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We propose a nonperturbative definition of N° = 4 super Yang-Mills (SYM). We realize N = 4 SYM
on R X S? as the theory around a vacuum of the plane wave matrix model. Our regularization preserves 16
supersymmetries and the gauge symmetry. We perform the 1-loop calculation to give evidences that the
superconformal symmetry is restored in the continuum limit.
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L. INTRODUCTION

The anti-de Sitter/conformal field theory (AdS/CFT)
correspondence [1-3], a typical example of which is a
conjecture that type IIB superstring on AdSs X S° corre-
sponds to N =4 super Yang-Mills (SYM), has been
intensively investigated for a decade. However, it has not
been completely proven yet, partially because it is a strong/
weak duality with respect to the coupling constants. It is,
therefore, relevant to give a nonperturbative definition of
N =4 SYM that enables us to study its strong coupling
regime. The lattice gauge theory is a promising candidate
for such a nonperturbative definition. However, supersym-
metric gauge theories on the lattice are generally difficult
to construct, although there have been remarkable develop-
ments on this subject [4-8]. To give a nonperturbative
definition of N' = 4 SYM will not only bring enormous
progress in the study of the AdS/CFT correspondence, but
will also yield some insights into the problem of non-
perturbative formulation of supersymmetric gauge
theories.

It was shown in [9] that a gauge theory in the planar limit
is equivalent to the matrix model (the reduced model)
obtained by dimensionally reducing it to zero dimension
if the U(1)” symmetry is unbroken, where D stands for the
dimensionality of space-time. This is the so-called large N
reduction. The global gauge symmetry of the matrix model
is naturally interpreted as the local gauge symmetry of the
original gauge theory. Thus, as an alternative to the lattice
gauge theory, the matrix model may serve as a nonpertur-
bative definition of the planar gauge theory with the gauge
symmetry manifestly kept. The U(1)” symmetry is, how-
ever, spontaneously broken except for D = 2, so that the
above equivalence does not hold generically. There have
been two improvements of the reduced model in which the
U(1)P symmetry breaking is prevented so that the equiva-
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lence holds: one is the quenched reduced model [10-13],
and the other is the twisted reduced model [14]. These
improved models work well for nonsupersymmetric planar
gauge theories.' It seems quite difficult to preserve super-
symmetry manifestly in the twisted reduced model on the
flat space and in the quenched reduced model, while the
gauge symmetry is respected in both models.

The compactification in matrix models developed in
[20] shares the same idea with the reduced model and
will be called the matrix 7-duality in this paper. While it
is not restricted to the planar limit, it requires the size of
matrices to be infinite from the beginning for the orbifold-
ing condition to be imposed, so that it cannot be used to
define any supersymmetric gauge theory nonperturbatively
as it stands. It was argued in [4] that by imposing an
orbifolding condition on the reduced model of a super-
symmetric gauge theory, one can obtain its lattice theory in
which part of the supersymmetries are manifestly pre-
served so that the fine-tuning of only a few parameters is
required. This construction can be regarded as a finite-size
matrix analog of the matrix 7-duality. However, it has a
problem of flat directions which is analogous to the prob-
lem of the U(1)P? symmetry breaking. To overcome this
problem, for instance, one needs to introduce a mass term
for the scalar field, which leads to no preservation of
supersymmetries.

In [21], Takayama and three of the present authors found
the relationships among the SU(2|4) symmetric theories,
which include N =4SYMonR X $3/Z;,2 + 1SYMon
R X S? [22], and the plane wave matrix model (PWMM)
[23]. The last theory is obtained by consistently truncating
the Kaluza-Klein modes of 2N =4 SYM on R X S° [24]
and so are the former two theories [25]. In particular, 2 + 1

'Recent studies on the twisted [15-17] and quenched [18]
reduced models of the lattice gauge theory oppose this statement,
and an improvement of the reduced model was studied in [19].
Anyway, these studies do not affect the arguments in this paper
directly, because we consider a different kind of reduced model
and our model has supersymmetry.
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SYM on R X §? and PWMM can be regarded as dimen-
sional reductions of N' = 4 SYM on R X S°. These theo-
ries possess common features: mass gap, discrete
spectrum, and many discrete vacua. From the gravity duals
of those vacua proposed by Lin and Maldacena [25], the
following relations among these theories are suggested:
(a) the theory around each vacuum of 2 + 1 SYM on R X
§? is equivalent to the theory around a certain vacuum of
PWMM, and (b) the theory around each vacuum of N =
4 SYM on R X S$3/Z, is equivalent to the theory around a
certain vacuum of 2 + 1 SYM on R X S? with the orbifold-
ing (periodicity) condition imposed. In [21], the relations
(a) and (b) were shown directly on the gauge theory side.
The results in [21] not only serve as a nontrivial check of
the gauge/gravity correspondence for the SU(2|4) theories,
but they are also interesting from the point of view of the
reduced model as follows. While there have been many
works on realizing the gauge theories on the fuzzy sphere
[26—29] using matrix models [30,31] and on the monopoles
on the fuzzy sphere [31-36], the relation (a) shows that the
continuum limit of the concentric fuzzy spheres with dif-
ferent radii corresponds to multiple monopoles. Note that
realizing the gauge theories on the fuzzy sphere using the
matrix models can be viewed as an extension of the twisted
reduced model to curved space. The relation (b) can be
regarded as an extension of the matrix 7-duality to that on a
nontrivial U(1) bundle, $3/Z,, whose base space is S2.
Indeed, the matrix 7-duality was later extended to that on
general U(1) bundles in [37] and on general SU(2) bundles
in [38]. Combining the relations (a) and (b) leads to the
relation (c), that the theory around each vacuum of N = 4
SYM on R X §3/Z, is equivalent to the theory around a
certain vacuum of PWMM with the orbifolding condition
imposed. In particular, for k = 1, N' = 4SYMon R X §°
is realized in PWMM. The possibility of defining N = 4
SYM in terms of PWMM nonperturbatively is suggested in
[21]. The relationships shown in [21] are classical in the
following sense: in the relation (a), we show the equiva-
lence at tree level and do not care about possible UV/IR
mixing at higher orders, although the gravity duals suggest
that any UV/IR mixing does not occur. In the relation (b),
the size of matrices must be infinite from the beginning as
in the original matrix 7-duality.

In this paper, we propose a nonperturbative definition of
N =4 SYM on R X S which is equivalently mapped to
N =4 SYM on R* at the conformal point and possesses
the superconformal symmetry, the SU(2,2|4) symmetry.
We restrict ourselves to the planar limit. By referring to the
relation (c) in [21], we regularize N' = 4 SYMon R X §3
nonperturbatively by using PWMM. Our analysis in this
paper is quantum mechanical. The restriction to the planar
limit enables us not to impose the orbifolding condition
and to consider finite-size matrices such that the size of
matrices plays the role of the ultraviolet cutoff. Thus we
use an extension of the reduced model to curved space
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rather than the matrix 7-duality to relate 2 + 1 SYM on
RX S?to N =4SYMon R X S3. Because PWMM is a
massive theory, there is no flat direction and the quenching
prescription is not needed. Our regularization manifestly
preserves the gauge symmetry and the SU(2|4) symmetry,
a subgroup of the SU(2, 2|4) symmetry. In particular, 16
supersymmetries among 32 supersymmetries are respected
in our regularization. The restriction to the planar limit and
16 supersymmetries are probably sufficient to suppress the
UV/IR mixing which may break the relation between 2 +
1 SYM on R X §? and PWMM quantum mechanically.
They also stabilize the vacua of PWMM completely.
Indeed, the gravity duals of these theories suggest 2 + 1
SYM on R X S? is obtained from PWMM quantum me-
chanically in the continuum limit at least in the planar
limit. The full SU(2, 2|4) symmetry should be restored in
the continuum limit. By performing the 1-loop analysis and
comparing the results with those in continuum N =4
SYM, we provide some evidences that our regularization
of N' = 4 SYM indeed works, although our final goal is to
analyze N' = 4 SYM nonperturbatively by using our for-
mulation. Our theory still has the continuum time direc-
tion, which we need to cope with in order to put our theory
on computer. For instance, we should be able to apply the
method in [39-41] to our case. We comment on an inter-
esting paper [42], the authors of which constructed the $°
background in the IIB matrix model with the Myers term
using the same procedure as [21]. They calculated the free
energy of the theory around the background up to the 2-
loop order to find the stability of the background. Note also
that the authors of [43] discussed the practicality of N =
4 SYM on the lattice recently.

This paper is organized as follows. In Sec. II, we study
the large N reduction on a finite volume. As an example,
we consider the ¢* matrix quantum mechanics. We exam-
ine how the theory on S' is obtained from the matrix model
that is its dimensional reduction to zero dimension, em-
phasizing the difference between the large N reductions for
the theories on R and S'. In Sec. ITI, we review the relation-
ships among N =4 SYMon R X §3,2 + 1SYMon R X
S2, and PWMM shown in [21]. Based on these relation-
ships and the result in Sec. II, we give a nonperturbative
definition of N" =4 SYM on R X S° using PWMM. In
Sec. IV, we perform the 1-loop calculation in our theory to
give some evidences that our regularization of N =4
SYM indeed works. Section V is devoted to conclusion
and discussion. In appendixes, some details are gathered.

