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Conformal totally symmetric arbitrary spin currents and shadow fields in flat space-time of dimension

greater than or equal to four are studied. A gauge invariant formulation for such currents and shadow fields

is developed. Gauge symmetries are realized by involving the Stueckelberg fields. A realization of global

conformal boost symmetries is obtained. Gauge invariant differential constraints for currents and shadow

fields are obtained. AdS/CFT correspondence for currents and shadow fields and the respective normal-

izable and non-normalizable solutions of massless totally symmetric arbitrary spin AdS fields are studied.

The bulk fields are considered in a modified de Donder gauge that leads to decoupled equations of motion.

We demonstrate that leftover on shell gauge symmetries of bulk fields correspond to gauge symmetries of

boundary currents and shadow fields, while the modified de Donder gauge conditions for bulk fields

correspond to differential constraints for boundary conformal currents and shadow fields. Breaking

conformal symmetries, we find interrelations between the gauge invariant formulation of the currents

and shadow fields, and the gauge invariant formulation of massive fields.
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I. INTRODUCTION

In view of the aesthetic features of conformal field
theory, an interest in this theory has been periodically
renewed (see [1] and references therein). Conjectured dual-
ity [2] of large N conformal N ¼ 4 supersymmetric
Yang-Mills (SYM) theory and type IIB superstring theory
in AdS5 � S5 has triggered intensive and in-depth study of
various aspects of conformal fields. In space-time of di-
mension d � 4, the conformal fields studied in this paper
can be separated into two groups: conformal currents and
shadow fields. That is to say that a field having Lorentz
algebra spin s and conformal dimension� ¼ sþ d� 2, is
referred to as a conformal current with canonical dimen-
sion,1 while a field having Lorentz algebra spin s and dual
conformal dimension � ¼ 2� s is referred to as a shadow
field.2 In the framework of AdS/CFT correspondence, the
conformal currents and shadow fields manifest themselves
in two related ways at least. First, the conformal currents
appear as boundary values of normalizable solutions of
equations of motion for bulk fields of IIB supergravity in
AdS5 � S5 background, while the shadow fields appear as
boundary values of non-normalizable solutions of equa-
tions of motion for bulk fields of IIB supergravity (see e.g.

[9–13]3). Second, the conformal currents, which are dual to
string theory states, can be built in terms of fields of SYM
theory. In view of these relations to IIB supergravity/su-
perstring in AdS5 � S5 and SYM theory, we think that
various alternative formulations of conformal currents
and shadow fields will be useful to understand string/gauge
theory dualities better.
The purpose of this paper is to develop gauge invariant

formulation for conformal currents and shadow fields. In
this paper, we discuss bosonic arbitrary spin conformal
currents and shadow fields in space-time of dimension d �
4. Our approach to the conformal currents and shadow
fields can be summarized as follows.
(i) Starting with the field content of the standard for-

mulation of currents (and shadow fields), we intro-
duce additional field degrees of freedom (D.o.F), i.e.,
we extend the space of fields entering the standard
conformal field theory. We note that these additional
field D.o.F are similar to the ones used in the gauge
invariant formulation of massive fields. Sometimes,
such additional field D.o.F are referred to as
Stueckelberg fields.

(ii) On the extended space of currents (and shadow
fields), we introduce new differential constraints,
gauge transformations, and conformal algebra
transformations.

(iii) The new differential constraints are invariant under
the gauge transformations and the conformal algebra
transformations.

(iv) The gauge symmetries and the new differential con-
straints make it possible to match our approach and
the standard one, i.e., by appropriate gauge fixing of
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1We note that conformal currents with s ¼ 1, � ¼ d� 1 and

s ¼ 2, � ¼ d, correspond to a conserved vector current and a
conserved traceless rank-2 tensor field (energy-momentum ten-
sor), respectively. Conserved conformal currents can be built
from massless scalar, spinor, and spin-1 fields (see e.g. [3]).
Discussion of higher-spin conformal conserved charges bilinear
in 4d massless fields of arbitrary spins may be found in [4].

2It is the shadow fields that are used to discuss conformal
invariant equations of motion and Lagrangian formulations (see
e.g. [1,5–7]). Discussion of equations for mixed-symmetry con-
formal fields with discrete � may be found in [8].

3A discussion of shadow field dualities may be found in
Refs. [14,15].
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the Stueckelberg fields and by solving differential
constraints, we obtain standard formulation of con-
formal currents and shadow fields.

We apply our approach to the study of AdS/CFT corre-
spondence at the level of massless modes/currents, shadow
fields matching. We shall demonstrate that normalizable
modes of massless AdS fields are related to conformal
currents, while non-normalizable modes of massless AdS
fields are related to shadow fields. Such correspondence
was studied for scalar fields in [9,12], and for massless
arbitrary spin fields taken to be in light-cone gauge in
Ref. [11]. In the latter reference, we have also developed
light-cone formulation of conformal field theories (CFT).
Light-cone formulation of CFT breaks boundary Lorentz
symmetries and, therefore, is not commonly used. It is
desirable, therefore, to develop AdS/CFT correspondence
for arbitrary spin fields by maintaining boundary Lorentz
symmetries.4 Our approach to the study of AdS/CFT cor-
respondence can be summarized as follows.

(i) We use a modified Lorentz gauge (for a spin-1 field)
found in Ref. [11] and a modified de Donder gauge
(for spin s � 2 fields) found in Ref. [16]. A remark-
able property of these gauges is that they lead to the
simple decoupled bulk equations of motion which
can be solved in terms of the Bessel function, and
this simplifies considerably the study of AdS/CFT
correspondence.5

(ii) The number of boundary gauge conformal currents
(or shadow fields) involved in our gauge invariant
approach coincides with the number of bulk mass-
less gauge AdS fields involved in the approach of
Ref. [17]. Note however that, instead of using the
approach presented in Ref. [17], we use the CFT
adapted formulation of arbitrary spin AdS field the-
ory developed in [16].

(iii) The number of gauge transformation parameters in-
volved in our gauge invariant approach to currents
(or shadow fields) coincides with the number of
gauge transformation parameters of bulk massless
gauge AdS fields involved in the standard approach
of Ref. [17].

(iv) Our modified Lorentz gauge (for a spin-1 field) and
modified de Donder gauge (for spin s � 2 fields)
turn out to be related to the new differential con-
straints we obtained in the framework of our gauge

invariant approach to conformal currents (and
shadow fields).

(v) Leftover on shell gauge symmetries of massless bulk
AdS fields are related to the gauge symmetries of
boundary conformal currents (or shadow fields).

The rest of the paper is organized as follows. In Sec. II,
we summarize the notation used in this paper and briefly
review the standard approach to conformal currents and
shadow fields. In Secs. III and IV, we start with the re-
spective examples of spin-1 conformal currents and spin-1
shadow fields. We illustrate our gauge invariant approach
to describing conformal currents and shadow fields.
Sections V and VI are devoted to spin-2 conformal

currents and spin-2 shadow fields, respectively. We de-
velop our gauge invariant approach and demonstrate how
our spin-2 current is related with the standard energy-
momentum tensor of CFT. We also discuss how our spin-
2 shadow field is related to the one appearing in the
standard approach to CFT.
In Secs. VII and VIII, we develop a gauge invariant

approach to arbitrary spin-s conformal currents and
shadow fields, respectively. Fixing Stueckelberg gauge
symmetries and solving differential constraints for currents
and shadow fields, we prove equivalence of our gauge
invariant approach and the standard approach to CFT.
In Sec. IX, we discuss the two-point current-shadow

field interaction vertex. Section X is devoted to the study
of AdS/CFT correspondence for massless low spin, s ¼ 1,
2, bulk AdS fields, and boundary low spin, s ¼ 1, 2,
currents and shadow fields. Section XI is devoted to the
study of AdS/CFT correspondence for massless arbitrary
spin bulk AdS fields and boundary arbitrary spin currents
and shadow fields.
In Sec. XII, we discuss interrelations between our gauge

invariant approach to currents (and shadow fields) and a
gauge invariant (Stueckelberg) approach to massive fields
in flat space. In due course, we discuss the de Donder-like
gauge condition for arbitrary spin-s, s � 2, massive field in
the framework of the Stueckelberg approach to massive
fields. The de Donder-like gauge we find leads to a surpris-
ingly simple gauge-fixed action for massive arbitrary spin
fields.
We collect various technical details in four appendices.

In Appendix A, we discuss restrictions imposed on the
two-point current-shadow field interaction vertex by gauge
symmetries and by dilatation symmetries. In Appendix B,
we discuss restrictions imposed on conformal boost trans-
formations by gauge symmetries. In Appendix C, we re-
view the modified Lorentz condition for spin-1 massless
AdS fields and the modified de Donder gauge for massless
spin-2 AdS fields, while Appendix D is devoted to the
modified de Donder gauge for fields propagating in con-
formal space. In Appendix E, we present some details of
matching of the leftover gauge symmetries of bulk AdS
fields and the gauge symmetries of boundary currents and
shadow fields.

4One of popular gauges that respects boundary Lorentz sym-
metries is the radial gauge. However, in contrast to our approach,
the radial gauge does not allow us to treat normalizable and non-
normalizable solutions of bulk equations of motion on an equal
footing.

5To our knowledge, our modified Lorenz gauge (for a spin-1
field) and modified de Donder gauge (for spin s � 2 fields) are
unique, first-derivative gauges that lead to decoupled bulk equa-
tions of motion. Another gauge that also leads to decoupled bulk
equations of motion is the light-cone gauge (see Ref. [11]). But,
light-cone gauge breaks boundary Lorentz symmetries.
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II. PRELIMINARIES

A. Notation

Our conventions are as follows. xa denotes coordinates
in d-dimensional flat space-time, while @a denotes deriva-
tives with respect to xa, @a � @=@xa. Vector indices of the
Lorentz algebra soðd� 1; 1Þ take the values a; b; c; e ¼
0; 1; . . . ; d� 1. We use the mostly positive flat metric
tensor �ab. To simplify our expressions we drop �ab in
scalar products, i.e., we use XaYa � �abX

aYb.
We use a set of the creation operators �a, �z, and the

respective set of annihilation operators ��a, ��z,

½ ��a; �b� ¼ �ab; ½ ��z; �z� ¼ 1; (2.1)

�� aj0i ¼ 0; ��zj0i ¼ 0; (2.2)

�ay ¼ ��a; �zy ¼ ��z: (2.3)

These operators will often be referred to as oscillators in
what follows.6 The oscillators�a, ��a and�z, ��z, transform
in the respective vector and scalar representations of the
soðd� 1; 1Þ Lorentz algebra.

Throughout this paper we use operators constructed out
of the derivatives and the oscillators,

h ¼ @a@a; �@ ¼ �a@a; ��@ ¼ ��a@a; (2.4)

�2 ¼ �a�a; ��2 ¼ ��a ��a; (2.5)

N� � �a ��a; Nz � �z ��z: (2.6)

B. Global conformal symmetries

In d-dimensional flat space-time, the conformal algebra
soðd; 2Þ consists of translation generators Pa, dilatation
generator D, conformal boost generators Ka, and genera-
tors of the soðd� 1; 1Þ Lorentz algebra Jab. We assume the
following normalization for commutators of the conformal
algebra:

½D;Pa� ¼ �Pa; ½Pa; Jbc� ¼ �abPc � �acPb; (2.7)

½D;Ka� ¼ Ka; ½Ka; Jbc� ¼ �abKc � �acKb; (2.8)

½Pa; Kb� ¼ �abD� Jab; (2.9)

½Jab; Jce� ¼ �bcJae þ 3 terms: (2.10)

Let j�i denote the conformal current (or shadow field)
in flat space-time of dimension d � 4. Under conformal
algebra transformations the j�i transforms as

�Ĝj�i ¼ Ĝj�i; (2.11)

where a realization of the conformal algebra generators Ĝ
in terms of differential operators takes the form

Pa ¼ @a; (2.12)

Jab ¼ xa@b � xb@a þMab; (2.13)

D ¼ x@þ�; (2.14)

Ka ¼ Ka
�;M þ Ra; (2.15)

and we use the notation

Ka
�;M � � 1

2
x2@a þ xaDþMabxb; (2.16)

x@ � xa@a; x2 ¼ xaxa: (2.17)

In (2.13), (2.14), and (2.15), � is the operator of conformal
dimension,Mab is the spin operator of the Lorentz algebra,

½Mab;Mce� ¼ �bcMae þ 3 terms: (2.18)

The spin operator of the Lorentz algebra is well known for
arbitrary spin conformal currents and shadow fields. The
spin operator of currents and shadow fields studied in this
paper takes the form

Mab � �a ��b � �b ��a: (2.19)

Ra is operator depending, in general, on derivatives with
respect to space-time coordinates7 and not depending on
space-time coordinates xa,

½Pa; Rb� ¼ 0: (2.20)

In standard formulation of conformal currents and shadow
fields, the operator Ra is equal to zero, while in the gauge
invariant approach that we develop in this paper, the op-
erator Ra is nontrivial. This implies that, in the framework
of gauge invariant approach, a complete description of the
conformal currents and shadow fields requires, among
other things, finding the operator Ra.

C. Standard approach to conformal currents and
shadow fields

We begin with a brief review of the standard approach to
conformal currents and shadow fields. To keep our presen-
tation as simple as possible we restrict our attention to the
case of arbitrary spin totally symmetric conformal currents
and shadow fields which have the appropriate canonical
conformal dimensions given below. In this section, we

6We use oscillator formulation [18–20] to handle the many
indices appearing for tensor fields. It can also be reformulated as
an algebra acting on the symmetric-spinor bundle on the mani-
fold M [21].

7For the conformal currents and shadow fields studied in this
paper, the operator Ra does not depend on derivatives.
Dependence on derivatives of Ra appears e.g. in the ordinary-
derivative approach to conformal fields [22].
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recall the main facts of conformal field theory about these
currents and shadow fields.

Conformal current with the canonical conformal dimen-
sion. Consider the totally symmetric rank-s tensor field
Ta1...as of the Lorentz algebra soðd� 1; 1Þ. The field is
referred to as spin-s conformal current with canonical
dimension if Ta1...as satisfies the constraints

Taaa3...as ¼ 0; @aTaa2...as ¼ 0 (2.21)

and has the conformal dimension8

� ¼ sþ d� 2; (2.22)

which is referred to as the canonical conformal dimension
of spin-s conformal current. Taking into account that the
operator Ra of the conformal current Ta1...as is equal to
zero, using the well-known spin operatorMab of the totally
symmetric traceless current Ta1...as and� in (2.22), one can
make sure that constraints (2.21) are invariant under con-
formal algebra transformations (2.11).

Shadow field with the canonical conformal dimension.
Consider the totally symmetric rank-s tensor field �a1...as

of the Lorentz algebra soðd� 1; 1Þ. The field �a1...as is
referred to as shadow field if it meets the following require-
ments:

(i) The field �a1...as is traceless,

�aaa3...as ¼ 0: (2.23)

(ii) The field �a1...as transforms under the conformal
algebra symmetries so that the following two-point
current-shadow field interaction vertex

L ¼ 1

s!
�a1...asTa1...as (2.24)

is invariant (up to total derivative) under conformal
algebra transformations.

We now note that:
(i) Taking into account conformal dimension of current

(2.22) and requiring vertex L (2.24) to be invariant
under the dilatation transformation, we obtain con-
formal dimension of the spin-s shadow field,

� ¼ 2� s; (2.25)

which is referred to as the canonical conformal
dimension of spin-s shadow field. Taking into ac-
count that the operator Ra of the conformal current
Ta1...as is equal to zero and requiring vertex L (2.24)
to be invariant under the conformal boost transfor-
mations we find that the operator Ra of the shadow
field �a1...as is also equal to zero.

(ii) The divergence-free constraint (2.21) and require-
ment for the vertex L to be invariant imply that the
shadow field is defined by a module of gauge trans-
formation

��a1...a1 ¼ �tr@ða1�a2...asÞ; (2.26)

where �a1...as�1 is the traceless parameter of gauge
transformation and the projector �tr is inserted to
respect the traceless constraint (2.23).

III. GAUGE INVARIANT FORMULATION OF SPIN-
1 CONFORMAL CURRENT

To discuss the gauge invariant formulation of the spin-1
conformal current in flat space of dimension d � 4 we use
one vector field �a

cur and one scalar field �cur:

�a
cur; �cur: (3.1)

The fields �a
cur and �cur transform in the respective vector

and scalar irreps of the Lorentz algebra soðd� 1; 1Þ. We
note that fields �a

cur and �cur (3.1) have the conformal
dimensions

��a
cur

¼ d� 1; ��cur
¼ d� 2: (3.2)

We now introduce the following differential constraint9:

@a�a
cur þh�cur ¼ 0: (3.3)

It is easy to see that this constraint is invariant under gauge
transformations

��a
cur ¼ @a�cur; (3.4)

��cur ¼ ��cur; (3.5)

where �cur is a gauge transformation parameter.
In order to obtain a realization of conformal algebra

symmetries we use the oscillators. We collect fields (3.1)
into a ket-vector j�curi defined by

j�curi ¼ ð�a
cur�

a þ�cur�
zÞj0i: (3.6)

A realization of the spin operatorMab on j�curi is given in
(2.19), while a realization of the operator �,

� ¼ d� 1� Nz; (3.7)

can be read from (3.2). We then find that a realization of the
operator Ra on j�curi takes the form

Ra ¼ ð2� dÞ�a ��z: (3.8)

8The fact that expression in the right-hand side of (2.22) is the
lowest energy value of the totally symmetric spin-s massless
fields propagating in AdSdþ1 space was demonstrated in
Ref. [23]. Generalization of relation (2.22) to mixed symmetric
fields in AdS may be found in Ref. [24].

