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We explore how the seesaw sector in neutrino mass models may be constrained through symmetries to

be completely determined in terms of low-energy mass, mixing angle and CP-violating phase observables.

The key ingredients are intrafamily symmetries to determine the neutrino Dirac mass matrix in terms of

the charged-lepton or quark mass matrices, together with interfamily or flavor symmetries to determine

diagonalization matrices. Implications for leptogenesis and collider detection of heavy neutral leptons are

discussed. We show that leptogenesis can succeed in small regions of parameter space for the case where

the neutrino Dirac mass matrix equals the up-quark mass matrix. The model where the neutrino Dirac

mass matrix equals the charged-lepton mass matrix can yield a heavy neutral lepton as light as about

1 TeV, but detecting such a particle will be difficult.
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I. INTRODUCTION

Neutrino oscillation experiments involving neutrinos
and antineutrinos coming from astrophysical and terrestrial
sources [1] have found compelling evidence that neutrinos
have mass. To accommodate this observation, the minimal
standard model (SM) must be extended. Some sensible
ways to do this include: (a) type I seesaw with three heavy
right-handed (RH)Majorana neutrinos [2], (b) the use of an
electroweak Higgs triplet to directly provide the left-
handed (LH) neutrinos with small Majorana masses
(type II seesaw [3]), (c) introducing a fermion triplet
(type III seesaw [4]), (d) the generation of three Dirac
neutrinos through an exact parallel of the SM method of
giving mass to charged fermions, and (e) the radiative
generation of neutrino masses as per the Zee or Babu
models [5]. But in the absence of more experimental
data, it is impossible to tell which, if any, of these is
actually correct.

The focus of this paper is on method (a), the seesaw
framework with three heavy RH Majorana neutrinos (de-
noted N throughout). It is an attractive possibility because
it simply posits the existence of these N’s to parallel the
multiplet structure of the other fermions while providing a
simple explanation for why the light neutrinos are so much
less massive than the charged leptons. Since the setup uses
the most general renormalizable Lagrangian consistent
with the SM gauge symmetry, both the Yukawa couplings
of the LH leptons to the RH neutrinos and bare Majorana
masses are permitted for the RH neutrinos. Consequently,
the additional assumption that the RHMajorana mass scale

is much higher than that of the charged fermions leads to a
tiny mass for ordinary neutrinos through the famous see-
saw relation: m� �m2

f=MR, where m� is the Majorana

mass for a light neutrino and MR is a large RH Majorana
mass (MR � mf) with mf being most naturally of the

order of a charged-fermion mass. The three light neutrino
mass eigenstates are accompanied by three heavy neutral
lepton mass eigenstates.
Depending on the parameter space for the RH neutrino

bare masses and Yukawa couplings, additional benefits
may flow: thermal leptogenesis [6] if there are appropriate
CP-violating decays and if the lightest of the heavyN’s has
mass greater than about 109 GeV [7]; leptogenesis through
CP-violating oscillations of the N’s as in the Akhmedov-
Rubakov-Smirnov mechanism [8]; or N’s as a warm dark
matter candidate [9].1

Since the mass eigenstate heavy neutral leptons are to a
good approximation sterile with respect to gauge interac-
tions, they are difficult to detect experimentally. This is
especially true if they are also extremely massive, as in the
thermal leptogenesis alternative. On the other hand, if they
are not as massive and are in the TeV scale, then they can
be looked for in colliders through their Yukawa interac-
tions, and through their suppressed but nonzero weak
interactions (induced through the mass mixing with regular
active neutrinos).
To experimentally test the seesaw scenario, it would be

helpful if one knew the parameters governing the N sector
including their interactions with other SM particles. In the
minimal seesaw model, these parameters are arbitrary, so
one has to go beyond the minimal model to achieve this
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1Note that due to the constraints in the parameter space, this
scenario cannot really be called a seesaw model, but the form of
the Lagrangian is the same.
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goal. The purpose of this paper is to illustrate how symme-
tries may be used to determine the RH Majorana mass
matrix as a function of low-energy mass, mixing angle, and
CP-violating phase observables by constructing several
representative models. We then examine these models to
see if thermal leptogenesis can succeed or if experimen-
tally accessible heavy N’s are predicted.

In the next section, we discuss the general model build-
ing symmetry requirements for relating the N-sector pa-
rameters to low-energy observables. Section III then
revises the basic properties of the identified symmetries,
followed by Sec. IV which details specific models.
Section V presents a phenomenological study of those
models, and we conclude in Sec. VI.

II. SEESAW STRUCTURE AND RELATION TOTHE
LOW-ENERGY SECTOR

The effective light Majorana neutrino mass matrix m�,
defined through

1

2
��m��

c þ H:c:; (2.1)

is given by

m� ¼ �mD
�M

�1
R ðmD

� ÞT þOððmD
� Þ3=M2

RÞ; (2.2)

where mD
� is the neutrino Dirac mass matrix, defined

through

�� Lm
D
� �R þ H:c:; (2.3)

while the RHMajorana mass matrixMR is defined through

1

2
ð�RÞcMR�R þ H:c:: (2.4)

Let

�m ¼ V�� (2.5)

be the mass eigenstates for the light Majorana neutrinos,
where V� is the unitary diagonalization matrix for m�. The
diagonalized m� is therefore2

m̂ � � diagðm1; m2; m3Þ ¼ �V�m�V
T
� : (2.6)

Equation (2.2) then implies that

m̂ � ’ V�m
D
�M

�1
R ðmD

� ÞTVT
� : (2.7)

The matrix m̂� has been experimentally determined up to
an absolute light neutrino mass scale, which we shall
conveniently parametrize through the lightest m� eigen-
value. For the normal hierarchy (NH) withm1 <m2 <m3,
we have (for m1;2;3 2 Rþ [ f0g)

m2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ�m2
sol

q
; m3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ �m2
sol þ�m2

atm

q
;

(2.8)

where �m2
sol ’ 7:7� 10�5 eV2 and �m2

atm ’ 2:4�
10�3 eV2 are the ‘‘solar’’ and ‘‘atmospheric’’ squared-
mass difference, respectively [1,10,11]. For the inverted
hierarchy (IH) with m3 <m1 <m2, we obtain

m1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 þ �m2
atm � �m2

sol

q
; m2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 þ�m2
atm

q
:

(2.9)

In order to connect the high- and low-energy sectors, one
must haveMR completely determined by known quantities.
Hence, our goal is to have MR constructed from some
combination of m̂�, the charged-fermion mass matrices,
m̂f with f ¼ e, d, u, and the lepton and quark mixing

matrices (UPMNS and UCKM), respectively. As a conse-
quence, the first necessary condition, according to
Eq. (2.7), is

The neutrino Dirac mass matrix ; mD
� ;must be predicted by the theory: (2.10)

The simplest possibility is that

mD
� ¼ mf for one of f ¼ e;

f ¼ d; or f ¼ u: (2.11)

There are custodial SUð2Þ, unification, and quark-lepton
symmetries that can enforce each of these conditions at
tree level, as we shall review in the next section. For the
moment, let us just accept that they are all possible.
Equation (2.7) now becomes

m̂ � ’ V�mfM
�1
R mT

fV
T
� : (2.12)

Introducing the diagonalized fermion mass matrix

m̂ f ¼ VfLmfV
y
fR; (2.13)

where the VfL and VfR are the left- and right-
diagonalization matrices for mf, respectively. Eq. (2.12)
can be rewritten as

m̂ � ’ V�V
y
fLm̂fVfRM

�1
R VT

fRm̂fV
�
fLV

T
�

¼ ðVfLV
y
� Þym̂fVfRM

�1
R VT

fRm̂fðVfLV
y
� Þ�; (2.14)

which in turn reveals the second necessary condition:

2Diagonalized matrices will always be denoted by a carat in
this paper.
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One has to know the diagonalization matrix product : VfLV
y
� and the right-diagonalization matrix; VfR: (2.15)

Because the known weak interactions are left-handed, the
right-diagonalization matrix cannot be measured.3

Therefore, to satisfy condition (2.15), VfR needs to be
determined by the theory, and this usually means a flavor
symmetry is required.4 In the next section, we shall review
how flavor symmetries can give rise to fully determined
diagonalization matrices, where their entries are just num-
bers, usually related to the Clebsch-Gordan coefficients of
the flavor symmetry group.

