ �sð�Þ
4�

CF

Cj�1ð�Þ
3

VjðMÞ; for j ¼ 4; 6; 8; 10; (47)

where M is the meson emitted from the weak vertex. When M is a pseudoscalar meson, the vertex functions ViðMÞ are
given (in the NDR scheme) in Refs. [15,25]:

ViðMÞ ¼

8>><
>>:
12 lnmb

� � 18þ 2
ffiffi
6

p
fM

R
1
0 dx�

A
MðxÞgðxÞ; for i ¼ 1� 4; 9; 10;

�12 lnmb

� þ 6� 2
ffiffi
6

p
fM

R
1
0 dx�

A
MðxÞgð1� xÞ; for i ¼ 5; 7;

�6þ 2
ffiffi
6

p
fM

R
1
0 dx�

P
MðxÞhðxÞ; for i ¼ 6; 8;

(48)

where fM is the decay constant of the mesonM;�A
MðxÞ and

�P
MðxÞ are the twist-2 and twist-3 distribution amplitude of

the meson M, respectively. The hard-scattering functions
gðxÞ and hðxÞ in Eq. (48) are

gðxÞ ¼ 3

�
1� 2x

1� x
lnx� i�

�
þ
�
2Li2ðxÞ � ln2xþ 2 lnx

1� x

� ð3þ 2i�Þ lnx� ðx $ 1� xÞ
�
; (49)

hðxÞ ¼ 2Li2ðxÞ � ln2x� ð1þ 2i�Þ lnx� ðx $ 1� xÞ;
(50)

where Li2ðxÞ is the dilogarithm function. As shown in
Ref. [25], the �-dependence of the Wilson coefficients
aið�Þ will be improved generally by the inclusion of the
vertex corrections.

C. Quark loops

The contribution from the so-called ‘‘quark loops’’ is a
kind of penguin correction with the four quark operators
insertion, as illustrated by Fig. 3. In fact this is generally
called the BSS mechanism [39], which provides the strong
phase needed to induce the CP violation in the QCDF
approach. We here include quark-loop amplitude from
the operators O1;2 and O3�6 only. The quark loops from

O7�10 will be neglected due to their smallness.
For the b ! s transition, the contributions from the

various quark loops are given by

H
ðqlÞ
eff ¼ � X

q¼u;c;t

X
q0

GFffiffiffi
2

p VqbV
�
qs

�sð�Þ
2�

Cqð�; l2Þ

� ð�s�
ð1� �5ÞTabÞð �q0�
Taq0Þ; (51)

where l2 is the invariant mass of the gluon, which attaches
the quark loops in Fig. 3. The functions Cqð�; l2Þ are
written as

Cqð�; l2Þ ¼
�
Gqð�; l2Þ � 2

3

�
C2ð�Þ; (52)

for q ¼ u, c and

CðtÞð�; l2Þ ¼
�
GðsÞð�; l2Þ � 2

3

�
C3ð�Þ

þ X
q00¼u;d;s;c

Gðq00Þð�; l2Þ½C4ð�Þ þ C6ð�Þ�:

(53)

The function GðqÞð�; l2Þ for the loop of the quark qðq ¼
u; d; s; cÞ is given by [25]

GðqÞð�;l2Þ¼�4
Z 1

0
dxxð1�xÞ lnm

2
q�xð1�xÞl2

�2
; (54)

mq is the possible quark mass. The explicit expressions of

the function GðqÞð�; l2Þ after the integration can be found,
for example, in Ref. [25].
It is straightforward to calculate the decay amplitude for

Figs. 3(a) and 3(b). We find two kinds of topological decay
amplitudes:

MðqÞ
K�s

¼ � 8ffiffiffi
6

p C2
Fm

4
B

Z 1

0
dx1dx2dx3

Z 1

0
b1db1b2db2�Bðx1; b1Þ 
 f½ð1þ x2Þ�A

Kð �x2Þ�A
�s
ð �x3Þ þ rKð1� 2x2Þð�P

Kð �x2Þ

��T
Kð �x2ÞÞ�A

�s
ð �x3Þ þ 2r�s

�A
Kð �x2Þ�P

�s
ð �x3Þ þ 2rKr�s

ðð2þ x2Þ�P
Kð �x2Þ þ x2�

T
Kð �x2ÞÞ�P

�s
ð �x3Þ�


 EðqÞðtq; l2Þheðx2; x1; b2; b1Þ þ ½2rK�P
Kð �x2Þ�A

�s
ð �x3Þ þ 4rKr�s

�P
Kð �x2Þ�P

�s
ð �x3Þ� 
 EðqÞðt0q; l02Þheðx1; x2; b1; b2Þg; (55)

for B ! K transition, and
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MðqÞ
�qK