II. THE LARGE N REDUCTION ON FINITE
VOLUME

In this section, we study the large N reduction on a finite
volume, focusing on how different it is from that on an
infinite volume. Let us consider a matrix quantum mechan-
ics, whose action is given by
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S = f dTTr( (‘;‘/)) m?*$? +

where ¢(7) is an N X N Hermitian matrix. We take the
't Hooft limit: N — oo, A = g?N = fixed. First, we con-
sider the case in which the theory is defined on R, namely
—o0 < 7 < 0. The prescription of the large N reduction is
to make the following replacement [11-13]:

27
[dTﬁx,

where ¢ in the right-hand side of the first equation is no
longer dependent on 7 and A is an ultraviolet cutoff. P is a
constant N X N matrix given by

TR BER)

(1) = ePTpe™", (2.2)

P = diag(py, pa, -+, Pn) (2.3)
with p; = & (i — ). We take the limit in which
A — oo, N — oo, A/N — 0. 2.4)

Note that A/N is an infrared cutoff. The action (2.1) is
reduced to

— 2 (= p)? + N+ 5T
LJ
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FIG. 1. 2-loop diagrams for the free energy: (a) planar and
(b) nonplanar.

In order to illustrate the large N reduction, we see that
the free energy of the original model (2.1) agrees with that
of the reduced model (2.5) at the 2-loop level. There are
two diagrams at the 2-loop level for the free energy.
Figure 1(a) shows the planar diagram while Fig. 1(b) shows
the nonplanar one. We evaluate the planar diagram in
Fig. 1(a) for the original model:

dpdq 1
Qm)? (p*> + m*)(g*> + m?)’
(2.6)

FZI0P /yol = sz)\'[

planar

The nonplanar diagram in Fig. 1(b) for the original model
is suppressed by the order of 1/N? compared to the planar
one in Fig. 1(a). On the other hand, we evaluate the planar
diagram in Fig. 1(a) for the reduced model:

(2.5)
J

2 loo, Ay !

Rplarlfar/(zﬂ/A) - _g (2 ) Zk((pl pk)2 + mz)((pj

By using the relation valid in the limit (2.4),

V(3= [

one can easily verify that F il;r?gf /Vol = ,Zell)?;far /Qm/A).
Indeed, one can prove that Fp,n,/Vol = Fp jana/ (277/A)
holds at all orders. We further evaluate the nonplanar

diagram in Fig. 1(b) for the reduced model:

(2.8)

F2 loop

- 1 A2 1
R,nonplanar/(zﬂ-/A) = Zg2<ﬁ) Z?

I ><< A )2
4 m* " \2@wN) "’
Note that there is no correspondence for the nonplanar
diagram between the original and reduced models. The

nonplanar contribution (2.9) is suppressed by the factor
(A/N)? in the limit (2.4), relative to the planar contribution

(2.9)

_12_
)t m) 28 ( ) Z(p,erz)(p +m?)’

2.7)

(2.7). All the nonplanar contributions are indeed sup-
pressed relative to the planar contributions in the reduced
model. The reduced model therefore reproduces the
"t Hooft (planar) limit of the original model.

Next, we compactify the 7 direction to S! with the radius
R. We evaluate the planar diagram in Fig. 1(a) for the
original model:

~2100p__N2AZ n

planar

, 2.10
2)( e

where we take the N — oo limit with A = g?N/(27R)
fixed. Note that the nonplanar diagram in Fig. 1(b) for
the original model is still suppressed by 1/N? relative to
the planar diagram in Fig. 1(a). Correspondingly, we con-
sider the reduced model

~ 1

SR = EZ((PL

ij

P>+ m?)lyl* + 1 gr Tr(d*)

@2.11)
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with p; = £ (i —%). This naive reduced model turns out
not to reproduce the original model on S'. The contribution
of the planar diagram in Fig. 1(a) to the free energy for this
reduced model is

[~ 2-loop  _ l 2 1

ot = 2SR m2><—<f;f>2 + m?)
1
~g% , (2.12)
2 nzz: )( m’)

while that of the nonplanar diagram in Fig. 1(b) is
~ 1 1
FR,n(t))?lI;)Ianar - gRZ Z %? % (213)

(2.13) is not suppressed relative to (2.12), because the
infrared cutoff 1/R is finite in this case. Thus the corre-
spondence between the original and reduced models fails
in this case.

In the following, we modify the reduced model (2.5) to
recover the correspondence. The action of the modified
model takes the same form as (2.11) while ¢ is a N(T +
1) X N(T + 1) matrix, i, j run from 1 to N(T + 1), and p,
is given by the i component of the matrix

p="Lai R A P 2.14
=% 1ag( ) ,...,5)® N- (2.14)
Here T'isa pos1t1ve even integer. We take the limit in which
T — 0o, N— 00, A = g%N = fixed. T turns out to play the
role of the ultraviolet cutoff for the momentum. In the
modified model, the contribution of the planar diagram in
Fig. 1(a) to the free energy is

7= 2-loop 1 2 A73 & 1
FMR,Planar = EgRN N /2 ((a o? + mZ)((b—ZC)2 + mZ)
a,b,c=— R
1
=-NXT + 1)A
2 Z, L+ m?) (L + m?)
(2.15)

Then, we see that £ %% = Fi;}ggfanar/ (T + 1). Indeed, it

planar 'k

is easily verified that £ planar = F mR planar/ (T + 1) holds at
all orders. On the other hand, the contribution of the non-
planar diagram in Fig. 1(b) to the free energy for the

modified model is

~ - 1 1 1 -1
2-loop _ 2 o
FMR,nonplanar - ZgRN az;/zﬁ - Z(T + 1)){%
(2.16)

This is suppressed by 1/N? relative to (2.15). All the non-
planar contributions are indeed suppressed relative to the
planar contributions in the modified model. Hence, the
modified model reproduces the 't Hooft (planar) limit of
the original model on S'.
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For D-dimensional pure Yang-Mills (YM), the reduction
analogous to (2.2) leads to

1 1
SYM = ) di.XZ Tr[()'u - lA,u, 8,, - iAV]Z
8

2 1
_’SYM,R = _X@Tr[P“ +AM’ PV +AV:|2,

(2.17)
where P, is the D-dimensional analogue of (2.3). It is
known that the reduced model (2.17) does not reproduce
the original YM, because the diagonal elements of A, are
zero-dimensional massless fields and instable enough to
absorb P,. This is interpreted as the counterpart of the
U(1)P symmetry breaking in the reduced model of the
lattice gauge theory. Usually, in order to overcome this
problem, the eigenvalues of P, + A, in (2.17) are fixed to
P, [12]. This is a quenching prescription. While the gauge
symmetry is respected in this prescription, supersymmetry
is not. In the case we are concerned with in this paper, we
want to respect both symmetries simultaneously. We see
how this problem is overcome in the next section.

III. REALIZATION OF N =4 SYM ON R X S3 IN
TERMS OF PWMM

In this section, we review the relationships among N =
4SYMonRXS* 2+ 1SYM on R X S2, and PWMM
shown in [21], and we propose a nonperturbative definition
of N =4 SYM on R X S3, based on these relationships
and the result in the previous section.

A. N =4 SYM on R X S* and the SU(2|4) theories
The action of N = 4 SYM on R X S? takes the form”

P — (/2

1 ab
X Tr _Z abF

SR><S3 -

1
— EDa(I)ABDa(I)AB

- %(DABCDAB + %[(DABr D cp [ DA, DEP]

+igl DA+ iylaiD gt

UL, (W])T] — 9 o, 471),
3.1)

Here a, b are the local Lorentz indices and run from O to 3.
“0” corresponds to the time ¢. A, B are indices of the
fundamental representation of SU(4) and run from 1 to 4.
®,p = —Dpy and P48 = 1 AP D, The radius of $? is
2/ . This theory possesses the superconformal symmetry,
the SU(2,2|4) symmetry. The action of 2+ 1 SYM on

’In this paper, we change the notation used in [21,44] as
follows: Yi - Xf’ XAB — CDAB’ ¢ - X.
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R X S? takes the form
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1 dQ) . . 1 . . L. . 1
Spxst = —— f dt M—2 Tr< (DX — inLVA,)? - 5 (X + i(wL® x X — X X X)) + EDtQDABD,CDAB

RXS?
L, Do 00 1+ L, BT, O] + gDyt — yla Dy — gty
) AB 3 AB 4[ AB> CD][ , ] “//A N 'ﬁAU' 1 4 %ﬂ/f
RO (W] = TP 7)), (3.2)
where
> . A
LO = —i€ydg + IME{;@@ 3.3)
with &, = (sinf cosg, sinf sing, cosh), é5 = ‘jfe and é, = ’D ,uL(O) [)?, ], and the radius of S? is 1/u. The

action of PWMM takes the form

1
Spw = —5—
8pw

1 .
+ Z[CDAB’ Oep][PAB, PEPT + ”PIDHWA - TM

— (YN [ wB]).

Both 2+ 1 SYM on R X S* and PWMM possess the
SU(2|4) symmetry, which is a subgroup of the SU(2, 2|4)
symmetry and has 16 supercharges.

In the reminder of this section, for simplicity, we ignore
the time component of the gauge field A, and the matter
degrees of freedom, ® 45 and 4. It is easy to include these
degrees of freedom in the arguments. All the statements in
the following are also valid with these degrees of freedom.

