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We find candidate macroscopic gravity duals for scale-invariant but non-Lorentz invariant fixed points,

which do not have particle number as a conserved quantity. We compute two-point correlation functions

which exhibit novel behavior relative to their AdS counterparts, and find holographic renormalization

group flows to conformal field theories. Our theories are characterized by a dynamical critical exponent z,

which governs the anisotropy between spatial and temporal scaling t ! �zt, x ! �x; we focus on the case

with z ¼ 2. Such theories describe multicritical points in certain magnetic materials and liquid crystals,

and have been shown to arise at quantum critical points in toy models of the cuprate superconductors. This

work can be considered a small step towards making useful dual descriptions of such critical points.

DOI: 10.1103/PhysRevD.78.106005 PACS numbers: 11.25.Tq

I. INTRODUCTION AND MOTIVATION

In many condensed matter systems, one finds phase
transitions governed by fixed points which exhibit ‘‘dy-
namical scaling’’

t ! �zt; x ! �x; z � 1 (1.1)

instead of the more familiar scale invariance which arises
in the conformal group

t ! �t; x ! �x: (1.2)

A toy model which exhibits this scale invariance (and
which is analogous in many ways to the free scalar field
example of a standard conformal field theory) is the
Lifshitz field theory:

L ¼
Z

d2xdtðð@t�Þ2 � �ðr2�Þ2Þ: (1.3)

This theory has a line of fixed points parametrized by � [1]
and arises at finite-temperature multicritical points in the
phase diagrams of known materials [1,2]. It enjoys the
anisotropic scale invariance (1.1)with z ¼ 2.

This fixed point and its interacting cousins have become
a subject of renewed interest in the context of strongly
correlated electron systems. For instance, in the Rokhsar-
Kivelson dimer model [3], there is a zero-temperature
quantum critical point which lies in the universality class
of (1.3) [4] (for a nice general exposition of the importance
of quantum critical points, see [5]). Similar critical points
also arise in more general lattice models of strongly corre-
lated electrons [6–8]. The correlation functions in these
models have interesting properties like finite-temperature
ultralocality in space at fixed time [9], which may be
important in explaining certain experimental results
[10,11]. Such theories are also of interest in 1þ 1 dimen-
sional systems [12,13].

Furthermore, such fixed points seem to have a nontrivial
generalization to non-Abelian gauge theories. The
Lagrangian (1.3) can be dualized to that for an Abelian

gauge field in a standard way, since scalars are dual to
vectors in 2þ 1 dimensions. This yields a Lagrangian with
the unusual property that the usual E2 term has a vanishing
coefficient; the leading terms in the Lagrangian depend on
derivatives of the electric field. Freedman, Nayak, and
Shtengel analyzed a similar theory with SUð2Þ gauge group
in [14]. They provided evidence that the SUð2Þ theory, as
well, has an interacting line of fixed points with z ¼ 2.
However, these fixed points are strongly coupled; their
existence and their detailed properties (correlation func-
tions, etc.) lie outside of the regime where the analysis in
[14] was performed most reliably.
AdS/CFT duality [15–17] provides a well-known tech-

nique to obtain weakly coupled and calculable dual de-
scriptions of strongly coupled conformal theories, in terms
of gravity or string theory on a weakly curved spacetime.
The symmetries of the gravitational background geomet-
rically realize the symmetries of the dual field theory; so
for instance the conformal group SOðD; 2Þ of a
D-dimensional CFT arises as the group of isometries of
AdSDþ1. It is natural to ask: can we find a more general
class of spacetimes which could be dual to theories with
nontrivial dynamical critical exponents as in (1.1)? The
general such theory has far fewer symmetries than a con-
formal theory; it enjoys scale invariance, invariance under
spatial and temporal translations, spatial rotation invari-
ance, and P and T symmetry.1