9Constraint (3.3) can simply be obtained by adapting the
standard procedure of introducing the Stueckelberg field for a
massive spin-1 field. Namely, representing the standard con-
served spin-1 current as Ta

cur ¼ �a
cur þ @a�cur and using conser-

vation law @aTa
cur ¼ 0, we obtain (3.3). For spin s > 2 fields,

such procedure involves complicated higher-derivative expres-
sions and turns out to be inconvenient for developing a gauge
invariant approach to both massive and conformal theories.
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Using this, we make sure that constraint (3.3) is invariant
under transformations of the conformal algebra (2.11). In
terms of the fields �a

cur, �cur, action of operator Ra (3.8)
can be represented as

Ra�b
cur ¼ ð2� dÞ�ab�cur; (3.9)

Ra�cur ¼ 0: (3.10)

From (3.5), we see that the scalar field�cur transforms as
the Stueckelberg field, i.e., this field can be gauged away
via Stueckelberg gauge fixing,�cur ¼ 0. If we gauge away
the scalar field, then the remaining vector field �a

cur be-
comes, according to constraint (3.3), divergence-free. In
other words, our constraint (3.3) taken to be in the gauge
�cur ¼ 0 leads to the well-known divergence-free con-
straint of the standard approach.10

We note that our approach can be related with the
standard one without gauge fixing. Consider vector field

Ta
cur ¼ �a

cur þ @a�cur: (3.11)

It is easy to see that
(i) Ta

cur is invariant under gauge transformations (3.4)
and (3.5).

(ii) Denoting the left hand side of (3.3) by Ccur we get

@aTa
cur ¼ Ccur; (3.12)

i.e., constraint Ccur ¼ 0 (3.3) amounts to

@aTa
cur ¼ 0: (3.13)

In our approach, the gauge invariant vector field Ta
cur (3.11)

is counterpart of the conserved current in the standard
formulation of CFT.

IV. GAUGE INVARIANT FORMULATION OF SPIN-
1 SHADOW FIELD

To discuss the gauge invariant formulation of the spin-1
shadow field in space of dimension d � 4 we use one
vector field �a

sh and one scalar field �sh:

�a
sh; �sh: (4.1)

The fields �a
sh and �sh transform in the respective vector

and scalar representations of the Lorentz algebra soðd�
1; 1Þ. We note that these fields have the conformal dimen-
sions

��a
sh
¼ 1; ��sh

¼ 2: (4.2)

We now introduce the following differential constraint:

@a�a
sh þ�sh ¼ 0: (4.3)

It is easy to see that this constraint is invariant under gauge
transformations

��a
sh ¼ @a�sh; (4.4)

��sh ¼ �h�sh; (4.5)

where �sh is a gauge transformation parameter.
As before, to obtain a realization of conformal algebra

symmetries we use the oscillators and introduce a ket-
vector j�shi defined by

j�shi ¼ ð�a
sh�

a þ�sh�
zÞj0i: (4.6)

A realization of the spin operator Mab on j�shi is given in
(2.19), while a realization of the operator �,

� ¼ 1þ Nz; (4.7)

can be read from (4.2). We then find that a realization of the
operator Ra on j�shi takes the form

Ra ¼ ðd� 2Þ�z ��a: (4.8)

Using this, we check that constraint (4.3) is invariant under
transformations of the conformal algebra (2.11). In terms
of the fields �a

sh, �sh, action of operator Ra (4.8) can be

represented as

Ra�b
sh ¼ 0; (4.9)

Ra�sh ¼ ðd� 2Þ�a
sh: (4.10)

Gauge transformation of the scalar field �sh (4.5) in-
volves d’Alembertian operator h, i.e., this transformation
is not realized as the standard Stueckelberg (Goldstone)
gauge symmetry. Therefore the scalar field appearing in the
gauge invariant formulation of the spin-1 shadow field
cannot be referred to as a Stueckelberg field. We note
that our field �a

sh can be identified with the shadow field

�a of the standard approach to CFT.
As in the case of the conformal current, we can introduce

the gauge invariant field Ta
sh,

Ta
sh ¼ h�a

sh þ @a�sh: (4.11)

One can check that
(i) Ta

sh is invariant under gauge transformations (4.4)

and (4.5).
(ii) The differential constraint for gauge fields (4.3) leads

to a divergence-free constraint for the field Ta
sh,

@aTa
sh ¼ 0: (4.12)

However, constraint (4.3) is not equivalent to (4.12).
Namely, if we denote the left-hand side of (4.3) by Csh,
then we get

@aTa
sh ¼ hCsh: (4.13)

We see that constraint Csh ¼ 0 (4.3) leads to constraint

10As in the standard approach to CFT, our currents can be
considered either as fundamental field degrees of freedom or as
composite operators. At the group theoretical level that we study
in this paper, this distinction is immaterial.
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(4.12), while constraint (4.12) does not imply the constraint
Csh ¼ 0, in general.

V. GAUGE INVARIANT FORMULATION OF SPIN-2
CONFORMAL CURRENT

To discuss the gauge invariant formulation of the spin-2
conformal current in flat space of dimension d � 4 we use
one rank-2 tensor field �ab

cur, one vector field �a
cur, and one

scalar field �cur:

�ab
cur; �a

cur; �cur: (5.1)

The fields �ab
cur, �

a
cur, and �cur transform in the respective

rank-2 tensor, vector, and scalar representations of the
Lorentz algebra soðd� 1; 1Þ. Note that the field �ab

cur is
not traceless. We note that fields (5.1) have the conformal
dimensions

��ab
cur

¼ d; ��a
cur

¼ d� 1; ��cur
¼ d� 2: (5.2)

We now introduce the following differential constraints:

@b�ab
cur � 1

2
@a�bb

cur þh�a
cur ¼ 0; (5.3)

@a�a
cur þ 1

2
�aa

cur þ uh�cur ¼ 0; (5.4)

u � ffiffiffi
2

p �
d� 1

d� 2

�
1=2

: (5.5)

One can make sure that these constraints are invariant
under gauge transformations

��ab
cur ¼ @a�b

cur þ @b�a
cur þ 2

d� 2
�abh�cur; (5.6)

��a
cur ¼ @a�cur � �a

cur; (5.7)

��cur ¼ �u�cur; (5.8)

where �a
cur, �cur are gauge transformation parameters.

In order to obtain a realization of conformal algebra
symmetries in an easy-to-use form we use oscillators
(2.1) and collect fields (5.1) into a ket-vector j�curi defined
by

j�curi ¼
�
1

2
�ab

cur�
a�b þ�a

cur�
a�z þ 1ffiffiffi

2
p �cur�

z�z

�
j0i:
(5.9)

A realization of the spin operatorMab on j�curi is given in
(2.19), while a realization of the operator �,

� ¼ d� Nz; (5.10)

can be read from (5.2). We then find that a realization of the
operator Ra on j�curi takes the form

Ra ¼ �r

�
~Ca þ 2

dðd� 2Þ�
2 �Ca

?

�
; (5.11)

~C a � �a � 1

d� 2
�2 ��a; (5.12)

�C a
? � ��a � 1

2
�a ��2; (5.13)

�r � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd� NzÞðd� 2NzÞ

q
��z: (5.14)

Using this, we check that constraints (5.3) and (5.4) are
invariant under transformations of the conformal algebra
(2.11).
From (5.7) and (5.8), we see that the vector and scalar

fields�a
cur,�cur transform as Stueckelberg fields, i.e., these

fields can be gauged away via Stueckelberg gauge fixing,
�a

cur ¼ 0,�cur ¼ 0. If we gauge away these fields, then the
remaining rank-2 tensor field �ab

cur becomes, according to
constraints (5.3) and (5.4), divergence-free and traceless. In
other words, our constraints taken to be in the gauge
�a

cur ¼ 0, �cur ¼ 0 lead to the well-known divergence-
free and tracelessness constraints of the standard approach.
Our approach can be related with the standard one

without gauge fixing, i.e., by maintaining gauge symme-
tries. We construct the following tensor field:

Tab
cur ¼ �ab

cur þ @a�b
cur þ @b�a

cur þ 2

u
@a@b�cur

þ 2

ðd� 2Þu�
abh�cur: (5.15)

One can make sure that
(i) Tab

cur is invariant under gauge transformations (5.6),
(5.7), and (5.8).

(ii) Denoting the respective left-hand sides of (5.3) and
(5.4) by Ca

cur and Ccur we get

@bTab
cur � 1

2
@aTbb

cur ¼ Ca
cur; Taa

cur ¼ 2Ccur;

(5.16)

i.e., the constraints Ca
cur ¼ 0, Ccur ¼ 0 amount to

@bTab
cur ¼ 0; Taa

cur ¼ 0: (5.17)

In our approach, the gauge invariant tensor field Tab
cur (5.15)

is counterpart of the energy-momentum tensor appearing
in standard formulation of CFT.

VI. GAUGE INVARIANT FORMULATION OF SPIN-
2 SHADOW FIELD

To discuss the gauge invariant formulation of the spin-2
shadow field in flat space of dimension d � 4 we use one
rank-2 tensor field�ab

sh , one vector field�
a
sh, and one scalar

field �sh:

�ab
sh ; �a

sh; �sh: (6.1)

The fields �ab
sh , �

a
sh, and �sh transform in the respective
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rank-2 tensor, vector, and scalar representations of the
Lorentz algebra soðd� 1; 1Þ. We note that these fields
have the conformal dimensions

��ab
sh
¼ 0; ��a

sh
¼ 1; ��sh

¼ 2: (6.2)

We now introduce the following differential constraints:

@b�ab
sh � 1

2
@a�bb

sh þ�a
sh ¼ 0; (6.3)

@a�a
sh þ

1

2
h�aa

sh þ u�sh ¼ 0; (6.4)

where u is given in (5.5). One can make sure that these
constraints are invariant under gauge transformations

��ab
sh ¼ @a�b

sh þ @b�a
sh þ

2

d� 2
�ab�sh; (6.5)

��a
sh ¼ @a�sh �h�a

sh; (6.6)

��sh ¼ �uh�sh; (6.7)

where �a
sh, �sh are gauge transformation parameters.

In order to obtain a realization of conformal algebra
symmetries, we use the oscillators and introduce a ket-
vector j�shi defined by

j�shi ¼
�
1

2
�ab

sh�
a�b þ�a

sh�
a�z þ 1ffiffiffi

2
p �sh�

z�z

�
j0i:
(6.8)

A realization of the spin operator Mab on j�shi is given in
(2.19), while a realization of the operator �,

� ¼ Nz; (6.9)

can be read from (6.2). We then find that a realization of the
operator Ra on j�shi takes the form

Ra ¼ r

�
��a � 1

d
�a ��2

�
; (6.10)

r � �z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd� NzÞðd� 2NzÞ

q
: (6.11)

Using this, we check that constraints (6.3) and (6.4) are
invariant under transformations of the conformal algebra
(2.11).

Gauge transformations of the scalar field �sh (6.7) and
the vector field �a

sh (6.6) involve d’Alembertian operator

h. Therefore these transformations are not realized as the
standard Stueckelberg gauge symmetries, i.e., the scalar
and vector fields cannot be referred to as Stueckelberg
fields. In contrast with the gauge invariant approach to
the spin-2 current, the scalar and the vector fields appearing
in the gauge invariant approach to spin-2 shadow field are
not Stueckelberg fields and they cannot be gauged away via
Stueckelberg gauge fixing. All that we can do is to express
these fields in terms of the rank-2 tensor field�ab

sh by using

constraints (6.3) and (6.4). On the other hand, from (6.5),
we see that the trace of the rank-2 tensor field �ab

sh trans-

forms as a Stueckelberg field, i.e.,�aa
sh can be gauged away

via Stueckelberg gauge fixing, �aa
sh ¼ 0. Imposing the

gauge �aa
sh ¼ 0, we obtain traceless field �ab

sh which can

be identified with the shadow field �ab of the standard
approach to CFT.
As in the case of the conformal current, we can introduce

the gauge invariant field Tab
sh ,

Tab
sh ¼ h2�ab

sh þhð@a�b
sh þ @b�a

shÞ þ
2

u
@a@b�sh

þ 2

ðd� 2Þu�
abh�sh: (6.12)

One can check that
(i) Tab

sh is invariant under gauge transformations (6.5)–

(6.7).
(ii) Differential constraints for gauge fields (6.3) and

(6.4) lead to divergence-free and tracelessness con-
straints for the field Tab

sh ,

@bTab
sh ¼ 0; Taa

sh ¼ 0: (6.13)

However, constraints (6.13) are not equivalent to (6.3) and
(6.4). Namely, if we denote the respective left-hand sides of
(6.3) and (6.4) by Ca

sh and Csh, then we obtain

@bTab
sh � 1

2
@aTbb

sh ¼ h2Ca
sh; Taa

sh ¼ 2hCsh: (6.14)

From (6.14), we see that the constraints Ca
sh ¼ 0, Csh ¼ 0

lead to constraints (6.13), while constraints (6.13) do not
imply the constraints Ca

sh ¼ 0, Csh ¼ 0, in general.

VII. GAUGE INVARIANT FORMULATION OF
ARBITRARY SPIN CONFORMAL CURRENT

Field content. To discuss the gauge invariant formula-
tion of an arbitrary spin-s conformal current in flat space of
dimension d � 4 we use the following fields:

�
a1...as0
cur;s0 ; s0 ¼ 0; 1; . . . ; s; (7.1)

where the subscript s0 denotes that the field �
a1...as0
cur;s0 is the

rank-s0 tensor field of the Lorentz algebra soðd� 1; 1Þ.
We note that
(i) In (7.1), the fields �cur;0 and �

a
cur;1 are the respective

scalar and vector fields of the Lorentz algebra, while

the fields �
a1...as0
cur;s0 , s0 > 1, are the rank-s0 totally sym-

metric tensor fields of the Lorentz algebra soðd�
1; 1Þ.

(ii) The tensor fields �
a1...as0
cur;s0 with s0 � 4 satisfy the

double-tracelessness constraint

�
aabba5...as0
cur;s0 ¼ 0; s0 ¼ 4; 5; . . . ; s: (7.2)
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(iii) The fields �
a1...as0
cur;s0 have the following conformal

dimensions:

�ð�a1...as0
cur;s0 Þ ¼ s0 þ d� 2: (7.3)

In order to obtain the gauge invariant description in an
easy-to-use form, we use the oscillators (2.1) and introduce
a ket-vector j�curi defined by

j�curi �
Xs

s0¼0

�s�s0
z j�cur;s0 i; (7.4)

j�cur;s0 i � �a1 . . .�as0

s0!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs� s0Þ!p �

a1...as0
cur;s0 j0i: (7.5)

From (7.4) and (7.5), we see that the ket-vector j�curi is a
degree-s homogeneous polynomial in the oscillators �a,
�z, while the ket-vector j�s0 i is a degree-s0 homogeneous
polynomial in the oscillators �a, i.e., these ket-vectors
satisfy the relations

ðN� þ Nz � sÞj�curi ¼ 0; (7.6)

ðN� � s0Þj�cur;s0 i ¼ 0: (7.7)

In terms of the ket-vector j�i, double-tracelessness con-
straint (7.2) takes the form11

ð ��2Þ2j�curi ¼ 0: (7.8)

Differential constraint. We find the following differen-
tial constraint for the conformal current:

�C curj�curi ¼ 0; (7.9)

�C cur ¼ �C? þ c1 ��
2 þ c2h�½1;2�; (7.10)

�C? ¼ ��@� 1

2
�@ ��2; (7.11)

�½1;2� ¼ 1� �2 1

2ð2N� þ dÞ ��
2; (7.12)

c1 ¼ 1

2
�z~e1; c2 ¼ ~e1 ��

z; (7.13)

~e 1 ¼
�
2sþ d� 4� Nz

2sþ d� 4� 2Nz

�
1=2

: (7.14)

One can make sure that constraint (7.9) is invariant under

gauge transformation and conformal algebra transforma-
tions which we discuss below. Details of the derivation of
constraint (7.9) may be found in Appendix A.
Gauge symmetries. We now discuss the gauge symme-

tries of the conformal current. To this end, we introduce the
following gauge transformation parameters:

�
a1...as0
cur;s0 ; s0 ¼ 0; 1; . . . ; s� 1: (7.15)

We note that
(i) In (7.15), the gauge transformation parameters �cur;0

and �a
cur;1 are the respective scalar and vector fields

of the Lorentz algebra, while the gauge transforma-

tion parameters �
a1...as0
cur;s0 , s0 > 1, are the rank-s0 totally

symmetric tensor fields of the Lorentz algebra
soðd� 1; 1Þ.