B. S3 and $?

First, we summarize some useful facts about S° and S2
(see also [38]). We regard S as the SU(2) group manifold.
We parametrize an element of SU(2) in terms of the Euler
angles as

g= e—itp(r3/2€—i00'2/26—i¢a'3/2, (35)
where 0 =0 =7, 0= ¢ <27, 0 = ¢ <4m. The peri-

odicity with respect to these angle variables is expressed as

6, 0, ) ~ (0, ¢ +2m, f +2m) ~ (0, @, ¥ + 4.

(3.6)
The isometry of % is SO(4) = SU(2) X SU(2), and these
two SU(2)’s act on g from left and right, respectively. Note
that the superconformal group SU(2,2[4) includes the

SO(4) group as a subgroup. We construct the right-
invariant 1-forms,

dgg ' = —inEo;/2,

where the radius of $3 is 2/ u. They are explicitly given by

(3.7)

dt 1 i 2 1
_/-,u < (D,X;)* — (,U«X 2 €l X; Xk]) +§D1¢ABDt®AB

2
- %®AB®AB + %[Xir D, 511X, DAF]

glyr + ylollx, v+ g la?[@22 (p )]

(3.4)
1 1 . .
E! = —(— singpd@ + sinf cosepd i),
M
1
E? = —(cosedf + sinf sinpd ), (3.8)
7
1
E3 = —(de + cosfdi),
7
and satisfy the Maurer-Cartan equation
dE — %e,. N ) (3.9)

The metric is constructed from E' as
L 1
ds* = E'E' = — (d6* + sin*@d@* + (d + cosfd¢)?).
M

(3.10)
The Killing vectors dual to E' are given by

L,=-LEM,, G.11)
%

where M = 6, ¢, , and EM are inverse of E',. The
explicit forms of the Killing vectors are

cos
L, = —i(— singdy — cotf cosgd, + — Z&w),
sin

ngo )
sin®

Because of the Maurer-Cartan equation (3.9), the Killing
vectors satisfy the SU(2) algebra, [ L;, L;] = i€; L.

L, = —z(cosgoag — cotf sinpd, + —~ (3.12)

£3 = —id

@
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One can also regard S as a U(1) bundle over §> =
SU(2)/U(1). S? is parametrized by 6 and ¢ and covered
with two local patches: the patch I defined by 0 = 6 < 7
and the patch II defined by 0 < § = 7. In the following
expressions, the upper sign is taken in the patch I while the
lower sign in the patch II. The element of SU(2) in (3.5) is
decomposed as
g = L-h with L = e—iqoo'3/26—i002/26iiqoa'3/2

h = e—i(t//igo)zr3/2.

and

(3.13)

L represents an element of S?, while & represents the fiber
U(1). The fiber direction is parametrized by y = ¢ = ¢
Note that L has no ¢ dependence for § =0, 7. The
zweibein of S? is given by the i = 1,2 components of the
left-invariant 1-form, —iL~'dL = pe'c;/2 [45]. It takes
the form

1
= —(* sinedf + sinf cosedp),

(3.14)

2

e’ = —(—cosedf =+ sinf sinpd ).

tl—";

This zweibein gives the standard metric of S with the
radius 1/u:
1
ds* = — (d6* + sin*0¢?). (3.15)
o
Making a replacement 9, — —ig in (3.12) leads to the

angular momentum operator in the presence of a monopole
with magnetic charge g at the origin [46]:

1 = cosé
L(q) = i(sinpdy + cotf cosea,,) — 9= cos e,
n
@ . . 1 ¥ cosf .
Ly = i(— cospdy + cotf singd,) — g — sine,
sinf
LY = —id, ¥ q (3.16)
where ¢ is quantized as ¢ = 0, = é *1, * g, ...,becausey

is a periodic variable with the period 47r. These operators
act on the local sections on S? and satisfy the SU(2) algebra
[L(q) L;")] = ig; jkLgcq). Note that when g = 0, these opera-
tors are reduced to the ordinary angular momentum opera-
tors (3.3) on S? (or R?®), which generate the isometry group
of §2, SU(2). The SU(2) acting on g from left survives as
the isometry of S2. Note thatin 2 + 1 SYM on R X S? the
isometry of §? is included in the SU(2|4) symmetry as a
subgroup.

C. Dimensional reductions

We dimensionally reduce the higher dimensional theo-
ries to the lower dimensional theories [24,25,37,38]. We
start with 2N = 4 SYM on R X S°:

PHYSICAL REVIEW D 78, 106001 (2008)

1
SRX§ -
RXS3

1
/ L re(F A+ 3.17)
RXS3 2

We put A = X;E' (note that we have ignored A,). Then, the
curvature 2-form is given by

F=dA—iAANA
=3,X;dt NE'+ in L X;E' A
— iX;X;E'AE
=9,X;dt NE'

AE! + X.dE!

_ %[x,, xm]))Ei N
(3.18)

1 .
+ Efijk(MXk + lfklm(ﬂflxm

By using (3.18), we rewrite (3.17) as

_ 1 /d dQ,
gR><S3 ( /2)3

1 . ! :
- E(IU’XI + lEijk(Mﬁij - E[X]: Xk])) )
(3.19)

f(% (9,X;)?

Srxs?

By dropping the y derivatives in (3.19), we obtain 2 + 1
SYM on R X §%:

Q 1
Sgxs?r = [d Eals r<_(atXi)2
ixs 2

1 1 2
=5 (i + e (w2 x - 51620 ) )

(3.20)

where g7, o, = e RXS? . Thus we obtain 2 + 1 SYM on R X

§? from N = 4 SYM on R X §* by dimensionally reduc-
ing the fiber direction of S* viewed as a U(1) bundle over
$2. One of two SU(2)’s that are the isometry of S3 survives
as the isometry of S2. Correspondingly, the superconformal
symmetry SU(2, 2|4) reduces to the SU(2|4) symmetry. It
is convenient for us to rewrite (3.20) using the gauge field
and a Higgs field on S2. We decompose X; into the com-
ponents tangential and horizontal to S? [22]:

X = xé, + ajé, — ayé,, (3.21)

where a, and a, are the gauge field on S? and y is the
Higgs field on S?. Substituting (3.21) into (3.20) leads to

Q |
/ a2 Tr( (a0 + 5 (0,0

Sgxs? =
R><32

1
- E(le - pux)? = E(Da')()z), (3.22)

where a’ run from 1 to 2. Dropping all the derivatives in
(3.20), we obtain
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1 dt 1 ) D. Vacua
Spw = —— [—2 Tr{ = (9,X;) ) .
ghw J M 2 While N =4 SYM on R X §3 possesses the unique
p q
1 i 2 vacuum, 2 + 1 SYM on R X §? and PWMM possess many
- §<“Xt - EEijk[Xj’ Xk]) )’ (3.23) nontrivial vacua [23,25]. Let us see how those vacua are
described. First, the vacuum configurations of (3.22) with
2 the gauge group U(M) are determined by
where gy, = -2 Thus PWMM is obtained from 2 + 1

- = x =0. 3.24
SYM on R X §? by a dimensional reduction. In this reduc- fo = wx =0, Dax (3.24)
tion, the SU(2|4) symmetry is preserved. | In the gauge in which y is diagonal, (3.24) is solved as
R R cosfd + 1 . .
ag :0) ay = ————— X, X = /"Ldlag("" 9s—1 - 9515 -+ 45y ds+15 - - +» qs+1"--)) (325)
sinf — —— —
Ny Ny Nyt

where the gauge field takes the configurations of Dirac’s . i
gaug & ,LLXZ + l,LLGijkL;O)Xk - Efijk[xj’ Xk] = 0, (326)

monopoles, so that g, must be half-integers due to Dirac’s
quantization condition. Note also that > N, = M. Thus
the vacua of 2 + 1 SYM on R X §? are classified by the
monopole charges ¢, and their degeneracies N,. The vacua [ LO _ X, LO _ X 1= iueq(n L0 _x ), (3.27)
preserve the SU(2|4) symmetry. (3.24) is rewritten in terms i i ! IRk ,

which is equivalent to

of the notation in (3.20) as and (3.25) is rewritten as
|
pL? = Xy = pdiag(e.., L L0 L0 L0 L L), (3.28)
N:il Z\VrT N:trl

where X = ¥é, + a,é, — 4,&,.
Next, the vacuum configurations of (3.23) with the gauge group U(M) are determined by
[Xi, X;] = —ipe X (3.29)
(3.29) is solved as

X, =-nL, (3:30)

where L; are the representation matrices of the SU(2) generators which are in general reducible, and are decomposed into
irreducible representations:

(3.31)
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where Lm are the spin j representation matrices of SU (2)
and ZSN (2j, + 1) = M. The vacua of the matrix model
are classified by the SU(2) representations [/, ] and their
degeneracies N,. (3.31) represents concentric fuzzy
spheres with different radii. The vacua preserve the
SU(2|4) symmetry.