1Nonrelativistic theories without particle production and with
dynamical scaling enjoy a larger symmetry group. When z ¼ 2,
the enhanced symmetry group is called the Schrödinger group.
Gravity duals for such theories have been studied in the recent
works [18], initiated by the papers of Son and of
Balasubramanian and McGreevy. One potential application
seems to be to systems of cold atoms at the unitarity limit.
The theories we study, while also lacking Lorentz invariance,
have particle production; their structure and their potential
applications are quite different from those in [18]. Other recent
papers applying AdS/CFT duality to study different problems of
condensed matter physics in a similar spirit have appeared in
e.g. [19].
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In this paper, we attack this question. While we will
focus most concretely on the case z ¼ 2 (where many of
the most interesting examples arise in the condensed mat-
ter literature), the techniques we use are clearly more
general. In Sec. II, we show that 4D gravity with a negative
cosmological term, in the presence of a modest set of
p-form gauge fields, can support metrics which geometrize
the symmetries of these Lifshitz-like fixed points. In
Sec. III, we compute two-point correlation functions for
the simplest scaling operators, those dual to free bulk
scalar fields. Unlike the situation in conformal field theo-
ries, these correlators contain more information than can be
inferred from the scaling dimension of the operator alone.
We study the renormalization group flows between our
fixed points and conventional conformal field theories
[analogous to the flow that would arise by perturbing the
Lagrangian (1.3) by the operator �ðr�Þ2] in Sec. IV.
Finally, we conclude with a discussion of several interest-
ing questions that we hope to address in the future.

II. GRAVITATIONAL SOLUTIONS

In this section, we find gravity solutions which have the
right properties to be dual to (interacting generalizations
of) Lifshitz fixed points. We work with general z here, but
specialize to z ¼ 2 in the next two sections when we
compute correlation functions and study renormalization
group flows.

A. The metric

We would like a metric invariant under the modified
scale transformation (1.1). In addition, we wish to study
field theories invariant under time and space translations,
spatial rotations, spatial parity, and time reversal. We as-
sume, as in AdS/CFT, that the ‘‘scale’’ in the dual field
theory is geometrized by the presence of an additional
radial dimension on the gravity side of the duality, and
that rescaling of this radial coordinate geometrizes the
scale transformations (1.1).

These assumptions lead us to the family of geometries
(one for each value of z):

ds2 ¼ L2

�
�r2zdt2 þ r2dx2 þ dr2

r2

�
; (2.1)

where 0< r <1, dx2 ¼ dx21 þ � � � þ dx2d, and L sets the

scale for the radius of curvature of the geometry. We set the
Planck length lpl ¼ 1, and hence every quantity above is

dimensionless. The scale transformation acts as

t ! �zt; x ! �x; r ! r

�
: (2.2)

z ¼ 1 gives the usual metric on AdSdþ2, which enjoys the
larger symmetry SOðdþ 1; 2Þ.

This metric is nonsingular. All local invariants con-
structed from the Riemann tensor remain finite every-
where, and in fact are constant. The latter fact follows

from the symmetries of the geometry. The Ricci scalar
takes the value �2ðz2 þ 2zþ 3Þ=L2. The metric is not
geodesically complete and has peculiar behavior near r ¼
0; for z � 1, although the curvature invariants are small for
sufficiently large L, an infalling object experiences very
large tidal forces. This behavior is familiar from the solu-
tions corresponding to various string theoretic brane sys-
tems [20]. The lesson from these systems is that a metric
like (2.1) is physically sensible if there exists a regular
black hole solution that approaches it in an extremal limit;
we leave the construction of such black holes to future
work.
Henceforth, we will focus on the case d ¼ 2 (appropri-

ate for gravitational duals to 2þ 1 dimensional field theo-
ries); so we will be studying gravity in four dimensions.