The product VfLV
y
� is similar in form to both the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) and
Cabibbo-Kobayashi-Maskawa (CKM) matrices, which
are, respectively,

UPMNS ¼ VeLV
y
� ; UCKM ¼ VuLV

y
dL: (2.16)

The simplest ansatze are that VfLV
y
�L equals either UPMNS

orUCKM. The next simplest class would see VfLV
y
� equal to

a product of either the PMNS or CKMmatrix and a known
matrix predicted by the flavor symmetry selected.

Let us consider some special cases. The simplest possi-
bility suggested by the above equations would be that

f ¼ e and VeR ¼ 1: (2.17)

These relations may be achieved by imposing a ð� $ eÞ
and flavor symmetry, respectively. The RH Majorana mass
matrix is then completely determined through

MR ’ m̂eU
�
PMNSm̂

�1
� Uy

PMNSm̂e: (2.18)

Two other possibilities, arising from the enforcement of
(� $ d, u) and the appropriate flavor symmetries, are that

f ¼ d; with VdR ¼ 1; VdL ¼ VeL; (2.19)

and f ¼ u; with VuR ¼ 1; VuL ¼ VeL; (2.20)

leading to

MR ’ m̂d;uU
�
PMNSm̂

�1
� Uy

PMNSm̂d;u: (2.21)

Because of the automatic presence of V� in the formula
for MR, it is relatively straightforward to find symmetries
leading to Eqs. (2.18) and (2.21) where the leptonic PMNS
mixing matrix is a key feature. But it may also be of
interest to consider symmetry structures that can lead to

the PMNS matrix being replaced by the CKM matrix (or a
product of the two). Oneway to try this would be to arrange
symmetries such that m� would be necessarily diagonal,
giving V� ¼ 1. Then, the condition f ¼ d, together with

VuL ¼ VdR ¼ 1, will lead to UCKM ¼ Vy
dL, and hence the

relation

MR ’ m̂dU
T
CKMm̂

�1
� UCKMm̂d; (2.22)

would be obtained. A similar relation with d and u inter-
changing roles could equally well be contemplated. The
delicate part would be obtaining a diagonal m� without
forcing a diagonal mD

� . If the latter were diagonal, then the
relations mD

� ¼ md or mD
� ¼ mu would also imply that

VdL ¼ 1 or, respectively, VuL ¼ 1, and hence leading to
UCKM ¼ 1 at tree level.
Finally, there is of course the relatively mundane case

where all of the diagonalization matrices in the formula for
MR are equal to the identity, so that one simply gets

MR � M̂R ’ diag

�m2
f1

m1

;
m2

f2

m2

;
m2

f3

m3

�
: (2.23)

Interestingly, this is not possible for the f ¼ e choice,
because the PMNS matrix is known to be very dissimilar
to the identity. However, flavor symmetries allowing,
Eq. (2.23) can in principle be achieved for f ¼ d or u. In
these situations, one would then get UPMNS ¼ VeL and

UCKM ¼ VuL (if f ¼ d) and Vy
dL (if f ¼ u).

Although the analysis above was framed in terms of the
leading seesaw expression m� ’ �mD

�M
�1
R ðmD

� ÞT , it gen-
eralizes to cases where additional terms on the right-hand
side are kept, because the higher-order terms contain a
priori the same unknowns as does the leading term.
In summary, the general properties of enforcing a (� $

e, d, u) symmetry in parallel with some flavor symmetries
motivate relations of the form

MR ¼ MRðm̂e; m̂d; m̂u; UPMNS; UCKMÞ (2.24)

of which Eqs. (2.18), (2.21), (2.22), and (2.23) are impor-
tant examples.

III. THE USE OF SYMMETRIES

The aim of this section is to briefly illustrate how mass
relations of the type mD

� ¼ me;d or u may be enforced, as

well as the role of flavor symmetry in determining the
diagonalization matrices of interest. We will present
some concrete examples that utilize these ideas to good
effect in the next section.
It is well known that in a minimal SOð10Þ framework

one obtains the mass relations mD
� ¼ me ¼ md ¼ mu, be-

cause all fermions are in the same multiplet and the elec-
troweak Higgs lies in a real fundamental of SOð10Þ. These

3Of course, the discovery of right-handed weak interactions
would change this situation.

4See [12] for an earlier work on flavor symmetry and the
seesaw mechanism.
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relations are too powerful from a phenomenological per-
spective: while the neutrino Dirac mass matrix is related to
that of another fermion as desired, the other mass relations
me ¼ md ¼ mu are not wanted. However, this observation
motivates the search for gauge groups that contain the SM
as a subgroup and have enough power to establish the mass
relation we seek without violating any known experimental
constraints. Indeed, subgroups of SOð10Þ are good starting
points for such a search. Outside of SOð10Þ, the use of
discrete rather than continuous symmetries to relate differ-
ent multiplets constitutes another sensible strategy.

Let us consider the following groups, motivated by
being subgroups of SOð10Þ, but not necessarily to be
thought of as arising from an underlying SOð10Þ theory:
the standard SUð5Þ unification group [13], its flipped ex-
tension SUð5Þ �Uð1Þ [14], and the left-right group
SUð3Þc � SUð2ÞL � SUð2ÞR �Uð1ÞB�L [15]. Standard
SUð5Þ has the LH charged leptons and LH down antiquarks
in the �5 representation, while their mass partners are in the
10. In the minimal model, a single Yukawa term couples
those two multiplets to a Higgs in the �5, leading to the
relation me ¼ md. The up-quark and neutrino Dirac
masses are governed by independent Yukawa couplings,
so they are unrelated to each other and unrelated to me and
md. In flipped SUð5Þ, the down antiquarks and the up
antiquarks flip roles, as also do the charged antileptons
and antineutrinos. The minimal model thus supplies mD

� ¼
mu with unrelated md and me entries. For our purposes,
standard SUð5Þ is not useful, but flipped SUð5Þ is interest-
ing.5 The third subgroup, the left-right group, has the
power to enforce mass degeneracy between weak isospin
partners: md ¼ mu and me ¼ mD

� [17]. Such a degeneracy
follows from requiring a bidoublet Higgs to be real, which
at the SOð10Þ level follows from having the Higgs 10-plet
being real. This basically causes SUð2ÞR to become custo-
dial SUð2Þ. So we conclude that flipped SUð5Þ which can
give mD

� ¼ mu and the left-right group which can give
mD

� ¼ me are relevant SOð10Þ subgroups for our purposes.
The other obvious mass relation mD