E. Higher dimensional theories from lower dimensional
theories

In what follows, we obtain the higher dimensional theo-
ries from the lower dimensional theories. First, we recall
the relationship between the theory around (3.28) of 2 + 1
SYM on R X §? and the theory around (3.30) of PWMM,
which was shown in [22] for the trivial vacuum of 2 + 1
SYM on R X §% and in [21] for generic vacua. We intro-
duce an ultraviolet cutoff N, and put

2g, =2j, +1—N, (3.32)
dar N,
= (3.33)
8rxs®  8pw

Then, the theory around (3.28) is equivalent to the theory
around (3.30) in the limit in which Ny — oo with ¢, and
grxse fixed. The equivalence is proved as follows. We
decompose the fields into the background corresponding
to (3.28) and the fluctuation as X' — X\ 4+ x50,
where (s, ¢) label the (off-diagonal) blocks. Note that

|
dar dt
Sgxs?r = gz— —[P

1 ;
tr[i Zx&,;fif(a% - u?
st

p*(J + 1)%)x

PHYSICAL REVIEW D 78, 106001 (2008)

X®" is an N, X N, matrix. Then, (3.20) is expanded
around (3.28) as

Spxs = f dr—3" dQZ [a,xf“”a,x,(“)
R><S2
- (fo.f’” - i,uel-jkL;q“')X,((S‘t)
- %eijk[Xj: Xk](‘y’t))<,uX,<~t’S) + i,ue,-;mLEq”)Xf,i"Y)
- % €iml X Xm](”))], (3.34)
where
dst = 4s — 4qr- (3.35)

We make a harmonic expansion of (3.34) by expanding the
fluctuation in terms of the monopole vector spherical har-

monics Yquz
X = S S . 630
Q>|Qrz|m__
where p stands for the polarization, Q = J + ,;, and

Q=J+56 p—1- The properties of the monopole spherical
harmonics are analyzed and summarized in [21,38,47] and
references therein. Substituting (3.36) into (3.34) yields

(s,1)

Jmp
RXS?
. (s.1) (t,u) (u,5)
+ ’szl(]l + 1)5-,1mlqxrp1J2m2qtup2‘]3m3quxp3x]lm]p] Jamypy”tJymsps
S, Lu
- _1Vyn—qut1 (s.1) (t,u) (uv)  (v,5)
+ Z (=1) gf—mqu.xpflml%uﬂlszzf]:upzSfm%uphmsquuﬂ314m4qusp4x11m]p1xszzpsz3m3p3 Jamypy (3.37)
8,4,1,V

where &, 4 5, is defined by

Jama g, paJsmsquspa

511mlqml/zmzqwzhmsqsm

dQQ 7P 702 7P
4 €ijicX Jimyqit myqaj ¥ Tsmygsk

= 627, + )Q2J, + 2pF + )2, + )2, + 203 +

Ql Q] 1
«la, &, 1 (Ql 0,
~ m my

0; 05 1

and we have used the equality

(@) yp
leL Yquk + Yquz

Q3><Q1 0, 0s
91 492 43

1)(Q2J5 + 1)(2J3 + 2p3 + 1)(— 1) PiTpate)/2

), (3.38)

p(J + DY],,.. (3.39)

Similarly, decomposing the matrices into the background given by (3.30) and the fluctuation as X; — X, + X; leads to

the theory around (3.30):
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dt 1
Spw = f [a,xﬁsl’)a,xw
ng

- (MXES’Z) +ipepLio X" — %Ei/’k[x/’ Xk](“))

(Mx(t Y+ ey o Xy Eetlm[xl’ m](m))]’
(3.40)
where L;o is defined by
0y Udy(s Dl
L; o X0 = LPxis0 — xlen i (3.41)

The gauge symmetry of the above theory is expressed as
|

p*(J + 1)2))63"’,,3J

Ny [ dt .
Spw = g_o f [ ZX(J;JLT(azZ -

PW

+ipd py(Jy +

s,tu

DE) m (. . o xsD
Tmy (e dama(Geji) padsms (i) pa X my py X dymy pa X Jams ps

PHYSICAL REVIEW D 78, 106001 (2008)
SX = iuL; o ' — {[X; a]®. (3.42)

We make a harmonic expansion of (3.40) by expanding the
fluctuation in terms of the fuzzy vector spherical harmon-

ics Y/ y” Tmijj, ; defined in Appendix A as
"
X =y b Z A0 @ 7 (3.43)
i . Jmp Im(jsj)it )
p=0.x1 0=|j,—j | m==

x(J‘nZ) in (3.43) is an N, X N, matrix. Since j, + j, = Ny +

qs + q;, — 1, Ny plays the role of the ultraviolet cutoff.
Note also that j; — j, = q, — q; = q5. Substituting
(3.43) into (3.40) yields

(t,u) (u,s)

() (tw) _(wv) (vs)

- 1 ym—qu+1§ o . e o .
+ D) Z( 1) Sj_m(]u].x)PJlml(].s]r)ﬂl]2’”2(]1]")Pzgjm(].s]u)ﬂ-/}m3(]u]u)P3J4m4(]1/].x)l’4x.]|m1p1xfzmopothzpz J4Wt4p4]

s, Lu,v

where g-llml(jj/)Plszzulj//)Pz‘ISm}(///j)PS is defined in (A14) and
we have used (A10). In the Ny — oo limit, the ultraviolet
cutoff goes to infinity and

E Jimy(ui)prTama o) padsms (i) ps

(3.45)

—
5»’1 miqsp1Jamaqupalsmsq.sps

because the 6-j symbol behaves asymptotically for R > 1
as [48]
(_ 1)a+b+c+2(d+e+f+R)

V2R

><(eff ffd die>‘
(3.46)

Namely, this limit corresponds to the commutative (con-
tinuum) limit of the fuzzy spheres. Hence, in the Ny — o
limit with g2y /Ny = gRXSz/(47T) and ¢, = j, — M+ :
fixed, (3.44) agrees with (3.37). We have proven our
statement.

This equivalence is classical in the following sense. The
asymptotic formula (3.46) holds for a, b, ¢ < R. Namely,
the reduction (3.45) is valid for J;, J,, J3 << N,. Thus the
equivalence is true at tree level. The loop effect may cause
a deviation between the two theories quantum mechani-
cally, since in the loop J;, J,, J3 can be O(N,). Part of this
deviation should be attributed to the UV/IR mixing.’

a b c -
d+R e+R f+R

*What we call the UV/IR mixing here is investigated as the
noncommutative anomaly in [49,50]

(3.44)

I
Suppose we restrict ourselves to the planar limit, in which
N — o0 with gix N, fixed. Then, this restriction and 16

supersymmetries are probably sufficient to suppress the
UV/IR mixing, namely, the noncommutativity in the con-
tinuum limit. Furthermore, as we discuss later, they com-
pletely stabilize the vacua of PWMM. Thus, the
equivalence should also hold at the quantum level.
Indeed, the gravity duals of 2+ 1 SYM on R X $? and
PWMM proposed in [25] support this conjecture [21,51].
In the next section, we give an evidence that the UV/IR
mixing does not exist.

Next, we recall that the theory around a certain vacuum
of 2+ 1 UM = N X ) SYM on R X S? with the orbi-
folding (periodicity) condition imposed is equivalent to
U(N) 2N =4 SYM on R X S3, which was shown in [21]
(see also [37,38]). This is an extension of the matrix
T-duality to that on a nontrivial fiber bundle, S* as a
U(1) bundle over S2. The vacuum of 2 + 1 SYM on R X
S? we take is given by (3.28) in the N, — oo limit with s
running from —oo to oo, g, =s/2, N,=N, and
ﬁgixsz Sy - We decompose the fields on $ into
the background and the fluctuation

X, — X; + X, (3.47)
and impose the periodicity (orbifolding) condition on the
fluctuation

X[(s+1,t+1) (348)

_ Xl(s,t) = ng_t)'

The fluctuations are gauge-transformed from the patch I to
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the patch II as [37]

XPT0 = mibex s, (3.49)
We make the Fourier transformation for the fluctuations on
each patch to construct the gauge field on the total space
from

Xt 0,0, ) = > X"(1,0, p)e™ 2. (3.50)

We see from (3.49) that the left-hand side of (3.50) is
indeed independent of the patches. Using (3.50), we obtain

1 41 Lo
LEX6,0) = [y L6, 0 el 0

1 T
(X6, 90,0, 900" = 1 [ asX,(6. 0. 0)%,6, . )

X els=h/2, (3.51)
and so on. Then, we see that (3.34) equals Y (X (3.17). We
divide an overall factor Y, to extract a single period and
obtain U(N) N =4 SYM on R X S3. Of course, we can
verify this equivalence by seeing the agreement of the
harmonic expansions of the two theories. We expand
X;(1, 6, ¢, ) in terms of the vector spherical harmonics
on S3, Y0 (6, @, ) (see [21,38,44,47]):

Jmimni

0 0
Xi(t) 0’ @, l//) = Z Z Z Z merhp(t)
0

p=0,x1 J m=—Q j——

X Yfmn’qi(a) QD, (r//)’ (352)
where J run over all nonnegative integers and half-integers.
Q=J+46, and 0=J+ 0,1 are the spins for the two
SU(2)’s of the isometry of S3. Note that the SU(2) whose
spin is Q is broken in (3.20). By using the equality

ngqi(ex ¢) = eiqufmqj(ey ¢: 'ﬁ)’ (353)
we can easily show that the harmonic expansion of (3.19)

agrees with (3.37)/3, in the present setup with the corre-
spondence

x(ls’ml)p  Xym(s—1)/2p- (354)

Namely, (s — £)/2 is identified with 7.