(ii) The gauge transformation parameters �
a1...as0
cur;s0 with

s0 � 2 satisfy the tracelessness constraint

�
aaa3...as0
cur;s0 ¼ 0; s0 ¼ 2; 3; . . . ; s� 1: (7.16)

(iii) The gauge transformation parameters �
a1...as0
curs0 have

the conformal dimensions

�ð�a1...as0
cur;s0 Þ ¼ s0 þ d� 3: (7.17)

Now, as usual, we collect the gauge transformation
parameters in ket-vector j�curi defined by

j�curi �
Xs�1

s0¼0

�s�1�s0
z j�cur;s0 i; (7.18)

j�cur;s0 i � �a1 . . .�as0

s0!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs� 1� s0Þ!p �

a1...as0
cur;s0 j0i: (7.19)

The ket-vectors j�curi, j�cur;s0 i satisfy the algebraic con-

straints

ðN� þ Nz � sþ 1Þj�curi ¼ 0; (7.20)

ðN� � s0Þj�cur;s0 i ¼ 0; (7.21)

which tell us that j�curi is a degree-ðs� 1Þ homogeneous
polynomial in the oscillators �a, �z, while the ket-vector
j�cur;s0 i is a degree-s0 homogeneous polynomial in the

oscillators �a.
In terms of the ket-vector j�curi, the tracelessness con-

straint (7.16) takes the form

�� 2j�curi ¼ 0: (7.22)

Gauge transformation can be written entirely in terms of
j�curi and j�curi. That is to say that gauge transformation
takes the form

�j�curi ¼ ð�@þ b1 þ b2�
2hÞj�curi; (7.23)

11In this paper, we adapt the formulation in terms of the double
traceless gauge fields [17]. An adaptation of the approach in
Ref. [17] to massive fields may be found in [25,26]. A discussion
of various formulations in terms of unconstrained gauge fields
may be found in [27–32]. For a recent review, see [33]. A
discussion of other formulations which seem to be most suitable
for the theory of interacting fields may be found e.g. in [34,35].
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b1 ¼ ��z~e1; (7.24)

b2 ¼ 1

2sþ d� 6� 2Nz

~e1 ��
z; (7.25)

where ~e1 is given in (7.14). We note that constraint (7.9) is
invariant under gauge transformation (7.23). Details of the
derivation of gauge transformation (7.23) may be found in
Appendix A.

Realization of conformal algebra symmetries. To com-
plete the gauge invariant formulation of the spin-s confor-
mal current we provide a realization of the conformal
algebra symmetries on space of the ket-vector j�curi. All
that is required is to fix the operators Mab, �, and Ra and
then insert these operators into (2.12)–(2.15). A realization
of the spin operator Mab on ket-vector j�curi (7.4) is given
in (2.19), while a realization of the operator �,

� ¼ sþ d� 2� Nz; (7.26)

can be read from (7.3). In the gauge invariant formulation,
finding the operator Ra provides the real difficulty.
Representation of the operator Ra we find is given by

Ra ¼ �r

�
~Ca þ �2 2

ð2N� þ d� 2Þð2N� þ dÞ
�Ca
?

�
; (7.27)

~C a � �a � �2 1

2N� þ d� 2
��a; (7.28)

�C a
? � ��a � 1

2
�a ��2; (7.29)

�r � �ðð2sþ d� 4� NzÞð2sþ d� 4� 2NzÞÞ1=2 ��z:

(7.30)

Details of the derivation of operator Ra (7.27) may be
found in Appendix B.

Equivalence of the gauge invariant and standard ap-
proaches. We begin with comment on the structure of
gauge transformation (7.23). Making use of simplified
notation for conformal currents, gauge transformation pa-
rameters, derivatives, and flat metric tensor

�cur;s0 ��
a1...as0
cur;s0 ; �cur;s0 ��

a1...as0
cur;s0 ; @�@a; ���ab;

(7.31)

gauge transformation (7.23) can schematically be repre-
sented as

��cur;s0 � @�cur;s0�1 þ �cur;s0 þ �h�cur;s0�2;

s0 ¼ 2; 3; . . . ; s;
(7.32)

��cur;1 � @�cur;0 þ �cur;1; (7.33)

��cur;0 � �cur;0; (7.34)

where we assume �cur;s � 0. From (7.32)–(7.34), we see

that all gauge transformations are realized as Stueckelberg
(Goldstone) gauge transformations. We now find currents
that are realized as Stueckelberg fields. To this end, we note
that the currents�cur;s0 with s

0 � 2 can be decomposed into

traceless tensor fields as

�cur;s0 ¼ �T
cur;s0 ��TT

curs0�2; s0 ¼ 2; 3; . . . ; s; (7.35)

where �T
cur;s0 and �TT

curs0�2 stand for the respective rank-s0

and rank-ðs0 � 2Þ traceless tensors of the Lorentz algebra
soðd� 1; 1Þ. From (7.32)–(7.34), we see that we can im-
pose the gauge conditions

�cur;0¼0; �cur;1¼0; �T
cur;s0 ¼0; s0 ¼2;3; . . . ;s�1:

(7.36)

Currents given in (7.36) are Stueckelberg fields in our
approach.
We now discuss restrictions imposed by differential

constraint (7.9). To this end, we note that our gauge con-
ditions (7.36) can be written in terms of the ket-vectors
j�cur;s0 i as12

�½1;2�j�cur;s0 i ¼ 0; s0 ¼ 0; 1; . . . ; s� 1; (7.37)

which, in turn, can be represented as

j�cur;s0 i ¼ �2 1

2ð2N� þ dÞ ��
2j�cur;s0 i;

s0 ¼ 0; 1; . . . ; s� 1:

(7.38)

Making use of gauge conditions (7.37) in differential con-
straint (7.9) leads to
�
��@� 1

2
�@ ��2

�
j�cur;s0 i þ 1

2
~e1;s�s0�1 ��

2j�cur;s0þ1i ¼ 0;

s0 ¼ 0; 1; . . . ; s; (7.39)

where ~e1;n � ~e1jNz¼n. Using (7.38), equations (7.39) can be

represented as

2N� þ d� 4

2N� þ d� 2

�
�@� �2 1

2N� þ d
��@

�
��2j�cur;s0 i

þ 1

2
~e1;s�s0�1 ��

2j�cur;s0þ1i ¼ 0; (7.40)

when s0 ¼ 0; 1; 2; . . . ; s� 1, while for s0 ¼ s, (7.39)
amounts to

�
��@� 1

2
�@ ��2

�
j�cur;si ¼ 0: (7.41)

Taking into account (7.40) and gauge conditions j�cur;0i ¼
0, j�cur;1i ¼ 0 we obtain

�� 2j�cur;s0 i ¼ 0; s0 ¼ 0; 1; . . . ; s: (7.42)

12In terms of the ket-vector j�curi, gauge conditions (7.36) can
simply be represented as ��z�½1;2�j�curi ¼ 0.
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Relations (7.38) and (7.42) imply

j�cur;s0 i ¼ 0; s0 ¼ 0; 1; . . . ; s� 1: (7.43)

Thus, we are left with the one spin-s traceless current
j�cur;si which turns out to be divergence-free because of

(7.41),

��@j�cur;si ¼ 0: (7.44)

This implies that our gauge invariant approach is equiva-
lent to the standard one.

VIII. GAUGE INVARIANT FORMULATION OF
ARBITRARY SPIN SHADOW FIELD

Field content. To discuss the gauge invariant formula-
tion of the arbitrary spin-s shadow field in flat space of
dimension d � 4 we use the following fields:

�
a1...as0
sh;s0 ; s0 ¼ 0; 1; . . . ; s; (8.1)

where the subscript s0 denotes that the field �
a1...as0
sh;s0 is a

rank-s0 tensor field of the Lorentz algebra soðd� 1; 1Þ.
We note that
(i) In (8.1), the fields �sh;0 and �a

sh;1 are the respective

scalar and vector fields of the Lorentz algebra, while

the fields �
a1...as0
sh;s0 , s0 > 1, are rank-s0 totally symmet-

ric tensor fields of the Lorentz algebra soðd� 1; 1Þ.
(ii) The tensor fields �

a1...as0
sh;s0 with s0 � 4 satisfy the

double-tracelessness constraint

�
aabba5...as0
sh;s0 ¼ 0; s0 ¼ 4; 5; . . . ; s: (8.2)

(iii) The fields �
a1...as0
sh;s0 have the following conformal

dimensions:

�ð�a1...as0
sh;s0 Þ ¼ 2� s0: (8.3)

In order to obtain the gauge invariant description in an
easy-to-use form we use the oscillators and introduce a ket-
vector j�shi defined by

j�shi �
Xs

s0¼0

�s�s0
z j�sh;s0 i; (8.4)

j�sh;s0 i � �a1 . . .�as0

s0!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs� s0Þ!p �

a1...as0
sh;s0 j0i: (8.5)

From (8.4) and (8.5), we see that the ket-vectors j�shi,
j�sh;s0 i satisfy the algebraic constraints

ðN� þ Nz � sÞj�shi ¼ 0; (8.6)

ðN� � s0Þj�sh;s0 i ¼ 0: (8.7)

These constraints tell us that j�shi is a degree-s homoge-
neous polynomial in the oscillators �a, �z, while the ket-

vector j�sh;s0 i is a degree-s0 homogeneous polynomial in

the oscillators �a. In terms of the ket-vector j�shi, double-
tracelessness constraint (8.2) takes the form

ð ��2Þ2j�shi ¼ 0: (8.8)

Differential constraint. We find the following differen-
tial constraint for the shadow field:

�C shj�shi ¼ 0; (8.9)

�C sh ¼ �C? þ c1 ��
2hþ c2�

½1;2�; (8.10)

�C? ¼ ��@� 1

2
�@ ��2; (8.11)

�½1;2� ¼ 1� �2 1

2ð2N� þ dÞ ��
2; (8.12)

c1 ¼ 1

2
�z~e1; c2 ¼ ~e1 ��

z; (8.13)

~e 1 ¼
�
2sþ d� 4� Nz

2sþ d� 4� 2Nz

�
1=2

: (8.14)

One can make sure that constraint (8.9) is invariant under
gauge transformation and conformal algebra transforma-
tions which we discuss below. Details of the derivation of
constraint (8.9) may be found in Appendix A.
Gauge symmetries of shadow field. We now discuss

gauge symmetries of the shadow field. To this end, we
introduce the following gauge transformation parameters:

�
a1...as0
sh;s0 ; s0 ¼ 0; 1; . . . ; s� 1: (8.15)

We note that
(i) In (8.15), the gauge transformation parameters �sh;0

and �a
sh;1 are the respective scalar and vector fields of

the Lorentz algebra, while the gauge transformation

parameters �
a1...as0
sh;s0 , s0 > 1, are rank-s0 totally sym-

metric tensor fields of the Lorentz algebra soðd�
1; 1Þ.

(ii) The gauge transformation parameters �
a1...as0
sh;s0 with

s0 � 2 satisfy the tracelessness constraint

�
aaa3...as0
sh;s0 ¼ 0; s0 ¼ 2; 3; . . . ; s� 1: (8.16)

(iii) The gauge transformation parameters �
a1...as0
sh;s0 have

the conformal dimensions

�ð�a1...as0
sh;s0 Þ ¼ 1� s0: (8.17)

Now, as usual, we collect gauge transformation parame-
ters in ket-vector j�shi defined by

R. R. METSAEV PHYSICAL REVIEW D 78, 106010 (2008)

106010-10



j�shi �
Xs�1

s0¼0

�s�1�s0
z j�sh;s0 i; (8.18)

j�sh;s0 i � �a1 . . .�as0

s0!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs� 1� s0Þ!p �

a1...as0
sh;s0 j0i: (8.19)

The ket-vectors j�shi, j�sh;s0 i satisfy the algebraic con-

straints

ðN� þ Nz � sþ 1Þj�shi ¼ 0; (8.20)

ðN� � s0Þj�sh;s0 i ¼ 0; (8.21)

which tell us that j�shi is a degree-ðs� 1Þ homogeneous
polynomial in the oscillators �a, �z, while the ket-vector
j�sh;s0 i is a degree-s0 homogeneous polynomial in the os-

cillators �a. In terms of the ket-vector j�shi, tracelessness
constraint (8.16) takes the form

�� 2j�shi ¼ 0: (8.22)

Gauge transformation can entirely be written in terms of
j�shi and j�shi. This is to say that gauge transformation
takes the form

�j�shi ¼ ð�@þ b1hþ b2�
2Þj�shi; (8.23)

b1 ¼ ��z~e1; (8.24)

b2 ¼ 1

2sþ d� 6� 2Nz

~e1 ��
z; (8.25)

where ~e1 is given in (8.14). We note that constraint (8.9) is
invariant under gauge transformation (8.23). Details of the
derivation of gauge transformation (8.23) may be found in
Appendix A.

Realization of conformal algebra symmetries. To com-
plete gauge invariant formulation of a spin-s shadow field
we should provide a realization of the conformal algebra
symmetries on the space of the ket-vector j�shi, i.e., we
should find operators Mab, �, and Ra to insert them into
(2.12)–(2.15). A realization of the spin operator Mab on
ket-vector j�shi (8.4) is given in (2.19), while a realization
of the operator �,

� ¼ 2� sþ Nz; (8.26)

can be read from (8.3). Representation of the operator Ra

we find is given by

Ra ¼ r

�
��a � �a 1

2N� þ d
��2

�
; (8.27)

r � �zðð2sþ d� 4� NzÞð2sþ d� 4� 2NzÞÞ1=2:
(8.28)

Details of the derivation of operator Ra (8.27) may be
found in Appendix B.

Equivalence of the gauge invariant and standard ap-
proaches. We begin with comments on the structure of

gauge transformation (8.23) and identification of
Stueckelberg shadow fields in the gauge invariant ap-
proach. Making use of simplified notation for shadow
fields, gauge transformation parameters, derivatives, and
flat metric tensor

�sh;s0 ��
a1...as0
sh;s0 ; �sh;s0 ��

a1...as0
sh;s0 ; @�@a; ���ab;

(8.29)

gauge transformation (8.23) can schematically be repre-
sented as

��sh;s0 � @�sh;s0�1 þh�sh;s0 þ ��sh;s0�2;

s0 ¼ 2; 3; . . . ; s;
(8.30)

��sh;1 � @�sh;0 þh�sh;1; (8.31)

��sh;0 �h�sh;0; (8.32)

where we assume �sh;s � 0. We now find shadow fields that

are realized as Stueckelberg fields. To this end, we note that
the fields �sh;s0 with s0 � 2 can be decomposed into trace-

less tensor fields as

�sh;s0 ¼ �T
sh;s0 ��TT

sh;s0�2; s0 ¼ 2; 3; . . . ; s; (8.33)

where �T
sh;s0 and �TT

sh;s0�2 stand for the respective rank-s0

and rank-ðs0 � 2Þ traceless tensors of the Lorentz algebra
soðd� 1; 1Þ. From (8.30), (8.31), and (8.32), we see that, in
contrast to conformal currents, the following shadow fields

�sh;0; �sh;1; �T
sh;s0 ; s0 ¼ 2; 3; . . . ; s; (8.34)

cannot be gauged away via Stueckelberg gauge fixing.
From (8.30), it is easy to see that by using gauge symme-
tries related to the gauge transformation parameters

�sh;s0 ; s0 ¼ 0; 1; . . . ; s� 2; (8.35)

we can impose the following gauge conditions

�TT
sh;s0�2 ¼ 0; s0 ¼ 2; 3; . . . ; s; (8.36)

and we note that fields in (8.36) are the Stueckelberg fields
in the framework of the gauge invariant approach.
We now discuss restrictions imposed by differential

constraint (8.9). To this end, we note that our gauge con-
ditions (8.36) can be written in terms of the ket-vectors
j�sh;s0 i as

�� 2j�sh;s0 i ¼ 0; s0 ¼ 2; 3; . . . ; s: (8.37)

Making use of gauge conditions (8.37) in (8.9) leads to

��@j�sh;s0 i þ ðs� s0 þ 1Þ~e1;s�s0 j�sh;s0�1i ¼ 0;

s0 ¼ 0; 1; . . . ; s: (8.38)

Relations (8.38) imply that the fields j�sh;s0 i, s0 ¼
0; 1; . . . ; s� 1, can be expressed in terms of the one field
j�sh;si subject to the tracelessness constraint [see (8.37)

when s0 ¼ s]. Thus, we are left with the one spin-s trace-
less shadow field j�sh;si and one surviving gauge symme-
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try generated by the gauge transformation parameter
�sh;s�1. This implies that our gauge invariant approach is

equivalent to the standard one.