� ¼ md will be ob-
tained in the next section not from SOð10Þ or any of its
subgroups, but rather by using the idea of discrete quark-
lepton symmetry [18]. The idea here is to extend the gauge
group by including an SUð3Þ color group for leptons, with
standard leptons identified as one of the colors after spon-
taneous symmetry breaking. The gauge structure now per-
mits a discrete interchange symmetry between quarks and
(generalized) leptons to be imposed, from whichmD

� ¼ md

can follow.
Though we shall not pursue this line of thought further in

this paper, we should also remark that the relation between
mD

� and me;d or u need not be a direct equality. At the

SOð10Þ level one can consider embedding the electroweak

Higgs doublet not in the 10 but in a higher-dimensional
representation. In that case, a matrix of Clebsch-Gordan
coefficients relatesmD

� with the other fermion mass matrix,
as a generalization of the well-known Georgi-Jarlskog [19]
modification of the me to md relation in SUð5Þ unification.
Once the appropriate fermion-mass-constraining group

is selected, the remaining challenges are twofold. The first,
as well illustrated by minimal SOð10Þ, is the removal of
by-products such as unwanted mass relations or interac-
tions. The second is the need to have predictable diagonal-
ization matrices. Quite frequently, it is possible to meet
both of these challenges by introducing a flavor symmetry
and a nonminimal Higgs sector. In cases where this is not
sufficient, unbroken global nonflavor symmetries may be
imposed to eliminate all undesirable terms.
The key concept is that of a ‘‘form-diagonalizable ma-

trix’’ [20]. This is a matrix containing relations amongst its
elements and perhaps also texture zeros so as to make the
diagonalization matrices fully determined while leaving
the eigenvalues arbitrary. Special flavor symmetries exist
to enforce form diagonalizability, and they have in recent
years been widely used to try to understand the ‘‘tribimax-
imal’’ form [21] that is consistent with the experimentally
measured PMNS matrix.
In the models presented below, the combined effect of

the mass-relating symmetry and the flavor symmetry will
be to produce a relation of the form mD

� ¼ Km̂e;d or u,

where K is given by a known diagonalization matrix.

IV. SOME REPRESENTATIVE MODELS

In this section, we construct three realistic models that
can enforce mD

� ¼ Km̂e;d or u, and subsequently lead to

relations (2.18) and (2.21), respectively.

A. Relating mD
� to m̂u via a flipped SUð5Þ model

We consider a flipped SUð5Þ group [14] augmented by
A4 flavor symmetry [22,23]:

G1 ¼ SUð5Þ �Uð1ÞX � A4; (4.1)

� SUð3Þc � SUð2ÞL �Uð1ÞT �Uð1ÞX|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Uð1ÞY

� A4; (4.2)

with hypercharge Y given by a linear combination of T and
X. The choice of this gauge group is for the reason dis-
cussed in the previous section: one naturally obtains the
useful mass relation mD

� ¼ mu while avoiding me ¼ md.
The role of the flavor symmetry is then purely to ensure
that all diagonalization matrices are completely
determined.
For this model, the particle contents and their trans-

formation properties under G1 are given by

5The Pati-Salam-like [16] subgroup SUð4Þ � SUð2ÞL � Uð1ÞR
can also be used to enforce mD

� ¼ mu.
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c L� ¼

u1cR

u2cR

u3cR

eL

��L

0
BBBBBBBB@

1
CCCCCCCCA
� ð�5;�3Þð3Þ;

���
L ¼ 1ffiffiffi

2
p

0 d3cR �d2cR �u1L �d1L

�d3cR 0 d1cR �u2L �d2L

d2cR �d1cR 0 �u3L �d3L

u1L u2L u3L 0 ��c
R

d1L d2L d3L �c
R 0

0
BBBBBBBB@

1
CCCCCCCCA
� ð10; 1Þð1 	 10 	 100Þ; ecR � ð1; 5Þð1 	 10 	 100Þ;

��
ð3Þ ¼

h1d

h2d

h3d

�0�
ð3Þ

��þ
ð3Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
� ð5;�2Þð3Þ; ��

ð1	10	100Þ � ð5;�2Þð1 	 10 	 100Þ; ����� � ð50; 2Þð1 	 10 	 100Þ;

(4.3)

where the superscripts 1, 2, and 3, and Greek letters are the
color and SUð5Þ indices, respectively. In matrix form, the
G1 invariant interaction Lagrangian then contains the fol-
lowing terms:

�L ¼ Y	1
�c L�

�
ð3ÞeR þ ffiffiffi

2
p

Y	2
�c L�

c
L�ð3Þ

þ Y	3

4
ð ��LÞ��ð�c

LÞ��ð��
ð1	10	100ÞÞ�
�����

þ Y	4ð ��LÞ��ð�c
LÞ������� þ H:c:; (4.4)

and when the neutral components of � and � obtain non-
zero vacuum expectation values (VEVs), one gets mass
terms of the form

¼ Y	1 �eLh�0
ð3ÞieR � Y	2ð �uLh�0�

ð3ÞiuR þ ��Lh�0�
ð3Þi�RÞ

þ Y	3

2
ð �dcRdcL þ �dLdRÞh�0

ð1	10	100Þi
þ Y	4 ��

c
R�Rh�0

ð1	10	100Þi þ H:c:: (4.5)

Note that h�i, which provides the heavy Majorana mass,
breaks G1 down to the SM, and is expected to be at a much
higher energy scale than h�i which breaks electroweak
symmetry.
Writing out the A4 structure of the Y	1 and Y	2 terms

in Eq. (4.4) with the vacuum h�0
ð3Þi � h�0�

ð3Þi ¼
ðvð3Þ; vð3Þ; vð3ÞÞ where vð3Þ 2 R, one gets

me: 	1ð �eLh�0
ð3ÞiÞ1eR þ 	0

1ð �eLh�0
ð3ÞiÞ10e00R þ 	00

1 ð �eLh�0
ð3ÞiÞ100e0R þ H:c:; (4.6)

mu: � 	2 �uLðh�0�
ð3ÞiuRÞ1 � 	0

2 �u
00
Lðh�0�

ð3ÞiuRÞ10 � 	00
2 �u

0
Lðh�0�

ð3ÞiuRÞ100 þ H:c:; (4.7)

mD
� : � 	2ð ��Lh�0�

ð3ÞiÞ1�R � 	0
2ð ��Lh�0�

ð3ÞiÞ10�00
R � 	00

2 ð ��Lh�0�
ð3ÞiÞ100�0

R þ H:c:: (4.8)

Expanding out the A4 invariants using the results in the appendix, one obtains

me ¼ U!m̂e; mu ¼ �m̂uU!; mD
� ¼ �U!m̂u; where U! ¼ 1ffiffiffi

3
p

1 1 1
1 ! !2

1 !2 !

0
@

1
A; (4.9)

where m̂e;u ¼ diagð ffiffiffi
3

p
	1;2vð3Þ;

ffiffiffi
3

p
	0
1;2vð3Þ;

ffiffiffi
3

p
	00
1;2vð3ÞÞ.

