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It is shown that intrinsic neutrino flavor violation invariably occurs when neutrinos are created within

the standard model augmented by the known massive neutrinos, with mixing and nondegenerate masses.

The effects are very small but much greater than the naive estimate �m2=E2
� or the branching ratio of

indirect flavor violating processes such as � ! e� within the SM. We specifically calculate the

probability (branching ratio) of pion decay processes with flavor violation, such as � ! � ��e, showing

nonzero results.
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I. INTRODUCTION

After the confirmation that neutrinos are massive, non-
degenerate, and mix themselves, further investigations are
being intensively carried out, experimentally as well as
theoretically, to clarify the remaining mysteries about the
neutrinos and the new physics they could be hiding [1].
One question that massive neutrinos immediately poses
concerns the status of lepton number ðLÞ and family lepton
numbers ðLe; L�; L�Þ that were automatically conserved in

the standard model (SM) without right-handed singlet
neutrinos. We know from the successful observation of
neutrino flavor oscillations that family lepton numbers
are not conserved quantities due to the presence of the
nondiagonal PMNS (Pontecorvo-Maki-Nakagawa-Sakata)
mixing matrix. Total lepton number could be conserved at
the classical level if neutrinos were Dirac fermions but that
scenario does not explain the smallness of neutrino masses.
The most natural way to explain tiny neutrino masses is the
seesaw mechanism but, in this case, neutrinos are
Majorana fermions in general. Although, approximate lep-
ton number conservation can be achieved, guaranteeing
small active neutrino masses, by assigning appropriate
lepton numbers to heavy SM gauge singlets [2].

Indeed, it is exactly in the seesaw scenario that many
interesting physics could be potentially observable. If the
seesaw scale is relatively low, at the order of TeV, effects
such as the violation of unitarity of the PMNS matrix [3]
may be observable or the direct production of heavy see-
saw particles [2,4], including heavy neutrinos (type I or III)
or heavy scalars (type II), might be possible. Nonstandard
interactions could also modify the standard oscillation
formulas [5]. In such context, it is common to think that
all consequences of the SM augmented by massive neu-
trinos have been investigated through. (An extensive analy-
sis can be found in Ref. [6].) Most of the direct
consequences of massive neutrinos, with the exception of
neutrino oscillations, are very difficult to be observed due

to the tiny masses and mass differences: j�m2
12j �

8� 10�5eV2 and j�m2
23j � 2:3� 10�3eV2 [7]. For ex-

ample, the production of antineutrinos with negative he-
licity is possible in principle, because neutrinos are
massive, but negligible in practice [8]. Despite such diffi-
culties, an enormous experimental effort is being dis-
pended to measure the absolute neutrino mass scale [9].
On the other hand, indirect effects allowed by massive
neutrinos with mixing, such as the lepton flavor (LF)
violating decay � ! e�, are even strongly suppressed in
the SM [Brð� ! e�Þ< 10�50] because of the tiny neu-
trino masses that enter the loops [10,11]. Extensions of the
SM, though, may lead in general to relatively large LF
violating effects and certain conditions should be fulfilled
for a natural suppression [12].
Contrary to usual expectations, we will show in this

article that intrinsic neutrino flavor violation, hence lepton
flavor violation, is possible in neutrino creation due solely
to the known neutrino mass differences and nonzero mix-
ing. More specifically, we will show that processes such as
� ! � ��e are possible with a branching ratio much greater
than loop induced processes such as � ! e�. In fact, this
effect should be correctly quantified before considering
new physics contributions that could mimic the same
effects [13,14]. For instance, there were attempts to explain
the LSND anomaly [15] from new physics interactions that
violate lepton flavor [16]. For interactions that conserve
total lepton number, however, conflicts with low energy
phenomena cannot be avoided [17]. Before the confirma-
tion that neutrino oscillations were responsible for both
deficits of neutrinos coming from the sun and the atmo-
sphere, there were attempts to explain the deficit with
nonstandard interactions [18], even with massless neutri-
nos [19]. Indeed, it is important to distinguish the intrinsic
lepton flavor violation effect calculated here from effects
coming from interactions, extrinsic to the presence of
neutrino masses, that violate lepton flavor and, perhaps,
lepton number. Such interactions could give rise to effec-
tive operators with observable consequences in other low
energy phenomena. An analogous distinction between di-*ccnishi@ifi.unicamp.br
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rect and indirect CP violation is important to classify the
CP violating effects involving the neutral K mesons [20]
that confirmed the CKMmechanism of CP violation in the
SM [21].

The outline of the article is as follows. In Sec. II we
apply the Wigner-Weisskopf approximation to treat the
pion decay, considering the finite decay width.
Section III contains the main results of neutrino flavor
violation in pion decay and uses mainly Eqs. (10) and
(30) from Sec. II. The ones only interested in the results
may skip Sec. II. We discuss the results and some impli-
cations in Sec. IV. The appendices show some calculations
that were omitted through the text and some useful
material.

II. WIGNER-WEISSKOPF APPROXIMATION IN
PION DECAY

Consider the pion decay �� ! l�i þ ��j, i ¼ 1, 2 (l1 �
e, l2 � �) and j ¼ 1, 2, 3. The detailed description of this
decay will be made by applying the Wigner-Weisskopf
(WW) approximation method [22]. The WW method is
essentially an improved method of second order time
dependent perturbation theory which can describe the dy-
namics of decaying and decayed states at intermediate
times (exponential behavior).