¼ � 8ffiffiffi
6

p C2
Fm

4
B

Z 1

0
dx1dx2dx3

Z 1

0
b1db1b2db2�Bðx1; b1Þ 
 f½ð1þ x2Þ�A

�q
ð �x2Þ�A

Kð �x3Þ þ r�ð1� 2x2Þ

� ð�P
�q
ð �x2Þ ��T

�q
ð �x2ÞÞ�A

Kð �x3Þ þ 2rK�
A
�q
ð �x2Þ�P

Kð �x3Þ þ 2r�rKðð2þ x2Þ�P
�q
ð �x2Þ þ x2�

T
�q
ð �x2ÞÞ�P

Kð �x3Þ�

 EðqÞðtq; l2Þheðx2; x1; b2; b1Þ þ ½2r��P

�q
ð �x2Þ�A

Kð �x3Þ þ 4r�rK�
P
�q
ð �x2Þ�P

Kð �x3Þ� 
 EðqÞðt0q; l02Þheðx1; x2; b1; b2Þg; (56)

for B ! � transition. Here r� ¼ mq
0=mB and r�s

¼
ms

0=mB. The evolution factors in Eqs. (55) and (56) take
the form of

EðqÞðt; l2Þ ¼ CðqÞðt; l2Þ�2
sðtÞ 
 exp½�Sab�; (57)

with the Sudakov factor Sab and the hard function
heðx1; x2; b1; b2Þ as given in Eqs. (A2) and (A9) respec-
tively, and finally the hard scales and the gluon invariant
masses are

tq ¼ maxð ffiffiffiffiffi
x2

p
mB;

ffiffiffiffiffiffiffiffiffi
x1x2

p
mB;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þx3

q
mB; 1=b1; 1=b2Þ;

t0q ¼ maxð ffiffiffiffiffi
x1

p
mB;

ffiffiffiffiffiffiffiffiffi
x1x2

p
mB;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx3 � x1j

q
mB; 1=b1; 1=b2Þ;

(58)

l2 ¼ ð1� x2Þx3m2
B � jk2T � k3Tj2 � ð1� x2Þx3m2

B;

l02 ¼ ðx3 � x1Þm2
B � jk1T � k3Tj2 � ðx3 � x1Þm2

B: (59)

For B ! K�0 decays, we find the same decay amplitude.
Finally, the total ‘‘quark-loop’’ contribution to the consid-

ered B ! K�ð0Þ (K ¼ K0, Kþ) decays can be written as

MðqlÞ
K� ¼ hK�jH ql

eff jBi

¼ GFffiffiffi
2

p X
q¼u;c;t

�q½MðqÞ
K�s

F2ð�Þ þMðqÞ
�qK

F1ð�Þ�; (60)

MðqlÞ
K�0 ¼ hK�0jH ðqlÞ

eff jBi

¼ GFffiffiffi
2

p X
q¼u;c;t

�q½MðqÞ
K�s

F0
2ð�Þ þMðqÞ

�qK
F0
1ð�Þ�; (61)

where �q ¼ VqbV
�
qs. The mixing parameters F1ð�Þ, F0

1ð�Þ,
F2ð�Þ and F0

2ð�Þ have been defined in Eqs. (22).
It is worth noting that the quark-loop corrections are

mode dependent. The assumption of a constant gluon
invariant mass in FA introduces a large theoretical uncer-
tainty in making predictions. In the pQCD approach, how-
ever, the gluon invariant mass is related to the parton
momenta unambiguously and will disappear after the
integration.

D. Magnetic penguins

This is another kind of penguin correction but with the
magnetic-penguin operator insertion. The corresponding
weak effective Hamiltonian contains the b ! sg transition,

Hcmp
eff ¼ �GFffiffiffi

2
p VtbV

�
tsC

eff
8gO8g; (62)

with the chromomagnetic penguin operator,

O8g ¼ gs
8�2

mb
�di�

��ð1þ �5ÞTa
ijG

a
��bj; (63)

where i, j are the color indices of quarks. The correspond-
ing effective Wilson coefficient Ceff

8g ¼ C8g þ C5 [25].

The decay amplitudes obtained by evaluating the
Feynman diagrams, Fig. 4(a) and 4(b), can be written as

MðgÞ
K�s

¼ 8ffiffiffi
6

p C2
Fm

6
Z 1

0
dx1dx2dx3

Z 1

0
b1db1b2db2�Bðx1; b1Þ 
 ff�ð1� x2Þ½2�A

Kð �x2Þ þ rKð3�P
Kð �x2Þ ��T

Kð �x2ÞÞ

þ rKx2ð�P
Kð �x2Þ þ�T

Kð �x2ÞÞ��A
�s
ð �x3Þ � r�s

ð1þ x2Þx3�A
Kð �x2Þð3�P

�s
ð �x3Þ þ�T

�s
ð �x3ÞÞ � rKr�s

ð1� x2Þð�P
Kð �x2Þ

þ�T
Kð �x2ÞÞð3�P

�s
ð �x3Þ ��T

�s
ð �x3ÞÞ � rKr�s

x3ð1� 2x2Þð�P
Kð �x2Þ ��T

Kð �x2ÞÞð3�P
�s
ð �x3Þ þ�T

�s
ð �x3ÞÞg


 EgðtqÞhgðA; B; C; b1; b2; b3; x2Þ � ½4rK�P
Kð �x2Þ�A

�s
ð �x3Þ þ 2rKr�s

x3�
P
Kð �x2Þð3�P

�s
ð �x3Þ þ�T

�s
ð �x3ÞÞ�


 Egðt0qÞhgðA0; B0; C0; b2; b1; b3; x1Þg; (64)