From (4.8), we deduce that

Vy
eL ¼ U!; Vy

uL ¼ VeR ¼ I; VuR ¼ �U!;

(4.10)
and hence

mD
� ¼ �Vy

eLm̂u: (4.11)

Putting this into (2.7) gives

m̂ � ’ V�V
y
eLm̂uM

�1
R ðVy

eLm̂uÞTVT
�

¼ Uy
PMNSm̂uM

�1
R m̂uU

�
PMNS;

and hence we arrive at

MR ’ m̂uU
�
PMNSm̂

�1
� Uy

PMNSm̂u: (4.12)
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Returning to Eq. (4.5), if we expand the Y	3 and Y	4 term in
flavor space, it becomes apparent that the d-quark mass
matrix, md, and the RH Majorana mass matrix, MR, are
both arbitrary complex symmetric matrices. Consequently,
the diagonalization matrices Vy

dL and V� (since m� is a
function of MR) are both arbitrary unitary matrices in this
model. This implies that the model places no restrictions
on the neutrino mixing matrix, UPMNS ¼ VeLV

y
� ¼ U!V

y
� ,

and the quark mixing matrix,UCKM ¼ VuLV
y
dL ¼ Vy

dL, and
so one simply sets them to match the experimental values.

B. Relating mD
� to m̂d via a quark-lepton symmetric

model

Next, we construct a slightly more complicated model
within the framework of a discrete quark-lepton symmetry
[18]. As well as the usual A4 flavor symmetry, we also
introduce an additional unbroken Z2 global symmetry to

forbid certain interaction terms in the Lagrangian. The
symmetry group is

G2 ¼ Gq‘ � A4 � Z2

¼ SUð3Þ‘ � SUð3Þq|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ZQL

� SUð2ÞL �Uð1ÞX � A4 � Z2;

(4.13)

� ðSUð2Þ‘ �Uð1ÞTÞ � SUð3Þq � SUð2ÞL �Uð1ÞX � A4

� Z2;

(4.14)

where ZQL is the discrete quark-lepton symmetry that

relates SUð3Þ‘ $ SUð3Þq while hypercharge Y is given

by a linear function of X and T. The field contents are

FL ¼ NL

EL

 !
� ð3; 1; 2;�1=3Þð3Þð1Þ$ZQL

QL ¼ uL

dL

 !
� ð1; 3; 2; 1=3Þð3Þð1Þ;

ER � ð3; 1; 1; 4=3Þð1 	 10 	 100Þð1Þ $ uR � ð1; 3; 1;�4=3Þð1 	 10 	 100Þð1Þ;
NR � ð3; 1; 1; 2=3Þð1 	 10 	 100Þð�1Þ $ dR � ð1; 3; 1;�2=3Þð1 	 10 	 100Þð�1Þ;
�ð0Þ
1 � ð3; 1; 1; 2=3Þð1 	 10 	 100Þð1Þ $ �ð0Þ

2 � ð1; 3; 1;�2=3Þð1 	 10 	 100Þð1Þ;
�ð1Þ
1 � ð3; 1; 1; 2=3Þð1 	 10 	 100Þð�1Þ $ �ð1Þ

2 � ð1; 3; 1;�2=3Þð1 	 10 	 100Þð�1Þ;

�1 ¼
�0

1

��
1

 !
� ð1; 1; 2;�1Þð3Þð1Þ $ �2 ¼

�þ
2

�0
2

 !
� ð1; 1; 2; 1Þð3Þð1Þ;

�c
2 ¼

�0�
2

���
2

 !
� ð1; 1; 2;�1Þð3Þð1Þ $ �c

1 ¼
�þ

1

��0�
1

 !
� ð1; 1; 2; 1Þð3Þð1Þ;

�c
d ¼

�0�
d

���
d

 !
� ð1; 1; 2;�1Þð3Þð�1Þ $ �d ¼ �þ

d

�0
d

 !
� ð1; 1; 2; 1Þð3Þð�1Þ;

�1 � ð�6s; 1; 1;�4=3Þð1 	 10 	 100Þð1Þ $ �2 � ð1; �6s; 1; 4=3Þð1 	 10 	 100Þð1Þ;

(4.15)

where

EL;R ¼
E1L;R

E2L;R

eL;R

0
@

1
A; NL;R ¼

N1L;R

N2L;R

�L;R

0
@

1
A are triplets in SUð3Þ‘ space: (4.16)

E1L;R, E2L;R,N1L;R,N2L;R are exotic leptonic-color partners
of the usual leptons. The discrete ZQL symmetry is broken
and these exotic leptons gain mass when �ð0;1Þ

1 picks up a
nonzero VEV:

h�ð0;1Þ
1 i ¼

0
0

vð0;1Þ
�

0
@

1
A while h�ð0;1Þ

2 i ¼ 0: (4.17)

We arrange h�1i � 0 to give a large Majorana mass while

keeping h�2i ¼ 0. The �’s will break electroweak sym-
metry as usual. In order to avoid domain walls6 and allow
the implementation of the seesaw mechanism, we demand
the following hierarchy for the energy scales:

6Cosmological domain walls will form when the discrete
quark-lepton symmetry is spontaneously broken. Arranging for
this breaking scale to be large allows these observationally
unacceptable topological defects to be inflated away [24].
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h�ð0;1Þ
1 i> Tinflation > h�1i � h�1i ’ h�2i ’ h�di

¼ Oð102Þ GeV: (4.18)

Overall, the G2 invariant interaction Lagrangian takes the
form

�L ¼ ½	f1ð �Fc
L�FL��

ð0Þ
1� þ �Qc

L�QL��
ð0Þ
2�Þ

þ 	f2ð �Ec
R�NR��

ð1Þ
1� þ �ucR�dR��

ð1Þ
2�Þ

���

þ 	g1ð �QLuR�1 þ �FLER�2Þ þ 	g2ð �QLuR�
c
2

þ �FLER�
c
1Þ þ 	g3ð �QLdR�d þ �FLNR�

c
dÞ

þ 	h1ð �Nc
R�NR��

��
1 þ �dcR�dR��

��
2 Þ þ H:c:;

(4.19)

where �, �, � are SUð3Þ‘ or q indices and the terms pro-
portional to 	f1;2 are the mass terms for the exotic fermi-
ons. From (4.19) and taking h�0

1i ¼ v1, h�0
2i ¼ v2, and

h�0
di � h�0�

d i ¼ vd, we expect the following mass rela-
tions:

mu ¼ 	g1v1 þ 	g2v
�
2; md ¼ 	g3vd; (4.20)

me ¼ 	g1v2 � 	g2v
�
1; mD

� ¼ 	g3vd: (4.21)

So, in general, me � mu but m
D
� ¼ md. Writing out the A4

structure for the above matrices, we have

me: g1ð �eLh�0
2iÞ1eR þ g01ð �eLh�0

2iÞ10e00R þ g001 ð �eLh�0
2iÞ100e0R � g2ð �eLh�0�

1 iÞ1eR � g02ð �eLh�0�
1 iÞ10e00R � g002 ð �eLh�0�

1 iÞ100e0R þ H:c:;

(4.22)

mu: g1ð �uLh�0
1iÞ1uR þg01ð �uLh�0

1iÞ10u00R þ g001 ð �uLh�0
1iÞ100u0R þ g2ð �uLh�0�

2 iÞ1uR þg02ð �uLh�0�
2 iÞ10u00R þ g002 ð �uLh�0�

2 iÞ100u0R þH:c:;

(4.23)

md: g3ð �dLh�0
diÞ1dR þ g03ð �dLh�0

diÞ10d00R þ g003 ð �dLh�0
diÞ100d0R þ H:c:; (4.24)

mD
� : g3ð ��Lh�0�

d iÞ1�R þ g03ð ��Lh�0�
d iÞ10�00

R þ g003 ð ��Lh�0�
d iÞ100�0

R þ H:c:: (4.25)