To calculate the decaying pion state at any time t, within
the applicable approximation that only li ��j states appear as

decay states, it suffices to discover the functions c and � in

j�ðtÞiWW ¼
Z

d3pc ðp; tÞe�iE�tj�ðpÞi

þX
ij

Z
d3qd3k�ijðq;k; tÞe�iðEli

þE�j
Þt

� jliðqÞ�jðkÞi; (1)

where the spin degrees of freedom are omitted and the
states fj�ðpÞi; jliðqÞ�jðkÞig, i, j ¼ 1, 2, refer to the free

states, eigenstates of H0, normalized as

h�ðp0Þj�ðpÞi ¼ �3ðp� p0Þ;
hliðq0Þ�jðk0ÞjliðqÞ�jðkÞi ¼ �3ðq� q0Þ�3ðk� k0Þ:

(2)

The expansion (1) means we are restricted to the lowest
order of perturbation theory.

The free Hamiltonian is characterized by the free energy
of the states with physical masses

H0j�ðpÞi ¼ E�ðpÞj�ðpÞi; (3)

H0jliðqÞ�jðkÞi ¼ ðEliðqÞ þ E�j
ðkÞÞjliðqÞ�jðkÞi; (4)

where E�ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

�

p
(� ¼ �, li, �j), and we will

denote Mli � Mi and M�j
� mj. The interaction

Hamiltonian is given by

V ¼ �
Z

d3xLFðxÞ þ counterterms; (5)

where LF is the Fermi interaction Lagrangian.
Considering the total Hamiltonian

H ¼ H0 þ V; (6)

we can write a Schrödinger-like equation�
i
d

dt
�H0

�
j�ðtÞiWW ¼

Z
d3pi

@c ðp; tÞ
@t

e�iE�tj�ðpÞi

þX
ij

Z
d3qd3ki

@�ijðq;k; tÞ
@t

� e
�iðEli

þE�j
ÞtjliðqÞ�jðkÞi (7)

¼ Vj�ðtÞi: (8)

Contraction with the appropriate states yields

i
@

@t
c ðp; tÞ ¼ �M2

2E�

c ðp; tÞ þX
ij

Z
d3qd3k�ijðq;k; tÞ

� h�ðpÞjVðtÞjliðqÞ�jðkÞi; (9)

i
@

@t
�ijðq;k; tÞ ¼

Z
d3pc ðp; tÞhliðqÞ�jðkÞjVðtÞj�ðpÞi;

(10)

where VðtÞ ¼ eiH0tVe�iH0t and �M2 is a counterterm.
From the initial conditions

c ðp; 0Þ ¼ c ðpÞ; (11)

�ijðq;k; 0Þ ¼ 0; (12)

we can formally solve

�ijðq;k; tÞ ¼ �i
Z t

0
dt0

Z
d3pc ðp; t0Þ

� hliðqÞ�jðkÞjVðt0Þj�ðpÞi; (13)

and obtain

@

@t
c ðp; tÞ ¼ �i

�M2

2E�

c ðp; tÞ þ
Z

d3p0d3qd3k

�
Z t

0
dt0h�ðpÞjVðtÞjliðqÞ�jðkÞi

� hliðqÞ�jðkÞjVðt0Þj�ðp0Þic ðp0; t0Þ: (14)

This is the key equation for the WW approximation.
Notice that only momentum conservation holds for the

matrix elements, in particular,

hliðqÞ�jðkÞjVj�ðpÞi ¼ N�1=2
ij Mij�

3ðp� q� kÞ; (15)

where Nij ¼ ð2�Þ32EliðqÞ2E�j
ðkÞ2E�ðpÞ and Mij �

Mijðp;q;kÞ ¼ Mð��ðpÞ ! l�i ðqÞ ��jðkÞÞ. Replacing Eq.

(15) into Eq. (14) yields
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@

@t
c ðp; tÞ ¼ �i

�M2

2E�

c ðp; tÞ � 1

2E�ðpÞ
Z t

0
dt0

� c ðp; t� t0ÞKðp; t0Þ; (16)

where

Kðp; t0Þ ¼ 1

ð2�Þ3
X
ij

Z d3q

2Eli

d3k

2E�j

ei�Eijt
0 jMijj2

� �3ðp� q� kÞ; (17)

where �Eij � E� � Eli � E�j
and the respective p, q, k

dependence of E�, Eli , E�j
is implicit. The expression in

Eq. (17), however, does not provide a convergent integral
since jMijj2 behaves as k2 for q ¼ p� k and jkj ! 1.

However, a cutoff function fðp;q;kÞ multiplying Mij is

understood to regularize the expression. Such function can
arise effectively from the pion form factor and vertex
corrections in higher orders [23]. Such cutoff function is
necessary to ensure the convergence of Eq. (17) and the
production rate of �ðpÞ ! liðqÞ ��jðkÞ to be more probable

for the energy conserving states and does not grow indef-
initely for high jkj. We will assume that the cutoff function
f satisfies the properties

(P1) the functional form of f is broad for Eli or E�j
and it

varies very slowly for values close to the energy conserving
values, in particular f ¼ 1 for �Eij ¼ 0.

(P2) the suppression of high momentum jkj or jqj (with
qþ k fixed) occurs only significantly at an scale � which
satisfies � � � � M2

�=�, where � is the pion decay
width.