B. Full solution

We would like to obtain the metrics (2.1) as solutions of
the field equations of general relativity coupled to some
matter content (which can presumably arise in the low-
energy limit of string or M-theory). Because our theory,
like the toy model (1.3), may be expected to flow to normal
CFTs under relevant perturbations, a good starting point
will be gravity with a negative cosmological term; this will
be able to capture the end of any such renormalization-
group (RG) flows via AdS/CFT duality.
Einstein gravity with a negative cosmological constant

alone does not support the metrics (2.1). However, string
theory also generically gives rise to p-form gauge fields. A
modest choice of such additional content, which can sup-
port the metrics (2.1), involves the addition of gauge fields
with p ¼ 1, 2.2

The Lagrangian is then given by

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ðR� 2�Þ

� 1

2

�
1

e2
Fð2Þ ^ �Fð2Þ þ Fð3Þ ^ �Fð3Þ

�

� c
Z

Bð2Þ ^ Fð2Þ: (2.3)

where Fð2Þ;ð3Þ are the field strengths for the gauge fields,

Fð2Þ ¼ dAð1Þ, Fð3Þ ¼ dBð2Þ. In addition to the standard

Einstein-Hilbert action, a 4D cosmological constant �,
and the kinetic terms for the gauge fields, we introduced
a topological coupling between the two- and three-form
fluxes

R
Bð2Þ ^ Fð2Þ ¼

R
Að1Þ ^ Fð3Þ (up to boundary terms).

This coupling is necessary to find appropriate solutions of
the equations of motion. The topological coupling c needs
to be quantized in many (but not all conceivable) cases, as
discussed in detail in, for instance, Appendix A of [21].

2Alternatively, by dualizing the two-form gauge field, the
metric (2.1) may be sourced by a massive vector field of mass,
m2 ¼ 2z=L2. The cosmological constant and two-form flux
remain the same as in the solution presented below.
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However, note that after redefining Fð2Þ ! 1
e Fð2Þ, the action

can be written with no e in front of the gauge kinetic term,
but with c ! ce; in this way, we can consider c to be
arbitrarily small (at weak gauge coupling), and set e ¼ 1.
We proceed with this convention henceforth.

To source the metric (2.1), we need to turn on back-
ground two- and three-form fluxes that preserve the sym-
metries:

Fð2Þ ¼ A�r ^ �t; Fð3Þ ¼ B�r ^ �x ^ �y: (2.4)

Here we work with a noncoordinate basis for the one-
forms:

�t ¼ Lrzdt; �xi ¼ Lrdxi; �r ¼ L
dr

r
: (2.5)

In this basis, the metric simplifies to diagð�1; 1; 1; 1Þ. We
fix our convention to be ��r�t�x�y ¼ 1. Both fluxes are

then closed. Their field equations

d � Fð2Þ ¼ �cFð3Þ; d � Fð3Þ ¼ cFð2Þ (2.6)

then fix the value of the dynamical exponent z in terms of
the topological coupling c and the radius of curvature L of
the dual geometry:

2z ¼ ðcLÞ2: (2.7)

The ratio between the two fluxes is also fixed in terms of
the dynamical exponent:

A

B
¼

ffiffiffi
z

2

r
: (2.8)

Note that for small c, we can obtain a weakly curved
geometry with any desired value of z.

The Einstein equation for the action (2.3)

G�� þ�g�� ¼ X
p¼2;3

1

2p!

�
pF��2����p

F
�2����p
�

� 1

2
g��F�1����p

F�1����p

�
(2.9)

then fully determines the required values of the back-
ground fluxes and the cosmological constant. As a result
of the symmetry of (2.1) and (2.4), and the Bianchi identity,
there are only two independent equations from the Einstein
equations, which can be taken to be the tt and xx compo-
nents:

z2 þ 2z

L2
¼ ��þ A2

4
þ B2

2
; � zþ 2

L2
¼ �þ A2

4
:

(2.10)

Equations (2.6) and (2.10) then determine the necessary
values of the cosmological constant and the fluxes:

� ¼ � z2 þ zþ 4

2L2
; A2 ¼ 2zðz� 1Þ

L2
;

B2 ¼ 4ðz� 1Þ
L2

:

(2.11)

We notice that reality of the fluxes requires z � 1. The
dual field theories may exhibit ‘‘critical slowing down,’’
but never ‘‘critical speeding up.’’