Choosing the vacuum patterns h�0ð�Þ
1;2 i ¼ ðvð�Þ

1;2; v
ð�Þ
1;2; v

ð�Þ
1;2Þ, h�0

di � h�0�
d i ¼ ðvd; vd; vdÞ, and following the A4 rules in the

appendix, we get

me ¼ U!m̂e; mu ¼ U!m̂u; md ¼ mD
� ¼ U!m̂d; (4.26)

i :e: Vy
eL ¼ Vy

uL ¼ Vy
dL ¼ U!; VeR ¼ VuR ¼ VdR ¼ I; (4.27)

where m̂e ¼ diagð ffiffiffi
3

p ðg1v2 � g2v
�
1Þ,

ffiffiffi
3

p ðg01v2 � g02v
�
1Þ,ffiffiffi

3
p ðg001v2 � g002v

�
1ÞÞ, m̂u ¼ diagð ffiffiffi

3
p ðg1v1 þ g2v

�
2Þ,ffiffiffi

3
p ðg01v1 þ g02v�

2Þ,
ffiffiffi
3

p ðg001v1 þ g002v�
2ÞÞ, and m̂d ¼

diagð ffiffiffi
3

p
g3vd;

ffiffiffi
3

p
g03vd;

ffiffiffi
3

p
g003vdÞ. In addition, it can be

shown that when the A4 singlets h�0
1i, h�00

1 i, and h�000
1 i

acquire nonzero VEVs, the resulting neutrino Majorana
mass matrix, MR, is an arbitrary complex symmetric ma-
trix. Using the results (4.26) and (4.27), we can conclude
that in this model

MR ’ m̂dU
�
PMNSm̂

�1
� Uy

PMNSm̂d; (4.28)

where UPMNS ¼ VeLV
y
� ¼ Uy

!V
y
� which is arbitrary, while

we have UCKM ¼ VuLV
y
dL ¼ Uy

!U! ¼ I. So, at tree level,
this model predicts no quark mixing. However, since the
symmetry enforcing this result is now broken, radiative
corrections will generate nonzero quark mixing. We have
not attempted to prove that realistic mixing angles can be
obtained, since our focus in this paper is on the lepton
sector. It is interesting that the form of the mixing matrices

predicted by this model is consistent with small quark
mixing (UCKM ’ I), whereas neutrino mixing (UPMNS ¼
Uy

!V
y
� ) is large [23]. This is because Uy

! is a trimaximal
mixing matrix, and so, unless Vy

� � U!, one expects the
product of the two would be very dissimilar to the identity.

C. Relating mD
� to m̂e via a left-right model

Finally, we consider a left-right model [15] with A4

flavor symmetry. The symmetry group is

G3 ¼ SUð3Þc � SUð2ÞL � SUð2ÞR �Uð1ÞB�L � A4:

(4.29)

Here, the imposition of the discrete L $ R parity symme-
try is not necessary, and hence will be omitted for sim-
plicity. The complete list of relevant particle contents for
this setup is
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‘L ¼ �L

eL

� �
� ð1; 2; 1;�1Þð3Þ;

‘R ¼ �R

eR

� �
� ð1; 1; 2;�1Þð1 	 10 	 100Þ;

�‘ ¼ �0 �þ
�� ��0�

� �
� ð1; 2; �2; 0Þð3Þ;

~�‘ ¼ �2�
�
‘�2 ¼ ��0 ��þ

��� �0�
� �

� ð1; 2; �2; 0Þð3Þ;

qL ¼ uL
dL

� �
� ð3; 2; 1; 1=3Þð3Þ;

qR ¼ uR
dR

� �
� ð3; 1; 2; 1=3Þð3Þ;

�q ¼ �0
A �þ

B

��
A �0

B

� �
� ð1; 2; �2; 0Þð1 	 10 	 100Þ;

~�q ¼ �2�
�
q�2

¼ �0�
B ��þ

A

���
B �0�

A

� �
� ð1; 2; �2; 0Þð1 	 10 	 100Þ;

�R ¼ �þ=
ffiffiffi
2

p
�þþ

�0 ��þ=
ffiffiffi
2

p
 !

� ð1; 1; 3; 2Þð1 	 10 	 100Þ;
(4.30)

where we have deliberately embedded the same Higgs
doublet into �‘ to form a real bidoublet. In matrix form,
the G3 invariant Lagrangian has the following terms:

�L ¼ 	y1
�‘L�‘‘R þ ~	y1

�‘L ~�‘‘R þ 	y2 �qL�‘qR

þ ~	y2 �qL ~�‘qR þ 	y3 �qL�qqR þ ~	y3 �qL ~�qqR

þ 	y4
�‘cRi�2�R‘R þ H:c:: (4.31)

When the symmetry is broken spontaneously by the non-
zero VEVs,

h�‘i ¼ v‘ 0
0 �v‘

� �
� �h ~�‘i; h�qi ¼ vA 0

0 vB

� �
;

h ~�qi ¼ v�
B 0
0 v�

A

� �
; h�Ri ¼ 0 0

v� 0

� �
;

(4.32)

where v‘ 2 R and Oðv�Þ � Oðv‘;A;BÞ, we obtain mass

relations of the form

mu ¼ ð	y2 � ~	y2Þv‘ þ 	y3vA þ ~	y3v
�
B;

mD
� ¼ ð	y1 � ~	y1Þv‘;

(4.33)

md ¼ �ð	y2 � ~	y2Þv‘ þ 	y3vB þ ~	y3v
�
A;

me ¼ �ð	y1 � ~	y1Þv‘:
(4.34)

In flavor space, the charged-lepton and neutrino Dirac mass

terms become

me: � ½y1ð �eLh�0�iÞ1eR þ y01ð �eLh�0�iÞ10e00R
þ y001 ð �eLh�0�iÞ100e0R
 þ ~y1ð �eLh�0�iÞ1eR
þ ~y01ð �eLh�0�iÞ10e00R þ ~y001 ð �eLh�0�iÞ100e0R þ H:c:;

(4.35)

mD
� : y1ð ��Lh�0iÞ1�R þ y01ð ��Lh�0iÞ10�00

R þ y001 ð ��Lh�0iÞ100�0
R

� ½~y1ð ��Lh�0iÞ1�R þ ~y01ð ��Lh�0iÞ10�00
R

þ ~y001 ð ��Lh�0iÞ100�0
R
 þ H:c:: (4.36)

Taking h�0�i � h�0i ¼ ðv‘; v‘; v‘Þ and then comparing
Eqs. (4.35) and (4.36), one gets

me ¼ U!m̂e; mD
� ¼ �U!m̂e ¼ �Vy

eLm̂e; (4.37)

where m̂e ¼ diagð ffiffiffi
3

p ð�y1 þ ~y1Þv‘,
ffiffiffi
3

p ð�y01 þ ~y01Þv‘,ffiffiffi
3

p ð�y001 þ ~y001 Þv‘Þ. Whereas the neutrino Majorana mass
matrix is a general complex symmetric just like in our
other examples, the quark mass matrices have a special
form. For mu, the expanded Lagrangian,

y2sð �uLuRÞ3sh�0i þ y2að �uLuRÞ3ah�0i � ~y2sð �uLuRÞ3sh�0i
� ~y2að �uLuRÞ3ah�0i þ y3ð �uLuRÞ1h�0

Ai þ y03ð �uLuRÞ10
� h�000

A i þ y003 ð �uLuRÞ100 h�00
A i þ ~y3ð �uLuRÞ1h�0�

B i
þ ~y03ð �uLuRÞ10 h�0�00

B i þ ~y003 ð �uLuRÞ100 h�0�0
B i þ H:c:;

(4.38)

gives rise to a mass matrix of the form

mu ¼
A1 Bþ B�
B� A2 Bþ
Bþ B� A3

0
@

1
A; (4.39)

while it can be shown that mass matrix md also has a
similar structure:

md ¼
C1 �Bþ �B�

�B� C2 �Bþ
�Bþ �B� C3

0
@

1
A; (4.40)

where A1;2;3, C1;2;3, and Bþ;� are complicated functions of

the VEVs and Yukawa couplings. Equations (4.39) and
(4.40) imply that the diagonalization matrices VuL and
VdL are not completely arbitrary. However, it is easy to
see that there are enough degrees of freedom in the result-

ing UCKM ¼ VuLV
y
dL such that experimental data can be

fitted. Returning to (4.37), it is clear that the main predic-
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tion of this model is

MR ’ m̂eU
�
PMNSm̂

�1
� Uy

PMNSm̂e; (4.41)

where UPMNS ¼ VeLV
y
� ¼ Uy

!V
y
� is a priori arbitrary and

to be fitted to the experimental observations.