IX. TWO-POINT CURRENT-SHADOW FIELD
INTERACTION VERTEX

We now discuss the two-point current-shadow field in-
teraction vertex. In the gauge invariant approach, the in-
teraction vertex is determined by requiring the vertex to be
invariant under gauge transformations of both currents and
shadow fields. Also, the interaction vertex should be in-
variant under conformal algebra transformations.

Spin-1. We begin with spin-1 fields. Let us consider the
following vertex:

L ¼ �a
cur�

a
sh þ�cur�sh: (9.1)

Under gauge transformations of the current (3.4) and (3.5),
the variation of vertex (9.1) takes the form (up to total
derivative)

��curL ¼ ��curð@a�a
sh þ�shÞ: (9.2)

From this expression, we see that the vertex L is invariant
under gauge transformations of the current provided the
shadow field satisfies differential constraint (4.3). We then
find that under gauge transformations of the shadow field
(4.4) and (4.5) the variation of the vertex L takes the form
(up to total derivative)

��sh
L ¼ ��shð@a�a

cur þh�curÞ; (9.3)

i.e., the vertex L is invariant under gauge transformations
of the shadow field provided the current satisfies differen-
tial constraint (3.3).

Making use of the representation for generators of the
conformal algebra obtained in Secs. III and IV, we check
that vertex L (9.1) is also invariant under the conformal
algebra transformations.

Spin-2. We proceed with spin-2 fields. One can make
sure that the following vertex

L ¼ 1

2
�ab

cur�
ab
sh � 1

4
�aa

cur�
bb
sh þ�a

cur�
a
sh þ�cur�sh (9.4)

is invariant under gauge transformations of the spin-2
shadow field (6.5)–(6.7) provided the spin-2 current satis-
fies differential constraints (5.3) and (5.4). Vertex (9.4) is
also invariant under gauge transformations of the spin-2
current (5.6), (5.7), and (5.8) provided the spin-2 shadow
field satisfies differential constraints (6.3) and (6.4). Using
the representation for generators of the conformal algebra
obtained in Secs. V and VI we check that vertex L (9.4) is
invariant under the conformal algebra transformations.

Arbitrary spin current and shadow field. For the case of
arbitrary spin current and shadow field, the gauge invariant
vertex takes the form

L ¼ h�curj
�
1� 1

4
�2 ��2

�
j�shi: (9.5)

This vertex is invariant under gauge transformation of the
shadow field (8.23) provided the current satisfies differen-
tial constraint (7.9). Vertex (9.5) is also invariant under
gauge transformation of the current (7.23) provided the
shadow field satisfies differential constraint (8.9). Using
the representation for generators of the conformal algebra
obtained in the Secs. VII and VIII, we check thatL (9.5) is
also invariant under the conformal algebra transformations.
Details of the derivation of the vertex L may be found in
Appendix A.

X. ADS/CFT CORRESPONDENCE

We now apply our results to the study of AdS/CFT
correspondence for bulk massless fields and boundary
conformal currents and shadow fields. We demonstrate
that normalizable solutions of bulk equations of motion
are related to conformal currents, while non-normalizable
solutions of bulk equations of motion are related to shadow
fields. As is well known, investigation of AdS/CFT corre-
spondence for massless fields requires analysis of some
subtleties related to the fact that global transformations of
bulk massless fields are defined up to local gauge trans-
formations. In our approach, these complications are easily
controllable because of the following reasons:
(i) We use the modified Lorentz gauge for a spin-1 field

and the modified de Donder gauge for spin s � 2
fields. These gauges lead to the decoupled bulk
equations of motion for arbitrary spin AdS fields,
and this considerably simplifies the study of AdS/
CFT correspondence. We note that the most conve-
nient way to dial with the modified gauges is to use
the Poincaré parametrization of AdSdþ1 space,

ds2 ¼ 1

z2
ðdxadxa þ dzdzÞ: (10.1)

(ii) The modified gauges are invariant under the leftover
on shell gauge symmetries of bulk AdS fields. Note
however that, in our approach, we have gauge sym-
metries not only at the AdS side, but also at the
boundary CFT.13 It turns out that these gauge sym-
metries are also related via AdS/CFT correspon-
dence. Namely, the leftover on shell gauge
symmetries of bulk AdS fields are related with the
gauge symmetries of currents and shadow fields we
obtained in the framework of our gauge invariant
approach to CFT in Secs. III, IV, V, VI, VII, and VIII.

(iii) In AdS space and at the boundary, we have the same
number of gauge fields and the same number of

13Note that in the standard approach to CFT only the shadow
fields are transformed under gauge transformations, while in our
gauge invariant approach both the currents and shadow fields are
transformed under gauge transformations. Thus, our approach
allows us to study the currents and shadow fields on an equal
footing.
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gauge transformation parameters. Also, our AdS
fields, currents, and shadow fields satisfy the same
algebraic constraints.

A. AdS/CFT correspondence for spin-1 fields

As a warm-up let us consider the spin-1 Maxwell field.
In AdSdþ1 space, the massless spin-1 field is described by
fields �aðx; zÞ and �ðx; zÞ which are the respective vector
and scalar fields of the soðd� 1; 1Þ algebra. In the modi-
fied Lorentz gauge,14 found in Ref. [11],

@a�a þ
�
@z � d� 3

2z

�
� ¼ 0; (10.2)

we obtain the decoupled equations of motion (for details,
see Appendix C),

�
hþ @2z � 1

z2

�
�2
1 �

1

4

��
�a ¼ 0; (10.3)

�
hþ @2z � 1

z2

�
�2
0 �

1

4

��
� ¼ 0; (10.4)

�1 ¼ d� 2

2
; �0 ¼ d� 4

2
: (10.5)

Gauge condition (10.2) and equations of motion (10.3),
(10.4) are invariant under the leftover on shell gauge trans-
formations

��a ¼ @a�; (10.6)

�� ¼
�
@z þ d� 3

2z

�
�; (10.7)

where the gauge transformation parameter � satisfies the
equation of motion

�
hþ @2z � 1

z2

�
�2
1 �

1

4

��
� ¼ 0: (10.8)

It is easy to see that the normalizable solution of Eqs. (10.3)
and (10.4) takes the form

�a
normðx; zÞ ¼ U�1

�a
curðxÞ; (10.9)

�normðx; zÞ ¼ U�0
ð��curðxÞÞ; (10.10)

while the non-normalizable solution is given by15

�a
non-normðx; zÞ ¼ U��1

�a
shðxÞ; (10.11)

�non-normðx; zÞ ¼ U��0
�shðxÞ; (10.12)

where we introduce operator U� defined by

U� � ffiffiffiffiffi
qz

p
J�ðqzÞq���ð1=2Þ; q2 � h; (10.13)

and J� stands for the Bessel function. Taking into account
the well-known properties of the Bessel function, we find
that the asymptotic behavior of the normalizable solution is
given by

�a
normðx; zÞ!z!0

z�1þð1=2Þ�a
curðxÞ; (10.14)

�normðx; zÞ!z!0
z�0þð1=2Þ�curðxÞ; (10.15)

while the asymptotic behavior of the non-normalizable
solution takes the form

�a
non-normðx; zÞ!z!0

z��1þð1=2Þ�a
shðxÞ; (10.16)

�non-normðx; zÞ!z!0
z��0þð1=2Þ�shðxÞ: (10.17)

In (10.14)–(10.17), we drop overall factors that do not
depend on z and h. From (10.14)–(10.17), we see that
�a

cur, �cur are indeed boundary values of the normalizable
solution, while �a

sh, �sh are boundary values of the non-

normalizable solution.
In the right-hand side of (10.9)–(10.12), we use the

respective notation �a
cur, �cur and �a

sh, �sh since we are

going to demonstrate that these boundary values are indeed
the conformal currents and shadow fields entering our
gauge invariant formulation in the Secs. III and IV.
Namely, one can prove the following statements:
(i) Leftover on shell gauge transformations (10.6) and

(10.7) of the normalizable solution (10.9) and (10.10)
lead to gauge transformations (3.4) and (3.5) of the
conformal currents�a

cur,�cur, while leftover on-shell
gauge transformations (10.6) and (10.7) of the non-
normalizable solution (10.11) and (10.12) lead to
gauge transformations (4.4) and (4.5) of the shadow
fields �a

sh, �sh.

(ii) For the normalizable solution (10.9) and (10.10), the
modified Lorentz gauge condition (10.2) leads to the
differential constraint (3.3) of the conformal currents
�a

cur, �cur, while, for the non-normalizable solution
(10.11) and (10.12), the modified Lorentz gauge
condition (10.2) leads to the differential constraint
(4.3) of the shadow fields �a

sh, �sh.

(iii) Global soðd; 2Þ symmetries of the normalizable
(non-normalizable) massless spin-1 modes in
AdSdþ1 become global soðd; 2Þ conformal symme-
tries of the conformal spin-1 current (shadow
field).16

14A discussion of AdS/CFT correspondence for the spin-1
Maxwell field by using radial gauge may be found in [36].
15To keep the discussion from becoming unwieldy here and
below, we restrict our attention to odd d. In this case, solutions
given in (10.9)–(10.12) are independent.

16In this section, to avoid repetition, we do not demonstrate
matching of the global soðd; 2Þ symmetries. Matching of the
global soðd; 2Þ symmetries for arbitrary spin fields is studied in
the Sec. XI.
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These statements can easily be proved by using the
following relations for the operator U�:

�
@z þ

�� 1
2

z

�
U� ¼ U��1; (10.18)

�
@z �

�þ 1
2

z

�
U� ¼ U�þ1ð�hÞ; (10.19)

�
@z þ

�� 1
2

z

�
U�� ¼ U��þ1ð�hÞ; (10.20)

�
@z �

�þ 1
2

z

�
U�� ¼ U���1; (10.21)

which, in turn, can be obtained by using the following well-
known identities for the Bessel function:

�
@z þ �

z

�
J�ðzÞ ¼ J��1ðzÞ;

�
@z � �

z

�
J�ðzÞ ¼ �J�þ1ðzÞ:

(10.22)

As an illustration, we demonstrate how a constraint for the
conformal current (3.3) can be obtained from the modified
Lorentz gauge condition (10.2). To this end, adapting
relation (10.19) for � ¼ �0 (10.5), we obtain

�
@z � d� 3

2z

�
U�0

¼ U�1
ð�hÞ: (10.23)

Plugging normalizable solutions �a
norm (10.9), �norm

(10.10) in the modified Lorentz gauge condition (10.2)
and using (10.23) we obtain the relation

@a�a
norm þ

�
@z � d� 3

2z

�
�norm ¼ U�1

ð@a�a
cur þh�curÞ;

(10.24)

i.e., our modified Lorentz gauge condition (10.2) indeed
leads to a differential constraint for the conformal current
(3.3).

As second illustration, we demonstrate how gauge trans-
formations of the conformal current (3.4) and (3.5) can be
obtained from leftover on shell gauge transformations of
the massless AdS field (10.6) and (10.7). To this end, we
note that the respective normalizable and non-
normalizable solutions of equation for the gauge trans-
formation parameter (10.8) take the form

�normðx; zÞ ¼ U�1
�curðxÞ; (10.25)

�non-normðx; zÞ ¼ U��1
�shðxÞ: (10.26)

Plugging (10.9) and (10.25) in (10.6), we see that (10.6)
indeed leads to (3.4). To match the remaining gauge trans-
formations (3.5) and (10.7), we adapt relation (10.18) with
� ¼ �1 to obtain

�
@z þ d� 3

2z

�
U�1

¼ U�0
: (10.27)

Plugging (10.25) in (10.7) and using (10.27), we obtain

��norm ¼ U�0
�cur: (10.28)

Taking into account (10.10), we see that the gauge trans-
formations (3.5) and (10.7) match.
In similar way, one can match: (i) the leftover on shell

gauge transformations of the non-normalizable massless
AdS modes and the gauge transformations of the shadow
field; (ii) the modified Lorentz gauge condition for the non-
normalizable solution and the differential constraint for the
shadow field.
Gauge invariant fields Ta

cur, T
a
sh given in (3.11) and (4.11)

can also be obtained via AdS/CFT correspondence. We
consider a field strengthWa constructed out of the massless
fields �a, �,

Wa ¼
�
@z þ d� 3

2z

�
�a � @a�; (10.29)

and note that
(i) Wa is invariant under gauge transformations (10.6)

and (10.7).
(ii) Plugging the normalizable and non-normalizable so-

lutions (10.9)–(10.12) in (10.29) and using (3.11) and
(4.11), we obtain the respective relations

Wa
norm ¼ U�0

Ta
cur; (10.30)

Wa
non-norm ¼ U��0

ð�Ta
shÞ; (10.31)

i.e., for the normalizable solution, bulk field Wa

(10.29) corresponds to the boundary gauge invariant
field Ta

cur (3.11), while, for the non-normalizable
solution, bulk field Wa (10.29) corresponds to the
boundary gauge invariant field Ta

sh (4.11).

(iii) Denoting the left-hand side of (10.2) by Cmod, we get

@aWa ¼
�
@z þ d� 3

2z

�
Cmod: (10.32)

We then check that plugging the normalizable solution in
(10.32) and using (10.30) gives (3.12), while plugging the
non-normalizable solution in (10.32) and using (10.31)
gives (4.13).

B. AdS/CFT correspondence for spin-2 fields

We now proceed with the discussion of AdS/CFT cor-
respondence for a bulk massless spin-2 AdS field and a
boundary spin-2 conformal current and shadow field. To
this end, we use the modified de Donder gauge condition
for the massless spin-2 AdS field [16].17 In Ref. [16], we

17A discussion of AdS/CFT correspondence for a massless
spin-2 field taken to be in radial gauge may be found in [37,38].
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found that the suitable modification of the standard
de Donder gauge condition leads to the decoupled equa-
tions of motion for the massless spin-2 AdS field. We begin
therefore with a presentation of our results from Ref. [16].
Some useful details may be found in the Appendix C.

In AdSdþ1 space, a massless spin-2 field is described by
fields�abðx; zÞ,�aðx; zÞ,�ðx; zÞ. The field�ab is the rank-
2 tensor field of the soðd� 1; 1Þ algebra, while �a and �
are the respective vector and scalar fields of the soðd�
1; 1Þ algebra. The gauge condition, which we refer to as the
modified de Donder gauge condition, is defined to be

@b�ab � 1

2
@a�bb þ

�
@z � d� 1

2z

�
�a ¼ 0; (10.33)

@a�a � 1

2

�
@z þ d� 1

2z

�
�aa þ u

�
@z � d� 3

2z

�
� ¼ 0;

(10.34)

where u is given in (5.5). A remarkable property of this
gauge condition is that it leads to the decoupled equations
of motion for the fields �ab, �a, �,

�
hþ @2z � 1

z2

�
�2
2 �

1

4

��
�ab ¼ 0; (10.35)

�
hþ @2z � 1

z2

�
�2
1 �

1

4

��
�a ¼ 0; (10.36)

�
hþ @2z � 1

z2

�
�2
0 �

1

4

��
� ¼ 0; (10.37)

�2 ¼ d

2
; �1 ¼ d� 2

2
; �0 ¼ d� 4

2
: (10.38)

These equations and the gauge condition (10.33) and
(10.34) are invariant under the leftover on shell gauge
transformations,

��ab¼@a�bþ@b�aþ 2

d�2

�
@z�d�1

2z

�
�ab�;

(10.39)

��a ¼ @a�þ
�
@z þ d� 1

2z

�
�a; (10.40)

�� ¼ u

�
@z þ d� 3

2z

�
�; (10.41)

where the gauge transformation parameters �a and � sat-
isfy the respective equations of motion,

�
hþ @2z � 1

z2

�
�2
2 �

1

4

��
�a ¼ 0; (10.42)

�
hþ @2z � 1

z2

�
�2
1 �

1

4

��
� ¼ 0: (10.43)

Thus, we see that our modified de Donder gauge leads to
the decoupled equations of motion for both the gauge fields
and gauge transformation parameters. This streamlines the
investigation of AdS/CFT correspondence.
First of all, we note that the normalizable solution of

equations of motion (10.35), (10.36), and (10.37) is given
by

�ab
normðx; zÞ ¼ U�2

�ab
curðxÞ; (10.44)

�a
normðx; zÞ ¼ U�1

ð��a
curðxÞÞ; (10.45)

�normðx; zÞ ¼ U�0
�curðxÞ; (10.46)

while the non-normalizable solution takes the form

�ab
non-normðx; zÞ ¼ U��2�

ab
sh ðxÞ; (10.47)

�a
non-normðx; zÞ ¼ U��1

�a
shðxÞ; (10.48)

�non-normðx; zÞ ¼ U��0
�shðxÞ; (10.49)

where the operator U� is defined in (10.13). From these
relations, we find the asymptotic behavior of the normal-
izable solution

�ab
normðx; zÞ!z!0

z�2þð1=2Þ�ab
curðxÞ; (10.50)

�a
normðx; zÞ!z!0

z�1þð1=2Þ�a
curðxÞ; (10.51)

�normðx; zÞ!z!0
z�0þð1=2Þ�curðxÞ; (10.52)

while the asymptotic behavior of the non-normalizable
solution takes the form

�ab
non-normðx; zÞ!z!0

z��2þð1=2Þ�ab
sh ðxÞ; (10.53)

�a
non-normðx; zÞ!z!0

z��1þð1=2Þ�a
shðxÞ; (10.54)

�non-normðx; zÞ!z!0
z��0þð1=2Þ�shðxÞ: (10.55)

From (10.50)–(10.55), we see that the fields�ab
cur,�

a
cur,�cur

are indeed boundary values of the normalizable solution,
while �ab

sh , �a
sh, �sh are boundary values of the non-

normalizable solution.
In the right-hand side of (10.44)–(10.49), we use the

respective notation �ab
cur, �a

cur, �cur and �ab
sh , �a

sh, �sh

because these boundary values turn out to be the spin-2
conformal currents and shadow fields entering our gauge
invariant formulation in Secs. V and VI. Namely, one can
prove the following statements:
(i) Leftover on shell gauge transformations (10.39)–

(10.41) of the normalizable solution (10.44)–
(10.46) lead to the gauge transformations (5.6),
(5.7), and (5.8) of the conformal currents �ab

cur,
�a

cur, �cur, while leftover on shell gauge transforma-
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tions (10.39)–(10.41) of the non-normalizable solu-
tion (10.47)–(10.49) lead to the gauge transforma-
tions (6.5)–(6.7) of the shadow fields �ab

sh , �
a
sh, �sh.