Only these properties will be necessary for most of the
calculations in this article. The inclusion of an explicit
cutoff function will be considered in Appendix A to justify
the property (P2).

With the introduction of f we can argue that the domi-
nant contribution of Kðp; tÞ is for t� 0, since Eq. (17)
corresponds to a Fourier transform in E�j

and the integrand

is a very broad function, which leads to a narrow function
in time. We can then approximate Eq. (14) as

@

@t
c ðp; tÞ � �i

�M2

2E�

c ðp; tÞ � 1

2E�ðpÞ
�
�Z 1

0
dt0Kðp; t0Þ

�
c ðp; tÞ: (18)

The Eq. (18) corresponds to the WWapproximation and it
is valid for intermediate times, i.e., t should be greater than
the time width of Kðp; tÞ, since for such short time the
original expression (16) can be significantly different.
Within the WW approximation the expression inside the
bracket in Eq. (18) gives

Z 1

0
dt0Kðp; t0Þ ¼ i

ð2�Þ3
X
ij

Z d3q

2Eli

d3k

2E�j

jfMijj2
�Eij þ i	

� �3ðp� q� kÞ: (19)

Using the relation

1

E� i	
¼ P

1

E
� i��ðEÞ; (20)

we obtain

ReEq:ð19Þ ¼ �

ð2�Þ3
X
ij

Z d3q

2Eli

d3k

2E�j

jfMijj2

� �4ðp� q� kÞ; (21)

ImEq:ð19Þ ¼ 1

ð2�Þ3
X
ij

P
Z d3q

2Eli

d3k

2E�j

jfMijj2
�Eij

� �3ðp� q� kÞ: (22)

Using the property (P1) of f we can identify Eq. (21) as
proportional to the pion decay rate at rest [23]

Re Eq:ð19Þ ¼ M��; (23)

while Eq. (22) can be absorbed by the counterterm

Re Eq:ð19Þ ¼ ��M2: (24)

We can finally find the functions c and �. Equation (18)
gives

@

@t
c ðp; tÞ ¼ � �

2�
c ðp; tÞ; (25)

which can be readily solved to give

c ðp; tÞ ¼ c ðpÞe��t=2�; (26)

in accordance to the expected exponential decay law. The
factor � ¼ E�ðpÞ=M� accounts for the Lorentz dilatation
of time. At the same time, the production wave function
can be obtained from Eq. (12)

�ijðq;k; tÞ ¼ ~�ijðp;q;k; tÞc ðpÞjp¼qþk; (27)

~�ijðp;q;k; tÞ � ½1� e�ið�Eij�i�=2�Þt	

� N�1=2
ij

fMijðp;q;kÞ
�Eij � i �

2�

: (28)

Thus j�ijðq;k; tÞj2 is the production probability density.

From the conservation of probability at any time t, we
must check if

Z
d3pjc ðp; tÞj2 þX

ij

Z
d3qd3kj�ijðq;k; tÞj2 ¼ 1: (29)

The calculation is performed in Appendix B. The impor-
tant point is that Eq. (29) is satisfied if we neglect the terms
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that do not conserve energy in the squared amplitude
jMijj2, i.e., the second term in

X
spins

jMijj2 ¼ jMEC
ij j2 þ j�Mijj2; (30)

where the superscript EC stands for energy conservation.
Notice that the usual energy conserving term jMEC

ij j2 is

positive definite while j�Mijj2 has no definite sign. The

cutoff function f is responsible for controlling such con-
tributions. Therefore, we retain only the energy conserving
parts of jMijj2 further on.

For future use, we also define

M��ij ¼ �

ð2�Þ3 jM
EC
ij j2

Z
d�k

��
k2

2Eli2E�j

�
�dðEli þ E�j

Þ
dk

��1
�
EC
; (31)

and

�i ¼
X
j

�ij: (32)

The ratio �i=� corresponds to the branching ratio of the
reaction � ! li þ ��, independent of neutrino flavor, and it
practically coincides with the usual branching ratio calcu-
lated with massless neutrinos, since

P
jjUijj2 ¼ 1 and the

kinematical contribution of neutrino masses are negligible.
Obviously,

P
i�i ¼ �.

As a last remark, we should emphasize that nowhere in
this section was the precise form of the interaction used,
except in the asymptotic behavior of jMijj2. Therefore,
this approximation can be used in any two-body decay for
which the interaction Hamiltonian is known, as long as a
proper cutoff function is understood. The explicit ampli-
tudeMij and squared amplitude jMijj2 for pion decay are
shown in Appendix C.