MðgÞ
�qK

¼ 8ffiffiffi
6

p C2
Fm

6
Z 1

0
dx1dx2dx3

Z 1

0
b1db1b2db2�Bðx1; b1Þ 
 ff�ð1� x2Þ½2�A

�q
ð �x2Þ þ r�ð3�P

�q
ð �x2Þ ��T

�q
ð �x2ÞÞ

þ r�x2ð�P
�q
ð �x2Þ þ�T

�q
ð �x2ÞÞ��A

Kð �x3Þ � rKð1þ x2Þx3�A
�q
ð �x2Þð3�P

Kð �x3Þ þ�T
Kð �x3ÞÞ � r�rKð1� x2Þð�P

�q
ð �x2Þ

þ�T
�q
ð �x2ÞÞð3�P

Kð �x3Þ ��T
Kð �x3ÞÞ � r�rKx3ð1� 2x2Þð�P

�q
ð �x2Þ ��T

�q
ð �x2ÞÞð3�P

Kð �x3Þ þ�T
Kð �x3ÞÞg


 EgðtqÞhgðA; B; C; b1; b2; b3; x2Þ � ½4r��P
�q
ð �x2Þ�A

Kð �x3Þ þ 2r�rKx3�
P
�q
ð �x2Þð3�P

Kð �x3Þ þ�T
Kð �x3ÞÞ�


 Egðt0qÞhgðA0; B0; C0; b2; b1; b3; x1Þg: (65)
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Here r� ¼ mq
0=mB, r�s

¼ ms
0=mB. The evolution factors in

Eqs. (64) and (65) take the form of

EðgÞðt; l2Þ ¼ �2
sðtÞCeff

8g ðtÞ exp½�SmgðtÞ�; (66)

with the Sudakov factor Smg

SmgðtÞ ¼ sðx1mB=
ffiffiffi
2

p
; b1Þ þ sðx2mB=

ffiffiffi
2

p
; b2Þ

þ sðð1� x2ÞmB=
ffiffiffi
2

p
; b2Þ þ sðx3mB=

ffiffiffi
2

p
; b3Þ

þ sðð1� x3ÞmB=
ffiffiffi
2

p
; b3Þ � 1

�1

�
ln

lnðt=�Þ
� lnðb1�Þ

þ ln
lnðt=�Þ

� lnðb2�Þ þ ln
lnðt=�Þ

� lnðb3�Þ
�
: (67)

The hard function hg in the chromomagnetic penguin

amplitude is given by

hgðA; B;C; b1; b2; b3; xiÞ ¼ �StðxiÞK0ðBb1ÞK0ðCb3Þ
�
Z �=2

0
d� tan�J0ðAb1 tan�Þ

� J0ðAb2 tan�ÞJ0ðAb3 tan�Þ
(68)

with the index i ¼ 1, 2; the threshold resummation func-
tion StðxiÞ is given in Eq. (A7), and

A¼ ffiffiffiffiffi
x2

p
mB; B¼B0 ¼ ffiffiffiffiffiffiffiffiffi

x1x2
p

mB; C¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�x2Þx3

q
mB;

A0 ¼ ffiffiffiffiffi
x1

p
mB; B0 ¼B; C0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx1�x3j

q
mB: (69)

Here the scale tq, t
0
q, and the gluon invariant mass l2 and l02

have been given in Eqs. (58) and (59).
Finally, the total chromomagnetic penguin contribution

to the considered B ! K�ð0Þ (K ¼ K0, Kþ) decays can be
written as

M
ðcmpÞ
K� ¼ hK�jH cmp

eff jBi

¼ �GFffiffiffi
2

p �t½MðgÞ
K�s

F2ð�Þ þMðgÞ
�qK

F1ð�Þ�; (70)

MðcmpÞ
K�0 ¼ hK�0jH cmp

eff jBi

¼ �GFffiffiffi
2

p �t½MðgÞ
K�s

F0
2ð�Þ þMðgÞ

�qK
F0
1ð�Þ�: (71)

The mixing parameters F1ð�Þ, F0
1ð�Þ, F2ð�Þ and F0

2ð�Þ
have been defined in Eqs. (22) and (45).