(ii) For the normalizable solution (10.44)–(10.46), the
modified de Donder gauge condition (10.33) and
(10.34) leads to the differential constraints (5.3) and
(5.4) of the conformal currents�ab

cur,�
a
cur,�cur while,

for the non-normalizable solution (10.47)–(10.49),
modified the de Donder gauge condition (10.33) and
(10.34) leads to the differential constraints (6.3) and
(6.4) of the shadow fields �ab

sh , �
a
sh, �sh.

(iii) Global soðd; 2Þ bulk symmetries of the normalizable
(non-normalizable) massless spin-2 modes in
AdSdþ1 become global soðd; 2Þ boundary conformal
symmetries of the spin-2 current (shadow field).

These statements can easily be proved in the same way
as in the case of the massless spin-1 field. To do that one
needs to use the relations for the operator U� given in
(10.18)–(10.21). Also, one needs to take into account the
following normalizable solution of equations of motion for
the gauge transformation parameters in(10.42) and (10.43):

�a
normðx; zÞ ¼ U�2

�a
curðxÞ; (10.56)

�normðx; zÞ ¼ U�1
ð��curðxÞÞ; (10.57)

and the appropriate non-normalizable solution given by

�a
non-normðx; zÞ ¼ U�2

�a
shðxÞ; (10.58)

�non-normðx; zÞ ¼ U�1
�shðxÞ: (10.59)

We note that the gauge invariant fields Tab
cur, T

ab
sh given in

(5.15) and (6.12) can also be obtained via AdS/CFT cor-
respondence. Thus, we consider a field strength Wab con-
structed out of the massless fields �ab, �a, �,

Wab ¼
�
@z þ d� 3

2z

��
@z þ d� 1

2z

�
�ab

�
�
@z þ d� 3

2z

�
ð@a�b þ @b�aÞ þ 2

u
@a@b�

þ 2

ðd� 2Þu�
abh�; (10.60)

where u is given in (5.5). We note that
(i) Wab is invariant under the on shell gauge transfor-

mations (10.39)–(10.41).
(ii) Plugging normalizable and non-normalizable solu-

tions (10.44)–(10.49) in (10.60) and using (5.15) and
(6.12), we obtain the respective relations

Wab
norm ¼ U�0

Tab
cur; (10.61)

Wab
non-norm ¼ U��0

ð�Tab
sh Þ; (10.62)

i.e., we see that, for the normalizable solution, the
bulk tensor field Wab (10.60) corresponds to the
boundary gauge invariant field Tab

cur (5.15), while,

for the non-normalizable solution, the bulk tensor
fieldWab (10.60) corresponds to the boundary gauge
invariant field Tab

sh (6.12).

(iii) Denoting the respective left-hand sides of (10.33)
and (10.34) by Ca

mod and Cmod, we get

@bWab�1

2
@aWbb¼

�
@zþd�3

2z

��
@zþd�1

2z

�
Ca
mod;

(10.63)

Waa ¼ �2

�
@z þ d� 3

2z

�
Cmod: (10.64)

We then check that plugging the normalizable solution in
(10.63) and (10.64) and using (10.61) gives (5.16), while
plugging the non-normalizable solution in (10.63) and
(10.64) and using (10.62) gives (6.14).

XI. ADS/CFT CORRESPONDENCE FOR
ARBITRARY SPIN FIELDS

We proceed with the discussion of AdS/CFT correspon-
dence for the bulk massless arbitrary spin-s AdS field and
the boundary spin-s conformal current and shadow field.
To discuss the correspondence, we use the modified
de Donder gauge condition for the bulk massless arbitrary
spin field.18 In Ref. [16], we found that some modification
of the standard de Donder gauge condition19 leads to the
decoupled equations of motion for the arbitrary spin AdS
field.20 We begin therefore with a presentation of our
results from Ref. [16]. In AdSdþ1 space, the massless
spin-s field is described by the following scalar, vector,
and totally symmetric tensor fields of the Lorentz algebra
soðd� 1; 1Þ:

�
a1...as0
s0 ; s0 ¼ 0; 1; . . . ; s: (11.1)

The fields �
a1...as0
s0 with s0 > 3 are double-traceless,

�
aabba5...as0
s0 ¼ 0; s0 ¼ 4; 5; . . . ; s: (11.2)

In order to obtain the gauge invariant description in an
easy-to-use form, we use the oscillators and introduce a
ket-vector j�i defined by

j�i � Xs

s0¼0

�s�s0
z j�s0 i; (11.3)

18In light-cone gauge, AdS/CFT correspondence for arbitrary
spin massless fields was studied in Ref. [11]. In radial gauge,
AdS/CFT correspondence for arbitrary spin massless fields was
considered in Ref. [39].
19Recent interesting applications of the standard de Donder
gauge to the various problems of higher-spin fields may be found
in Refs. [40,41].
20We believe that our modified de Donder gauge will also be
useful for a better understanding of various aspects of AdS/QCD
correspondence which are discussed e.g. in [42–45].
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j�s0 i � �a1 . . .�as0

s0!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs� s0Þ!p �

a1...as0
s0 j0i: (11.4)

From (11.3) and (11.4), we see that the ket-vector j�i is a
degree-s homogeneous polynomial in the oscillators �a,
�z, while the ket-vector j�s0 i is a degree-s0 homogeneous
polynomial in the oscillators �a, i.e., these ket-vectors
satisfy the relations

ðN� þ Nz � sÞj�i ¼ 0; (11.5)

ðN� � s0Þj�s0 i ¼ 0: (11.6)

In terms of the ket-vector j�i, the double-tracelessness
constraint (11.2) takes the form

ð ��2Þ2j�i ¼ 0: (11.7)

The gauge condition, which we refer to as the modified
de Donder gauge condition, is defined as

�Cmodj�i ¼ 0; (11.8)

�C mod � ��@� 1

2
�@ ��2 þ 1

2
e1 ��

2 � �e1�
½1;2�; (11.9)

�½1;2� � 1� �2 1

2ð2N� þ dÞ ��
2; (11.10)

e1 ¼ e1;1

�
@z þ 2sþ d� 5� 2Nz

2z

�
; (11.11)

�e 1 ¼
�
@z � 2sþ d� 5� 2Nz

2z

�
�e1;1; (11.12)

e1;1 ¼ ��z~e1 �e1;1 ¼ �~e1 ��
z; (11.13)

~e 1 ¼
�
2sþ d� 4� Nz

2sþ d� 4� 2Nz

�
1=2

: (11.14)

In this gauge, we obtain the decoupled equations of motion
for the massless arbitrary spin-s AdS field j�i,

�
hþ @2z � 1

z2

�
�2 � 1

4

��
j�i ¼ 0; (11.15)

� � sþ d� 4

2
� Nz: (11.16)

The gauge condition (11.8) and Eqs. (11.15) are invariant
under the leftover on shell gauge transformation

�j�i ¼
�
�@� e1 � �2

2sþ d� 6� 2Nz

�e1

�
j�i; (11.17)

where e1, �e1 are given in (11.11) and (11.12) and the gauge
transformation ket-vector j�i satisfies the equations of
motion

�
hþ @2z � 1

z2

�
�2 � 1

4

��
j�i ¼ 0; (11.18)

with � given (11.16). In terms of soðd� 1; 1Þ algebra
tensor fields, the ket-vector j�i is represented as

j�i � Xs�1

s0¼0

�s�1�s0
z j�s0 i; (11.19)

j�s0 i � �a1 . . .�as0

s0!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs� 1� s0Þ!p �

a1...as0
s0 j0i; (11.20)

and satisfies the standard tracelessness constraint

�� 2j�i ¼ 0: (11.21)

We note that the gauge invariant description of the
conformal currents (or shadow fields) given in the
Secs. VII and VIII and the description of AdS fields given
in this section turn out to be very convenient for studying
AdS/CFT correspondence because of the following rea-
sons:
(i) The number of gauge fields involved in the gauge

invariant description of the spin-s conformal current
(or shadow field) in d-dimensional space is equal to
the number of gauge fields involved in the gauge
invariant description of the massless spin-s field in
AdSdþ1 [see (7.1), (8.1), and (11.1)]. Note also that
the conformal current, shadow field, and AdS field
satisfy the same double-tracelessness constraint [see
(7.2), (8.2), and (11.2)].

(ii) The number of gauge transformation parameters in-
volved in the gauge invariant description of the
spin-s conformal current (or shadow field) in
d-dimensional space is equal to the number of gauge
transformation parameters involved in the gauge
invariant description of the massless spin-s field in
AdSdþ1 [see (7.15), (8.15), (11.9), and (11.20)].
Also, all these gauge transformation parameters sat-
isfy the same tracelessness constraint [see (7.22),
(8.22), and (11.21)].

(iii) In the Poincaré parametrization ofAdSdþ1 space, the
d-dimensional Poincaré symmetries of AdSdþ1 field
theory are manifest. In the conformal current/
shadow field theory, the d-dimensional Poincaré
symmetries are also manifest, i.e. manifest
Poincaré symmetries of AdS field theory and CFT
match.

We now discuss solutions of equations of motion in
(11.15). It is easy to see that the respective normalizable
and non-normalizable solutions of Eqs. (11.15) take the
form

j�normðx; zÞi ¼ U�ð�ÞNz j�curðxÞi; (11.22)

j�non-normðx; zÞi ¼ U��j�shðxÞi; (11.23)

where the operator U� is defined in (10.13). From these
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relations, we find the asymptotic behavior of our solutions

j�normðx; zÞi!z!0
z�þð1=2Þj�curðxÞi; (11.24)

j�non-normðx; zÞi!z!0
z��þð1=2Þj�shðxÞi: (11.25)

Now we are ready to formulate our statements:
(i) Leftover on shell gauge transformation (11.17) of the

normalizable solution (11.22) leads to the gauge
transformation (7.23) of the current j�curi, while
leftover on shell gauge transformation (11.17) of
the non-normalizable solution (11.23) leads to the
gauge transformation (8.23) of the shadow field
j�shi.

(ii) For the normalizable solution (11.22), the modified
de Donder gauge condition (11.8) leads to the dif-
ferential constraint (7.9) of the current j�curi, while,
for the non-normalizable solution (11.23), the modi-
fied de Donder gauge condition (11.8) leads to the
differential constraint (8.9) of the shadow field
j�shi.21

(iii) Global soðd; 2Þ bulk symmetries of the normalizable
(non-normalizable) massless spin-s modes in
AdSdþ1 become global soðd; 2Þ boundary conformal
symmetries of the spin-s current (shadow field).

We note that all these statements can straightforwardly
be proved by using the following relations for the operator
U�:

e 1U� ¼ U��
z; (11.26)

�e 1U� ¼ U�ð�h ��zÞ; (11.27)

e 1U�� ¼ U��ð�h�zÞ; (11.28)

�e 1U�� ¼ U�� ��
z; (11.29)

e 1ðzU�þ1Þ ¼ zU�þ1�
z; (11.30)

�e 1ðzU�þ1Þ ¼ 2U� ��
z � zhU�þ1 ��

z; (11.31)

e 1ðzU��þ1Þ ¼ 2U���
z � zhU��þ1�

z; (11.32)

�e 1ðzU��þ1Þ ¼ zU��þ1 ��
z; (11.33)

where � is given in (11.16) and we use the notation

e 1 � �z

�
@z þ

�� 1
2

z

�
; (11.34)

�e 1 �
�
@z �

�� 1
2

z

�
��z: (11.35)

Also, one needs to take into account the following
normalizable and non-normalizable solutions of equations
of motion for the gauge transformation parameters in
(11.18),

j�normðx; zÞi ¼ U�ð�ÞNz j�curðxÞi; (11.36)

j�non-normðx; zÞi ¼ U��j�shðxÞi: (11.37)

As an illustration, we demonstrate how the gauge trans-
formation of the shadow field can be obtained from the
leftover on shell gauge transformation of the massless non-
normalizable AdS modes. To this end, we note that, one the
one hand, gauge transformation of j�non-normi takes the
form [see (11.23)]

�j�non-normðx; zÞi ¼ U���j�shðxÞi: (11.38)

On the other hand, plugging (11.37) in (11.17) and using
(11.28) and (11.29), we obtain the relations

�j�non-normðx; zÞi ¼
�
�@� e1

� �2

2sþ d� 6� 2Nz

�e1

�
U��j�shi

¼ U��ð�@þ b1hþ b2�
2Þj�shi;

(11.39)

where the b1, b2 operators entering gauge transformation
(8.23) of the shadow field are given in (8.24) and (8.25).
Comparing (11.38) and (11.39), we see that the leftover on
shell gauge transformation (11.17) of the massless non-
normalizable AdS modes (11.23) indeed leads to gauge
transformation (8.23) of the shadow field.
In a similar way, using (11.26) and (11.27), we learn that

the leftover on shell gauge transformation of the massless
normalizable AdS modes leads to the gauge transformation
of the current.

Matching of bulk and boundary global symmetries

We finish our study of AdS/CFT correspondence with
the comparison of bulk and boundary global symmetries.
On the one hand, global symmetries of conformal currents
and shadow fields are described by the conformal algebra
soðd; 2Þ. On the other hand, relativistic symmetries of the
AdSdþ1 field dynamics are also described by the soðd; 2Þ
algebra. For application to the study of AdS/CFT corre-
spondence, it is convenient to realize the bulk soðd; 2Þ
algebra symmetries by using the nomenclature of the con-
formal algebra. This is to say that to discuss the bulk

21We expect that use of the standard de Donder gauge condition
leads to an isomorphic realization of conformal symmetries. At
present time, it is difficult to check this statement explicitly
because the standard de Donder gauge condition leads to coupled
equations. Analysis of these equations is complicated and their
solution is not known in closed form so far (see e.g. Ref. [41]).
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soðd; 2Þ symmetries we use the basis of the soðd; 2Þ algebra
which consists of translation generators Pa, conformal
boost generatorsKa, dilatation generatorD, and generators
of the soðd� 1; 1Þ algebra, Jab. In this basis, the soðd; 2Þ
algebra transformations of the massless spin-s AdSdþ1

field j�i take the form �Ĝj�i ¼ Ĝj�i, where a realization
of the soðd; 2Þ algebra generators Ĝ in terms of differential
operators is given by

Pa ¼ @a; (11.40)

Jab ¼ xa@b � xb@a þMab; (11.41)

D ¼ x@þ �; � ¼ z@z þ d� 1

2
; (11.42)

Ka ¼ Ka
�;M þ Ra; (11.43)

Ra ¼ Ra
ð0Þ þ Ra

ð1Þ; (11.44)

Ra
ð0Þ ¼ �z ~Ca �e1;1 þ ze1;1 ��

a; (11.45)

Ra
ð1Þ ¼ � 1

2
z2@a; (11.46)

and the operatorsMab and ~Ca are given in (2.19) and (7.28)
, respectively, while Ka

�;M and e1;1 are given in (2.16) and

(11.13), respectively.
We note that the representation for generators given in

(11.40)–(11.43) is valid for the gauge invariant theory of
AdS fields. This to say that our modified Lorentz and
de Donder gauges respect the Poincaré and dilatation
symmetries, but break Ka symmetries. In other words,
the expressions for generators Pa, Jab, and D given in
(11.40), (11.41), and (11.42) are still valid for the gauge-
fixed AdS fields, while the expression for the generator Ka

(11.43) should be modified to restore conformal boost
symmetries for the gauge-fixed AdS fields. Therefore, let
us first demonstrate matching of the Poincaré and dilata-
tion symmetries. What is required is to demonstrate match-
ing of the soðd; 2Þ algebra generators for bulk AdS fields
given in (11.40), (11.41), and (11.42) and ones for bound-
ary currents (or shadow fields) given in (2.12)–(2.14). As
for generators of the Poincaré algebra, Pa, Jab, they al-
ready coincide on both sides [see formulas (2.12) and
(2.13) and the respective formulas (11.40) and (11.41)].
Next, consider the dilatation generatorD. Here we need the
explicit form of the solution to bulk theory equations of
motion given in (11.22) and (11.23). Using the notation
DAdS andDCFT to indicate the respective realizations of the
dilatation generator D on the bulk fields (11.42) and the
conformal currents and shadow fields (2.14), we obtain the
relations

DAdSj�normi ¼ U�DCFTj�curi; (11.47)

DAdSj�non-normi ¼ U��DCFTj�shi; (11.48)

where the expressions for DCFT corresponding to j�curi
and j�shi can be obtained from (2.14) and the respective
conformal dimension operators � given in (7.26) and
(8.26). Thus, the generators DAdS and DCFT also match.
We now turn to matching the conformal boost Ka sym-

metries. Technically, this is the most difficult point of the
analysis because matching the Ka symmetries requires
analysis of some subtleties of our gauge fixing for the
AdS field. We now discuss these subtleties.
As we have already said, our modified Lorentz and

de Donder gauges break the Ka symmetries. This implies
that generator Ka given in (11.43) should be modified to
restore the conformal boost symmetries of the gauge-fixed
AdS field theory. In order to restore these broken Ka

symmetries we should, following standard procedure, add
compensating gauge transformations to maintain the con-
formal boost Ka symmetries. Thus, in order to find im-
proved Ka transformations of the gauge-fixed AdS field
j�i, we start with the generic global Ka transformations
(11.43) supplemented by the appropriate compensating
gauge transformation

Ka
imprj�i ¼ Kaj�i þ ��Ka j�i; (11.49)

where the gauge transformation ��K
a j�i is obtained from

(11.17) by substituting j�i ! j�Kai. The compensating
gauge transformation parameter j�Kai can usually be found
by requiring improved transformation (11.49) to maintain
the gauge condition (11.8),

�C modK
a
imprj�i ¼ 0; (11.50)

where the operator �Cmod is given in (11.9). Plugging
(11.49) in (11.50), we find that Eq. (11.50) leads to the
equation
�
hþ @2z � 1

z2

�
�2 � 1

4

��
j�Kai � 2 �Ca

?j�i ¼ 0; (11.51)

where � is given in (11.16) and �Ca
? is defined in (7.29).