III. NEUTRINO FLAVOR VIOLATION IN PION
DECAY

We begin by defining the two-particle states with defi-
nite flavor [24]

jl�ðqÞ ��
ðkÞi � ��iU
jjliðqÞ ��jðkÞi: (33)

The charged lepton states remain as mass eigenstates while
the neutrino states are mixed through U
j. We will see, in

accordance to usual expectations, that pions decay mainly
into the states jl�ðqÞ ��
ðkÞi with ð�;
Þ ¼ ð�;�Þ.
However, we will also see that there is a non-null proba-
bility of the pion to decay into the neutrino flavor violating
states with ð�;
Þ ¼ ð�; eÞ or ð�;
Þ ¼ ðe;�Þ. For that
purpose, we want to ultimately calculate the probability

P l��

ðtÞ ¼

Z
d3q

Z
d3k

X
spins

jhl�ðqÞ ��
ðkÞj�ðtÞiWWj2:

(34)

Using �ij in Eq. (10), when t 
 1=�, we can rewrite

Eq. (34) as

P l��

ðtÞ ¼

Z
d3pjc ðpÞj2

Z
d3k

X
spins

�
��������
X
j

U�je
�iE�j

t
Uy

j
F�j

��������
2

q¼p�k
; (35)

where

U�jF�jðp;q;kÞ � N�1=2
�j

fM�jðp;q;kÞ
�E�j � i �

2�

: (36)

We see the exponential e
�iE�j

t
is responsible for the neu-

trino oscillation phenomenon. In fact, if we neglect the
neutrino mass mj in every term of Eq. (35), except in the

exponential, we get

P l��

ðtÞ ¼

Z
d3pjc ðpÞj2

Z
d3kP ���
ðtÞjF�j2; (37)

where F� ¼ ðF�jÞmj!0. Notice the usual oscillation proba-

bility,

P ���

ðtÞ ¼

��������
X
j

U�je
�iE�j

ðkÞt
Uy

j


��������
2

; (38)

factors out from the creation probability of l� ��, jF�j2, for
massless neutrinos. Such factorization is what allows the
definition of the state Eq. (33) as a flavor state, since

P l��

ðtÞ � ��


��

�
; (39)

for 1=� � t � Losc, where Losc is the typical flavor oscil-
lation length (period). Therefore, the antineutrino flavor
stateU�jj ��ji is only created jointly with the charged lepton
l� [25,26]. Notice Eq. (39) correctly coincides with the
branching ratio of the decay� ! l� ��. Neutrinos, however,
are not strictly massless and we may have initial flavor
violation because different neutrino masses contribute dif-
ferently to each channel � ! li þ ��j [25]. We will focus

on initial flavor violation and denote the interval of time
satisfying 1=� � t � Losc by t ¼ 0.
We can make the flavor violating contributions explicit

by rewriting the term inside the square modulus in Eq. (35)
as

X3
j¼1

U�jU
�

jF�j ¼ ��
F�1 þ

X3
j¼2

U�jU
�

j�F�j; (40)

where �F�j � F�j � F�1. Thus the square modulus be-

comes
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��������
X3
j¼1

U�jU
�

jF�j

��������
2 ¼ ��
jF�1j2

þ ��
2Re

�
F�
�1

X3
j¼2

U�jU
�

j�F�j

�

þ
��������
X3
j¼2

U�jU
�

j�F�j

��������
2

: (41)

We recognize that only the last term of Eq. (41) is flavor
nondiagonal. The second term, which is flavor diagonal, is
estimated in Appendix E and shown to be much smaller
than the flavor violating contribution.

Specializing to � � 
, under the approximation of
U�3U

�

3 � 0 (which is valid if � ¼ e or 
 ¼ e), the initial

creation probability yields

P l��

ð0Þ ¼

Z
d3pjc ðpÞj2

Z
d3kjU�2U

�

2j2j�F�2j2:

(42)

For the two family parametrization, we have jU�2U
�

2j2 ¼

1
4 sin

22�, thus indicating that this phenomenon is indeed

mixing dependent.
To analyze the most dominant contribution to Eq. (42),

we recall that a general function gðxÞ can be expanded

gðxþ aÞ � gðx� aÞ � g0ðxÞ2a; (43)

for small enough a. Moreover, if gðxÞ ¼ Q
n
i¼1 giðxÞ, the

relative difference can be written

gðxþ aÞ � gðx� aÞ
gðxÞ � 2a

Xn
i

g0iðxÞ
giðxÞ : (44)

Taking x to be m2
2 ¼ �m2 þ 1

2 �m
2 and a ¼ 1

2 �m
2 ¼ 1

2 �ðm2
2 �m2

1Þ we can estimate the different contributions that
compose F�2:

ð�1Þ g ¼ E�1=2
�2 : a g0

g ¼ � �m2

4 �E2
�
,

ð�2Þ g ¼ ð�E�2 � i�=2�Þ�1: a g0
g ¼ i �m2

2 �E��
�,

ð�3Þ g ¼ jkjEC2 : a g0
g � �m2

2k2 ,

ð�4Þ j ~MEC
�2 j2�j ~MEC

�1 j2
j ~MEC

�2 j2m2!0

� �m2

2M2
�
ðM2

�þ2M2
�

M2
��M2

�
Þ.

We are assuming the energy conserving values (�Eij � 0),

which is an excellent approximation considering �E�, jkj
are essentially the same either if we compute it usingm2

2 or
m2

1. Conventionally we will take the simple average �m2 ¼
1
2 ðm2

1 þm2
2Þ. In particular, in ð�3Þ, jkjEC2 denotes the mo-

mentum of neutrino �2, assuming energy conservation and

p � 0: jkjEC2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
�2 �m2

2

q
, where E�2

¼ ðM2
� �M2

� þ
m2

2Þ=ð2M�Þ. We also note that � 
 �m2=2 �E� is satisfied

recalling � ¼ 2:53� 10�8 eV [27] and �m2=2 �E� � 1
6 �

10�7 eV �m2

1 eV2 , where �m2 is either j�m2
12j � 0:8� 10�4

or j�m2
23j � 2:5� 10�3 [7]. This condition is necessary to

have coherent flavor neutrino creation [25]. From � � �E�,

jkjEC, it is also clear that among the different contributions
ð�nÞ, the dominant contribution is given by ð�2Þ. A thor-
ough analysis of the difference between the amplitudes
M�j, estimated in ð�4Þ, is shown in Appendix C.