Combining the above two equivalences, we see that the
theory around (3.30) of PWMM in the Ny — oo limit,
where s runs from —oo to 00, 2j, + 1 = Ny + s, and N, =
N, is equivalent to U(N) N =4 SYM on R X §? if
23w/ Ny is fixed to g’]‘gj: ZM, the periodicity condition is
imposed on the fluctuation, and the overall factor X is
divided.

PHYSICAL REVIEW D 78, 106001 (2008)

F. Proposal for a nonperturbative definition
of N =4 SYM

The relationship between N = 4 SYM on R X §° and
2+ 1 SYM on R X S? is again classical for the following
reason, and so is the relationship between N' = 4 SYM on
R X 83 and PWMM. In order to construct a well-defined
quantum theory, we need to introduce an ultraviolet cutoff
to the momentum of the fiber direction, which corresponds
to w in (3.50). Namely, we should consider finite-size
matrices by making s, # run from —7'/2 to T/2 with T an
ultraviolet cutoff. In this situation, however, the periodicity
condition (3.48) is not compatible with the gauge invari-
ance. In order to resolve this problem, referring to the
result for the modified reduced model in the previous
section, we discard the periodicity condition and take the
limit in which Ny — oo, T — 00, N — 00, T/Ny— 0,
Sowh — gfexsz — gzxs3N’u —

No 4m 1672

the previous section corresponds to the fiber direction of
§3 viewed as a U(1) bundle over S2. Our theory is a one-
dimensional massive theory, so the instability discussed in
the last part of the previous section is suppressed.
Moreover, the SU(2|4) symmetry preserved by the vacuum
(3.30) completely stabilizes the vacuum. Indeed, the result
in [52] ensures the perturbative stability, and it is easily
seen from the result in [53] that the nonperturbative insta-
bility via the tunneling to other vacua of PWMM caused by
the instantons is suppressed in the N — oo limit. Thus, we
do not need any quenching, and we can respect the gauge
symmetry and the SU(2|4) symmetry, namely, half of
supersymmetries of N' =4 SYM on R X $3, simulta-
neously. Indeed, (3.42) should correspond to the gauge
symmetry of 2N =4 SYM on R X S3. The noncommuta-
tivity probably vanishes in the continuum limit as men-
tioned before.

To summarize, we propose a nonperturbative definition
of N =4 SYM on R X §* as follows. We consider the
theory around (3.30) of PWMM with

-T/2=s=T/2

fixed. In this case, the S! in

2j,+1=Ny+s  N,=N.

(3.55)

We take the limit in which

NO — 00, T — oo, N — oo,
. T gIZDWN M 2 .
with Fo — 0 and N = 62 8y eV = fixed.

(3.56)

Then, we obtain the ’t Hooft (planar) limit of N = 4 SYM
on R X S$. The condition T/Ny, — 0 can be relaxed to
Ny — %—» oo that should be required to obtain the contin-
uum spheres. For simplicity of the analysis, we adopt the
stronger condition 7/Ny, — 0 in this paper. The result
should not depend on how to take the limit. Our formula-

tion preserves the gauge symmetry and the SU(2|4) sym-
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metry. It is, in particular, remarkable that it preserves 16
supersymmetries. We need to check the restoration of the
superconformal symmetry SU(2,2|4) to verify that our
formulation does work well. The restoration of the super-
conformal symmetry should imply that no UV/IR mixing
occurs. In the next section, we give some evidences for the
restoration of the superconformal symmetry.

IV. PERTURBATIVE ANALYSIS

In this section, we perform a perturbative expansion of
the theory around (3.30) of PWMM. In the beginning, we
do not assume (3.55) or (3.56). We make a replacement
X; — X; + X, in (3.4). We adopt the Feynman-type gauge
and add the following gauge fixing and Fadeev-Popov
terms to the action:

1 dt
giw J w?

+ pelLy, iplL; c] — iX, C]])-

1
Tr<_ 5 (A +iplL, X;)? + i20,Dyc
4.1

The resultant gauge-fixed action is written down in (B1) in
Appendix B. The mode expansion of the fields is given in
(B6), which of course includes (3.43). The harmonic ex-
pansion of the gauge-fixed action is given in (B7), (B10),
and (B11) which are a counterpart of (3.44). One can read
off the propagators from (B7) as in (B9) and the vertices
from (B10) and (B11).

First, we calculate the 1-loop contribution to the tad-
poles. The only possibly nonzero contribution is the trun-

cated 1-point function for x&“m’z

to N, and p is dual to ¢ in the Fourier transformation. This
quantity takes the form

(p);j» where i, j run from 1
278(p)8418:8 1810808, Y. 4.2)

There are five 1-loop diagrams for this 1-point function as
shown in Fig. 2. Note that all these diagrams are planar
ones. The diagrams (T — a) and (T — b) completely cancel

) T~ b)
e R
VOO0 }
\ //
(T — ¢) (T — d) (T — e)

FIG. 2. Tadpole diagrams. The curly line represents the propa-
gator of X;. The wavy line represents the propagator of A,. The
dotted line represents the propagator of the ghost. The solid line
represents the propagator of ®,5. The dashed line represents the
propagator of 4.

PHYSICAL REVIEW D 78, 106001 (2008)

each other. Below we list the value of Y for each of the
remaining diagrams.

1 .
(T = 0) = S &N 2N (— 1)
t,R

2R + 3
(R+1)?
2R — 1 1 1 R R
+ + A
R? R3/2(R+1)3/2){]z Js Js}
(4.3)

X JRR T DR 2R + 1)<

(T = d) = 12g7Ng Y N,(= Dt
t,R

RORL

t N N

X JRR+ DR+ 1){;

(T —¢) = —‘3_‘><(T—d), 45)

where g2 = g3y, u?/Ny. The 6-j symbol in the above ex-
pressions can be written explicitly:

I R R|_ . ytitri1)
PRI
(s =J)Us +ji * D+ RR+ 1)
VisG, F D2j, + DRR+ DR + 1)
(4.6)
By using (4.6) and j, = % +q, — %, we sum up the con-
tributions to the tadpole:

T—c)+(T—d)+(T—e)

No—1+g,+q,
=gSN Y F®((g - a)+ RE )
4 R=lg,—q/l
1
+ R-independent terms) X @(ﬁ)) 4.7
0
where
1 2R + 3 2R —1
FR)=4—-2R+1 +
R =4 =5 @R+ D
1
*m) “8)

The first term in (4.8) comes from (T — d) and (T — e)
while the second term from (7 — ¢). The asymptotic be-
havior of F(R) for large R,

3 1
tells us that in the Ny — oo limit
(T—c)+(T—d)+(T—e)
=g2N 2
o R=lg,—ql
We find no N,-dependent divergences.

4.9)

F(R)(qs — q,) + @(Nio) 4.10)
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We see that

SN(T =)+ (T—d)+(T—e)=0. (411)

This means that the vacuum expectation value (VEV) of

syl-x(f;,f;( p);; that corresponds to the 1-point function for

the overall U(1) field on R X §? indeed vanishes. This is
consistent with the fact that it is a free field decoupled from
the other fields when in the theory around (3.28) one takes
the Feynman-like gauge, to which the gauge corresponding
to (4.1) reduces naively in the Ny — oo limit. One can
easily verify from (4.8) that if there is no supersymmetry,
the VEV of the 1-point function for the overall U(1) field
does not vanish. Note that this happens even with the
restriction to the planar limit since all the tadpole diagrams
in Fig. 2 are planar. In [54], the same phenomenon was
observed in a bosonic gauge theory on the fuzzy sphere in
the continuum limit and interpreted as the UV/IR mixing.
On the other hand, by shifting @ in (3.30), one can always
cancel the VEV of the 1-point function for the overall U(1)
field and might obtain the commutative gauge theory.
However, in any case, we cannot follow this prescription
because it breaks supersymmetry. Here we have obtained
an evidence that in our case the UV/IR mixing is avoided,
that is, the noncommutativity vanishes in the continuum
limit, in a way compatible with supersymmetry.

If we consider the theory around (3.30) with (3.55) and
(3.56) that would realize N = 4 SYM on R X S3, we find
no T-dependent divergences in (4.10). Furthermore, (4.10)
vanishes for fixed s in the 7 — oo due to the summation
over f. In this case, the gauge corresponding to (4.1)
|

ig2 T/2

PHYSICAL REVIEW D 78, 106001 (2008)

reduces naively in the limit (3.56) to the Feynman gauge
in N =4 SYM on R X S$°. The isometry of S, SO(4) =
SU(2) X SU(2), is manifest in N =4 SYM on R X S°
with the Feynman gauge, and all the tadpoles vanish due to
this isometry. The symmetry corresponding to one of the
above two SU(2)’s already exists a priori in our theory,
while the other does not. Vanishing of (4.10) is a signal for
the restoration of the SO(4) symmetry in the continuum
limit (3.56). If this restoration and the vanishing of the
noncommutativity is indeed the case, we obtain a commu-
tative gauge theory with 16 supersymmetries on R X S°.
This theory should be nothing but N" = 4 SYMon R X §3
unless we perform any extra fine-tunings. Thus we have
found an evidence that the superconformal symmetry is
restored and our formalism does work well.