V. NUMERICAL RESULTS AND DISCUSSIONS

A. Input parameters

We use the following input parameters [2,40] in the
numerical calculations:

fB ¼ 0:21 GeV; fK ¼ 0:16 GeV;

m� ¼ 547:5 MeV; m�0 ¼ 957:8 MeV;

mK ¼ 0:49 GeV; m0K ¼ 1:7 GeV;

MB ¼ 5:279 GeV; mb ¼ 4:8 GeV;

MW ¼ 80:41 GeV; �B0 ¼ 1:527 ps;

�Bþ ¼ 1:643 ps:

(72)

For the CKM quark-mixing matrix elements, we use the
values as given in Refs. [2,40]:

Vud ¼ 0:9745; Vus ¼ � ¼ 0:2200;

jVubj ¼ 4:31� 10�3; Vcd ¼ �0:224;

Vcd ¼ 0:996; Vcb ¼ 0:0413;

jVtdj ¼ 7:4� 10�3; Vts ¼ �0:042;

Vtb ¼ 0:9991;

(73)

with the CKM angles � ¼ 21:6�, � ¼ 60� � 20� and � ¼
100� � 20�.

B. Branching ratios

Using the known wave functions and the central values
of relevant input parameters, we find the LO pQCD pre-
dictions for the corresponding form factors at zero mo-
mentum transfer:

FB!�
0 ðq2 ¼ 0Þ ¼ 0:21� 0:03ð!bÞ;

F
B!�0
0 ðq2 ¼ 0Þ ¼ 0:17� 0:03ð!bÞ;

FB!K
0 ðq2 ¼ 0Þ ¼ 0:37þ0:06

�0:05ð!bÞ;
(74)

for !b ¼ 0:40� 0:04 GeV, which agree well with those
obtained in QCD sum rule.
In the B-rest frame, the branching ratio of a general B !

PP decay can be written as

Br ðB ! M2M3Þ ¼ �B
1

16�mB

�jMðB ! M2M3Þj2;
(75)

where �B is the lifetime of the Bmeson, and � is the phase
space factor and will equal to one when the masses of final
state light mesons are neglected. The total decay amplitude
in Eq. (75) is defined as

M ðB ! M2M3Þ ¼ hM2M3jH eff þH ðqlÞ
eff þH ðcmpÞ

eff jBi:
(76)

Using the wave functions and the input parameters as
specified in previous sections, it is straightforward to cal-
culate the CP-averaged branching ratios for the considered

four B ! K�ð0Þ decays, which are listed in Table I. For
comparison, we also list the corresponding updated experi-
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mental results [2] and numerical results evaluated in the
framework of the QCDF approach [15].

It is worth stressing that the theoretical predictions in the
pQCD approach have relatively large theoretical errors
induced by the still large uncertainties of many input
parameters, such as quark masses ðmu;d; msÞ, chiral scales
ðm0K;m

q
0 ; m

s
0Þ, Gegenbauer coefficients ðaðK;�Þi ; 
 
 
Þ, !b

and the CKM angles ð�; �Þ, etc. The NLO pQCD predic-
tions for the CP-averaged branching ratios with the major
theoretical errors are the following:

Br ðBþ ! Kþ�Þ
¼ ½3:2þ1:2

�0:9ð!bÞþ2:7
�1:2ðmsÞþ1:1

�1:0ða�2 Þ� � 10�6; (77)

Br ðBþ ! Kþ�0Þ
¼ ½51:0þ13:5

�8:2 ð!bÞþ11:2
�6:2 ðmsÞþ4:2

�3:5ða�2 Þ� � 10�6;

(78)

Br ðB0 ! K0�Þ ¼ ½2:1þ0:8
�0:6ð!bÞþ2:3

�1:0ðmsÞþ1:0
�0:9ða�2 Þ� � 10�6;

(79)

Br ðB0 ! K0�0Þ
¼ ½50:3þ11:8

�8:2 ð!bÞþ11:1
�6:2 ðmsÞþ4:5

�2:7ða�2 Þ� � 10�6: (80)

The major errors are induced by the uncertainties of !b ¼
0:4� 0:04 GeV, ms ¼ 130� 30 MeV and Gegenbauer

coefficient a�2 ¼ 0:44� 0:22 (here a�2 denotes a
�q

2 or

a
�s

2 ), respectively.
In Figs. 8 and 9, we show the parameter dependence of

the pQCD predictions for the branching ratios of Bþ !
Kþ�ð0Þ and B0 ! K0�ð0Þ decays for !b ¼ 0:4�
0:04 GeV, � ¼ ½0�; 180��.
From the numerical results about the branching ratios,

one can see that
(i) The decay amplitude B ! K�q and B ! K�s inter-

fere constructively for B ! K�0 decays, but destruc-
tively for B ! K� decays. This mechanism results
in a factor of 6–10 disparity for the branching ratios
of B ! Kþ�0 and B ! K0� decays.

(ii) The LO pQCD predictions for branching ratios are
much smaller (larger) than the measured values for
B ! K�0 (B ! K�) decays, and show the same
tendency as found in Ref. [16].