Therefore, we can neglect all differences due to �m2 in
F�j except in the terms ð�E�j � i�=2�Þ�1 and obtain

j�F�2j2 � jMEC
�þj2

N�þ

��������
1

�E�2 � i �
2�

� 1

�E�1 � i �
2�

��������
2

(45)

� jMEC
�þj2

N�þ

�
�m2

2E�

�
2 1

½ð�E�þÞ2 þ �2

4�2	2
; (46)

where the subscript þ means we assume m2
2 ¼ m2

1 ¼ �m2,

as well as in E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ �m2

p
. It is also implicit that

jMEC
�þj2 refers to jMEC

�j j2 with m2
j ! �m2 and without the

mixing matrix element jU�jj2 [see Eq. (39)]. In practice,

for realistic jkj, we could assume massless neutrinos for
these terms. Notice we are already assuming k2 
 �m2,
otherwise the term inside parenthesis should be kept as
E�2

ðkÞ � E�1
ðkÞ. Although the jkj ! 0 limit of such term

in Eq. (46) is well defined and gives 1
2 �m

2=
ffiffiffiffiffiffi
�m2

p
��m ¼

m2 �m1.
The flavor violating creation probability in Eq. (42) can

be calculated in analogy to Eq. (B4), using Eq. (31), which
gives

P l��

ð0Þ � 1

2
sin22�

��

�

�
�m2

2E��

�
2

EC
; (47)

where the two family parametrization, jU�2U
�

2j2 ¼

1
4 sin

22�, was employed and p � 0 (pion at rest) was con-

sidered by adjusting c ðpÞ. The following integral was also
necessary:

Z 1

�1
d�

1

½�2 þ �2

4�2	2
¼ 2�

�

�
2�2

�2

�
: (48)

One can recognize the term inside parenthesis in Eqs. (46)
and (48) as the additional contribution that appears in Eq.
(47).
Let us estimate some specific flavor violation probabil-

ities (branching ratios):

P��eð0Þ
sin22�12

� 10�9;
P e��

ð0Þ
sin22�12

� 3� 10�15 �e

�
;

P���ð0Þ
sin22�23

� 10�6:

(49)

To compute the last value in Eq. (49), we considered
j�m2

13j � j�m2
23j 
 j�m2

12j.
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IV. DISCUSSIONS

The important point of this detailed calculation is that
lepton flavor violation should necessarily occur when neu-
trinos are created because it is unlikely that the expression
in Eq. (42) would cancel exactly. It is also important to
emphasize that neutrinos should be detected as flavor
states, as defined (approximately) in Eq. (33), to observe
the flavor violation effects. The coherent creation of neu-
trino flavor states is indeed guaranteed from the observa-
tions of neutrino oscillations. When neutrinos are not
explicitly detected, their effects can be computed from an
incoherent sum of the contributions of each neutrino mass
eigenstate [6], as in the intended direct measurements of
absolute neutrino mass. Extensive investigations in such
context were first reported in Ref. [6]. On the other hand, if
mass eigenstates were created and detected incoherently,
flavor violating effects would be analogous to flavor chang-
ing processes for quarks, at tree level, without the explicit
appearance of the �m2 dependence.

The neutrino flavor violation effects reported here are, in
general, very small but relatively larger than what would be
expected from a naive estimate �m2=E2

� (a similar result is
indeed obtained in Refs. [28,29]) because of the presence
of the finite decay width �, which is very small for pions.
We could define, differently from Eq. (33), that the neu-
trinos created jointly with the charged lepton � is �� by
definition [26]. However, the difference between such
definition (Eq. (3.16) of Ref. [26(a)]) and the usual defini-
tion in Eq. (33) carries the factor �m2=E2

� and it is negli-
gible compared to the factor we have calculated in
Eq. (47). Thus the effect calculated in Eq. (47) is dominant,
even if we distinguish the neutrinos created from different
sources [26]. In fact, intrinsic neutrino flavor violation
effects cannot be large because otherwise there would be
no coherent creation of neutrino flavor states and there
would be no flavor oscillation [25,26,30]. Of course, this
analysis is modified if there are genuine nonstandard in-
teractions [13].

In previous calculations of intrinsic neutrino flavor vio-
lation [26,28,29], the contribution of the finite decay width
of the parent particle was not explicitly considered and
either the effect was neglected [26] or it was considered
unphysical [28,29]. The arguments of Ref. [28] are based
on a formalism that uses a unitarily inequivalent vacuum
that guarantees initial neutrino flavor conservation [28] but
also implies slightly different oscillation formulas [31].
Instead, the intrinsic flavor violation effect calculated in
Eq. (47) should be regarded as a genuine physical conse-
quence of massive neutrinos with mixing and it contradicts
neither the weak Hamiltonian as stated in Ref. [29] nor any
experimental observations. The qualitative occurrence of
intrinsic neutrino flavor violation, that in the context of
flavor oscillations could be called initial flavor violation,
could be anticipated in more phenomenological calcula-
tions of flavor oscillation probabilities considering scalar