Next, we calculate the fermion self-energy in the theory
around (3.30) with (3.55) and (3.56) at the 1-loop level, and
compare the result in N' = 4 SYM on R X $°. The fer-
mion self-energy is given by the truncated 2-point function

<ll/§?’,,fLA(p),-j l//SY,I,',f:EA/(p’)kZ), and this takes the form

278(p = P')8yy 8,182,818 18158 QS ().

JKK

(4.12)

The diagrams which contribute to the fermion self-energy

at the 1-loop order are shown in Fig. 3. We list the value of
QS‘KZ, (p) for each diagram in Appendix C.

We set the external indices to specific values to calculate
the leading contribution in the continuum limit (3.56): s =
t=0, k=«k'"=1, and J=0. The divergent part of

Q(()Ol’?)( p) for each diagram is evaluated as

1 2R, — 1 1

No—1+u/2 IR, + 3
1
(F = @)g=r=1=0 = ——5N [

I u=-T/2 R,=|u/2|

Ri+1 1-(QR +D

R, 1+ (R, +1)

. / R, 1
Rl + 1 l_{Rl + RI(RI +

4ig? 1
()
M 4
) T/2

l
2

N ,R1+1_ 1 ]
1) +3 Ry 1+{R, +yR(R + 1)+ 1

4ig?
InT — l—‘iN(— =+ §) InT,
M 8

18
=N

(F - b)KZK’Z],JZO
o

g g i
u=—T/2 R,=lu/2| Ry 1 —{R, +yR/(R, + 1)+ 3}

(4.13)

N / R 1
Ri+1 [+{R, +R/(R, +

4ig> (1 3
_—2N<—+§)IHT,

1) + }1}]

7 2
12ig2 12 Nelterpo
(F = Ou=r=14=0 = =——5N [ 1
K u=—T/2 Ry=lu/2|
_ 12ig?

3
5 N(—l + —) InT,
Mm 4

1 R, 1 ]

2R +1 [+ QR +3 2R +1 1— (2R, +3)
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_»é(_(:)_%,._ -»i\—/\:\—’zp- -P-Qb-

(F-a) (F - b) (F-o

FIG. 3. Diagrams for the 1-loop self-energy of 4. The curly
line represents the propagator of X;. The wavy line represents the
propagator of A,. The solid line represents the propagator of
® ;. The dashed line represents the propagator of 4.

where [ = p/u. Note that we find no Ny-dependent diver-
gences in each diagram. This is consistent with the fact that
(2 + 1)-dimensional gauge theory is superrenormalizable.
We find that the divergence in T is logarithmic in each
diagram. This is again consistent with the fact that the
fermion self-energy has only the logarithmic divergence
in four dimensions.

In N =4 SYM on R X §°, the fermion self-energy
is given by the 2-point function (%, ;.(p);; X
w}m,ﬁl,K, (P, where J and J are the spins for the two
SU(2)’s of the isometry of S3. In the Feynman gauge to
which the gauge corresponding to (4.1) reduces naively in
the limit (3.56), it takes the form

278(p — P84 81181181718yt Siv S Q5 (p). (4.14)

By using the technique in [44], we evaluate each diagram
in Fig. 3 in the Feynman gauge. As in [44], we introduce
naive cutoffs for the angular momenta and evaluate the
divergent part of Qf (p) for each diagram as

(F - a)p = ig;zv[{z T %(J + %)}m(zA)

+ {é - 2(1 + %)}m(zA)],
4ig?

1 S (4.15)
(F =) = 6 N x (— 5){1 + <J + Z)}m(zA),

(F—c¢)g = 4;%2N X 3 X {l - (J + %)}ln@A).

The cutoffs for the angular momenta break the gauge
symmetry and supersymmetry. Nevertheless, the coeffi-
cient of the logarithmic divergent part for each diagram
has a universal meaning. We find that (4.13) completely
agrees with the continuum case (4.15) under the identifi-
cation A = T. This fact provides an evidence that in the
continuum limit (3.56) our theory reproduces N =4
SYMon R X 3.

Furthermore, weput s = 1,1 =0,k = 1, K = —1, and
J=1. For k # «/, the fermion self-energy in N =4
SYM on R X §° in the Feynman gauge vanishes due to
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the SO(4) symmetry, while it does not vanish a priori in
our theory because the SO(4) symmetry is not manifest in
our theory. However, it turns out that there is no divergence
in ;211 (p) for each diagram and it vanishes due to the
summation over the blocks [the summation over u in
(4.13)]. This is another evidence for the restoration of the
SO(4) symmetry, which implies the restoration of the
superconformal symmetry if the noncommutativity
vanishes.

V. CONCLUSION AND DISCUSSION

In this paper, we proposed a nonperturbative definition
of the ’t Hooft limit of N" = 4 SYM. We realized N = 4
SYM on R X S as the theory around a vacuum of PWMM.
The size of matrices plays a role of the ultraviolet cutoff.
Our formulation preserves the gauge symmetry and the
SU(2|4) symmetry. SU(2|4) is a subgroup of SU(2,2|4)
which is the superconformal symmetry possessed by N =
4 SYM on R X S3. In particular, 16 supersymmetries
among 32 supersymmetries in N =4 SYM on R X §*
are preserved in our formulation. We calculated the tad-
poles and the fermion self-energy at the 1-loop order. The
results give some evidences that the UV/IR mixing does
not exist and the SU(2, 2|4) symmetry is restored in the
continuum limit so that our formulation does work well.

We should collect more evidences for the restoration of
the superconformal symmetry. Higher-loop calculations
are needed. Of course, the restoration should eventually
be confirmed nonperturbatively.

The numerical simulation for our theory can be per-
formed based on the method in [39-41]. Unfortunately,
the size of matrices available at present seems too small for
the continuum limit (3.56). It is now possible to perform
the numerical simulation for the theory around (3.30), for
instance, with s taking only 1 and N; = N, and to take the
continuum limit that would realize the "t Hooft limit of 2 +
1 SYMon R X §2. Then, we can compare the results of the
numerical simulation with those predicted by the gravity
dual [25] to check whether the UV/IR mixing is avoided.
Anyway, we believe that the numerical simulation for our
theory will be possible in the near future. It is also desirable
to develop an analytical (approximation) method that en-
ables us to analyze our theory at strong coupling.

By using the result in [47], we can easily construct as a
physical observable the Wilson loop in our theory that
corresponds to the ordinary Wilson loop in N = 4 SYM
on R X S3. We can also consider the Bogomol’nyi-Prasad-
Sommerfield (BPS) Wilson loop [55,56] by including the
matter degrees of freedom in the loop. It is important to
calculate the VEV of these Wilson loops in our theory
analytically and numerically in the strong coupling regime
and compare the results with the predictions of the gravity
dual [57-59]. We also hope to find the integrable structure
of N =4 SYM at strong coupling by analyzing our
theory.
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APPENDIX A: FUZZY SPHERICAL HARMONICS

In this appendix, we summarize the properties of the
fuzzy spherical harmonics analyzed and summarized in
[21] (see also [32,33,60-63]). Let us consider (27 + 1) X
(2j" + 1) rectangular complex matrices. Such matrices are
generally expressed as

M =Y M, |jn'"l.

rrl

(AD)

We can define linear maps L; o, which map the set of
(2j + 1) X (2j + 1) rectangular complex matrices to it-
self, by their operation on the basis:

Ly o jrkj'r'l = LG r = 1inG'rILy, a2)
where LEJ] are the spin j representation matrices of the
SU(2) generators. L;o satisfy the SU(2) algebra
[Lio, Ljo] = i€;uLy ©

We change the basis of the rectangular matrices from the
above basis {|jr){j’r'|} to the new basis which is called the
fuzzy spherical harmonics:

=J1702(—1) e inG'rl (A3)

Y iy

where N, is a positive constant, which is taken to be an
integer as an ultraviolet cutoff in Sec. III. For a fixed J, the
fuzzy spherical harmonics also form the basis of the spin J
irreducible representation of SU(2) which is generated by
L i°

(Li9)?Y sty = I + DY gy

Leo ¥y =T Fm)T £m+ DY ey, AP

Ly o Y iy = mY pmjp).-

The Hermitian conjugates of the fuzzy spherical harmonics
are evaluated as

(YAva(jj’))-r = (_ I)M7(j7j/) ?J—m(j’j)'

The fuzzy spherical harmonics satisfy the orthonormality
condition under the following normalized trace:

(AS5)

1 N N
Vo tr{(YJm(jj’))TYj’m’(jj’)} = 0770 mm'» (A6)

where “’tr”” stands for the trace over (2j/ + 1) X (2j/ + 1)
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matrices. The trace of three fuzzy spherical harmonics is
given by

AJymy (")

1
fvmz(lj/)hmz(/j”) tr{(YJI my (JJ”)) Yfzmz(ll ) Yfzmz (J'J”)}

_ (—1)‘]1+j+j”’JNO(2J2 + 1)(2-]3 +1)

J, S, J
Jym 1 2 3
X CJ;”‘;JS"%{ jl j// J }’

(A7)

where the last factor of the last line in the above equation is
the 6-j symbol.

