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We investigate in more detail the holographic model of a superconductor recently found by Hartnoll,

Herzog, and Horowitz [Phys. Rev. Lett. 101, 031601 (2008)], which is constructed from a condensate of a

charged scalar field in AdS4-Schwarzschild background. By analytically studying the perturbation of the

gravitational system near the critical temperature Tc, we obtain the superconducting coherence length

proportional to 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T=Tc

p
via AdS/CFT (anti–de Sitter/conformal field theory) correspondence. By

adding a small external homogeneous magnetic field to the system, we find that a stationary diamagnetic

current proportional to the square of the order parameter is induced by the magnetic field. These results

agree with Ginzburg-Landau theory and strongly support the idea that a superconductor can be described

by a charged scalar field on a black hole via AdS/CFT duality.
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I. INTRODUCTION

The AdS/CFT (anti–de Sitter/conformal field theory)
duality [1] gets into the limelight as a powerful tool to
investigate the strongly coupled gauge theories. Motivated
by the recent experimental data of quark-gluon plasma at
the Relativistic Heavy Ion Collider [2,3], transport coef-
ficients such as shear viscosity were calculated for various
duality models. Interestingly, for a large class of dualities,
it was found that the ratio of viscosity divided by entropy
density is a universal constant compatible with the experi-
mental data (see, for example, Refs. [4,5] for all referen-
ces). This leads us to expect that strongly coupled
phenomena such as quantum phase transition or super-
conducting phase transition in condensed matter systems
are described by some kind of duality.

If a superconductor can be described by a gravitational
model via the AdS/CFT duality, there should be a scalar
hair on an anti–de Sitter (AdS) black hole which represents
the condensation in the dual gauge theory. Gubser [6] has
presented a counterexample to a no scalar hair theorem by
giving a static solution of a charged scalar field coupled to
an Abelian gauge field on the AdS4-Reissner-Nortström
black hole background if the charge of the black hole is
large enough. Since the temperature of the black hole
decreases as the charge increases, the black hole can sup-
port the scalar hair only for low temperature. This is
because the scalar field condensation breaks the Abelian
gauge symmetry spontaneously at a sufficiently low tem-
perature. Hartnoll et al. [7] numerically showed that there
is a critical temperature below which the charged scalar
hair exists on the AdS4-Schwarzschild black hole and the
conductivity becomes infinite at the low frequency limit. It
was also numerically shown that the scalar field condensa-

tion occurs below a critical temperature under the presence
of an external magnetic field [8–10]. Quite recently, gen-
eral properties of p-wave superconductors were investi-
gated by Gubser and Pufu [11] and independently by
Roberts and Hartnoll [12] in a model of a non-Abelian
gauge field in the background of an AdS4-Schwarzschild
black hole.
The purpose in this paper is to explore a little further the

model of the superconductor composed of the charged
scalar field on an AdS4-Schwarzschild background [7] by
investigating perturbation of the system near the critical
temperature. The order parameter of the superconductor is
the scalar operator dual to the charged scalar field. So, the
correlation length of the order parameter, or the super-
conducting coherence length �, is obtained by the pertur-
bation of the scalar field. According to Ginzburg-Landau
theory, a superconductor is characterized by only two
parameters, � and the magnetic penetration length �.
Therefore, it will be of interest to determine the two
parameters by investigating the perturbation. Motivated
by this, we analytically investigate static fluctuation of
the scalar field with nonzero spatial momentum along
one spatial coordinate of the AdS boundary to obtain the
superconducting coherence length � via AdS/CFT corre-
spondence. Following [7], we take the probe limit where
the fluctuation does not backreact on the original
AdS4-Schwarzschild geometry. Under the probe limit we
also investigate static fluctuation of the Abelian gauge field
forming a homogeneous magnetic field as a first step to
derive the magnetic penetration length �.
The plan of our paper is as follows: In Sec. II the charged

scalar field solution obtained in the holographic model [7]
is reconstructed by perturbation technique. In Sec. III we
derive � by analyzing the equations for the perturbation. In
Sec. IV we observe that the diamagnetic current can be
induced by the small homogeneous magnetic field.
Section V is devoted to conclusions and a discussion.
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II. A MODEL OF SUPERCONDUCTOR IN ADS/CFT

In this section we reconstruct the charged scalar field
solution numerically obtained in [7] by using the regular
perturbation theory technique. The background spacetime
is AdS4-Schwarzschild black hole with the metric

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ
r2

L2
ðdx2 þ dy2Þ;

fðrÞ ¼ r2

L2

�
1� r30

r3

�
;

(2.1)

where r0 is the horizon radius and L is the AdS radius. The
Hawking temperature T is given by

T ¼ 3

4�

r0
L2

: (2.2)

It is convenient to introducing a new coordinate u :¼
r0=r, and the metric (2.1) is written as

ds2 ¼ L2�2ðTÞ
u2

ð�hðuÞdt2 þ dx2 þ dy2Þ þ L2du2

u2hðuÞ ;
hðuÞ ¼ 1� u3; (2.3)

where �ðTÞ :¼ 4�T=3 ¼ r0=L
2.