III. TWO-POINT CORRELATION FUNCTIONS

We now explore the boundary observables defined by
the theory in the bulk (2.1) by generalizing the usual holo-
graphic dictionary. We specify henceforth to the case z ¼
2, for illustration. There are a variety of boundary observ-
ables one could consider. We focus on the simplest possi-
bility, two-point correlation functions of scalar operators,
in the present note. After discussing generalities about the
solutions for a bulk scalar field, we calculate the two-point
function for a marginal operator (dual to a massless scalar)
in detail in Sec. III B. We briefly discuss the general results
for operators dual to massive scalars in Sec. III C. We note
that because the symmetries in our theories are much less
constraining than the full conformal group, the general
two-point function includes an unknown scaling function
of x2=jtj, and is not determined entirely by symmetry
alone; so the two-point function already contains more
nontrivial information than just a scaling dimension.

A. Real scalar field

Consider a free, real scalar field � in the Euclidean
version of the background metric (2.1). We work in the
coordinate u ¼ 1=r so that the boundary is located at
u ¼ 0

ds2 ¼ L2

�
1

u4
d	2 þ 1

u2
ðdx2 þ dy2 þ du2Þ

�
: (3.1)

The scalar has an action

S½�� ¼ 1

2

Z
d4x

ffiffiffi
g

p ðg��@��@��þm2�2Þ: (3.2)

In a string construction such scalars could arise from the
moduli of the compactification manifold, from Kaluza-
Klein modes of the metric and p-form fields, or from
excited string states. The metric fluctuation u2
gxy, among

other things, also satisfies the same equation of motion as a
bulk scalar with m2 ¼ 0 along the radial and temporal
directions.
The field equation for � is

@2u�� 3

u
@u�þ u2@2	�þ ð@2x þ @2yÞ��m2L2

u2
� ¼ 0:

(3.3)

Near the boundary a solution takes the asymptotic form,

GRAVITY DUALS OF LIFSHITZ-LIKE FIXED POINTS PHYSICAL REVIEW D 78, 106005 (2008)

106005-3



�� c1u
�þ�þð	; x; yÞ þ c2u

����ð	; x; yÞ; (3.4)

where ��; , �þ � ��, are the two roots of the equation

�ð�� 4Þ ¼ m2L2: (3.5)

The requirement that the Euclidean action be finite
imposes bounds on the allowed values of � and hence
the mass of the field as in the case of the usual AdS/CFT
correspondence [22]. For

m2L2 >�3 (3.6)

there is a unique choice of boundary condition

�ðu; 	; x; yÞ ! u�þð�ð	; x; yÞ þOðu2ÞÞ (3.7)

and via this choice, the scalar field is dual to an operator of
dimension �þ > 3. In the window,

� 4<m2L2 <�3; (3.8)

in addition to the above choice which remains valid, one
can modify the Euclidean action to

1

2

Z
d4x

ffiffiffi
g

p
�ð�r2 þm2Þ� (3.9)

by subtracting an infinite boundary term, so that the bound-
ary condition

�ðu; 	; x; yÞ ! u��ð�ð	; x; yÞ þOðu2ÞÞ (3.10)

also leads to finite action. Thus there are two different
quantizations for the scalar field in the range (3.8), and
correspondingly there are two different non-Lorentz invari-
ant fixed points on the boundary: one with an operator of
dimension �þ > 2, the other with an operator of dimen-
sion 1<�� < 2. For m2L2 <�4, the theory has a real
instability; this is the analogue of the Breitenlohner-
Freedman bound [23] for the model in 2þ 1 dimensions
and with z ¼ 2 that we are studying. The extension of these
results to general spacetime dimension and dynamical
exponent is straightforward.