Thus, we obtain the nonhomogeneous second-order differ-
ential equation for the compensating gauge transformation
parameter j�Kai. Plugging the normalizable solution
(11.22) and the non-normalizable solution (11.23) in
(11.51), we find the respective solutions to the compensat-
ing gauge transformation parameters,

j�Ka

normðx; zÞi ¼ zU�þ1
�Ca
?ð�ÞNz j�curi; (11.52)

j�Ka

non-normðx; zÞi ¼ zU��þ1
�Ca
?j�shi: (11.53)

Making use of solutions (11.52) and (11.53) in (11.49), we
obtain the improved Ka transformations. We then make
sure that the improved Ka transformations of the
normalizable/non-normalizable bulk AdS modes lead to
the conformal boost transformations for the current/
shadow fields obtained in Sec. VII/VIII. This can easily
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be proved by using relations for the operator U� given in
(11.26)–(11.33). Details may be found in Appendix E.

The results presented here should have interesting gen-
eralizations to mixed-symmetry fields. In the case of
mixed-symmetry fields we could, in principle, redo our
analysis by using the equations of Ref. [24] given in
Lorentz/de Donder gauge conditions. However, as in the
case of totally symmetric fields, these gauge conditions
lead to coupled equations. Analysis of these coupled equa-
tions is complicated and their solution is not known in
closed form so far. On the other hand, a promising gauge
invariant approach to mixed-symmetry AdS fields was
recently developed in Ref. [34]. It would be interesting to
generalize our modified de Donder gauge to the mixed-
symmetry fields by using this approach. This will it make
possible to extend our analysis to the case of mixed-
symmetry fields.

XII. INTERRELATIONS BETWEEN GAUGE
INVARIANTAPPROACHES TO CURRENTS,

SHADOW FIELDS ANDMASSIVE FIELDS IN FLAT
SPACE

The gauge invariant description of conformal currents
and shadow fields involves Stueckelberg fields. As is well
known, the gauge invariant description of a massive field is
also formulated by using Stueckelberg fields. It is worth
mentioning that the number of Stueckelberg fields in the
gauge invariant approach to the spin-s current coincides
with the number of Stueckelberg fields in the gauge invari-
ant approach to the spin-s massive field. Moreover, there
are other interesting interrelations between the gauge in-
variant approaches to conformal currents, shadow fields,
and massive fields. These interrelations are realized by
breaking the conformal symmetries and can be summa-
rized as follows.

(i) The gauge transformations of the massive fields can
be obtained from the ones of the conformal currents
(or shadow fields) by making the replacement

h ! m2 (12.1)

in the gauge transformations of the conformal cur-
rents (or shadow fields) and by making the appro-
priate rescaling of the conformal currents (or shadow
fields).

(ii) A Lorentz-like gauge for the massive spin-1 field and
a de Donder-like gauge for the massive spin s � 2
fields can be obtained by making replacement (12.1)
in the differential constraints of the conformal cur-
rents (or shadow fields) and by making the appro-
priate rescaling of the conformal currents (or shadow
fields).

We note that it is substitution (12.1) that breaks the
conformal symmetries. Substitution (12.1) is similar to
the one used in the procedure of the standard dimensional
reduction from the massless field in dþ 1-dimensional flat

space to the massive field in d-dimensional flat space. Note
however that, in our approach, we break the conformal
symmetries of d-dimensional space down to the
d-dimensional Poincaré symmetries, while the standard
procedure of dimensional reduction breaks the dþ
1-dimensional Poincaré symmetries down to the
d-dimensional Poincaré symmetries.
We now demonstrate the interrelations for various spin

fields in turn. In due course we present our de Donder-like
gauge for massive spin-s, s > 2, fields. To our knowledge
this gauge has not been discussed in the earlier literature.
Interrelations for spin-1 fields. In the gauge invariant

approach, the massive spin-1 field is described by gauge
fields �a

m, �m with Lagrangian

L ¼ � 1

4
FabFab � 1

2
ðm�a

m þ @a�mÞ2; (12.2)

Fab ¼ @a�b
m � @b�a

m, which is invariant under the gauge
transformations

��a
m ¼ @a�m; ��m ¼ �m�m: (12.3)

It easy to see that gauge transformations (12.3) can be
obtained by substituting

�a
cur ! �a

m; �cur ! 1

m
�m; �cur ! �m (12.4)

in gauge transformations of the spin-1 current (3.4) and
(3.5). Also, it is easy to see that gauge transformations
(12.3) can be obtained by substituting (12.1) and

�a
sh ! �a

m; �sh ! m�m; �sh ! �m (12.5)

in gauge transformations of the spin-1 shadow field (4.4)
and (4.5).
We now consider the interrelations between the gauge

condition for the massive field spin-1 field and the differ-
ential constraints for the current and shadow field. Let us
consider the following well-known Lorentz-like gauge
condition for the massive spin-1 gauge fields and the
corresponding gauge-fixed equations

@a�a
m þm�m ¼ 0; (12.6)

ðh�m2Þ�a
m ¼ 0; (12.7)

which are invariant under leftover on shell gauge trans-
formations (12.3), if the gauge transformation parameter
satisfies the equation

ðh�m2Þ�m ¼ 0: (12.8)

Note that gauge-fixed equations (12.7) can be obtained
from the appropriate gauge-fixed Lagrangian. Namely,
denoting the left-hand side of (12.6) by Cm, we obtain
the well-known gauge-fixed Lagrangian

L total � L� 1

2
CmCm; (12.9)
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L total ¼ 1

2
�a

mðh�m2Þ�a
m; (12.10)

which leads to Eqs. (12.7).
We now note that the Lorentz-like gauge condition for

massive gauge fields (12.6) can be obtained from the
differential constraint for the conformal current (3.3) [or
shadow field (4.3)] by making substitutions (12.1), (12.4),
and (12.5).

Interrelations for spin-2 fields. In the gauge invariant
approach, the massive spin-2 field is described by gauge
fields �ab

m , �a
m, �m with Lagrangian [25]

L ¼ 1

4
�ab

m ðEEH�mÞab þ 1

2
�a

mðEMax�mÞa þ 1

2
�mh�m

þm�a
mð@b�ba

m � @a�bb
m � u@a�mÞ �m2

4
�ab

m �ab
m

þm2

4
�aa

m �bb
m þ um2

2
�m�

aa
m þ dm2

2ðd� 2Þ�
2
m;

(12.11)

where the respective second-derivative Einstein-Hilbert
and Maxwell operators EEH, EMax are given by

ðEEH�Þab ¼ h�ab � @a@c�cb � @b@c�ca þ @a@b�cc

þ �abð@c@e�ce �h�ccÞ; (12.12)

ðEMax�Þa ¼ h�a � @a@b�b; (12.13)

and u is defined in (5.5). Lagrangian (12.11) is invariant
under the gauge transformations

��ab
m ¼ @a�b

m þ @b�a
m þ 2m

d� 2
�ab�m; (12.14)

��a
m ¼ @a�m �m�a

m; (12.15)

��m ¼ �um�m: (12.16)

It is easy to see that these transformations can be obtained
by making substitutions (12.1) and

�ab
cur ! �ab

m ; �a
cur ! 1

m
�a

m; �cur ! 1

m2
�m;

(12.17)

�a
cur ! �a

m; �cur ! 1

m
�m; (12.18)

�ab
sh ! �ab

m ; �a
sh ! m�a

m; �sh ! m2�m;

(12.19)

�a
sh ! �a

m; �sh ! m�m; (12.20)

in gauge transformations of the current (5.6), (5.7), and
(5.8) [or shadow field (6.5)–(6.7)].

Now let us consider interrelations between gauge con-
ditions for the massive gauge fields and the differential

constraints for the current and shadow field. We find the
following de Donder-like gauge condition for the massive
gauge fields:

@b�ab
m � 1

2
@a�bb

m þm�a
m ¼ 0; (12.21)

@a�a
m þ 1

2
m�aa

m þ um�m ¼ 0: (12.22)

The surprise is that the gauge condition (12.21) and (12.22)
leads to the decoupled equations of motion for the massive
gauge fields,

ðh�m2Þ�ab
m ¼ 0; ðh�m2Þ�a

m ¼ 0;

ðh�m2Þ�m ¼ 0:
(12.23)

The gauge condition and equations of motion are invariant
under leftover on shell gauge transformations (12.14)–
(12.16), where the gauge transformation parameters satisfy
the equations

ðh�m2Þ�a
m ¼ 0; ðh�m2Þ�m ¼ 0: (12.24)

Note that gauge-fixed equations (12.23) can be obtained
from the appropriate gauge-fixed Lagrangian. Namely, if
we denote the respective left-hand sides of (12.21) and
(12.22) by Ca

m and Cm, and define the gauge-fixed
Lagrangian as

L total ¼ L� 1

2
Ca
mC

a
m � 1

2
CmCm; (12.25)

then we get the surprisingly simple gauge-fixed
Lagrangian:

Ltotal¼1

4
�ab

m ðh�m2Þ�ab
m �1

8
�aa

m ðh�m2Þ�bb
m

þ1

2
�a

mðh�m2Þ�a
mþ1

2
�mðh�m2Þ�m; (12.26)

which leads to Eqs. (12.23). To our knowledge, for d > 4,
the gauge condition (12.21) and (12.22) and Lagrangian
(12.26) have not been discussed in the earlier literature.
We now note that the de Donder-like gauge condition for

the massive gauge fields (12.21) and (12.22) can simply be
obtained by making substitutions (12.1), (12.17), and
(12.19) in differential constraints for the current (5.3) and
(5.4) [or shadow field (6.3) and (6.4)].
Also, we note that the gauge invariant field Tab

cur (5.15)
[or Tab

sh (6.12)] can be related with the Pauli-Fierz field

entering spin-2 massive field theory. Thus, in the gauge
invariant approach, the Pauli-Fierz field has the following
representation in terms of the massive gauge fields22:

22For d ¼ 4, formula (12.27) was given in Ref. [46].
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�ab
PF ¼ �ab

m þ 1

m
ð@a�b

m þ @b�a
mÞ þ 2

um2
@a@b�m

þ 2

ðd� 2Þu�
ab�m; (12.27)

where u is given in (5.5). One can make sure that
(i) �ab

PF is invariant under gauge transformations
(12.14)–(12.16);

(ii) inserting the field �ab
PF into the Pauli-Fierz

Lagrangian for the massive spin-2 field

L ¼ 1

4
�ab

PFðEEH�PFÞab �m2

4
ð�ab

PF�
ab
PF

��aa
PF�

bb
PFÞ; (12.28)

gives gauge invariant Lagrangian (12.11);
(iii) �ab

PF given in (12.27) can simply be obtained by
making substitutions (12.1) and (12.17) in field Tab

cur

(5.15) [or by making substitutions (12.1) and (12.19)
in field Tab

sh (6.12)].

Interrelations for arbitrary spin fields. We begin with a
presentation of the gauge invariant Lagrangian for the
massive spin-s field in d-dimensional flat space. Gauge
fields entering the gauge invariant Lagrangian can be col-
lected in a ket-vector

j�mi �
Xs

s0¼0

�s�s0
z j�m;s0 i; (12.29)

j�m;s0 i � �a1 . . .�as0

s0!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs� s0Þ!p �

a1...as0
m;s0 j0i: (12.30)

In terms of ket-vector (12.29), the Lagrangian of the
massive gauge fields takes the form23

L ¼ 1

2
h�mjEj�mi; (12.31)

where operator E is given by

E ¼ Eð2Þ þ Eð1Þ þ Eð0Þ; (12.32)

Eð2Þ � h� �@ ��@þ 1

2
ð�@Þ2 ��2 þ 1

2
�2ð ��@Þ2 � 1

2
�2h ��2

� 1

4
�2�@ ��@ ��2; (12.33)

Eð1Þ � �e1mAþ e1m
�A; (12.34)

Eð0Þ � m1 þ �2 ��2m2 þ �m3�
2 þm3 ��

2; (12.35)

A � �@� �2 ��@þ 1

4
�2�@ ��2; (12.36)

�A � ��@� �@ ��2 þ 1

4
�2 ��@ ��2; (12.37)

e1m ¼ m�z~e1; �e1m ¼ �m~e1 ��
z; (12.38)

m1 ¼ 2sþ d� 2� Nz

2sþ d� 2� 2Nz

ðNz � 1Þm2; (12.39)

m2 ¼ 2ð2sþ d� 2Þ þ ð2sþ d� 7ÞNz � N2
z

4ð2sþ d� 2� 2NzÞ m2;

(12.40)

m3 ¼ 1

2
e1me1m; �m3 ¼ 1

2
�e1m �e1m: (12.41)

The Lagrangian is invariant under the gauge transforma-
tion

�j�mi ¼
�
�@� e1m � �2

2sþ d� 6� 2Nz

�e1m

�
j�mi;
(12.42)

where the ket-vector of the gauge transformation parame-
ter j�mi is represented in terms of the soðd� 1; 1Þ algebra
tensor fields as

j�mi �
Xs�1

s0¼0

�s�1�s0
z j�m;s0 i; (12.43)

j�m;s0 i � �a1 . . .�as0

s0!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs� 1� s0Þ!p �

a1...as0
m;s0 j0i: (12.44)

The ket-vectors j�mi and j�mi satisfy the respective
double-tracelessness and tracelessness constraints

ð ��2Þ2j�mi ¼ 0; ��2j�mi ¼ 0: (12.45)

Now let us consider the interrelations between the gauge
invariant approaches to the massive field, conformal cur-
rent, and shadow field. We begin with a comparison of the
gauge transformations.
It is easy to see that the gauge transformation (12.42) can

simply be obtained by making substitutions (12.1) and

j�curi ! m�Nz j�mi; j�curi ! m�Nz j�mi;
(12.46)

j�shi ! mNz j�mi; j�shi ! mNz j�mi; (12.47)

in gauge transformation of the conformal current (7.23) [or
shadow field (8.23)].
We now proceed with a comparison of the de Donder-

like gauge for the massive gauge fields and the differential
constraints for the currents and shadow fields. We find the
following de Donder-like gauge condition for the massive
arbitrary spin-s field

�Cmj�mi ¼ 0; (12.48)
23In terms of the tensor fields �

a1...as0
m;s0 , the Lagrangian (12.31)

was found in [25].
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�Cm � ��@� 1

2
�@ ��2 þ 1

2
e1m ��2 � �e1m�

½1;2�:

(12.49)

We note that gauge condition (12.48) leads to the de-
coupled gauge-fixed equations of motion for the massive
gauge fields

ðh�m2Þj�mi ¼ 0: (12.50)

These gauge-fixed equations of motion and the gauge
condition (12.48) are invariant under leftover on shell
gauge transformations (12.42) if the gauge transformation
parameter satisfies the equation

ðh�m2Þj�mi ¼ 0: (12.51)

Note that gauge-fixed equations (12.50) can be obtained
from the appropriate gauge-fixed Lagrangian. Namely, if
we define the gauge-fixed Lagrangian as

L total ¼ Lþ 1

2
h�mjCm

�Cmj�mi; (12.52)

where �Cm is given in (12.49), while Cm is defined by

Cm � �@� 1

2
�2 ��@þ 1

2
�e1m�

2 � e1m�
½1;2�; (12.53)

then we get the surprisingly simple gauge-fixed
Lagrangian:

L total ¼ 1

2
h�mj

�
1� 1

4
�2 ��2

�
ðh�m2Þj�mi; (12.54)

which leads to Eqs. (12.50). To our knowledge, the
de Donder-like gauge condition (12.48) and gauge-fixed
Lagrangian (12.54) have not been discussed in the earlier
literature.