(iii) The NLO contributions can interfere constructively
(destructively) with the corresponding LO part for

TABLE I. The pQCD predictions for the branching ratios (in units of 10�6). The label
LONLOWC means the LO results with the NLO Wilson coefficients, and þVC, þQL, þMP,
NLO means the inclusion of the vertex corrections, the quark-loops, the magnetic penguin, and
all the considered NLO corrections, respectively.

Mode LO LONLOWC þVC þQL þMP NLO Data QCDF

Bþ ! Kþ� 4.7 4.7 4.3 4.9 3.1 3.2 2:6� 0:6 1:9þ3:0
�1:9

Bþ ! Kþ�0 30.2 46.8 74.6 48.1 30.2 51.0 70:5� 3:5 49:1þ45:2
�23:6

B0 ! K0� 3.2 3.4 3.1 3.8 2.3 2.1 <2:0 1:1þ2:4
�1:5

B0 ! K0�0 31.3 46.5 69.7 48.5 20.7 50.3 68� 4 46:5þ41:9
�22:0

FIG. 8 (color online). The � dependence of the branching ratios (in units of 10�6) of B0 ! K0�ð0Þ decays for !b ¼ 0:36 GeV
(dotted curve), 0.40 GeV (solid curve), and 0.44 GeV (dashed curve).
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B ! K�0 (B ! K�) decays. For B0 ! K0�0 and
Bþ ! Kþ�0 decays, the NLO contributions provide
a 70% enhancement to their branching ratios . For
B0 ! K0� and Bþ ! Kþ� decays, on the other
hand, the NLO contributions give rise to a 30%
reduction to their branching ratios and result in the
good agreement between the pQCD predictions and
the data.

(iv) The NLO pQCD predictions for branching ratios

BrðB ! K�ð0ÞÞ agree very well with the measured
values within 1 standard deviation. The NLO con-
tributions play an important role in understanding
the observed pattern of branching ratios of the four

B ! K�ð0Þ decays.

C. CP-violating asymmetries

Now we turn to the evaluations of the CP-violating

asymmetries of B ! K�ð0Þ decays in the pQCD approach.

For Bþ ! Kþ�ð0Þ decays, the direct CP-violating asym-
metries ACP can be defined as

A dir
CP ¼ j �Mfj2 � jMfj2

j �Mfj2 þ jMfj2
: (81)

Using Eq. (81), it is easy to calculate the direct
CP-violating asymmetries for the considered decays,
which are listed in Table II. As a comparison, we also

list currently available data [2] and the corresponding
QCDF predictions [15].

The NLO pQCD predictions for Adir
CPðBþ ! Kþ�ð0ÞÞ

(in units of 10�2) with the major theoretical errors are

A dir
CPðB� ! K��Þ ¼ �11:7þ6:8

�9:6ðmsÞþ3:9
�4:2ð�Þþ2:9

�5:6ða�q

2 Þ;
Adir

CPðB� ! K��0Þ ¼ �6:2þ1:2�1:1ðmsÞþ1:3
�1:0ð�Þþ1:3

�1:0ða�q

2 Þ;
(82)

where the dominant errors come from the variations of
ms ¼ 130� 30 MeV, � ¼ 60� � 20� and Gegenbauer

coefficient a
�q

2 ¼ 0:44� 0:22, respectively.
As to the CP-violating asymmetries for the neutral

decays B0 ! K0�ð0Þ, the effects of B0 � �B0 mixing should

be considered. The CP-violating asymmetry of B0ð �B0Þ !
K0�ð0Þ decays are time-dependent and can be defined as

ACP 	 �ð �B0
dð�tÞ ! fCPÞ � �ðB0

dð�tÞ ! fCPÞ
�ð �B0

dð�tÞ ! fCPÞ þ �ðB0
dð�tÞ ! fCPÞ

¼ Adir
CP cosð�m�tÞ þ Amix

CP sinð�m�tÞ; (83)

where �m is the mass difference between the two B0
d mass

eigenstates, �t ¼ tCP � ttag is the time difference between

the tagged B0 ( �B0) and the accompanying �B0 (B0) with
opposite b flavor decaying to the finalCP-eigenstate fCP at
the time tCP. The direct and mixing-induced CP-violating
asymmetriesAdir

CP (orAf in terms of Belle Collaboration)

and Amix
CP can be written as

FIG. 9 (color online). The � dependence of the branching ratios (in units of 10�6) of Bþ ! Kþ�ð0Þ decays for !b ¼ 0:36 GeV
(dotted curve), 0.40 GeV (solid curve), and 0.44 GeV (dashed curve).

TABLE II. The pQCD predictions for the direct CP asymmetries in the NDR scheme (in units
of 10�2), the QCDF predictions [15], and the world average as given by HFAG [2].