B. Correlation functions of marginal scalar operators

As in standard AdS/CFT, boundary correlators are given
by the value of the renormalized bulk action for specified
boundary values of the bulk field (up to cutoff dependent
field renormalizations). To illustrate the idea, consider first
a free, real scalar field with m ¼ 0 for which no field
renormalization is necessary. This corresponds to an ex-
actly marginal operator with scaling dimension four if we
ignore gravitational loop corrections. (Remember that the
dual field theory lives in 2þ 1 dimensions with dynamical
exponent z ¼ 2).

To compute the action, we find the boundary to bulk
propagator Gðu; x; 0; x0Þ that gives the nonsingular bulk
field configuration �ðu; xÞ for any smooth boundary value
�ð0; xÞ (x denotes collectively 	, x)

�ðu; xÞ ¼
Z

d3x0�ð0; x0Þ Gðu; x; 0; x0Þ: (3.11)

The translational invariance in 	 and x makes it easy to
work in the Fourier space (k denotes collectively !, k)
where (3.11) becomes

~�ðu; kÞ ¼ ~Gðu; kÞ ~�ð0; kÞ (3.12)

and ~Gðu;!;kÞ is the solution of (3.3) with m ¼ 0 in
Fourier space

@2u ~G� 3

u
@u ~G� ð!2u2 þ jkj2Þ ~G ¼ 0 (3.13)

with the boundary conditions

~Gð0; !;kÞ ¼ 1 (3.14)

and ~Gðu; kÞ being finite as u ! 1. These uniquely deter-
mine the propagator

~Gðu; kÞ ¼ e�j!ju2=2�
� jkj2
4j!j þ

3

2

�
U

� jkj2
4j!j �

1

2
;�1; j!ju2

�
;

(3.15)

where Uða; b; uÞ is the confluent hypergeometric function

of the second kind. Note that ~Gðu; kÞ vanishes as u ! 1.
By standard integration by parts, an on-shell bulk action

is determined by the values of the field on the boundary

S½�� ¼
Z

d3x
Z 1

�
duð��@�

ffiffiffi
g

p
g��@��

þ @�ð ffiffiffi
g

p
g���@��ÞÞ

¼
Z

d3x½ ffiffiffi
g

p
guu�@u��1�

¼
Z

d2kd!ð�ð0;k; !ÞF ðk; !Þð0;�k;�!ÞÞ:
(3.16)

We have cut off the whole space at u ¼ � to regulate the
bulk action. The ‘‘flux factor’’ F is

F ðk; !Þ ¼ ½ ~Gðu;�k;�!Þ ffiffiffi
g

p
guu@u ~Gðu;k; !Þ�1� :

(3.17)

Since the propagator ~G vanishes at u ¼ 1, F only re-
ceives a contribution from the cutoff at u ¼ �. The
momentum-space two-point function for the operator O�

dual to � is calculated by differentiating (3.16) twice with

respect to ~�ð0;k; !Þ:
hO�ðk; !ÞO�ð�k;�!Þi ¼ F ðk; !Þ: (3.18)

Near u ¼ 0, ~G has the expansion,
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~G ¼ 1� k2u2

4
þ u4

64

�
3k4 � 20!2 þ 2�ð4!2 � k4Þ

þ 8k2j!j þ ð4!2 � k4Þ logðu4!2Þ þ 2ð4!2 � k4Þ

� c

�
3

2
þ k2

4j!j
��

þOðu6Þ; (3.19)

where c ðxÞ ¼ �0ðxÞ=�ðxÞ is the digamma function and
� 	 0:577 is the Euler-Mascheroni constant. Plugging
the expansion (3.19) into (3.17), we pick out the leading
nonpolynomial piece in either k or !. This gives the
correlation function as we take the cutoff � to 0

hO�ðk; wÞO�ð�k;�wÞi

¼ �L2

2
k2j!j � L2

8
ð4!2 � k4Þ logj!j

� L2

8
ð4!2 � k4Þc

�
3

2
þ k2

4j!j
�
: (3.20)

Specifically, the divergence arising as � ! 0 from the term
proportional to u2 in (3.19) is removed via local boundary
terms [24], and the terms proportional to u4 in the first line
of (3.19) give rise to uninteresting contact terms in space-
time. Terms Oðu6Þ and higher vanish as the cutoff is
removed � ! 0.