We consider the matter fields on the background space-
time which consist of a Maxwell field and a charged
complex scalar field with charge e and mass m. The
Lagrangian density is given by

L ¼ L2

2�2
4e

2

ffiffiffiffiffiffiffi�g
p �

� 1

4
F��F�� � jD�j2 �m2j�j2

�
;

D� :¼ @� � iA�: (2.4)

Following [7], we shall confine our attention to the case
L2m2 ¼ �2 and consider the probe limit in which the
gauge field and scalar field do not backreact on the original
metric (2.1). This limit is realized by taking the limit e !
1, keeping A� and� fixed. So, the equations of motion for

A� and� are decoupled from Einstein’s equations and we

obtain the following equations:

0 ¼ D2��m2�;

0 ¼ r�F�
� � i½ðD��Þy���yðD��Þ�: (2.5)

Under the ansatz

� ¼ �ðuÞ; A� ¼ �ðuÞðdtÞ�; (2.6)

the equations of motion (2.5) are reduced to

0 ¼
�
u2

d

du

hðuÞ
u2

d

du
� L2m2

u2

�
~�þ

~�2

hðuÞ
~�; (2.7)

0 ¼ hðuÞ d
2 ~�

du2
� 2j ~�j2

u2
~�; (2.8)

where new variables ~� :¼ �=�ðTÞ and ~� :¼ L� are

dimensionless quantities. Without loss of generality, we

can set ~� to be real.
The trivial solution is easily found as

~� ¼ 0; ~� ¼ �=�ðTÞ � qu ¼ qð1� uÞ; (2.9)

where � is interpreted as the external source in the dual
ð2þ 1Þ-dimensional gauge theory and it is determined by
the condition A�dx

� to be well defined at the horizon, i.e.,

�ðu ¼ 1Þ ¼ 0 [13]. Dimensionless constant q is related to
the dual charge density coupled to � as

hJtðxÞi ¼ �Son�shell boundary

�AtðxÞ
��������u¼0

¼ L2

2�2
4e

2

�
4�T

3

�
2
q:

(2.10)

The nontrivial solution asymptotically behaves near the
AdS boundary as

~� ¼ ~�ð�Þu�� þ ~�ðþÞu�þ þ � � � ;
~� ¼ �=�ðTÞ � quþ � � � ;

(2.11)

where �� :¼ ð3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4L2m2

p Þ=2. For the L2m2 ¼ �2
case, we obtain �� ¼ 1 and �þ ¼ 2, where both falloffs

of ~� are normalizable.

Each coefficient ~�ð�Þ is proportional to the condensate
thermal expectation value of the scalar operator hO�i of
dimension��. To obtain a stable solution, we must impose

either ~�ð�Þ ¼ 0 or ~�ðþÞ ¼ 0. So, the asymptotic boundary

condition of the scalar field ~� dual to the scalar operator

hO�i (hOþi) is ~�ðþÞ ¼ 0 ( ~�ð�Þ ¼ 0), and ~� has the
asymptotic behavior near the AdS boundary as

~� ¼ ~�ðIÞu�I ½1þOðu2Þ�; (2.12)

where I ¼ � for hO�i.
Since the trivial solution ~� in Eqs. (2.7) and (2.8) is

parametrized by the dimensionless constant q / hJti=T2

only, the nontrivial solution ~� emerges above a critical
value qc under the boundary condition. According to the
numerical calculation [7], the thermal expectation value
hOIi behaves as

~� ðIÞ / hOIi � ð1� T=TcÞ1=2 (2.13)

for a given � (or hJti), or equivalently
hOIi � ðq=qc � 1Þ1=2 (2.14)

near the critical temperature Tc. In the limit T ! Tc, 	 :¼
q=qc � 1ð>0Þ is a small parameter, and the nontrivial
solution to Eqs. (2.7) and (2.8) can be obtained as a series
in 	. From the continuity, the solution at the critical tem-
perature should be