Mode LO LONLOWC þVC þQL þMP NLO Data QCDF

Adir
CPðB� ! K��Þ 9.3 10.3 31.1 7.8 7.6 �11:7 �27� 9 �18:9þ29:0

�30:0

Adir
CPðB� ! K��0Þ �10:1 �7:3 �10:6 �5:9 �10:4 �6:2 1:6� 1:9 �9:0þ10:6

�16:2
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A dir
CP ¼ Af ¼ j�CPj2 � 1

1þ j�CPj2
;

Amix
CP ¼ Sf ¼ 2 Imð�CPÞ

1þ j�CPj2
;

(84)

with the CP-violating parameter �CP

�CP 	
�
q

p

�
d

 hfCPjHeffj �B0i
hfCPjHeffjB0i : (85)

By integrating the time variable t, one finds the total CP

asymmetries for B0 ! K0�ð0Þ decays,

A tot
CP ¼ 1

1þ x2
Adir
CP þ x

1þ x2
Amix
CP ; (86)

where x ¼ �m=� ¼ 0:775 [40].
In Table III, we show the pQCD predictions for the

central values of the direct, mixing-induced, and total CP

asymmetries for B0 ! K0
S�

ð0Þ decays, obtained by using

the LO or NLOWilson coefficients, and adding the vertex
corrections, the quark-loops, the magnetic penguin, or
include all the mentioned NLO corrections, respectively.

The NLO pQCD predictions forAdir
CPðB0 ! K0�ð0ÞÞ and

Amix
CP ðB0 ! K0�ð0ÞÞ (in units of 10�2) with the major

theoretical errors are

Adir
CPðB0 ! K0

S�Þ ¼ �12:7� 4:1ðmsÞþ3:2
�1:5ð�Þþ3:2

�6:7ða�q

2 Þ;
Adir

CPðB0 ! K0
S�

0Þ ¼ 2:3þ0:5
�0:4ðmsÞþ0:3

�0:6ð�Þþ0:2
�0:1ða�q

2 Þ;
Amix

CP ðB0 ! K0
S�Þ ¼ 61:9þ35:8

�65:0ð�Þþ35:3
�64:3ð�Þ;

Amix
CP ðB0 ! K0

S�
0Þ ¼ 62:7þ35:5

�65:0ð�Þþ35:4
�64:7ð�Þ; (87)

where the dominant errors come from the variations of
ms ¼ 130� 30 MeV, � ¼ 60� � 20�, � ¼ 100� � 20�,
and the Gegenbauer coefficient a

�q

2 ¼ 0:44� 0:22,
respectively.
In Fig. 10, we show the �-dependence of the pQCD

predictions for direct CP-violating asymmetries of B0 !
K0

S�
ð0Þ and Bþ ! Kþ�ð0Þ decays. In Fig. 11, we show the

�-dependence of the total CP-violating asymmetries for
B0 ! K0

S� (solid curve) and B0 ! K0
S�

0 (dotted curve),

respectively.
From the pQCD predictions and currently available

experimental measurements for the CP-violating asymme-

tries of the four B ! K�ð0Þ decays, one can see the follow-
ing points:
(a) For Bþ ! Kþ� decay, the measured direct CP

asymmetry is 3 standard deviations from zero. The
LO pQCD prediction changed its sign and becomes
consistent with the measured one due to the inclu-
sion of NLO contributions.

TABLE III. The pQCD predictions for the direct, mixing-induced and total CP asymmetries
(in units of 10�2) for B0 ! K0�ð0Þ decays, and the world average as given by HFAG [2].

Mode LO LONLOWC þVC þQL þMP NLO Data

Adir
CPðB0 ! K0

S�Þ �4:2 �1:5 �11:2 �0:9 �1:9 �12:7 
 
 

Adir

CPðB0 ! K0
S�

0Þ 1.4 0.0 1.5 0.7 �0:1 2.3 9� 6
Amix

CP ðB0 ! K0
S�Þ 61.6 67.3 64.4 66.9 67.9 61.9 
 
 


Amix
CP ðB0 ! K0

S�
0Þ 64.6 63.5 63.4 63.2 63.2 62.7 61� 7

Atot
CPðB0 ! K0

S�Þ 27.2 31.7 24.2 31.9 31.7 22.1 
 
 

Atot

CPðB0 ! K0
S�

0Þ 32.1 30.8 31.7 31.0 30.5 31.8 
 
 


FIG. 10 (color online). The NLO pQCD predictions for direct CP asymmetries (in percentage) of B0 ! K0
S�

ð0Þ and B� ! K��ð0Þ
decays.
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(b) For Adir
CPðB� ! K��0Þ, the pQCD prediction is

changed from �10% to �6% due to the inclusion
of NLO contributions, which is consistent with the
measured zero result within 1 standard deviation.

(c) For B0 ! K0�ð0Þ decay, the effects of NLO contri-
butions to their CP asymmetries are rather small, as
can be seen from the numerical results as given in
Table III.