V. PHENOMENOLOGY

The general conclusion from the previous section is that
it is possible to use symmetries to construct the relation

MR ’ m̂fU
�
PMNSm̂

�1
� Uy

PMNSm̂f; f ¼ e; d or u;

(5.1)

that links the high-energy seesaw sector to low-energy
observables. Using the current experimental data on quarks
and leptons, the properties of the heavy RH Majorana
neutrinos in these models can therefore be inferred directly,
and interesting consequences may arise.
While the mixing matrix UPMNS can be in general writ-

ten as

UPMNS ¼
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13
�s12s23 þ c12c23s13e

i� c12s23 þ s12c23s13e
i� �c23c13

0
B@

1
CA ei�1=2 0 0

0 ei�2=2 0
0 0 1

0
B@

1
CA; (5.2)

where smn ¼ sin�mn, cmn ¼ cos�mn, � is the CP-violating
Dirac phase, and �1 and �2 denote the two Majorana
phases, it is often more convenient to absorb the
Majorana phases into m̂� in (5.1) and allow the mi’s to
be complex masses instead. When numerical analysis is
required, we use the best fit values with 1� errors for the
mixing angles [11]:

sin 2�12 ¼ 0:304þ0:022
�0:016; sin2�23 ¼ 0:50þ0:07

�0:06;

sin2�13 ¼ 0:01þ0:016
�0:011:

(5.3)

But for our analytical work, we assume that UPMNS has an
exact tribimaximal form [21], with

sin 2�12 ¼ 1

3
; sin2�23 ¼ 1

2
; sin2�13 ¼ 0: (5.4)

The inputs to the light neutrino mass matrix m̂� are re-
stricted by the squared-mass differences:

�m2
sol ¼ 7:65þ0:23

�0:20 � 10�5 eV2;

�m2
atm ¼ 2:40þ0:12

�0:11 � 10�3 eV2;
(5.5)

obtained from neutrino oscillation experiments [1,10,11]
and the cosmological bound on the sum of all neutrino
masses:

P
ijmij & 0:61 eV (95% C.L.) [25] which implies

an absolute upper limit of

jmij< 0:2 eV ð95%C:L:Þ for all i: (5.6)

In the following, we study (5.1) by taking a generic form
for m̂f � diagð
1; 
2; 
3Þ, where 
1 � 
2 � 
3 is as-
sumed. It is obvious that once m̂f has been chosen (i.e.

i’s are known), only �, �1, �2, and jm1j (or jm3j for the
inverted hierarchy case) can potentially change the form of
MR and its eigenvalue spectrum. Moreover, if �13 ’ 0, it is

expected that the Dirac phase, �, would not play a signifi-
cant role.7

So, to understand the leading behaviors of the mass
spectrum for MR, we approximate UPMNS with the tribi-
maximal form [see (5.4)] and absorb �1;2 into m1;2, re-

spectively. After expanding out the right-hand side of (5.1),
we have

MR � MT
R

¼
2
2

1

3m1
þ 
21

3m2
� 
1
2

3m1
þ 
1
2

3m2
� 
1
3

3m1
þ 
1
3

3m2


 
 
 
2
2

6m1
þ 
2

2

3m2
þ 
2

2

2m3


2
3

6m1
þ 
2
3

3m2
� 
2
3

2m3


 
 
 
 
 
 
2
3

6m1
þ 
2

3

3m2
þ 
2

3

2m3

0
BBBB@

1
CCCCA:

(5.7)

There are two limiting cases of Eq. (5.7) which can provide
important insights into the dependence of the heavy RH
Majorana masses Mi on the mass scale of the lightest LH
neutrino.

A. Fully hierarchical light neutrinos

For the normal hierarchy scheme, we have jm1j ! 0
with jm2;3j related to jm1j via (2.8). Therefore, in this limit,

we can write Eq. (5.7) as

MR ¼ MR0 þ �MR;

where MR0 �

2
2
1

3m1
� 
1
2

3m1
� 
1
3

3m1


 
 
 
2
2

6m1


2
3

6m1


 
 
 
 
 
 
2
3

6m1

0
BBBBB@

1
CCCCCA (5.8)

7It should be pointed out that when 13-mixing is nonzero, say,
at the best fit value of 5.7�, the choice of Dirac phase can
influence the mass eigenvalues by almost 2 orders of magnitude
for certain sets of Majorana phases and jm1;3j values, as our
parameter space scans have indicated.
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is the dominant part of the matrix as jm1j ! 0, while �MR

is considered to be a small perturbation. Suppose that the
true eigenvalues and eigenvectors forMR can be expressed
as Ei � Ei0 þ�Ei and ui � ui0 þ�ui, respectively, for
all i, where MR0ui0 ¼ Ei0ui0 is assumed. Then, perturba-
tion theory implies that the variation in the eigenvalues is
given by

�Ei ¼ uTi0 
 ð�MRÞ 
 ui0; i ¼ 1; 2; and 3; (5.9)

where ui0’s are chosen to be orthonormal to each other.
Solving MR0ui0 ¼ Ei0ui0 for Ei0, one immediately gets

E10; E20 ¼ 0; E30 ¼ 4
2
1 þ 
2

2 þ 
2
3

6m1

’ 
2
3

6jm1j ;
(5.10)

and subsequently

�E1 ’ 3
2
1

m2

; �E2 ’ 2
2
2

m3

; �E3 ’ 2
2
3

m2

; (5.11)

in the limit of 
3 � 
1;2 and jm3j � jm2j. Combining

Eqs. (5.10) and (5.11), the heavy RH neutrino masses are

jM1j ’ 3
2
1

jm2j ; jM2j ’ 2
2
2

jm3j ; jM3j ’ 
2
3

6jm1j :
(5.12)

Hence, we can see that due to the large neutrino mixing, the
expected correspondence between mi and the Dirac
masses, mi / 
2

i , no longer holds and that only the largest
RH neutrino mass is a function of jm1j.8 Substituting in the
running fermion masses mð�Þ at � ’ 109 GeV [28] as
typical values for 
i’s, we have the following predictions
for RH neutrino masses in the normal hierarchy case:

mu: jM1j ’ 5:6� 105 GeV;

jM2j ’ 5:5� 109 GeV;

jM3j * 2:0� 1014 GeV; (5.13)

md: jM1j ’ 2:3� 106 GeV;

jM2j ’ 1:1� 108 GeV;

jM3j * 3:8� 1010 GeV; (5.14)

me: jM1j ’ 9:0� 104 GeV;

jM2j ’ 4:8� 108 GeV;

jM3j * 5:7� 1010 GeV: (5.15)

The plots of M1;2;3 as a function of jm1j for the case m̂f ¼
m̂u and for many different values of �, �1;2 are shown in

Fig. 1. These numerical results validate the trend predicted
by the theoretical analysis. The tallest spikes in the dia-

grams of Fig. 1 are locations where level crossing occurs
(M1;2 or M2;3 are quasidegenerate) for certain special val-

ues of Dirac and Majorana phases, an effect that has been
previously studied in [26,29]. Plots of M1;2 for the case

m̂f ¼ m̂d;e are shown in Fig. 2.