Terms of order u4 in the second line of (3.19) are the
only contributors to (3.20). Interestingly, among the three
terms in (3.20), only the last one gives rise to correlations
between points with both spatial and temporal separation.
The first two contribute terms localized in space. The
existence of such spatially localized terms is forbidden in
Lorentz invariant theories, and may well be related to the
‘‘ultralocal’’ behavior observed in [9]. Note also that (3.20)
has the correct scaling behavior for the two-point correla-
tor of a dimension four operator. Its momentum and fre-
quency dependence is complicated, however.

One can understand the large distance fixed time behav-
ior of the correlation function by Fourier transforming
(3.20) to position space. Only the piece containing the
digamma function contributes in this regime, and its
Fourier transform can be computed by utilizing the expan-
sion

c ðxÞ ¼ ��� 1

x
� X1

n¼1

�
1

xþ n
� 1

n

�
: (3.21)

It suffices to quote that the large distance behavior of the
two-point function is just a simple power law

hO�ðx; tÞO�ð0; 0Þi ! const

jxj8 ; jxj ! 1: (3.22)

This is interesting because a priori, one might have ex-
pected further suppression of the power law result by some

scaling function of x2=jtj (e.g. e�jxj2=jtj, which would result
in an ultralocal equal time two-point function) could have
arisen, since it is consistent with the symmetries of the
theory. We note that the correlators of the simplest scaling
operators in the free Lifshitz theory (1.3) also exhibit pure
power law decay at large spatial separation [8].

C. Correlation functions of generic scalar operators

It is a direct generalization of the above to compute the
two-point functions for operators which are dual to mas-
sive scalar fields, complicated only by additional renor-
malization effects. Specifically, to define the boundary to
the bulk propagator, we need to cut off the space and put
the boundary at u ¼ �. The propagator is now a solution to

@2u ~G� 3

u
@u ~G�

�
!2u2 þ jkj2 þm2L2

u2

�
~G ¼ 0 (3.23)

satisfying the boundary conditions

~Gð�;k; !Þ ¼ 1 (3.24)

and ~G nonsingular for u > �.
For generic values of m, this determines

~Gðu; kÞ / e�ð1=2Þj!ju2u2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2L2

p
U

� jkj2
4j!j þ

1

2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2L2

4

s
; 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2L2

p
; j!ju2

�
(3.25)

with the proportionality constant set by (3.24). Now the

leading nonpolynomial term in ~G that contributes to the

flux factor would come at ‘‘order’’ u2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2L2

p

~Gðu; kÞ ¼
�
u

�

�
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2L2

p �
1þ � � � þ ðj!ju2Þ

ffiffiffiffiffiffiffiffiffiffi
4m2L2

p �ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2L2

p
Þ

�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2L2

p
Þ

�ðjkj2
4j!j þ 1

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2L2

4

q
Þ

�ðjkj2
4j!j þ 1

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2L2

4

q
Þ
þ � � �

�
: (3.26)

The two-point function in momentum space is again given by the flux factor, and after throwing away divergent and
vanishing pieces as we take � ! 0, we find
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hOðk; !ÞOð�k;�!Þi ¼ �ð2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2L2

p
ÞL2j!j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2L2

p �ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2L2

p
Þ

�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2L2

p
Þ

�ðjkj2
4j!j þ 1

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2L2

4

q
Þ

�ðjkj2
4j!j þ 1

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2L2

4

q
Þ
: (3.27)