~� c ¼ 0; ~�c ¼ qcð1� uÞ: (2.15)

So, we can expand ~� and ~� as
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~�ðuÞ ¼ 	1=2 ~�1ðuÞ þ 	3=2 ~�2ðuÞ þ � � � ;
~�ðuÞ ¼ ~�cðuÞ þ 	 ~�1ðuÞ þ � � � :

(2.16)

Here, we should note that the difference of 	-behavior

between ~� and ~� comes from Eqs. (2.7) and (2.8).
Substituting Eq. (2.16) into Eqs. (2.7) and (2.8) we

obtain equations for ~�1 and
~�1:

0 ¼ Lc
~�1; 0 ¼ d2 ~�1

du2
� 2j ~�1j2 ~�c

u2hðuÞ ; (2.17)

where the differential operators Lc is defined by

L c :¼ �
�
u2

d

du

hðuÞ
u2

d

du
� L2m2

u2
þ

~�2
c

hðuÞ
�
: (2.18)

By imposing the regularity condition at the horizon

1
~�1

d ~�1

du

��������u¼1
¼ �L2m2

3
¼ 2

3
; (2.19)

we find the constant qc for which there is a unique regular
solution satisfying the asymptotic boundary condition
mentioned above. In the I ¼ þ case, for example, qc �
4:07, which is consistent with the numerical result in [7].

III. SUPERCONDUCTING COHERENCE LENGTH

In this section, we will determine the superconducting
coherence length � by investigating fluctuations around the

background field (2.6) ð ~�ðuÞ; ~�ðuÞÞ. It is enough to con-
sider static perturbations for the purpose, so let us confine
our attention to the fluctuations with only spatial momen-
tum along the x direction:

�A�ðu; xÞdx� ¼ ½Axðu; kÞdxþ Ayðu; kÞdy
þ
ðu; kÞdt�eikx;

��ðu; xÞ ¼ 1

L�ðTÞ ½c ðu; kÞ þ iĉ ðu; kÞ�eikx;
(3.1)

where both functions c and ĉ are real and metric fluctua-
tions of the order of the gauge and scalar fluctuations can
be consistently set to zero under the probe limit. From the
perturbed equations derived from Eq. (2.5), we find the
following three linearized equations for 
, c , and Ay

decoupled from the other variables:

~k 2c ¼
�
u2

d

du

hðuÞ
u2

d

du
� L2m2

u2
þ

~�2

hðuÞ
�
c þ 2 ~� ~�

hðuÞ 
;

(3.2)

~k 2
 ¼
�
hðuÞ d2

du2
� 2 ~�2

u2

�

� 4 ~� ~�

u2
c ; (3.3)

~k 2Ay ¼
�
d

du
hðuÞ d

du
� 2 ~�2

u2

�
Ay; (3.4)

where ~k :¼ k=�ðTÞ.
The superconducting coherence length � is nothing but

the correlation length of the order parameter, and � appears
as the pole of the static correlation function of the order
parameter in the Fourier space

h ~Oð ~kÞ ~Oð� ~kÞi � 1

j ~kj2 þ 1=�2
: (3.5)

Since the complex scalar field � plays a role of the order

parameter in our model and the background ~� is real, the
real part of the order parameter fluctuation c gives the
superconducting coherence length.
The pole of the static correlation function of a dual field

operator is obtained by solving the eigenvalue problem for
the static perturbation with wave number k of the corre-
sponding bulk field as 1=�2 ¼ �k2�, where k� is a wave
number permitted as eigenvalues. In the present case, our

task is to evaluate eigenvalues ~k2 for Eqs. (3.2) and (3.3)
under the appropriate boundary conditions.
Since it is difficult to solve the eigenvalue equations

(3.2) and (3.3) analytically, we solve the equations as a
series in 	 near the critical temperature Tc. According to
Ginzburg-Landau theory, � diverges to infinity as T ! Tc.
This implies that there exists zero eigenvalue k� ¼ 0 solu-
tion at the critical temperature Tc. Hereafter, we shall
confine our attention to the eigensystem with lim	!0k� ¼
0.
From the behavior (2.16), Eqs. (3.2) and (3.3) are ex-

panded in 	 as

� ~k2c ¼
�
Lc � 2	 ~�c

~�1

h

�
c � 2	1=2 ~�c

~�1

h

; (3.6)