For the inverted hierarchy scheme, jm3j � jm1j ’ jm2j,
and hence, we take

MR0 �
0 0 0

 
 
 
2

2

2m3

�
2
3

2m3


 
 
 
 
 
 
2
3

2m3

0
BB@

1
CCA; (5.16)

FIG. 1. Plots of M1;2;3 vs jm1j in the m̂f ¼ m̂u case with
normal hierarchy for light neutrino masses assumed. Input run-
ning masses used: muð�Þ ¼ 1:3 MeV, mcð�Þ ¼ 0:37 GeV,
mtð�Þ ¼ 1:1� 102 GeV, where � ’ 109 GeV. Each plot con-
tains approximately 3:18� 105 data points produced by system-
atically sweeping the jm1j and �, �1;2 2 ð0; 2�Þ parameter

space.8These results are consistent with those in references [26,27].
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which then leads to the following expressions for the MR

masses:

jM1j ’ 
2
1

jm2j ; jM2j ’ 2
2
2

jm2j ;

jM3j ’ 
2
3

2jm3j þ

2
3

2jm2j ’

2
3

2jm3j :
(5.17)

The resulting numerical values for this case are similar to
those shown in Eqs. (5.13) to (5.15) although they are in
general slightly smaller.

B. Quasidegenerate light neutrinos

When the lightest neutrino mass approaches the upper
bound of (5.6), we get jm1j ’ jm2j ’ jm3j. Assuming that
the Majorana phases �1;2 are negligible, then Eq. (5.7)

becomes

MR ’

2
1

jm1j 0 0


 
 
 
2
2

jm1j 0


 
 
 
 
 
 
2
3

jm1j

0
BBBB@

1
CCCCA: (5.18)

From this, we can immediately deduce the approximate
scale for the Mi’s:

mu: jM1j ’ 8:5� 103 GeV;

jM2j ’ 6:8� 108 GeV;

jM3j ’ 5:9� 1013 GeV; (5.19)

md: jM1j ’ 3:4� 104 GeV;

jM2j ’ 1:3� 107 GeV;

jM3j ’ 1:1� 1010 GeV; (5.20)

me: jM1j ’ 1:4� 103 GeV;

jM2j ’ 5:9� 107 GeV;

jM3j ’ 1:7� 1010 GeV: (5.21)

These estimates agree well with the numerical results
shown in Figs. 1 and 2.

C. Thermal leptogenesis

Using the MR mass spectrum information presented
above, several general comments on the possibility of
baryon asymmetry generation via thermal leptogenesis
for the models discussed in Sec. IV can be made. First of
all, from the fact that M1 is typically in the range of

FIG. 2. Plots of M1;2 vs jm1j in the m̂f ¼ m̂d case (left column) and m̂f ¼ m̂e case (right column) with normal hierarchy for light
neutrino masses assumed. Input running masses used: (left) mdð�Þ ¼ 2:6 MeV, msð�Þ ¼ 52 MeV, mbð�Þ ¼ 1:5 GeV, and (right)
með�Þ ¼ 0:52 MeV, m�ð�Þ ¼ 1:1� 102 MeV, m�ð�Þ ¼ 1:8 GeV, where � ’ 109 GeV. Each plot contains approximately 1:0�
105 data points produced by systematically sweeping jm1j and the �;�1;2 2 ð0; 2�Þ parameter space.
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103–106 GeV for all setups, it is clear that conventional
leptogenesis where the asymmetry is generated predomi-
nantly by the decays of N1’s would not be successful
[7,26]. However, there exist other special solutions to the
leptogenesis scenario.

As was pointed out earlier, the tall spikes in the plots of
Figs. 1 and 2 indicate that there are regions in the parame-
ter space for these models where M1 and M2 become
almost degenerate. Consequently, it has been shown in
[26] that a sufficient baryon asymmetry can be generated
from resonant enhancement [30] to the raw CP asymmetry
in the decays of N1’s. Furthermore, a similar enhancement
to the decay of the next-to-the-lightest RH neutrino N2,
whenM2 andM3 become degenerate, can also produce the
desired asymmetry in principle, as long as washout effects
mediated by the lighter N1’s are insufficient [31].

Another interesting observation is that, recently,
Ref. [32] discussed the possibility of successful leptogen-
esis (without the need for resonant enhancement) in mod-
els with SOð10Þ-inspired mass relations which have
properties similar to those presented here (see also [33]).
In the analysis of [32], they explored the situation where
the asymmetry is first generated by N2 decays at a tem-
perature where flavor effects [34] are important.
Specifically, the relevant range of 109 & M2 & 1012 GeV
leads to a two-flavor regime where the lepton asymmetry
will be stored in the � component, as well as a coherent
superposition of ðe;�Þ components. Subsequently, flavor
dependent washout effects coming from interactions with
N1’s may not completely erase all components of the
asymmetry generated by the N2’s. One central conclusion
in [32] is that, for this mechanism to generate enough
asymmetry, the mass of the next-to-the-lightest RH neu-
trino must be about M2 ’ 1011 GeV.

Inspecting the M2 plot of Fig. 1 (corresponding to the
m̂f ¼ m̂u case), we can see that the condition of M2 ’
1011 GeV can be marginally met by a small region of the
parameter space (near the various spikes in the region
where jm1j is between 2� 10�3 to 8� 10�2 eV), whereas
the m̂f ¼ m̂d;e cases are definitely ruled out for this sce-

nario due to the smallness ofM2. Therefore, it appears that
for some special values of jm1j with certain sets of phases
ð�;�1;2Þ, leptogenesis via N2 decays taking into account

the effects of flavor is also possible (for the m̂f ¼ m̂u

model) in addition to resonant leptogenesis.
Moreover, if this picture of flavored N2 leptogenesis is

indeed the mechanism responsible for generating the
baryon asymmetry of the Universe, then the corresponding
sets of low-energy phases in our model ð�;�1;2Þ which

make this possible will generally lead to modifications of
the neutrinoless double beta decay rate through the quan-
tity [35]

m�� �
��������X

3

i¼1

U2
eimi

��������: (5.22)

For example, taking jm1j ¼ 0:070 eV and assuming nor-
mal hierarchy, the phases implied by N2 leptogenesis will
lead to m�� � 0:047 eV, which is a noticeable reduction

from 0.070 eV in cases where both Majorana phases are
turned off.9 However, present experimental upper limits on
m�� lie somewhere between 0.16 and 0.68 eV [36], and so

it is difficult to distinguish such differences. The detection
of this may only be possible in future experiments such as
CUORE [37] and GERDA [38] which have a projected
sensitivity down to about 0.05 eV.
In summary, while the models presented in Sec. IV do

not generically lead to successful baryon asymmetry gen-
eration via thermal leptogenesis, some fine-tuned special
cases do exist. It is possible that the enlargement of the
workable parameter space for leptogenesis can result from
modifications to the Higgs sector of these models, but such
analyses are beyond the scope of this work.