We now note that the de Donder-like gauge for the
massive gauge fields (12.48) can simply be obtained by
making substitutions (12.1), (12.46), and (12.47) in differ-
ential constraints for the currents (7.9) [or shadow fields
(8.9)].

To summarize, we have obtained the gauge transforma-
tions and de Donder-like gauges of the massive fields from
the gauge transformations and the differential constraints
of the conformal currents (or shadow fields). It is clear that
we can formally inverse our substitutions, i.e., we can
obtain the gauge transformations and the differential con-
straints of the conformal currents (or shadow fields) from
the gauge transformations and the de Donder-like gauge of
the massive gauge fields by using formally the inverse
substitution; i.e., first, by making the appropriate rescaling
of the massive gauge fields and then making the substitu-
tion m2 ! h. By now, in the literature, there are various
approaches to gauge invariant formulations of massive
fields. Obviously, use of the just mentioned interrelations
between conformal currents (shadow fields) and massive
fields might be helpful for a straightforward generalization

of those approaches to the case of conformal currents and
shadow fields.
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APPENDIX A: RESTRICTIONS IMPOSED BY
GAUGE INVARIANCE AND BY DILATATION

SYMMETRY

Under the dilatation transformations, the currents and
shadows transform as �Dj�curi ¼ Dcurj�curi, �Dj�shi ¼
Dshj�shi, where Dcur, Dsh are given by

Dcur ¼ x@þ�cur; �cur ¼ �0cur � Nz; (A1)

Dsh ¼ x@þ�sh; �sh ¼ �0sh þ Nz; (A2)

and where �0cur, �0sh are constants. We now demonstrate
that the two-point current-shadow field interaction vertex

L ¼ h�curj�j�shi; (A3)

is invariant under the dilatation transformations provided
� takes the following form:

� ¼ 1þ g1�
2 ��2 þ g2h ��2; (A4)

g2 ¼ �z�z~g2; (A5)

where g1, ~g2 depend only on Nz. To this end, we start with
the general expression for �:

� ¼ 1þ g1�
2 ��2 þ g02 ��2 þ g03�2; (A6)

g02 ¼ �z�zg002 ; g03 ¼ g003 ��z ��z; (A7)

where g1, g
00
2 , g

00
3 depend only on Nz and h. Requiring

vertex L (A3) to be invariant under the dilatation trans-
formation, �DL ¼ 0 (up to total derivative), gives the
equation

Dy
cur�þ�Dsh ¼ 0; (A8)

which amounts to the following equations:

½x@þ Nz;�� ¼ 0; (A9)

�0cur þ�0sh ¼ d: (A10)

It is easily seen that solution to Eq. (A9) is given by

g002 ¼ h~g2; g003 ¼ 0; (A11)

where ~g2 depends only on Nz. Plugging this solution in
(A6), we see that� takes the form given in (A4) and (A5).

SHADOWS, CURRENTS, AND AdS FIELDS PHYSICAL REVIEW D 78, 106010 (2008)

106010-23



We now find the restrictions imposed on the gauge
transformations of j�curi and j�shi by the dilatation sym-
metry. We are going to demonstrate that the dilatation
symmetry leads to the following gauge transformations
of the currents and shadows:

�j�curi ¼ Gcurj�curi; (A12)

�j�shi ¼ Gshj�shi; (A13)

Gcur ¼ �@þ b1cur þ b2cur�
2h; (A14)

Gsh ¼ �@þ b1shhþ b2sh�
2; (A15)

b1cur ¼ �z ~b1cur; b2cur ¼ ~b2cur ��
z; (A16)

b1sh ¼ �z ~b1sh; b2sh ¼ ~b2sh ��
z; (A17)

where ~b1cur, ~b2cur, ~b1sh, ~b2sh depend only onNz. To this end,
we note that under the dilatation transformations the gauge
transformation parameters j�curi and j�shi transform as
�Dj�curi ¼ D�cur

j�curi, �Dj�shi ¼ D�sh
j�shi, where D�cur

,

D�sh are given by

D�cur
¼ Dcur � 1; D�sh

¼ Dsh � 1; (A18)

and Dcur, Dsh are defined in (A1) and (A2). To avoid
repetition, we restrict our attention to the gauge transfor-
mation of the current. We note that the general form of the
gauge transformation operator Gcur (A12) is given by

Gcur ¼ �@þ b01 þ b02�2; (A19)

where b01, b02 depend on�z, ��z, andh. Requiring the gauge
symmetry to respect the dilatation transformation, gives
the equation

DcurGcur ¼ GcurD�cur
: (A20)

Plugging Gcur (A19) in (A20) and using (A1) and (A18),
we see that Eq. (A20) leads to the following solution for b01,
b02:

b01 ¼ �z ~b1cur b02 ¼ h~b2cur ��
z; (A21)

where ~b1cur, ~b2cur depend only on Nz, i.e., we arrive at Gcur

given in (A14) and (A16).
In a quite similar way, one can obtain the representation

for Gsh given in (A15) and (A17).
We now demonstrate that requiring the vertex L to be

invariant under gauge transformations (A12) and (A13)
leads to the following results:

(i) The operators �Ccur, �Csh take form:

�C cur ¼ ��@� 1

2
�@ ��2 þ c1cur ��

2 þ c2curh�½1;2�;

(A22)

�C sh ¼ ��@� 1

2
�@ ��2 þ c1shh ��2 þ c2sh�

½1;2�:

(A23)

(ii) The c operators and b operators are related as

c1cur ¼ � 1

2
b1cur; (A24)

c2sh ¼ ð2sþ d� 6� 2NzÞb2cur; (A25)

c1cur ¼ 1

2
by2shð2sþ d� 6� 2NzÞ; (A26)

c2cur ¼ �by1sh; (A27)

c1sh ¼ � 1

2
b1sh; (A28)

c2sh ¼ ð2sþ d� 6� 2NzÞb2sh: (A29)

c1sh ¼ 1

2
by2curð2sþ d� 6� 2NzÞ; (A30)

c2sh ¼ �by1cur; (A31)

i.e., the c operators are represented similarly to the b
operators [see (A16) and (A17)]

c1cur ¼ �z~c1cur; c2cur ¼ ~c2cur ��
z; (A32)

c1sh ¼ �z~c1sh; c2sh ¼ ~c2sh ��
z; (A33)

where ~c-operators depend only on Nz.
(iii) The ~c operators satisfy the relations:

~c 1cur~c2cur ¼ 1

2
~e1

2; ~c1sh~c2sh ¼ 1

2
~e1

2; (A34)

where ~e1 is defined in (7.14).
(iv) g1 and g2 are determined to be

g1 ¼ � 1

4
; g2 ¼ 0: (A35)

Before proving these results, we note that the methods
for finding the operators �Ccur and �Csh are quite similar.
Therefore to avoid repetition we present details of the
derivations of the operator �Csh.
To find the restrictions imposed on �Csh by requiring that

L be invariant under the gauge transformation of j�curi we
note the relation (up to total derivative)
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�hGcur�curj�j�shi¼ h�curjð ��@þ2g1�@ ��2

þg2h ��@ ��2�by1cur�ðby1curg2þby2cur
þ2by2curg1ð2N�þdÞÞh ��2Þj�shi;

(A36)

which implies that the requirement of invariance of L
under the gauge transformation of j�curi,

hGcur�curj�j�shi ¼ 0; (A37)

leads to the constraint

�C shj�shi ¼ 0; (A38)

with the following �Csh:

�C sh ¼ �½1;2�ð ��@þ 2g1�@ ��2Þ þ g2h ��@ ��2 � ðby1curg2
þ by2cur þ 2by2curg1ð2N� þ dÞÞh ��2 � by1cur�

½1;2�:
(A39)

We now find the restrictions on �Csh which are obtained by
requiring that the constraint (A38) be invariant under the
gauge transformation of j�shi, i.e. we consider the equa-
tion

�C shGshj�shi ¼ 0; (A40)

where Gsh and �Csh are given in (A15) and (A39), respec-
tively. Before studying all restrictions on �Csh which are
obtainable from (A40) we note that the requirement for
cancellation of �@ ��@ and ð ��@Þ2 terms in (A40) leads to g1,
g2 given in (A35). Plugging g1, g2 in (A39), we obtain
(A23) with c1sh, c2sh given in (A30) and (A31). Now we are
ready to find all restrictions on �Csh which are obtainable
from (A40). Thus, using (A23) we represent the left-hand
side of (A40) as

�C shGshj�shi ¼ ðhX1 þh ��@X2 þ CX3Þj�shi; (A41)

C � �@� �2 1

2N� þ d
��@; (A42)

X1 � 1þ c2shb1sh þ 2ð2sþ d� 2� 2NzÞc1shb2sh;
(A43)

X2 � b1sh þ 2c1sh; (A44)

X3 � c2sh � ð2sþ d� 6� 2NzÞb2sh: (A45)

From (A41), we see that Eq. (A40) amounts to the equa-
tions Xij�shi ¼ 0, i ¼ 1, 2, 3. The solution to equations
X2j�shi ¼ 0, X3j�shi ¼ 0 is given by (A28) and (A29).
Making use of (A28) and (A29) in Eq. X1j�shi ¼ 0 gives
the equation

�
c2shc1sh � 2sþ d� 2� 2Nz

2sþ d� 4� 2Nz

c1shc2sh � 1

2

�
j�shi ¼ 0:

(A46)

Using a representation for the c operators given in (A33),
we find that Eq. (A46) allows us to determine the quantity
~c1sh~c2sh uniquely. The result is given in (A34).
We finish the discussion in this appendix by remarking

on the similarity transformation of the currents and shad-
ows. As we have demonstrated, requiring the differential
constraints for the currents and shadows to be invariant
under the gauge transformations gives a unique solution for
the products ~c1cur~c2cur, ~c1sh~c2sh (A34). From (A24), (A27),
(A28), and (A31), it is seen that the ~c operators are related
as

~c 1;cur ¼ 1

2
~c2;sh; ~c1;sh ¼ 1

2
~c2cur: (A47)

It turns out that there are no additional restrictions on the ~c
operators. This implies that there is an arbitrariness in the
choice of the ~c operators. We note that this arbitrariness is
related with the similarity transformation of the currents
and shadows,

j�curi ! Uj�curi; j�shi ! U�1j�shi; (A48)

where U is an arbitrary function of Nz with the restriction
thatU is not equal to zero for the allowed eigenvalues ofNz

equal to 0; 1; . . . ; s. It is seen that transformation (A48)
leaves the vertex L invariant, but changes the ~c operators.
Using this transformation one of the ~c operators can be
made the arbitrary function of Nz with the restriction that
this function is not equal to zero for allowed eigenvalues of
Nz equal to 0; 1; . . . ; s. The remaining ~c operators are then
determined uniquely by relations (A34) and (A47). In this
paper, we use the following choice of ~c operators:

~c 1cur ¼ 1

2
~e1; ~c2cur ¼ ~e1; (A49)

~c 1sh ¼ 1

2
~e1; ~c2sh ¼ ~e1: (A50)

This choice turns out to be convenient for the study of AdS/
CFT correspondence.

APPENDIX B: RESTRICTIONS IMPOSED BY
CONFORMAL BOOST SYMMETRIES

In this appendix, we use the notation Ra
cur and Ra

sh to

indicate the respective realizations of operator Ra on the
current j�curi and the shadow field j�shi. Because the
methods for finding the operators Ra

cur and Ra
sh are quite

similar we present details of the derivation of the operator
Ra
sh and outline a procedure for the derivation of the

operator Ra
cur.

We find the operator Ra
sh by requiring that
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(i) the differential constraint for j�shi be invariant under
conformal boost transformations;

(ii) the operator Ra
sh be independent of the derivatives @

a.
Before analyzing restrictions imposed on Ra

sh by the

conformal boost symmetries we find the general expression
for the operator Ra

sh that respects the dilatation symmetry

and algebraic constraint (8.6). Requiring that the operator
Ra respects algebraic constraint (8.6) and the commutation
relation ½D;Ka� ¼ Ka gives

½N� þ Nz; R
a
sh� ¼ 0 (B1)

½�sh; R
a
sh� ¼ Ra

sh: (B2)

To derive (B2) we take into account that the operator Ra
sh is

independent of the space coordinates xa because of com-
mutator (2.9). Also, we use our assumption that Ra

sh is

independent of the derivatives @a. Taking into account
the expression for�sh in (A2), it is easy to see that (B1) and
(B2) amount to the commutators

½N�; R
a
sh� ¼ �Ra

sh; ½Nz; R
a
sh� ¼ Ra

sh: (B3)

The general solution to (B3) is obvious:

Ra
sh ¼ r0;1;sh ��

a þ r0;2;sh�
a ��2 þ r0;3;sh�

2 ��a ��2; (B4)

r0;k;sh ¼ �z~r0;k;sh; k ¼ 1; 2; 3; (B5)

where the operators ~r0;k;sh depend only on Nz. Note that to

derive (B4) we take into account constraint (8.8) which
tells us that the contribution of ð ��2Þn terms to Ra

sh is

irrelevant when n � 2.
We now consider restrictions imposed on Ra

sh by the

conformal boost symmetries. Consider the differential con-
straint for the shadow filed j�shi,

�C shj�shi ¼ 0; (B6)

where �Csh is given in (A23). Requiring this constraint to be
invariant under the conformal boost transformations gives
the equations

�C shK
aj�shi ¼ 0; (B7)

where the conformal boost operator Ka takes the form
given in (2.15), Ka ¼ Ka

�sh;M
þ Ra

sh. To analyze Eqs. (B7)

we note the following helpful formulas:

½ �Csh; K
a
�sh;M

� ¼ xa �Csh þ �Ca
shð0Þ þ �Ca

shð1Þ; (B8)

�C a
shð0Þ � ð�sh�N��dþ1Þ �Ca

?�1

2
ð2N�þd�4ÞCa ��2;

(B9)

�C a
shð1Þ � ð2�sh � dÞc1 ��2@a þ 2c1M

ab@b ��2; (B10)

Ca � �a � �2 1

2N� þ d
��a; (B11)

�C shR
aj�shi ¼ Yaj�shi; (B12)

Y a � Y1C
a ��2 þ Y2h ��a ��2 þ Y3

�Ca
? þ Y4@

a ��2

þ Y5M
ab@b ��2 þ Y6C ��a ��2; (B13)

Y1 � 1

2
c2shr0;1;sh þ c2shr0;2;sh

� 2N� þ d� 4

2ð2N� þ d� 2Þ r0;1;shc2sh; (B14)

Y2 � ½c1sh; r0;1;sh� þ 2c1shr0;2;sh þ 2ð2N� þ dÞc1shr0;3;sh;
(B15)

Y3 � ½c2sh; r0;1;sh�; (B16)

Y4 � 1

2
r0;1;sh þ r0;2;sh; (B17)

Y5 � r0;2;sh; (B18)

Y6 � �r0;3;shð2N� þ d� 4Þ: (B19)

Also, we note that to derive (B12) we use constraint (B6).
Using (B6), (B8), and (B12) it is easy to see that Eqs. (B7)
lead to the equations,

ðYa þ �Ca
shð0Þ þ �Ca

shð1ÞÞj�shi ¼ 0: (B20)

Taking into account (B9)–(B13), we see that Eqs. (B20)
amount to the following equations:

�
Y1 � 1

2
ð2N� þ d� 4Þ

�
Ca ��2j�shi ¼ 0; (B21)

Y2 ��
a ��2j�shi ¼ 0; (B22)

ðY3 þ�sh � N� � dþ 1Þ �Ca
?j�shi ¼ 0; (B23)

ðY4 þ ð2�sh � dÞc1Þ ��2j�shi ¼ 0; (B24)

ðY5 þ 2c1ÞMab ��2j�shi ¼ 0; (B25)

Y6C ��a ��2j�shi ¼ 0: (B26)

Analysis of Eqs. (B21)–(B26) is straightforward. From
(B25) and (B26), we obtain

r0;2;sh ¼ �2c1sh; (B27)

r0;3;sh ¼ 0: (B28)

From (B24) and (B27), we find

r0;1;sh ¼ 2ðdþ 2� 2�shÞc1sh: (B29)

Using (B27)–(B29), we find that Eq. (B22) is satisfied
automatically. Using (B29), we represent Eq. (B23) as
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ð2ðd� 2�shÞc2shc1sh � 2ðdþ 2� 2�shÞc1shc2sh
þ �sh þ Nz � s� dþ 2Þ �Ca

?j�shi ¼ 0: (B30)

Using the solution for the c operators given in (A33) and
(A34), we find that Eq. (B30) is solved by

�0sh ¼ 2� s: (B31)

Finally, using (B27), (B29), and (B31) and the solution for
the c operators given in (A33) and (A34), we check that
Eq. (B21) is satisfied automatically.