� ~k2
 ¼
�
�h

d2

du2
þ 2	 ~�2

1

u2

�

þ 4	1=2 ~�c

~�1

u2
c : (3.7)

The boundary conditions for Eqs. (3.6) and (3.7) are as
follows: at the horizon,

c ð1Þ ¼ regular; 
ð1Þ ¼ 0; (3.8)

and near the AdS boundary

c ðuÞ ¼ ðconstÞ � u�I ½1þOðu2Þ�;

ðuÞ ¼ ðconstÞ � uþOðu2Þ: (3.9)

In the eigenvalue equations (3.6) and (3.7) with the
boundary conditions (3.8) and (3.9), the infinitesimal ex-

pansion parameter is 	1=2, so one may expect that we have

eigenvalue ~k2� ¼ Oð	1=2Þ. However, we have ~k2� ¼ Oð	Þ as
seen later.
It is easy to show that the zeroth order solution, c 0 and


0, for the eigenvalue equation (3.6) and (3.7) satisfying
the boundary conditions (3.8) and (3.9) is given by
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c 0 ¼ ~�1; 
0 ¼ 0; (3.10)

where we useLc
~�1 ¼ 0. This means that 
 ¼ Oð	1=2Þ at

most from Eq. (3.7). So we put 
 ¼: 	1=2’, and Eqs. (3.6)
and (3.7) are rewritten by

� ~k2c ¼ Lc c � 	
2 ~�c

h
ð ~�1c þ ~�1’Þ; (3.11)

� ~k2’ ¼
�
�h

d2

du2
’þ 4 ~�c

~�1

u2
c

�
þ 	

2 ~�2
1

u2
’: (3.12)

Thus, the expansion parameter on the right-hand side in

Eqs. (3.11) and (3.12) is 	, implying ~k2� ¼ Oð	Þ. The

temperature dependence of the coherence length, � /
ð�~k2�Þ�1=2 / ð1� T=TcÞ�1=2, is an expected behavior in
Ginzburg-Landau theory.

Now let us evaluate the superconducting coherence
length � at the leading order in 	. We expand c , ’, and
~k2� as

c ¼ ~�1 þ 	c 1 þOð	2Þ; ’ ¼ ’0 þOð	Þ;
~k2� ¼ 	ð~k2Þ1 þOð	2Þ:

(3.13)

Then, Eq. (3.11) is rewritten up to Oð	Þ as

� ð~k2Þ1 ~�1 ¼ Lc c 1 � 2 ~�c
~�1

h
ð ~�1 þ ’0Þ; (3.14)

and the equation of motion for ’0 is given by

d2’0

du2
¼ 4 ~�c

~�2
1

u2h
¼ 2

d2 ~�1

du2
; (3.15)

where we use Eq. (2.17). The solution of Eq. (3.15) with the
boundary conditions (3.8) and (3.9) is given by

’0ðuÞ ¼ 2½ ~�1ðuÞ � ~�1ð0Þð1� uÞ� 2 R: (3.16)

For states c I, c II with the boundary conditions (3.8)
and (3.9), let us introduce an inner product

hc Ijc IIi :¼
Z 1

0

du

u2
c �

I ðuÞc IIðuÞ: (3.17)

It is easily checked that Lc is Hermitian for the inner

product (3.17).

Making use of Lc
~�1 ¼ 0 and Hermiticity of Lc , the

inner product between ~�1 and Eq. (3.14) gives us

�ð~k2Þ1h ~�1j ~�1i¼ h ~�1jLc jc 1i�
�
~�1j2

~�c
~�1

h
ð ~�1þ’0Þ

�

¼�
�
~�1j2

~�c
~�1

h
~�1

�
�
Z 1

0
du

2 ~�c
~�2
1

u2h
’0

¼�
�
~�1j2

~�c
~�1

h
~�1

�
þ1

2

Z 1

0
du

�
d’0

du

�
2
;

(3.18)

where we used Eq. (3.15) and the boundary conditions (3.8)
and (3.9) in the third equality.
We can show that the first term in Eq. (3.18) vanishes as

follows: From Eq. (2.7), we have the equation of motion for
~�2 defined by Eq. (2.16) as

L c
~�2 ¼ 2 ~�c

~�1

h
~�1; ~�2ð1Þ ¼ regular;

~�2ð0Þ ¼ ðconstÞ � u�I :

(3.19)