(d) For neutral B0 ! K0�ð0Þ decays, the PQCD predic-
tions are Adir

CPðB0 ! K0
S�

0Þ � 2:3% and

Amix
CP ðB0 ! K0

S�
0Þ � 63%, which agree very well

with the data: ð9� 6Þ% and ð61� 7Þ%. This means
that the deviation �S ¼ ��fSf � sin2� for B0 !
K0�0 decay is also very small in the pQCD
approach.

VI. SUMMARY

In this paper, we calculated the branching ratios and

CP-violating asymmetries of Bþ ! Kþ�ð0Þ and B0 !
K0�ð0Þ decays in the pQCD approach. The partial NLO
contributions considered here include QCD vertex correc-
tions, the quark-loops, and the chromomagnetic penguins.

From our calculations and phenomenological analysis,
we found the following results:

(a) For branching ratios, the NLO pQCD predictions (in
units of 10�6) are

BrðBþ ! Kþ�Þ ¼ 3:2þ3:2
�1:8;

BrðB� ! K��0Þ ¼ 51:0þ18:0
�10:9;

BrðB0 ! K0�Þ ¼ 2:1þ2:6
�1:5;

BrðB0 ! K0�0Þ ¼ 50:3þ16:8
�10:6; (88)

where the individual theoretical errors have been
added in quadrature. The decay amplitude B !

K�q and B ! K�s interfere constructively for B !
K�0 decays, but destructively for B ! K� decays.
The NLO contributions in the pQCD approach,
furthermore, can provide a 70% enhancement to
BrðB ! K�0Þ, but a 30% reduction to BrðB !
K�Þ. The large branching ratio of B ! K�0 decays,
as well as the large disparity BrðB ! K�0Þ �
BrðB ! K�Þ can therefore be understood naturally.

(b) The pQCD predictions for the CP asymmetries of

B ! K�ð0Þ decays are consistent with currently

available data. For neutral B0 ! K0�ð0Þ decays, for
example, the PQCD predictions are Adir

CPðB0 !
K0

S�
0Þ � 2:3% and Amix

CP ðB0 ! K0
S�

0Þ � 63%,

which agree very well with the measured values of
ð9� 6Þ% and ð61� 7Þ%, respectively.

(c) In this paper, only the partial NLO contributions in
the pQCD approach have been taken into account.
These considered NLO contributions may be the
dominant part of the whole NLO corrections. To
achieve a complete NLO calculation in the pQCD
approach, of course, the still-missing pieces from
the emission diagrams, hard-spectator and annihila-
tion diagrams, should be evaluated as soon as
possible.
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APPENDIX: RELATED FUNCTIONS

We show here the function his, coming from the Fourier

transformations of the hard kernel Hð0Þðxi; biÞ,

FIG. 11 (color online). The �-dependence (a) and the �-dependence (b) of the total CP-asymmetries of B0 ! K0
S� (solid curve) and

B0 ! K0
S�

0 (dotted curve) decays.
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heðx1; x2; b1; b2Þ ¼ K0ð ffiffiffiffiffiffiffiffiffi
x1x2

p
mBb1Þ½�ðb1 � b2ÞK0ð ffiffiffiffiffi

x2
p

mBb1ÞI0ð ffiffiffiffiffi
x2

p
mBb2Þ

þ �ðb2 � b1ÞK0ð ffiffiffiffiffi
x2

p
mBb2ÞI0ð ffiffiffiffiffi

x2
p

mBb1Þ�Stðx2Þ; (A1)

haðx2; x3; b2; b3Þ ¼ K0ði
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þx3

q
mBb2Þ½�ðb3 � b2ÞK0ði ffiffiffiffiffi

x3
p

mBb3ÞI0ði ffiffiffiffiffi
x3

p
mBb2Þ

þ �ðb2 � b3ÞK0ði ffiffiffiffiffi
x3

p
mBb2ÞI0ði ffiffiffiffiffi

x3
p

mBb3Þ�Stðx3Þ; (A2)

hfðx1; x2; x3; b1; b3Þ ¼ f�ðb1 � b3ÞK0ðMB

ffiffiffiffiffiffiffiffiffi
x1x2

p
b1ÞI0ðMB

ffiffiffiffiffiffiffiffiffi
x1x2

p
b3Þ þ �ðb3 � b1ÞK0ðMB

ffiffiffiffiffiffiffiffiffi
x1x2

p
b3ÞI0ðMB

ffiffiffiffiffiffiffiffiffi
x1x2

p
b1Þg



�i
2 H0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2ðx3 � x1ÞÞ
p

MBb3Þ; for x1 � x3 < 0

Kð1Þ
0 ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2ðx1 � x3Þ

p
MBb3Þ; for x1 � x3 > 0

0
@

1
A; (A3)

h3fðx1; x2; x3; b1; b3Þ ¼ f�ðb1 � b3ÞK0ði
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þx3