Explicit powers of the cutoff, �, have been absorbed into
the definition of the boundary operator, Oðk; !Þ, as dis-
cussed in [25]. Again (3.27) has the correct scaling behav-
ior for the correlator of an operator of dimension
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2L2

p
, but it also involves additional momentum

and frequency dependence.3

IV. HOLOGRAPHIC RG FLOW BETWEEN z ¼ 2
LIFSHITZ FIXED POINTS AND z ¼ 1
CONFORMAL FIELD THEORIES

It is natural to expect that theories with anistropic scale
invariance can flow, under relevant perturbation, to fixed
points which enjoy full conformal invariance. For instance,
for the toy model (1.3), perturbation by �ðr�Þ2 induces
RG flow to the free massless scalar field theory, which is a
conformal field theory.

Here, we find that our gravitational duals of Lifshitz-like
theories come with relevant perturbations that induce a
similar flow. We will look for solutions which represent
holographic RG flow from the z ¼ 2 Lifshitz-like fixed
point in the UV (at large r) towards anAdS4-like spacetime
in the IR (small r). A metric ansatz which is sufficiently
general to capture this flow is

ds2 ¼ L2ð�r4fðrÞ2dt2 þ r2ðdx2 þ dy2Þ þ gðrÞ2dr2=r2Þ:
(4.1)

If fðrÞ ¼ gðrÞ 
 1, this is the spacetime dual to the z ¼
2 fixed point. If fðrÞ is inversely proportional to r, and gðrÞ
is constant, it is AdS4. Introduce again the noncoordinate
basis of one-forms in which the metric simplifies to con-
stant Minkowskian form ���:

�t ¼ Lr2fðrÞdt �x ¼ Lrdx

�y ¼ Lrdy �r ¼ LgðrÞdr=r:
(4.2)

In terms of this basis, the two- and three-form fluxes are

Fð2Þ ¼ 2

L
hðrÞ�r ^ �t (4.3)

Fð3Þ ¼ 2

L
jðrÞ�r ^ �x ^ �y: (4.4)

The advantage of using the � basis is that the fluxes remain
nonsingular as long as the coefficient functions hðrÞ and
jðrÞ are finite. In addition to the fluxes, we also have a
negative cosmological constant � ¼ �5=L2. The z ¼ 2

Lifshitz fixed point has hðrÞ ¼ jðrÞ 
 1 and the IR AdS4
has hðrÞ ¼ jðrÞ 
 0.
The equations of motion for the fluxes and the metric,

after proper massaging, give

2rf0=f ¼ ð5� h2 þ j2Þg2 � 5

rg0 ¼ 1
2g

3ðh2 þ j2 � 5Þ þ 3
2g

rh0 ¼ 2gj� 2h

rj0 ¼ 2ghþ 1
2jþ 1

2jg
2ðh2 � j2 � 5Þ:

(4.5)

The counting of the equations works as follows: the two-
and three-form fluxes each satisfy a single equation of
motion, and the Einstein equation for our background
(4.1), (4.3), and (4.4), results in only two independent
equations. It takes some algebra to show the latter fact. It
is easy to check that the z ¼ 2 Lifshitz fixed point and
AdS4 are the only two fixed points of the above flow
equations.
Note the relation between the above four equations. The

last three form a closed set of nonlinear ordinary differen-
tial equations (ODEs) for the three functions gðrÞ, hðrÞ and
jðrÞ. Given any initial values for them at some fixed r0, we
can determine their behavior as functions of r. Then by the
first equation, we can determine the behavior of fðrÞ. Note
that the initial value of fðrÞ is not a physical parameter, but
a gauge choice. It can be changed by a global rescaling of
the t coordinate.
The stability of the fixed points in the space of fluctua-