So the inner product (3.17) is well defined for ~�2, and Eq.
(3.19) gives us

0 ¼ �2hLc
~�1j ~�2i ¼ �2h ~�1jLc

~�2i

¼ �2

�
~�1j 2

~�c
~�1

h
~�1

�
; (3.20)

where we use the fact that Lc is Hermitian and Lc
~�1 ¼

0.
Therefore, up to Oð	Þ, the eigenvalue is given by

� ~k2� ¼ 	N=DþOð	2Þ; (3.21)

N ¼ 2
Z 1

0
duð ~�0

1ðuÞ þ ~�1ð0ÞÞ2 > 0;

D :¼
Z 1

0
du

~�2
1ðuÞ
u2

> 0;

(3.22)

and we finally obtain the superconducting coherence
length as

� ¼ 	�1=2

�ðTcÞ

ffiffiffiffi
D

N

s
þOð	1=2Þ / 1

Tc

�
1� T

Tc

��1=2
: (3.23)

We note that since D and N are dimensionless quantities,
they do not depend on Tc directly, but depend on qc only.

IV. DIAMAGNETIC CURRENT

In this section, we calculate the diamagnetic current
induced by a homogeneous external magnetic field perpen-
dicular to the surface of the superconductor. As mentioned
before, in the probe limit e ! 1, the magnetic field does
not backreact to the background spacetime (2.1). Under the
ansatz �Ayðu; xÞ ¼ bðuÞx (the bulk magnetic field Fxy ¼
@x�Ay ¼ bðuÞ), the equation of motion for bðuÞ is de-

coupled from the other ones for c and 
,1 and it is
equivalent to Eq. (3.4) for k ¼ 0:�

d

du
hðuÞ d

du
� 2 ~�2ðuÞ

u2

�
bðuÞ ¼ 0; (4.1)

1At the nonlinear regime, the fluctuation of the gauge field is
coupled to the one of the scalar field. This effect is important at
large x. As far as we are concerned with the neighborhood of the
origin x ¼ 0, this effect is negligible. The nonlinear effect has
been considered in [9].
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with the regularity boundary condition at the horizon u ¼
1.

As seen in the previous section, the equation can be
solved as a series in 	. Expanding b as

bðuÞ ¼ b0ðuÞ þ 	b1ðuÞ þOð	2Þ; (4.2)

and using Eq. (2.16), we obtain equations for b0 and b1 as

0 ¼ d

du
h
d

du
b0ðuÞ; (4.3)

0 ¼ d

du
h
d

du
b1ðuÞ � 2 ~�2

1

u2
b0ðuÞ: (4.4)

The solution of Eq. (4.3) satisfying the regularity condition
is

b0ðuÞ ¼ C ¼ ðconstÞ: (4.5)

So, the regularity solution of Eq. (4.4) should satisfy

db1
du

¼ � 2C

hðuÞ
Z 1

u
du0

~�2
1ðu0Þ
u20

; (4.6)

and

b1ðuÞ ¼ D� 2C
Z u

0

du1
hðu1Þ

Z 1

u1

du0
~�2
1ðu0Þ
u20

: (4.7)

Thus, we obtain

bðuÞ ¼ Cþ 	D� 2	C
Z u

0

du1
hðu1Þ

Z 1

u1

du0
~�2
1ðu0Þ
u20

þOð	2Þ

¼ B� 2	B
Z u

0

du1
hðu1Þ

Z 1

u1

du0
~�2
1ðu0Þ
u20

þOð	2Þ;
(4.8)

and

�Ayðu; xÞ ¼ �Að0Þ
y ðxÞ

�
1� 2	

Z u

0

du1
hðu1Þ

Z 1

u1

du0
~�2
1ðu0Þ
u20

�
þOð	2Þ; (4.9)

where we define B :¼ limu!0bðuÞ and �Að0Þ
y ðxÞ :¼

limu!0�Ayðu; xÞ.
From the asymptotic behavior of �Ayðu; xÞ near the AdS

boundary, we can read out the dual source �Að0Þ
y and the

thermal expectation value of the current hJyi as

�Ayðu; xÞ ¼ �Að0Þ
y ðxÞ þ 2�2

4e
2

L2

3

4�T
hJyðxÞiuþOðu2Þ:

(4.10)