D. Collider signatures

It is interesting to note that in the model with mf ¼ me,

the lightest heavyMajorana neutrino massM1 can be about
1 TeV making one wonder if it is possible to see signals of
such a particle at the CERN Large Hadron Collider (LHC)
and or a future International Linear Collider (ILC).
However, since the heavy Majorana neutrinos are domi-
nantly right-handed singlets which do not have gauge
interactions, the interactions of the heavy neutral leptons
with SM gauge bosons arise through their mixing between
light neutrinos. The interaction Lagrangians are parame-
trized through mixing angles V‘N (‘ ¼ e, �, �) of order
m‘=Mi as per

LW ¼ � gffiffiffi
2

p V‘N
�‘��PLNW� þ H:c:;

LZ ¼ � g

2 cos�W
V‘N ����PLNZ� þ H:c:;

(5.23)

where PL;R ¼ ð1� �5Þ=2.
With these interactions, it is possible to produce signals

for heavy neutral leptons through q �q0 ! W� ! ‘N fol-
lowed by N ! ‘W or �Z. The production of N by q �q !
Z� ! �N is much harder to study due to large back-
grounds. However, in a model-independent study in
Ref. [39], such a mechanism was found to lead to a
detectable heavy neutral lepton signal only if the mass is
of order 100 GeV or less, for the initial stage of LHC
running with luminosity of order 10 fb�1. Besides, the
amplitudes of V‘N in our models are far too small. Even
assuming jm1j ’ 0:2 eV which will saturate the bound of
(5.6) and in the best case scenario with inverted hierarchy
and special choice of phases, one obtains jVeNj ’ 2:3�
10�7 (with M1 ’ 1:2� 103 GeV) which is much less than

9The reason we have picked jm1j ¼ 0:070 eV in this discus-
sion is because so far we have not found any set of phases for
jm1j * 0:08 in which N2 leptogenesis is actually viable.
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the minimum Oð10�2Þ required to produce an observable
signal in any of the channels [40]. The suppression is even
greater for the � or � flavor. As a result, it is very difficult
to detect the heavy neutral leptons through this mechanism
even with an integrated luminosity up to 300 fb�1.

If there is only one Higgs doublet, there is also a light
neutrino and heavy neutral lepton interaction with the
Higgs particle given by

L H ¼ �gMN

2Mw

ðV‘N ��PRNH þ H:c:Þ: (5.24)

This interaction, although not of much help in the produc-
tion of heavy neutral leptons through q �q ! H� ! �N,
does provide another channel for N decay. If the Higgs
mass is not too much larger than the W boson mass, the
decay rate is similar to that for N ! ‘W or �Z.

In the models we are considering, there are several
Higgs doublets. The neutral Higgs couplings to light neu-
trinos and heavy neutral leptons are then not necessarily
proportional to MNV‘N and can increase the decay rate.
Also, in our models there are charged-Higgs bosons inter-
acting with light neutrinos and heavy neutral leptons which
also provide additional channels for detection of the N’s.
But given the smallness of the mixing V‘N mentioned
above, it is still very difficult to detect a heavy neutral
lepton with mass of order 1 TeV at the LHC even with
300 fb�1 of luminosity.

Charged-Higgs couplings to charged-leptons and heavy
neutral leptons may have interesting signals at an ILC
through eþe� ! HþH� with t-channel heavy Higgs ex-
change, and e�e� ! H�H� with u-channel N exchange
[41]. In particular the processes e�e� ! H�H�, are very
sensitive to the heavy neutral lepton mass. It has been
shown in Ref. [41] that if jV‘Nj is in the range of 10�2 to
10�4, the ILC with an energy of 500 GeV can probe heavy
neutral lepton masses up to 104 TeV. In our case, the
charged-Higgs coupling to charged-leptons and heavy neu-
tral leptons can be larger than V‘N �mf=Mi, but still too

small to be probed using the processes mentioned above.

VI. CONCLUSION AND OUTLOOK

The main point of this paper was to demonstrate through
general arguments backed up by explicit models that sym-
metries can be used to connect the RH Majorana neutrino
mass matrix to low-energy observables such as charged-
fermion masses, mixing angles, and CP-violating phases.
If a model of this type were to actually describe nature,
then the benefit would be that the high-mass seesaw sector
would be completely determined from low-energy obser-
vations, improving the predictability and testability of the
seesaw neutrino mass generation mechanism. Since this
mechanism can also be used to understand the cosmologi-
cal matter-antimatter asymmetry through leptogenesis,
such constrained models are also important for cosmology.

We focused on the simplest models of this type, which

yielded MR ’ m̂fU
�
PMNSm̂

�1
� Uy

PMNSm̂f, where f ¼ e, d, u.

Our phenomenological analysis showed that successful
leptogenesis is possible for the f ¼ u case in certain
fine-tuned corners of parameter space. We also noted that
the e ¼ f case can also supply a heavy neutral lepton with
a mass of about 1 TeV, opening the prospect for collider
detection, though detailed analysis showed that this mass is
still too large to plausibly expect detection at either the
LHC or a future ILC.
Future work in this area could explore a possible role for

the CKM matrix rather than the more obvious PMNS
matrix in the formula for MR. Also, the use of Clebsch-
Gordan coefficients to generalize the relationship between
the neutrino Dirac mass matrix and m̂f away from being a

strict equality is another obvious line of investigation.
Finally, our explicit models used flavor symmetry to render
the right-handed diagonalization matrices to be simply
identity matrices. It could also be of interest to loosen
this constraint.
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APPENDIX: PROPERTIES OF THE A4 GROUP

A4 is the alternating group of order 4. It is isomorphic to
the group representing the proper rotational symmetries of
a regular tetrahedron. It has 12 elements and 4 conjugacy
classes: one set containing the identity, two sets containing
four 3-fold rotations each and one set of three 2-fold
rotations. By the dimensionality theorem, we know that
A4 must have four irreducible representations: 1, 10, 100, and
3, where 1 is the trivial representation, 10 and 100 are non-
trivial one-dimensional representations that are complex
conjugate of each other, while 3 is a real three-dimensional
representation.
Some basic tensor product rules:

1 � 1 ¼ 1; (A1)

1 0 � 100 ¼ 1; (A2)

1 0 � 10 ¼ 100; (A3)

3 � 3 ¼ 1 	 10 	 100 	 3a 	 3s; (A4)

where subscripts a and s denote ‘‘asymmetric’’ and ‘‘sym-
metric,’’ respectively. Suppose x3 ¼ ðx1; x2; x3Þ and y3 ¼
ðy1; y2; y3Þ are triplets in A4. Then Eq. (A4) means

ðx3y3Þ1 ¼ x1y1 þ x2y2 þ x3y3; (A5)
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ðx3y3Þ10 ¼ x1y1 þ!x2y2 þ!2x3y3; (A6)

ðx3y3Þ100 ¼ x1y1 þ!2x2y2 þ!x3y3; (A7)

ðx3y3Þ3a ¼ ðx2y3 � x3y2; x3y1 � x1y3; x1y2 � x2y1Þ;
(A8)

ðx3y3Þ3s ¼ ðx2y3 þ x3y2; x3y1 þ x1y3; x1y2 þ x2y1Þ;
(A9)

where ! ¼ e2�i=3, and we have abbreviated ðx3 � y3Þ with
ðx3y3Þ.
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