tions described by gðrÞ, hðrÞ, jðrÞ can be summarized in
terms of a flow matrix as follows. As stated above, these
three functions obey a closed set of nonlinear ODEs with
fðrÞ determined by the first equation in (4.5). Linearization
of these ODEs provides a set of linear first-order differen-
tial equations for the functions gðrÞ, hðrÞ, jðrÞ. These linear
differential equations can be put in matrix form with the
flow matrix describing how the basis functions, gðrÞ, hðrÞ,
jðrÞ vary as a function of r.
Around the AdS4 fixed point, the flow matrix has eigen-

values ð�3;�3:13; 0:13Þ. The first corresponds to a flow
along the direction @g away from the AdS4 fixed point as

we flow into the IR, the second and third describe flow
away and towards the fixed point along two orthogonal
directions inside the plane of f@h; @jgAdS4 . Around the

Lifshitz fixed point, the flow matrix takes the Jordan nor-
mal form

0 0 0
0 �4 1
0 0 �4

0
@

1
A (4.6)

in, for example, the basis

3Note that for nongeneric values of the scalar mass m2L2 ¼
n2 � 4 with n being non-negative integers, the above formula
(3.27) does not apply.
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3
8 @h þ 1

4@j
1
8 @h � 1

4@j
@g � 1

2@h

0
B@

1
CA: (4.7)

There are two relevant directions (with logarithmic mixing
between them) and one marginal direction around this
fixed point.

One can numerically solve the system (4.5) using the
‘‘shooting’’ technique. Since the AdS fixed point has rele-
vant perturbations, it is hard to hit on the nose by varying
the UV perturbation. Instead, we start with the AdS fixed
point close to r ¼ 0 and try to hit the z ¼ 2 critical point by
integrating the flow out towards r ¼ 1; this is much easier
to do, because the UV fixed point has only relevant and
marginal perturbations, and is hence (almost) UV attrac-
tive. One can find good flows that asymptote between the
two fixed points in this way; an example is displayed in
Fig. 1 below.

V. FUTURE DIRECTIONS

There are many directions for further research. They
range from straightforward extensions of this work to
somewhat speculative but intriguing possibilities:

(i) It would be interesting to compute more complicated
observables in these spacetimes, including higher-
point correlation functions and Wilson loops.

(ii) By adding bulk ‘‘probe’’ fields and varying the
parameters in their Lagrangian, it should be possible
to find interesting quantum phase transitions in this
system.

(iii) The embedding into a full string theory construc-
tion of our solutions is left as work for the future.
We anticipate that this should be possible using
standard techniques of flux compactification.

(iv) A better understanding of the global and causal
structure of the spacetime (2.1) would also be de-
sirable. In particular, it is necessary to understand
the physics behind the peculiar behavior at r ¼ 0 in
more detail. This kind of behavior has been ob-
served before in string theoretic brane systems [20].

It is possible that in this case, the behavior is related
to the strong infrared singularities which one might
expect in interacting Lifshitz-like theories.

(v) Our solutions have correlation functions that do not
exhibit ultralocality at zero temperature. However,
in the work of [9], it was found that the Lifshitz fixed
point has ultralocal correlators at finite temperature
T, but not at vanishing T. (Ultralocality was also
observed in the SUð2Þ gauge theories discussed by
[14]). It is therefore interesting to construct finite T
analogues of our spacetime (which presumably
amounts to finding black hole solutions), and see
whether the correlators exhibit some of the same
behavior discussed in [9].

(vi) Finally, in any application of gauge/gravity duality
to a strongly coupled system, it is important to
understand where the large N degrees of freedom
in the field theory are supposed to arise. In many
field theories of interest to condensed matter theo-
rists, there is of course no large N and no ’t Hooft-
like expansion. However, the results of [14] suggest
that novel 3D gauge theories with SUðNÞ gauge
group may well have Lifshitz-like fixed points
(though they focused on the case N ¼ 2). It seems
worthwhile to try and generalize their results to the
planar limit of large N theories; this would poten-
tially give a direct point of contact between a class
of novel field theories, and gravity in spacetimes of
the sort we studied here.
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