From Eq. (4.9), we obtain

hJyðxÞi ¼ L2

2�2
4e

2

4�Tc

3

�
�2	

Z 1

0
du

~�2
1ðuÞ
u2

�
�Að0Þ

y ðxÞ

þOð	2Þ

¼ � L2

2�2
4e

2

8�Tc

3
½L�ðIÞ�2

�
�R1

0 du�
2ðuÞ=u2

½�ðIÞ�2
�
�Að0Þ

y ðxÞ þOð	2Þ;
(4.11)

where we use L� ¼ ~� ¼ 	1=2ð ~�1 þOð	ÞÞ. Because ~�1

(or� at the leading order in 	) is the solution of the linear
equation (2.17), we can express �ðuÞ as

�ðuÞ ¼ �ðIÞFðuÞ; (4.12)

where FðuÞ is the solution of Eq. (2.17) satisfying
limu!0FðuÞ ¼ u�I and the regularity boundary condition
at the horizon. So, the parenthesis in the last term of Eq.

(4.11) depends on qc only, not on �ðIÞ and Eq. (4.11) is
simplified as

hJyðxÞi � �Tc	�A
ð0Þ
y ðxÞ / �jhOIij2�Að0Þ

y ðxÞ: (4.13)

Thus, the stationary current is induced only when conden-
sation occurs.
Interestingly, Eq. (4.13) is very similar to the expression

expected by Ginzburg-Landau theory. In the theory, when
the phase of the order parameter c coupled to the U(1)
gauge field A is constant, the current J is described by the
London equation

J ¼ � e2�
m�

c 2A ¼ �e�nsA; (4.14)

where e� andm� are effective charge and mass of the order
parameter, and ns is the superfluid number density.

While �Að0Þ
y in Eq. (4.11) is an external source, the

macroscopic gauge field A in Eq. (4.14) is composed of
the spatial average of the microscopic field and external
field. Since we have no dynamical photon in our holo-
graphic superconductor model, the current does not pro-
duce its own microscopic magnetic fields. This means that

the external gauge field �Að0Þ
y is equal to the macroscopic

gauge field A in the AdS/CFT superconductor. So, com-
paring Eq. (4.14) with Eq. (4.13), we obtain the superfluid
number density2 ns which behaves as

ns � 	Tc � Tc � T; (4.15)

near the critical temperature.

2Our superfluid number density ns is equal to the one obtained
from the electric conductivity =½�ð!Þ� by Ref. [7].
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V. CONCLUSIONS AND DISCUSSION

We have investigated linear fluctuations of the scalar
field solution in the holographic model of a superconductor
in Ref. [7] under the probe limit, where the fluctuations do
not backreact on the geometry. By solving analytically the
linearized equations with only spatial momentum along
one spatial coordinate of the AdS boundary, we find that
the superconducting coherence length � diverges at the

critical temperature Tc as �� ð1� T=TcÞ�1=2=Tc. We
also find a diamagnetic current induced by an external
small homogeneous magnetic field. The current is propor-
tional to the external gauge field and goes to zero as Tc � T
at the critical temperature. These results are in agreement
with the behaviors predicted by Ginzburg-Landau theory
and Eq. (4.14) is the London equation in the AdS/CFT
superconductor.

If we would have a dynamical photon, then according to
Ginzburg-Landau theory, the magnetic penetration depth �
would be related to the superfluid density ns as

�� 1=
ffiffiffiffiffi
ns

p
: (5.1)

In Ginzburg-Landau theory, the coefficient � ¼ �=� clas-

sifies the superconductors into two types, i.e. � < 1=
ffiffiffi
2

p
for

type I superconductors and � > 1=
ffiffiffi
2

p
for type II super-

conductors. Using Eq. (5.1) formally, from Eqs. (3.23) and
(4.15) we obtain

� ¼ �

�
� T1=2

c : (5.2)

This may suggest that for a sufficiently small critical
temperature Tc, the AdS/CFT superconductor behaves as
type I, while for a sufficiently large critical temperature Tc,
it behaves as type II. This simple classification calls for
further investigation.
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Note added.—After having submitted this article, we

learned of a work by S. A. Hartnoll, C. P. Herzog, and
G. T. Horowitz, which argued that AdS/CFT superconduc-
tor should be type II [14]. We also learned of a work by
G. T. Horowitz and M.M. Roberts, which argued the de-
pendence of the AdS/CFT superconductor on the scalar
field mass [15]. As easily seen in the derivation of � in
Sec. III, the mass dependence only appears via the back-

ground scalar field solution ~�1 of the differential equation
(2.7). Since Lc is still Hermitian for the general mass

satisfying the Breitenlohner-Freedman bound L2m2 >
L2m2

BF ¼ �9=4, we can extend our calculation to the
general mass case.
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