[32] or fermionic [33,34] wave packets, but its magnitude
could not be determined without the full consideration of
the interaction responsible for neutrino creation.
The expression in Eq. (44) reminds one of the �S ¼ 2

contribution from box diagrams in K0– �K0 mixing (see,
e.g., Ref. [23], p. 235). Such contribution is suppressed
by the GIM mechanism [35] because it involves the sum of
the contributions of quarks u, c, and t in the loop. Equation
(41), however, is not loop suppressed and, differently for
quarks, the mixing angles are large. These facts explain the
relatively large effect calculated in Eq. (47), despite tiny
neutrino mass differences. In fact, the effect is much larger
than loop suppressed effects such as the lepton flavor
violating decay � ! e� in the SM. Although, in models
beyond the SM such as the MSSM, such effects can be
larger than the current experimental limit [11].
Despite the arbitrariness of the cutoff function f, the

expression in Eq. (42) is finite independently of the pres-
ence of that function. This feature shows the robustness of
the calculation as the cutoff scale � may be chosen from a
wide range without affecting the results. An expression
very similar to Eq. (47) was estimated in an unrealistic
exactly solvable quantum field theory (QFT) model of Lee-
type in Ref. [25], also showing that the intrinsic neutrino
flavor violation effects calculated here bear some univer-
sality independently of the particular interaction in
question.
The further inclusion of radiative corrections to the

formalism developed in Sec. I does not seem to be straight-
forward. The corrections have to be included without spoil-
ing the conservation of probability of Eq. (29). It is also
possible that deviations from the exponential decay law
would emerge from such corrections or from an approxi-
mation scheme distinct from the WW approximation.
Deviations from exponential behavior are indeed expected
for very short or very long times from the unitary evolution
of quantum mechanics [36]. A brief connection with per-
turbative QFT is also shown in Appendix F. The inclusion
of finite widths in perturbative QFT is interesting in its own
right because it mixes up different orders in perturbation
theory and special care is necessary in gauge theories to
keep track of gauge invariance [37]. Obviously, to fully
specify the dominant cutoff scale �, radiative corrections
should be explicitly considered. The study of the renor-
malization procedure also needs careful analysis. In this
respect, it should be emphasized that the necessity of the
cutoff function f is not related to the nonrenormalizability
of the Fermi interaction. The same asymptotic behavior
(jMijj � k2) would require a cutoff function if instead we

adopted a Yukawa-type interaction which is renormaliz-
able. In the context of neutrino propagation and oscillation,
the inclusion of finite widths was also considered in
Refs. [38,39] at lowest order.
Another possible application of the formalism devel-

oped in Sec. II concerns the study of the effects of the
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finite width to the effective size of the decaying particles.
The roles played by the finite width and the intrinsic
momentum uncertainty, encoded here in the wave function
c ðpÞ, are not clear but they are crucial to the occurrence of
neutrino oscillations, a phenomenon that requires quantum
coherence. As it is well known, a small uncertainty in the
spatial localization of the neutrinos are necessary to the
observation of neutrino oscillations [30]. With such for-
malism, the quantum entanglement can be also studied,
differently of the static Lee-type model [25]. The extension
to three-body decays should be also pursued since most of
the decays with neutrino creation, such as the beta decay or
� ! e ��e��, have three decay particles. In that respect, it is

important to notice that the kinematics of a three-body
decay is very different from a two-body decay that emits
monoenergetic particles when the parent particle is at rest.

To summarize, intrinsic neutrino flavor violation should
occur when neutrino flavor states are created. The effect is
the consequence of the slightly different creation ampli-
tudes, functions of different neutrino masses, that have to
be summed coherently. The smallness of the effect ex-
plains why neutrino flavor is an approximately well-
defined concept in the SM, and it is directly related to
the smallness of the neutrino mass differences. At the same
time, small mass splittings allow the coherent creation of
neutrino flavor states that is required for the phenomenon
of neutrino flavor oscillations. The observation of the latter
enabled the recent progress in understanding some of the
fundamental properties of neutrinos.
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APPENDIX A: THE CUTOFF FUNCTION f

We will show here that the contribution to Eq. (B2)
coming from the second term of Eq. (30) is negligible for
a cutoff function f that obeys the properties (P1) and (P2).
We will adopt the particular function

jfðp;q;kÞj2 ¼ �2

ð�EijÞ2 þ�2
: (A1)

Close to the energy conserving values the contribution of
j�Mijj2 is negligible compared to jMEC

ij j2 as we can see in
Eq. (C7). To analyze the contribution of j�Mijj2 for jkj 

�, we rewrite Eq. (C7) as

j�Mijj2 ¼ ð�EijÞ2A2 þ �EijA1; (A2)

and note that the coefficients A2, A1 are bounded functions
of jkj. More specifically, Eliðp� kÞ � E�j

ðkÞ � Eliðp�

kÞ � jkj is a monotonically decreasing function bounded
by EliðpÞ and �jpj cos�. We also notice that the term

inside parenthesis in Eq. (B3) is bounded as well as j1�
e�ið�Eij�i�=2�Þtj2. Thus, in analogy to Eq. (B2), if we use
jf�Mijj2 instead of jMEC

ij j2, inside the integral in dk, we

recognize we have to compare

Z 1

Eli
ðpÞ�E�

d�
jf� ~Mijj2
�2 þ �2

4�2

(A3)

with

Z 1

Eli
ðpÞ�E�

d�
j ~MEC

ij j2
�2 þ �2

4�2

; (A4)

where � ¼ ��Eij and we are neglecting the neutrino

masses. Taking only the contribution of A2 in Eq. (A2),
the ratio between Eqs. (A3) and (A4) is

R &
jA2jmax�

2

j ~MEC
ij j2

�
2��

�

��1 Z 1

�1
�2

½�2 þ �2

4�2	½�2 þ�2	 (A5)

� ��

2ðM2
� �M2

i Þ
� 1; (A6)

assuming p � 0 and (P2) is valid. The contribution coming
from A1 is much smaller.

