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Using the method of maximal cuts, we obtain a form of the three-loop four-point scattering amplitude

of N ¼ 8 supergravity in which all ultraviolet cancellations are made manifest. The Feynman loop

integrals that appear have a graphical representation with only cubic vertices, and numerator factors that

are quadratic in the loop momenta, rather than quartic as in the previous form. This quadratic behavior

reflects cancellations beyond those required for finiteness, and matches the quadratic behavior of the

three-loop four-point scattering amplitude in N ¼ 4 super-Yang-Mills theory. By direct integration we

confirm that no additional cancellations remain in theN ¼ 8 supergravity amplitude, thus demonstrating

that the critical dimension in which the first ultraviolet divergence occurs at three loops isDc ¼ 6. We also

give the values of the three-loop divergences in D ¼ 7, 9, 11. In addition, we present the explicitly color-

dressed three-loop four-point amplitude of N ¼ 4 super-Yang-Mills theory.
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I. INTRODUCTION

Recently, the widely held belief that it is impossible to
construct a consistent four-dimensional pointlike theory of
quantum gravity has been called into question for maxi-
mally supersymmetric [1]N ¼ 8 supergravity. In particu-
lar, an integral representation of the three-loop four-point
amplitude [2] in this theory has been obtained explicitly,
which exhibits cancellations beyond those needed for ul-
traviolet finiteness. Moreover, for a class of terms acces-
sible by isolating one-loop subdiagrams via generalized
unitarity [3], the one-loop ‘‘no-triangle’’ property [4–8]—
recently proven in Refs. [9,10]—shows that at least a
subset of these cancellations persist to all loop orders
[11]. Interestingly, M theory and string theory have also
been used to argue either for the finiteness of N ¼ 8
supergravity [12], or that divergences are delayed through
at least nine loops [13,14], though issues with decoupling
towers of massive states [15] may alter these conclusions.
If a perturbatively ultraviolet-finite pointlike theory of
quantum gravity could be constructed, the underlying
mechanism responsible for the required cancellations
would have a profound impact on our understanding of
gravity.

Over the years supersymmetry has been studied exten-
sively as a mechanism for delaying the onset of divergen-
ces in gravity theories (see, e.g., Refs. [16,17]). In
particular, the existence, or conjectured existence, of vari-
ous off-shell superspace formalisms restricts the form and
dimensions of potential counterterms, leading to bounds on
the first permissible loop order at which an ultraviolet
divergence might appear in N ¼ 8 supergravity. The
precise bound depends on the detailed set of assumptions.
For example, if an off-shell superspace withN ¼ 6 super-
symmetries manifest were to exist, potential D ¼ 4 diver-

gences would be delayed to at least five loops [17], while
the existence of a superspace with N ¼ 7 supersymme-
tries manifest would delay the first potential divergence to
at least six loops [17]. Similarly, if one were to assume the
existence of a fully covariant off-shell superspace with
N ¼ 8 supersymmetries manifest, then the first potential
divergence would be pushed to the seven loop order [18].
Full superspace invariants, which could act as potential
counterterms, have been constructed at eight loops, sug-
gesting that a divergence might appear at this loop order, if
it does not appear earlier [19]. This first potential diver-
gence can even be pushed to the nine loop order, with an
additional speculative assumption that all fields respect
ten-dimensional general coordinate invariance [20]. This
bound coincides with the one argued [14] from the type II
string theory nonrenormalization theorem of Berkovits
[13]. Beyond this order, no purely supersymmetric mecha-
nism has been suggested for preventing the onset of diver-
gences. In fact, on dimensional grounds one can argue that,
for any supergravity theory to be ultraviolet finite to all-
loop orders, novel cancellations beyond the known super-
symmetric ones must exist.
Surprisingly, cancellations beyond those implied by

naive loop-momentum power counting appear to be ge-
neric in gravity theories, as suggested by the one-loop
study of Ref. [21]. This reference demonstrated that these
novel one-loop cancellations are directly connected to the
remarkably good high-energy behavior of gravity tree
amplitudes under the complex deformations used to prove
on-shell recursion relations in gravity [10,22–26]. Recently
[27,28], these tree-level properties have been understood in
terms of a spacelike gauge similar to light-cone gauge [29],
where an enhanced Lorentz symmetry was shown to exist
under large complex deformations.
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For nonsupersymmetric theories, these cancellations are
insufficient to render the theory ultraviolet finite. Indeed, it
is a classical result that gravity coupled to matter generi-
cally diverges at one loop [30–32]. Pure Einstein gravity
does not possess a viable counterterm at one loop, delaying
the divergence to two loops [30,33,34]. The presence of a
two-loop divergence in pure Einstein gravity was estab-
lished by Goroff and Sagnotti and by van de Ven, through
direct computation [35,36].