We also introduce the vector fuzzy spherical harmonics
Y ’;m(jj,) and the spinor fuzzy spherical harmonics ¥ Tm(jj)a
where p takes —1,0,1 and « takes —1 and 1. They are
defined in terms of the scalar spherical harmonics as

=i ZV’”CQplnYQP(IJ "y

= ZCU;’:(I/2)Q Yopiy
P

Jm(u )i

(A8)

Y;m(jj’ )a

where Q=J+8,, 0=J+6,, and U=1J+ 8,4,
U =J+ 8,_,. The unitary matrix V is given by

1 ( -1 0 1 )
V=—7|-i 0 —il.
V2\ o v3 o
The vector fuzzy spherical harmonics and the spinor fuzzy
spherical harmonics satisfy

(A9)

L, jmm,)l =JJ(J+1 5ponm(,] )
le"/kL/ ° Ylm(jj’)k + Yfm(u "i P+ I)Yfm(u’)l
((U) pLio +35aﬁ) Im(ijhB = (J + i) Im(jj)ar
(A10)
Their Hermitian conjugates are
i) = DR (A1)

=(_1)m (G- j)+Ka+1YK

(YJm(]) )a) J=m(j'j)—a’

and they satisfy the following orthonormal relations:

1. .
p p =
— (P P} = 8t B,

No ' ' (A12)

1o o
FO tr{(YJm(jj/)a)TYJ’m’(jj/)a} = 5./.1’8mm’6m<

We can evaluate the trace of the three fuzzy spherical
harmonics, including the vector harmonics and/or the
spinor harmonics, as follows:
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MIm(j'j) = i v \tper VP2
Dot ps = g S p) Y i i

= \/3N0(2J + 127, + 1)(2J; +2p2 + 1)(2], + 1)(2], + 2p3 + 1)(=1)prte)/ 2015+

0, 0 1 - =
X o c/m S0 0 Al3
0 O 1 Qym;Qymy j// j j/ ’ ( )
J J 0

. 1, , ,
= .. P1 P2 P3
Eam ity sty = €t g L 0¥ i ¥ o)

\/6N0(2J1 + 1)(2J, +2p + 1)(2J, + 1)(2J, +2p3 + 1)(2J5 + 1)(2J3 +2p3 + 1)

0 0 1 0 0, 0
X (—1)"(prtpatpstD/2-01-0:-0:42j42/'+2/" L 9 5 ( b2 3)
my - nyp Ny

0; 0; 1
y {Q//l Qz Q/z } (Al14)
J J o J
?’J]ml(j/j)Kl = i tr{(YA'K' )1' YA'KZ ? 1 }
Jyms (j ") ko Jm(j" ) N Jimy (e’ L ama (et Im( )

= V2N 2T, + DI + 122, + (2], + 2)(— DT+

v, 0, ! -
~ U u, U, J
X UZ U2 % CUizijm{ ]”1 j2 j/ } (AIS)
J J 0

A~ Jimy (7 )k t i pre P
G V' T DY mir it

= _ 3
Jymy(j " ko Jm(j" p T Ny tr{(Yllml(j'j)ot

= \/6N0(201 + 12T, + 1)(2J, + 2)(2T + 12T + 2p% + 1)(—=1)p/2H 01+t

u 0, 3 -
. w [0, U
<{v, 0, 1 cg;m;Qm{ oo %} (A16)
0 0 1

APPENDIX B: HARMONIC EXPANSION

In this appendix, we make a harmonic expansion of the theory around (3.30) of PWMM. This harmonic expansion
enables us to perform the perturbative calculation of the theory in Sec. IV. First, we make a replacement X; — —uL; + X;
in (3.4) and add the gauge fixing and the Fadeev-Popov terms (4.1). The resultant action is

— (Qgauge gauge matter matter
SPW+gf‘+FP - SPW,free + SPW,int + SPW,free + SPW,int’ (Bl)

where

106001-15



ISHII, ISHIKI, SHIMASAKI, AND TSUCHIYA PHYSICAL REVIEW D 78, 106001 (2008)
2
st f a’tTr( (0, — —[L,, AT - (a AP =B+ ieplL, X

+ %[Li, X P + ico?c + ine[L,, L, c]]), (B2)

, 1 , 1 : .
S}g)c‘l)l\]]‘giit = —g2 M2 [dt Tr(—l(S,Xi)[A,, Xl] - M[A[, Xi:”:Lir At] - E[At, Xi]z + l/“(‘eijk(Xi + leilm[Ll’ Xm])X]Xk
PW

1 . _ _
+ EeijkeilijXleXm —ipl[L;, clle, X;]— o,e[A, C]), (B3)

1 1 % w? .
SPW free = 2ol fler<§ 9,D450,D4 — ?q)ABq)AB + T[Li’ DL, PB] lﬁlfj;az P
PW

w3t + o1z 0)) (B4)

1 1 1
ShWint = 33 fdf Tr<_i(3r¢A3)[Ap DAB] — E[Al’ O 5l[A;, PAB] — ul[L;, ®ypllX;, PAB] + E[Xi, D, 5][X;, PAB]
8pw M
1 .
+ Z[q)AB; Oep [PAB, DCP] + ‘ﬂ:r;[Ap ]+ l///IU'l[Xi: A+ ‘,0}0'2[‘1)“;, (W};)T] — (YN o D yp, lﬂB])-
(BS)

We make a mode expansion of the (s, ) blocks of the fields in terms of the fuzzy spherical harmonics defined in
Appendix A:

Jstie J Jstii

(1) (s,0) 5 (s,0) _ (s,1) A~
A= X B @ Yy Ouy = Y Z Pas.om ® Yomi i

=i m==1 J=lis=id m==d

Jstis ( t) I
. . . A

o= S Z @Y gy =Y Z &t ® ¥y

J= |]x ]t|m—7.] J= |/\ Irlm_7‘1

Js i

YA = Z Z Z lﬁ;‘;(qjxt)@ 'J<m(m,)

k=21 g=|j,—j|m==U

Jstie J+1/2 Alsf) Jstii— A )
. st 5t
o Z Z l/lJ ® YJm(jx/) Z Z l//jm 1 Jm(]‘],))
J=ljs—jlm==J=1/2 J=lj,—jl—=1/2m==J (B6)

Js Tt

U
)t _— (t.s)t t
AS - Z Z Z (!/A;mK@Y’J(m(],j:
k=21 g=|j,—j|m==U

Jetie J+1/2 oy 51t Jstiz )t
j— s s
- Z Z ¢A Jml ® Y]m(j,jx + Z Z ‘ﬂA Jm— 1 Jm(M )y
J=|js—j |l m=—J—1/2 J=lj—jl=1/2m==J
1 Js i

(s,0) _ (s, t)
X; > 2 Z mp ® Vi
p==10=lj—jlm=-0

Jstii J+1 ( ) Jstis (5.0) 0 Jstii— (5.0)
_ 5,1 5,1 st
- Z Z Xim1 ® YJm(jJ/,)t + Z Z Xm0 ® Y.lm(]‘j,)l + Z Z 'me 1 ® Jm(‘/xj,)l
J=ljs=jlm==J=1 J=ljs—jlm==J J=ljs—jl—1m==J
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Note that the modes in the right-hand sides of the equations in (B6) are N; X N, matrices.
By using the properties of the fuzzy spherical harmonics summarized in Appendix A, we rewrite the free part of (B1) in
terms of the modes as follows:

, 1 1 .-
SEE o T Spatter | — p f dt tr(i(—l)m_("‘_ff)“x(f‘”f;{—a,z — pPoP — u8,0J(J + DAY

1 - -
+ z(—1)'“—0»»-—h>+1139’,”’>{—a% — p2J( + DB+ (=102 + (7 + 1)kl

1 e ‘ R ‘ . .
Ly g i - o s - o) B
where
1 N, 3 1
p = p (ju,z’ wy = pl + 1), ol = ,LL(J + 4_1) w? = ,u(] + 5) (B8)
Pw

We can read off the propagators for the Fourier transforms of the fields from (B7) as

< (“)( ) o - {(_l)m(jxj,)+15,1/Sm_m/SPP/SS,/S,S/SHSN(ZWS(]J +p')p2if;>.2 (p #0)
Xgmp\P)ijX i o \D k1) = ‘

Jmp J'm'p' (i ig? ’
(_l)m Us ]')+]8]]/6m,ml6”/6”/61'15.]']{277'5(p + p/)m (p = p/ = O)
02
(s,0) (s,1) — (—1\ym—(,—j)+1 2
<BJ‘m (p)ijBJT’m’ Py = (=1) Ui 81]"Sm—m’6st’6ts’6il6jk2775(p +p') p2 — MZJ(J T 1),
2
s, _ ‘/’ / (s g
<C(]Y,,:)(p)ijcf,§n1t/)(Pl)kl> = (_l)m Us j’)a.l.l’5m—m’8sr’8t5’8il8jk2775(p + P/) _p2 T ,U,ZJ(J T 1), (B9)
) 1 o ig®
<¢Sg?/,n(P)ij¢if/£/?]/m/(P/)k1> = EGABA’B’(_I)m Ui 11)5JJ’am—m’8st’8ts’8il§jk2776(p + P/)m’
J