APPENDIX B: CALCULATION OF EQ. (29)

The second term of Eq. (29) can be rewritten as

Z
d3qd3kj�ijðq;k; tÞj2 ¼

Z
d3pjc ðpÞj2

�
Z

d3kj~�ijðp;p� k;k; tÞj2;
(B1)

where we used the change of variable q ! p ¼ qþ k and
the sum over spins is implicit.
We can calculate, using (P1), the second integral of Eq.

(B1) assuming that the contribution of the second piece of
Eq. (30) is negligible and noticing that the squared ampli-
tude, summed over spins, after imposing energy conserva-
tion, is a function only of the masses:

Z
d3kj~�ijj2 ¼

jMEC
ij j2

2E�ð2�Þ3
Re

Z
d�k

Z 1

0
dk

�
k2

2Eli2E�j

�

� ½1þ e��t=� � 2e�ið�Eij�i �2�Þt	
ð�EijÞ2 þ �2

4�2

(B2)
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� jMEC
ij j2

2E�ð2�Þ3
Re

Z
d�k

�
k2

2Eli2E�j

dk

d�

�
EC

�
Z 1

�1
d�

½1þ e��t=� � 2eið��E�þi �2�Þt	
ð�� E�Þ2 þ �2

4�2

(B3)

¼ jMEC
ij j2

M�ð2�Þ3
Re

Z
d�k

�
k2

2Eli2E�j

dk

d�

�
EC

�

�
½1� e��t	;

(B4)

recalling that � ¼ E�=M�. In Eq. (B3), the change of
variables jkj ! � ¼ E�j

þ Eli was used and the lower

end of the integral was extended to�1, consideringM� �
Mi �mj 
 �.

Comparing Eq. (B4) with Eqs. (21) and (31), after using
� ¼ P

ij�ij, we see Eq. (29) is satisfied.

APPENDIX C: PION DECAY

The effective Fermi interaction Lagrangian is

L F ¼ �2
ffiffiffi
2

p
GFð�liðxÞ��LUij�jðxÞÞJ�ðxÞ þ H:c:; (C1)

where L ¼ 1
2 ð1� �5Þ, fUijg denotes the PMNS matrix

while J� is the hadronic current that in the case of pion

decay reads

J� ¼ Vud �uL��dL: (C2)

Using LF we can calculate Mij in Eq. (15):

M ij ¼ iCUij �uiðqÞp6 LvjðkÞ � iCUij
~Mijðp;q;kÞ; (C3)

where C � 2F�GFVud. We have used the chiral current
relation [23]

h0j �uðxÞ���5dðxÞj��ðpÞi ¼ �i
ffiffiffi
2

p
F�

p�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E�ðpÞ

p e�ip:x

ð2�Þ3=2 ;

(C4)

where F� � 92 MeV is the pion decay constant. It is
important to keep in mind that Eq. (C3) should be calcu-
lated without assuming energy conservation. In that case,
the squared amplitude isX

spins

j ~Mijðp;q;kÞj ¼ 4ðp � qiÞðp � kjÞ � 2ðqi � kjÞp2;

(C5)

where p� � ðE�ðpÞ;pÞ, q
�
i � ðEliðqÞ;qÞ, and k

�
j �

ðE�j
ðkÞ;kÞ. If we consider energy conservation, we get

the usualX
spins

j ~Mijðp;q;kÞjEC ¼ j ~MEC
ij j

¼ M2
i ðM2

� �M2
i Þ

þm2
j ðM2

� þ 2M2
i �m2

j Þ; (C6)

without neglecting the neutrino masses. The remaining
part of Eq. (C5) that does not conserve energy can be
calculated by using p ¼ qþ kþ �p, in four-vector nota-
tion, where �p � ð�Eij; 0Þ:

j�Mijj2 ¼ ð�EijÞ2½p2 � ðEli � E�j
Þ2	

� ðM2
i �m2

j Þ2�EijðEli � E�j
Þ: (C7)

It is important to estimate

j�Mijj2
jMEC

ij j2 � � M2
i

M2
� �M2

i

�
2�

M�

þ �2

M2
�

�
; (C8)

considering �Eij � �, p � 0, and the energy conserving

values for the rest of the terms. Numerically Eq. (C8) is
dominated by �=M� � 10�16 which is negligible and it
supports why we neglected the contribution of the terms
j�Mijj2 when computing the flavor violation probability

in Eq. (47).
We can also calculateX

spins

~Mijðp;q;kÞ ~M�
ij0 ðp;q;kÞ

¼ 4ðqi � pÞðp � hkijj0 Þ � 2p2ðqi � hkijj0 Þ; (C9)

where hkijj0 is given by Eq. (D2). To calculate Eq. (C9), we
made use of the completeness relation in Eq. (D1).
Furthermore, the mixed squared amplitude in Eq. (C9)
can be decomposed, in analogy to Eq. (30), asX

spins

~Mijðp;q;kÞ ~M�
ij0 ðp;q;kÞ ¼ j ~MEC

i;jj0 j2 þ j� ~Mi;jj0 j2:

(C10)

Energy conservation (EC) assumes the neutrino four-
momentum is hkijj0 . Since the mass associated with hki12,
for example, is

ffiffiffiffiffiffiffiffiffiffi
hki212

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffi

m1m2
p

, i.e., the geometrical

average, we can also show that

j ~MEC
i1 j2 < j ~MEC

i;12j2 < j ~MEC
i2 j2; (C11)

for m1 <m2. Equation (C11) confirms that the contribu-
tion due to neutrino mass differences in the amplitudes
Mij can be indeed neglected in comparison to the contri-

bution containing �, i.e., ð�2Þ, when computing Eq. (47).

APPENDIX D: COMPLETENESS RELATIONS FOR
SPINORS WITH DIFFERENT MASSES

To compute Eq. (35) exactly, it is necessary to calculate
mixed squared amplitudes such as

P
spinMi1M�

i2, where

the subscripts 1 and 2 denote spinors involving different
masses, m1 and m2. We are interested, however, in calcu-
lating the sum over spins using a common basis for the spin
directions for the spinors v�1

ðkÞ and v�2
ðkÞ. [Depending

on the parametrization adopted �v�1
ðk; rÞv�2

ðk; sÞ � �rs.]

The only basis where that is possible is their common
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helicity basis. In that basis we have, with helicity h,X
h

v�1
ðk; hÞ �v�2

ðk; hÞ ¼ hk6 i21 � �0�k6 21; (D1)

where

hki21 � ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p ðcosh �; k̂ sinh �Þ; (D2)

�k21 � ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p ðcosh�; k̂ sinh�Þ; (D3)

with � ¼ 1
2 ð1 þ 2Þ and � ¼ 2 � 1. The usual hyper-

bolic parametrization is employed, i.e., kj ¼
mjðcoshi; k̂ sinhiÞ, with the additional constraint

m1 sinh1 ¼ m2 sinh2 ¼ jkj. Notice that Eq. (D1) re-
duces to the usual k6 �m when m1 ¼ m2 ¼ m.

To calculate Eq. (D1) we made use of the parametriza-
tion

v�j
ðk; hÞ ¼ mj � k6 jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mj þ Ej

p v0ðk; hÞ; (D4)

where Ej ¼ ðkjÞ0, and the completeness relation

X
h¼�

v0ðk; hÞvy
0 ðk; hÞ ¼

1

2
ð1� �0Þ: (D5)

APPENDIX E: FLAVOR CONSERVING EFFECTS

Let us estimate the effect of the second term of Eq. (41)
which is flavor diagonal. Comparing to Eqs. (46) and (47),
it is possible that it could be relatively large, of the order of
�m2=E��. However, we can calculate

2ReF�
�1�F�2 � jMEC

�þj2
N�þ

�m2

2E�

2�E�þ
½ð�E�þÞ2 þ �2

4�2	2
: (E1)

After integration in � ¼ ��E�þ, the effect is non-null
only because the lower integration limit, �0 ¼ mj þ
El�ðpÞ � E�ðpÞ � �M� þM�, is finite. One can see the

contribution will be proportional to

�
2��

�

��1 �m2

2E�

Z 1

�0

d�
2�

½�2 þ �2

4�2	2
� �m2

2E��

1

2�

�2

�2
0

; (E2)

which is, in general, much smaller than ð�m2

2E��
Þ2.

APPENDIX F: CONNECTION WITH
PERTURBATIVE QUANTUM FIELD THEORY

The treatment of unstable states in pertubative quantum
field theory is of considerable interest since the majority of
particles studied at high energies, including the ones we
call elementary, are unstable and observed as resonances.
We will briefly show the connection between the formal-
ism developed in Sec. II with perturbative QFT.
Although the asymptotic ‘‘in’’ and ‘‘out’’ states cannot

be defined for an unstable state, we can still calculate

c ðp; tÞ ¼ 0h�ðpÞjUðt; 0Þj�c i0; (F1)

�ijðq;k; tÞ ¼ 0hliðqÞ; ��jðkÞjUðt; 0Þj�c i0; (F2)

where

j�c i0 ¼
Z

d3pc ðpÞj�ðpÞi0; (F3)

and

Uðt; t0Þ ¼ T exp

�
�i

Z t

�t0
dt00Vðt00Þ

�
; (F4)

with T being the time ordered product. Recall that the S
matrix is given by Uð1;�1Þ. The functions in Eqs. (F1)
and (F2) can be identified with the functions introduced in
Sec. II. In particular, they obey the initial conditions of
Eqs. (11) and (12). They also obey

i
d

dt
c ðp; tÞ ¼ 0h�ðpÞjVðtÞUðt; 0Þj�c i0; (F5)

i
d

dt
�ijðq;k; tÞ ¼ 0hliðqÞ; ��jðkÞjVðtÞUðt; 0Þj�c i0: (F6)

In particular, if the completeness relation in Fock space
could be truncated by 1 ¼ j�ih�j þP

ijjli ��jihli ��jj, we
recover Eqs. (9) and (10).
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