To summarize, taking into account the solution for the r
operators given in (B27)–(B29) and (B31) and using (8.6),
we cast the operator Ra

sh into the following form:

Ra
sh ¼ r0;1;sh

�
��a � �a 1

2N� þ d
��2

�
; (B32)

r0;1;sh ¼ 2c1shð2sþ d� 4� 2NzÞ: (B33)

Inserting ~c1sh (A50) in (B32) and (B33) gives Ra
sh (8.27).

In a similar way, we can find the operator Ra
cur. Requiring

that the operator Ra
cur respects algebraic constraints (7.6)

and (7.8) and the commutation relation ½D;Ka� ¼ Ka gives

Ra
cur ¼ r0;1;cur ~C

a þ r0;2;cur�
2 �Ca

? þ r0;3;cur�
2Ca ��2; (B34)

r0;k;cur ¼ ~r0;k;cur ��
z; k ¼ 1; 2; 3; (B35)

where the operators ~r0;k;cur depend only on Nz. The opera-

tors ~Ca, �Ca
?, C

a are defined in (7.28), (7.29), and (B11),

respectively. Requiring the constraint �Ccurj�curi ¼ 0 to be
invariant under the conformal boost symmetries leads to
the following solution for the r operators:

r0;1;cur ¼ �ð2sþ d� 4� 2NzÞc2cur; (B36)

r0;2;cur ¼ � 2

2sþ d� 6� 2Nz

c2cur; (B37)

r0;3;cur ¼ 0: (B38)

Inserting these r operators in (B34) and using (7.6), we cast
the operator Ra

cur into the following form:

Ra
cur ¼ r0;1;cur

�
~Ca þ �2 2

ð2N� þ d� 2Þð2N� þ dÞ
�Ca
?

�
:

(B39)

With the choice of the ~c2cur operator made in (A49), the
operator Ra

cur (B39) takes the form given in (7.27).
Alternatively, the operator Ra

cur can be evaluated by
using Ra

sh (B32) and requiring the vertex L,

L ¼ h�curj�j�shi; � � 1� 1

4
�2 ��2; (B40)

to be invariant under the conformal boost transformations.
To this end, let us use the notation Ka

cur and Ka
sh to indicate

the respective realizations of the operatorKa on the current

j�curi and the shadow field j�shi. Requiring vertex L
(B40) to be invariant under the conformal boost trans-
formations gives the relation (up to total derivative)

h�curj�Ka
shj�shi ¼ �hKa

cur�curj�j�shi: (B41)

Taking into account that the operators Ka
�cur;M

, Ka
�sh;M

satisfy the relation (up to total derivative)

h�curj�Ka
�sh;M

j�shi ¼ �hKa
�cur;M

�curj�j�shi; (B42)

we conclude that the operators Ra
cur and Ra

sh should satisfy

the relation

h�curj�Ra
shj�shi ¼ �hRa

cur�curj�j�shi: (B43)

Using (A47) and (B32), we make sure that relation (B43)
leads to Ra

cur given in (B39). This provides an additional
check to our calculations.

APPENDIX C: MODIFIED LORENTZ AND
DE DONDER GAUGE CONDITIONS

In this appendix, we explain some details of the deriva-
tion of the modified Lorentz and de Donder gauge
conditions.
Spin-1 field. We use field �A carrying flat Lorentz

algebra soðd; 1Þ vector indices A; B ¼ 0; 1; . . . ; d� 1; d.
The field �A is related with the field carrying the base
manifold indices ��, � ¼ 0; 1; . . . ; d, in a standard way
�A ¼ eA��

�, where eA� is the vierbein of AdSdþ1 space.

For the Poincaré parametrization of AdSdþ1 space (10.1),
the vierbein eA ¼ eA�dx

� and Lorentz connection deA þ
!AB ^ eB ¼ 0 are given by

eA� ¼ 1

z
�A
�; !AB

� ¼ 1

z
ð�A

z �
B
� � �B

z �
A
�Þ; (C1)

where �A
� is the Kronecker delta symbol. We use a cova-

riant derivative with the flat indices DA,

D A � e�AD�; DA ¼ �ABDB; (C2)

where e
�
A is inverse of the AdS vielbein, eA�e

�
B ¼ �A

B and

�AB is the flat metric tensor. With the choice made in (C1),
the covariant derivative takes the form

D A�B ¼ @̂A�B þ!ABC�C; (C3)

@̂ A ¼ z@A; !ABC ¼ �AC�B
z � �AB�C

z ; (C4)

where we adapt the following conventions for the deriva-
tives and coordinates: @A ¼ �AB@B, @A ¼ @=@xA, xA �
�A
�x

�, xA ¼ xa, xd, xd � z.

With these conventions, the equations of motion of the
massless spin-1 AdS field �A ¼ �a, �z,

D AFAB ¼ 0; FAB ¼ DA�B �DB�A; (C5)

can be represented as
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ð@̂2 � d@̂z þ d� 1Þ�A � @̂AðD�þ 2�zÞ
þ 2�A

zD�þ ðdþ 1Þ�A
z�

z ¼ 0; (C6)

where @̂2 � @̂A@̂A, D� � DA�A. Our modified Lorentz
gauge condition is defined by the relation [11]

D A�A þ 2�z ¼ 0; (C7)

which, in the Poincaré coordinates, can be represented as

@̂ A�A þ ð2� dÞ�z ¼ 0: (C8)

Using (C7) in gauge invariant equations of motion (C6)
leads to the decoupled gauge-fixed equations of motion

ð@̂2 � d@̂z þ d� 1Þ�A þ ðd� 3Þ�A
z�

z ¼ 0; (C9)

which can be represented as

ðz2ðhþ @2zÞ þ ð1� dÞz@z þ d� 1Þ�a ¼ 0; (C10)

ðz2ðhþ @2zÞ þ ð1� dÞz@z þ 2d� 4Þ�z ¼ 0:

(C11)

Introducing the canonically normalized field �A,

�A ¼ zðd�1Þ=2�A; (C12)

and using the identification �z ¼ �, we make sure that
Eqs. (C10) and (C11) amount to the respective Eqs. (10.3)
and (10.4), while the modified Lorentz gauge condition
(C7) takes the form given in (10.2).

Equations of motion (C5) are invariant under the gauge
transformations

��A ¼ @̂A�: (C13)

Making the rescaling

� ¼ zðd�3Þ=2�; (C14)

we check that the gauge transformations (C13) lead to the
ones given in (10.6) and (10.7).

Spin-2 field. Einstein equations of motion for the mass-
less spin-2 field in AdSdþ1 can be represented as

D2hAB �DADChCB �DBDChCA þDADBh

þ 2hAB � 2�ABh ¼ 0; (C15)

h � hAA; (C16)

where the field with the flat indices, hAB, is related with the
field carrying the base manifold indices in a standard way
hAB ¼ eA�e

B
�h

��. Gauge transformations of hAB take the

form

�hAB ¼ DA�B þDB�A: (C17)

In terms of hAB ¼ hab, hza, hzz, our modified de Donder
gauge condition is defined to be

D BhAB � 1

2
DAhþ 2hzA � �zAh ¼ 0: (C18)

In the Poincaré coordinates, this gauge condition can be
represented as

z@BhAB � 1

2
z@Ahþ ð1� dÞhzA ¼ 0: (C19)

Introducing the canonically normalized fields ~�AB,

hAB ¼ zðd�1Þ=2 ~�AB; (C20)

and using (C19) we represent Eqs. (C15) as

�
hþ @2z � d2 � 1Þ

4z2

�
~�ab � 2

z2
�ab ~�zz ¼ 0; (C21)

�
hþ @2z � ðd� 1Þðd� 3Þ

4z2

�
~�za ¼ 0; (C22)

�
hþ @2z � ðd� 3Þðd� 5Þ

4z2

�
~�zz ¼ 0: (C23)

From these equations, we see that the modified de Donder
gauge itself does not lead automatically to decoupled
equations. In order to get the decoupled equations, we
introduce our fields �ab, �a, � defined by

�ab ¼ ~�ab þ 1

d� 2
�ab ~�zz; (C24)

�a ¼ ~�za; (C25)

� ¼ 1

2
u ~�zz; (C26)

where u is defined in (5.5). In terms of our fields (C24)–
(C26), the gauge-fixed equations of motion (C21)–(C23)
take the decoupled form given in (10.35), (10.36), and
(10.37).
The gauge transformations we use in Sec. X are obtained

from (C17) by introducing

�A ¼ zðd�3Þ=2�A; (C27)

and making the identification for the soðd� 1; 1Þ algebra
scalar mode � � �z.
Arbitrary spin field. For the massless arbitrary spin-s

field in AdSdþ1, we define our modified de Donder gauge
condition as follows. Consider the totally symmetric
double-traceless soðd; 1Þ algebra tensor field �A1...As ,
�AABBA5...As ¼ 0. The modified de Donder gauge condi-
tion, found in Ref. [16], is defined as

DB�A1...As�1B � s� 1

2
DðA1�A2A3...As�1ÞBB þ 2�A1...As�1z

� ðs� 1Þ�zðA1�A2...As�1ÞBB ¼ 0; (C28)

where the symmetrization of the indices A1 . . .As�1 is
normalized as ðA1 .. .AnÞ¼ 1

n!ðA1 . . .Anþðn!�1ÞtermsÞ.
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Note however that gauge condition (C28) itself does not
lead automatically to decoupled equations. One needs to
make a transformation similar to the one in (C24)–(C26).
A discussion of the transformation and the field variables
which lead to the decoupled equations of motion in Sec. XI
may be found in Ref. [16].

APPENDIX D: MODIFIED LORENTZ AND
DE DONDER GAUGE CONDITIONS IN

CONFORMAL FLAT SPACE

We now generalize from the modified Lorentz and
de Donder gauge conditions to the case of massless arbi-
trary spin fields propagating in conformal flat space.

The line element of conformal flat space takes the form

ds2 ¼ 1

Z2
dxAdxA; (D1)

where the conformal factor Z ¼ ZðxÞ depends on coordi-
nates xA. For parametrization of conformal space (D1), the
vierbein eA ¼ eA�dx

� and Lorentz connection !BC
� are

given by

eA� ¼ 1

Z
�A
�; !BC

� ¼ 1

Z
ð�C

�Z
B � �B

�Z
CÞ; (D2)

ZA � @AZ: (D3)

We note that AdSdþ1 space is obtained by requiring the
conformal factor Z to satisfy the equation

Z@A@BZ ¼ 1

2
�ABðZCZC � 1Þ; d > 1; (D4)

Z@A@AZ ¼ ZAZA � 1; d ¼ 1: (D5)

With the choice made in (D2), the covariant derivative
takes the form

D A�B ¼ @̂A�B þ!ABC�C; (D6)

@̂ A ¼ Z@A; !ABC ¼ �ACZB � �ABZC: (D7)

We note that various conformal flat geometries are
specialized by appropriate choice of the conformal factor
Z. This is to say that the Poincaré parametrization of
AdSdþ1 space with coordinates xA ¼ xa, z, a ¼
0; 1; . . . ; d� 1, is specialized by

ZðxÞ ¼ z: (D8)

Also we note that the stereographic parametrization of
AdSdþ1 space with coordinates xA, A ¼ 0; 1; . . . ; d, is spe-
cialized by

ZðxÞ ¼ 1� 1

4
xAxA: (D9)

Famous AdSdþ1 � Sdþ1 space is also conformal flat. Thus,
the AdSdþ1 � Sdþ1 space can be described by coordinates

xA ¼ xa, xM, a ¼ 0; 1; . . . ; d� 1, M ¼ d; . . . ; 2dþ 1,
with the conformal factor given by

ZðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
xMxM

p
: (D10)

Now let us describe modified gauge conditions for mass-
less fields in conformal flat space. For the massless spin-1
field, our modified Lorentz gauge condition takes the form

D A�A þ 2ZA�A ¼ 0; (D11)

while for the massless spin-2 field the modified de Donder
gauge is defined to be

D BhAB � 1

2
DAhþ 2ZBhAB � ZAh ¼ 0: (D12)

For the massless arbitrary spin-s field propagating in
conformal flat space, the modified de Donder gauge con-
dition takes the form

DB�A1...As�1B � s� 1

2
DðA1�A2A3...As�1ÞBB

þ 2ZB�A1...As�1B � ðs� 1ÞZðA1�A2...As�1ÞBB ¼ 0: (D13)

It is easy to see that by choosing Z corresponding to
Poincaré parametrization (D8) gauge conditions (D11)–
(D13) reduce to the respective gauge conditions given in
(C7), (C18), and (C28).

APPENDIX E: MATCHING OF CONFORMAL
BOOST SYMMETRIES

We now demonstrate matching of the improved Ka

transformations of the non-normalizable bulk AdS modes
and the conformal boost transformations of the boundary
shadow fields. Matching of conformal boost symmetries of
bulk normalizable AdS modes and boundary currents can
be demonstrated in a quite similar way.
Improved Ka transformations of AdS field take the form

Ka
imprj�i ¼ Ka

AdSj�i þGAdSj�Kai; (E1)

where the compensating gauge transformation parameter
j�Kai corresponding to the non-normalizable solution is
given in (11.53). The generic generator of Ka symmetries,
denoted byKa

AdS in this appendix, is given in (11.43), while

the gauge transformation operator GAdS can be read from
(11.17),

GAdS � �@� e1 � �2

2sþ d� 6� 2Nz

�e1: (E2)

Now we are going to demonstrate that the improved Ka

transformations of the non-normalizable massless spin-s
AdSdþ1 modes become Ka transformations of the shadow
field. Thus, we are going to prove the following relation

Ka
imprj�non-normi ¼ U��K

a
CFTj�shi; (E3)

where Ka
CFT stands for representation of the conformal
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boost generator on space of the shadow field given in (2.15)
.

To prove relation (E3) we represent the operator Ka
AdS as

Ka
AdS ¼ Ka

�AdS
þ Ra

ð1Þ þMabxb þ Ra
ð0Þ; (E4)

Ka
�AdS

� � 1

2
x2@a þ xaDAdS; (E5)

where DAdS takes the form given in (11.42), while opera-
tors Ra

ð0Þ, R
a
ð1Þ are given in (11.45),(11.46). Then, we note

the relations

ðKa
�AdS

þ Ra
ð1ÞÞj�non-normi ¼ U��K

a
�sh

j�shi; (E6)

ðMabxb þ Ra
ð0ÞÞj�non-normi þGAdSj�Ka

non-normi
¼ U��ðMabxb þ Ra

shÞj�shi; (E7)

where

Ka
�sh

� � 1

2
x2@a þ xaDsh; (E8)

and Dsh takes the form given in (2.14) with � in (8.26),
while Ra

sh takes the form given in (8.27). Using (E6) and

(E7), we see that relation (E3) holds.
We now comment on the derivation of relations (E6) and

(E7). These relations are obtained by using the following
general formulas

ðKa
�AdS

þ Ra
ð1ÞÞU�� ¼ U��ðKa

�sh
þ xaz@zÞ

� q��ð3=2Þ@að@qZ��ðqzÞÞz@z; (E9)

ðMabxb þ Ra
ð0ÞÞU�� þGAdSðzU��þ1

�Ca
?Þ

� U��ðMabxb þ Ra
shÞ; (E10)

where q is defined in (10.13) and we use the notation
Z�ðzÞ � ffiffiffi

z
p

J�ðzÞ. In (E10) and in some relations given
below, the signs � indicate that these relations are valid
by applying to the ket-vector j�shi subject to differential
constraint (8.9). We now see that by applying relations (E9)
and (E10) to j�shi we obtain the respective relations (E6)
and (E7).
Finally, we note the helpful formulas for deriving rela-

tion (E10),

MabxbU�� � U��M
abxb � zU��þ1

� ðGsh
�Ca
? þ c2 ~C

a þ 2c1 ��
ahÞ; (E11)

Ra
ð0ÞU�� ¼ �zU��þ1 �e1;1 ~C

a þU���1e1;1 ��
a; (E12)

GAdSðzU��þ1
�Ca
?Þ � zU��þ1Gsh

�Ca
? �U��2e1;1 �C

a
?:
(E13)

These formulas can be obtained by using differential con-
straint (8.9) and relations for the operator U� given in
(11.26)–(11.33). Also, to derive Ra

sh term in (E10) we use

the formula zU���1 þ zhU��þ1 ¼ �2�U��.
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