q
b1MBÞI0ði

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þx3

q
b3MBÞ

þ ð�ðb3 � b1ÞK0ði
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þx3

q
b3MBÞI0ði

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þx3

q
b1MBÞg


 K0ðMB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx1 � x3Þð1� x2Þ
p

b1Þ; for x1 � x3 > 0

�i
2 H

ð1Þ
0 ðMB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx3 � x1Þð1� x2Þ
p

b1Þ; for x1 � x3 < 0

0
@

1
A; (A4)

h4fðx1; x2; x3; b1; b2Þ ¼ f�ðb1 � b3ÞK0ði
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þx3

q
b1MBÞI0ði

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þx3

q
b3MBÞ

þ �ðb3 � b1ÞK0ði
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þx3

q
b3MBÞI0ði

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þx3

q
b1MBÞg 


K0ðMBF1b1Þ; for F2
1 > 0

�i
2 H

ð1Þ
0 ðMB

ffiffiffiffiffiffiffiffiffi
jF2

1j
q

b1Þ; for F2
1 < 0

0
@

1
A;

(A5)

where J0 is the Bessel function and K0, I0 are modified
Bessel functions with K0ð�ixÞ ¼ �ð�=2ÞY0ðxÞ þ
ið�=2ÞJ0ðxÞ, and Fð1Þ’s are defined by

F2
ð1Þ ¼ 1� x2ð1� x1 � x3Þ: (A6)

The threshold resummation form factor StðxiÞ is adopted
from Ref. [41]. It has been parametrized as

StðxÞ ¼ 21þ2c�ð3=2þ cÞffiffiffiffi
�

p
�ð1þ cÞ ½xð1� xÞ�c; (A7)

where the parameter c ¼ 0:3. This function is normalized
to unity.

The evolution factors Eð0Þ
e , and Eð0Þ

a , appeared in the
decay amplitudes are given by

EeðtÞ ¼ �sðtÞ exp½�SabðtÞ�;
E0
eðtÞ ¼ �sðtÞ exp½�ScdðtÞ�jb2¼b1 ;

E0
aðtÞ ¼ �sðtÞ exp½�SefðtÞ�jb2¼b3 ;

EaðtÞ ¼ �sðtÞ exp½�SghðtÞ�: (A8)

The Sudakov factors used in the text are defined as

SabðtÞ ¼ sðx1mB=
ffiffiffi
2

p
; b1Þ þ sðx2mB=

ffiffiffi
2

p
; b2Þ

þ sðð1� x2ÞmB=
ffiffiffi
2

p
; b2Þ

� 1

�1

�
ln

lnðt=�Þ
� lnðb1�Þ þ ln

lnðt=�Þ
� lnðb2�Þ

�
; (A9)

ScdðtÞ ¼ sðx1mB=
ffiffiffi
2

p
; b1Þ þ sðx2mB=

ffiffiffi
2

p
; b1Þ

þ sðð1� x2ÞmB=
ffiffiffi
2

p
; b1Þ þ sðx3mB=

ffiffiffi
2

p
; b3Þ

þ sðð1� x3ÞmB=
ffiffiffi
2

p
; b3Þ

� 1

�1

�
2 ln

lnðt=�Þ
� lnðb1�Þ þ ln

lnðt=�Þ
� lnðb3�Þ

�
; (A10)

SefðtÞ ¼ sðx1mB=
ffiffiffi
2

p
; b1Þ þ sðx2mB=

ffiffiffi
2

p
; b3Þ

þ sðð1� x2ÞmB=
ffiffiffi
2

p
; b3Þ þ sðx3mB=

ffiffiffi
2

p
; b3Þ

þ sðð1� x3ÞmB=
ffiffiffi
2

p
; b3Þ

� 1

�1

�
ln

lnðt=�Þ
� lnðb1�Þ þ 2 ln

lnðt=�Þ
� lnðb2�Þ

�
; (A11)
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SghðtÞ ¼ sðx2mB=
ffiffiffi
2

p
; b2Þ þ sðx3mB=

ffiffiffi
2

p
; b3Þ þ sðð1� x2ÞmB=

ffiffiffi
2

p
; b2Þ þ sðð1� x3ÞmB=

ffiffiffi
2

p
; b3Þ

� 1

�1

�
ln

lnðt=�Þ
� lnðb3�Þ þ ln

lnðt=�Þ
� lnðb2�Þ

�
; (A12)

where the function sðq; bÞ is defined in Appendix A of Ref. [29]. The scale tis in the above equations are chosen as

ta ¼ maxð ffiffiffiffiffi
x2

p
mB;

ffiffiffiffiffiffiffiffiffi
x1x2

p
mB; 1=b1; 1=b2Þ;

t0a ¼ maxð ffiffiffiffiffi
x1

p
mB;

ffiffiffiffiffiffiffiffiffi
x1x2

p
mB; 1=b1; 1=b2Þ;

tb ¼ maxð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2j1� x3 � x1j

q
mB;

ffiffiffiffiffiffiffiffiffi
x1x2

p
mB; 1=b1; 1=b3Þ;
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x2jx3 � x1j

q
mB;

ffiffiffiffiffiffiffiffiffi
x1x2

p
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