) 1
: ” ig’?(p + ko)
<‘f/?r(ns;<t)(l7)ij llfif/,;/),:/,(/(l?/)kﬂ = 5].1/6mm’SKK/5g/8ss/5tt/6i16jk27r6(p - P')ﬁ-
J

The gauge part of the interaction terms in (B1) is rewritten as

1 ~
gauge __ o (s,1) (t,u) (u,s)  _ _(tu) (u,s)
SPW,int g2 fdttr[ lDJ]ml(jxjt)J2m2(jtju)pZ']SmS(jujx)pB BJI m (alezmz/)zxfsm}m XJymyp, a’thﬂ)s)

o - ~ (s,0) pltu) (u,s)
+ n(W2 2+ DDy, GipsmaGinosmGades — V1 DD pmGiosmGuipssim G B m BlomyXomsps

—1yn—Us— i)+ 1 (] 7 (0 (tw) _(wv) pvs)
+ (=)D G tmaio sl mGuide DPasmaGuidim o pdsmsGuios Bam X Ly ps X s ps Blm,

_ g T (s,0) (tu) (u,v) _(v,s5)
Dll'nl(j.\'jt)JZmZ(.it.iu)pZJ_m(.juj.\)pD13m3(jujv)J4m4(jvj\')p4‘]m(j\'ju)p JlmlxlzmzszJ3m3 J4m4p4)

. fa (s,1) (t,u) (u,s)
+ lMpl(pl + l)gJ]ml(jsj,)p]szz(j[j“)pzl3m3(jujx)p3lemlplszmzpzx]3m3p3

1 L N N
(= 1)ym=Gi—i)+1 . . . . . o e ) ) (v
+ 2( hm=us E1mmuiopdvmi G amaGej)p2EImGj)pdsmsGud) psTsmaiu i) pa X, m py X Domapy X Tyms oy X Dymaps

. 7 (s,8) =(t,u) _(u,s) g (s,0) _(tw) =(us)
WW3(J3 + 1)(szmz(jxj,)fams(jrju)OJlml(juj.»plszmz CrymyXaim, p, szmzosj,)flml(j,jl,>p113m3<juj.\.)0012m2x1,ml p1013m3)

e (5,7) ~(tu) (u,5) (tu) o =(u,s)
+ CJlml(j.\jr)JanZ(jtju)J3m3(juj.\-)B-;]ml (ath2n12 CJ3r:13 + Crm, ath3r:z3 ] (B10)
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The matter part of the interaction terms in (B1) is rewritten as

1 i 5 gD T (t0) (,5)
Sg\%tlel‘rl't = ? /dttr[i GABCDC-Ilml(jsjt)szz(jzj:¢)J3m3(ju/s) /Slml(a ¢Al?,]2m2¢gl§,13m3 o ¢Al';]2m2 t(bé‘DSyJ}f’%)

1

ABCD pIm(jgju) (SJ) (714) (u,v) (v,s) (S 0 g (tu)
* 5 CJlm](/\]r)JZmZ(/z]u)CJm(/YJU)J3m3(/u.lv)']4’n4(/v]r( Jym J2m2¢AB,J3m3¢CD,J4m4 Jlmld)

H eascp /

E ( ‘]2(‘]2 )Dflml(J:Jr)hmz(/z/u)ohmz(jujs)ﬂz

" G0 g0 )
= NI+ DD GijirtsmsGuipsdim G200 Pas,1m, PEDtymy amsps

1 o A .
Z ABCD(_1)ym—(is—ju)+1 . - -
+26 (=1) s (@J4”14(lv/x)']m(/s/u)p'/3m3(/n./u)p3DJZ’"Z(J!./u)" muj)pdimiGsjdp1Xdymy py

s A - ) ()
X e = DimGuinssmuinosimGuinn Dimstios-mGuipsmu)e X0 me, Do rm &

1
EABEF (CDGH pIm(js ) (s,0) (t,u) (u,v) (v,s)
*t3 8 leml(js Jolams (i, ]u)clm(/s/u)Jsmz(/ujv)ummv/x)(¢AB,J|m, ¢CD,sz2¢’EF,13m3¢’GH,J4m4

(s,0) (t,u) (u,v) (v,s) 2 ). G (s,01
AYB»J]ml(ﬁE’?szz ¢CMDIjj3m3 ¢(;}1;,J4m4) + (( l)mz Uit =)/ ‘T . z?(;rj:):lz-hm}(j:ju)lﬂ ‘

_ }'Jlml(j.vj:)’fl | l/,(S,f)'l' ¢A(S 1) (u 1) ) ((_ 1)m3—(]>\.—]u)+(K| —Kz)/z sz*mz(jzju)Kz

Jomy(jju)kad3ms (G j) T AJimyky 7 Jamg iy szz

Alu,t) I imy (K (5,00t A(s,u) (u 1) — — ABCD Us—i)—x1/2
X (/112'"2"2 + g"2m2(jsju)‘<2j3m3(jujr)pS wAJllel (//12’”2"2 J%msps) 2 (=1t ‘T

X lp(s,t)f ¢(M) lp(’:“)T + (—1)m2=Uu=is)= K2/2:]:'11m1(1c11)'<1 )lp(s,t)‘r lp(u,S)’r ¢(Cubt,)13m3

AJymyk, 7 CD,Jzmy ¥ B,Jymyk, Jomy (jsju)kadzms(j, g, AJimyky T B,Jamyky

_ my—(j,—Jjs)—K2/2 ma (s ju) ko A(s,) 4 (tu) B(u,s)
i((=1) leml(/slt)Kl-ISm?(lt/u)¢J1’n1K1 P8 1y W smor

(= lym G2 D emGe A g B ¢5\"Bf}3m3)]-

Jomo(jiu) ko d3ms (Juds 2Ma Ky

APPENDIX C: FERMION SELF-ENERGY

In this appendix, we list the value of Q(f,‘{',l,( p) for each diagram of the fermion self-energy in Fig. 3
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AB,Jym; B,

Py (t.u)
¢AB Jomy szzﬂ3

CD,Jymy Jsmzﬂz

A,Jllel

J—my G dyms( gy YA
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CD,Jymy

A(u,t)
Jamyky

(s,u)

Jymyp3

Ji=my(ijs) ki J3ms (o)
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3ig? - - Rsz (2R, + 3) 1
(F—a) = ——2-NNpQU + 1HQU' + 1)d, 2R, +2)2R, + 1)
/*l“2 OJ v M%ZL R2 +1 ! : = (Rl + R2 + %)
(U U (U U3 (2R, + 1)(2R, + 3) |
ot )+
X{R +1 R % *R1+1 R, % + R+ 1 2R1(2R1+1)l+(R1+R2+%)
(R, +1 R, 1) LR2+1 R, 1)
7 1 17 1
(U 1 v ? ( 1 v f (2R, — DR, + 1) |
X 4 Rl 5 Rl 5 - < 3 R1 3 + R2 (2R1 + 2)(2R1 + l)l— (R] T Rz n %)
(R, +1 R, 1) LR2+1 R, 1)
(U U [ U U (R, — 1)(2R, + 1) 1
X Rl +% Rl % h Rl +% Rl % + R2 2R1(2R1 + l)l + (Rl +R2 +%)
(R —1 Ry, 1J Ry =1 Ry 1)
(U U 1) ( u 0 1
2
X Rl _% R1 % J % R1 % +M
JR(R, + 1
(R, —1 R, 1] LRZ 1 R, 1) 2Ry 1)
( v U 1 v U1
R, +2)2R, + 1) 1 : 1 1
2 2 2 2
v U 1} v U 1
2R, (2R, + 1) 1 1 1 ,
1 Rl - ) Rl 2 Rl ) Rl 2
I+ (R, +yRy(Ry + 1) + )
R, R, 1 R, R, 1
7 2 7 a
XHU Ril RzHU R.1 R2}+( - (K+K,)/2{U R.l RzHU R.l Rz}]’ 1)
.]u ]S ]t Ju ]S .]t ]u .]l ]Y .]u Jt .]v
g2 (2R, + 1)? (2R, +2)2R, + 1) v U
(F — b) = NN QO + )0 + Doyy Y~ ! 1 AR+ R S
“ Rk, VR2(Ry + 1) | 1= (R + /Ry (Ry + 1) +3) R R0
2 2
v U 4 u U 4 v U 1
XA R +1 R, 1 2R\(R, + 1) R, —1 R 1 R L p 1
2 2 b R VRSB, T D |2 2 L2 7tz
R2 R2 0 R2 R2 0 R2 R2 0
7 & 7l
X HU ok HU ik }+( - <K*K”/2{ UK RZHU ; RZ}] (C2)
Ju s Ju Js i VPR T 1 O P PR N

106001-19



ISHII, ISHIKI, SHIMASAKI, AND TSUCHIYA

12ig?
(F_C)=_ D)
e uR R,
(U U 1 U U
X+R1+% Rl %"' R1+% Rl %
R, R 0Jl R R 0]
uvou o3 uv U3
<R =1 R A R-) R
(B R 0JU R R 0
XHU R, RQHU’ R, R,
Ju Js T 3Vju Js i
where [ = p/u.

(18]
[19]
(20]
(21]

(22]

NN QU + DO+ Doy S @Ry + D| @R, + 2R, + 1)

L+ 2R, (2R, + 1)

} (_1)1—(K+K’)/2{
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1
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