Supersymmetric cancellations can often act on top of
any generic cancellations. In particular, in the case of
N ¼ 8 supergravity at one loop, such cancellations com-
bine to cause the vanishing of the coefficients of all scalar
bubble and triangle integrals [4–8], proofs of which have
been given recently [9,10]. The one-loop amplitudes can be
expressed solely in terms of box integrals, multiplied by
rational coefficients, exactly as is the case for N ¼ 4
super-Yang-Mills theory [37]. This one-loop no-triangle
property can be used, via unitarity, to understand a class of
higher-loop cancellations [11]. However, it does not ac-
count for all of them, because regions where two or more
overlapping loop momenta become large are not covered
directly by the one-loop analysis. More generally, the
picture that emerges at higher loops is that the excellent
ultraviolet behavior found in explicit calculations [2,38] is
due to a combination of generic cancellations with super-
symmetric ones [11,21]. Interestingly, the absence of bub-
ble integrals in theories with N � 5 supersymmetry at
one loop supports speculation that such theories may also
be finite, if N ¼ 8 supergravity is finite [21].

To establish the critical dimension where divergences
first occur at a given loop order, we evaluate amplitudes
directly. A general strategy for obtaining loop amplitudes
in gravity theories was first given in Ref. [38], following
earlier work in N ¼ 4 super-Yang-Mills theory at one
loop [37] and higher loops [39]. Using generalized unitar-
ity, at any loop order we can evaluate scattering amplitudes
from products of on-shell tree amplitudes [3]. In gravity
theories we can then exploit the Kawai-Lewellen-Tye
(KLT) relations [40], which express gravity tree ampli-
tudes directly in terms of gauge-theory tree amplitudes.
(Subsequent generalizations and other approaches to these
relations may be found in Refs. [41–44].) The net effect is
that we can map complicated gravity calculations into
substantially simpler gauge-theory calculations. This sim-
plification is especially important when evaluating gener-
alized unitarity cuts in D dimensions.

In Ref. [2] this strategy was used to obtain the complete
three-loop four-point amplitude of N ¼ 8 supergravity.
The result of this calculation explicitly demonstrated hid-
den cancellations beyond those identified in the earlier
partial calculation of Ref. [38]. However, the cancellations
took place between different terms of the integral repre-
sentation of Ref. [2]. Each of the nine contributing ‘‘par-
ent’’ integrals had a graphical representation with only

cubic vertices, and numerator factors that were quartic in
the loop momenta. (In general, a parent integral refers to
an integral with the maximal number of propagators al-
lowed in a given amplitude. The graphs for such integrals
have only cubic vertices.) One of the main purposes of the
present paper is to provide an improved form of the am-
plitude in which the true ultraviolet behavior is manifest.
The new form can be written in terms of the same nine
parent integrals, but terms have been shuffled between the
different integrals, so that each numerator factor is now
quadratic in the loop momenta. In this way, no term in the
amplitude has a worse ultraviolet behavior than does the
sum over all terms.
The new representation of the three-loop four-point

amplitude is constructed using the technique of maximal
cuts, developed in Ref. [45]. This technique uses general-
ized unitarity [3], starting with the maximum number of
cut propagators and systematically reducing the number of
cut propagators, in order to construct the complete ampli-
tude. As observed by Britto, Cachazo, and Feng [46], on-
shell massless three-point amplitudes can be defined by
analytically continuing momenta to complex values
[35,47]. Maximal cuts involve products of three-point
tree amplitudes alone, and are the simplest cuts to evaluate.
Near-maximal cuts, in which one or two of the maximal-
cut propagators have been allowed to go off shell, are the
next simplest to consider, and so on. We use the near-
maximal cuts to fix contact terms that may have been
missed by the purely maximal ones. The maximal-cut
technique, by removing cut conditions one by one from
the various maximal cuts, allows us to focus at each stage
on a small subset of contributions to an Ansatz for the
amplitude. In this way, we can efficiently find compact
representations of amplitudes with the desired properties.
The related ‘‘leading-singularity’’ technique [48] is also
based on cutting the maximal number of propagators. In
this technique, additional hidden singularities are used.
This technique has been used to compute two- and three-
loop planar N ¼ 4 super-Yang-Mills amplitudes [49]
with more than four external states. An interesting recent
conjecture is that the leading singularities may be sufficient
to determine multiloop amplitudes in maximally super-
symmetric gauge theory and gravity, and that this property
may be linked to the improved ultraviolet behavior of the
theories [10].
On-shell gravity and gauge-theory amplitudes in four

dimensions possess infrared divergences. In order to regu-
late these divergences, and any potential ultraviolet ones,
we work in dimensional regularization (more specifically,
the four-dimensional helicity scheme [50] related to di-
mensional reduction [51]) with D ¼ 4� 2�. We keep the
external states in four dimensions; however, in the unitarity
cuts, the cut loop momenta should be D dimensional. On
the other hand, the maximal-cut method is simplest to
implement initially using four-dimensional instead of
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D-dimensional momenta. In principle, terms depending
solely on the (�2�) dimensional components of momenta
may be lost.1 To confirm that no such terms are missed, we
verify that the results obtained from the maximal-cut
method are valid in D dimensions, using the same set of
cuts used in Ref. [2].

Recently Nair’s on-shell superspace formalism [52] for
maximally-helicity-violating amplitudes in N ¼ 4 super-
Yang-Mills theory in four dimensions has been extended to
apply to all amplitudes [10,26,28,43,53–55]. Here we do
not use these recent developments to evaluate the super-
multiplet sums appearing in the cuts. Instead, when eval-
uating cuts in four dimensions for N ¼ 4 super-Yang-
Mills amplitudes, we make use of the observation [45] that
four-point amplitudes are fully determined by considering
kinematic choices that force all or nearly all intermediate
states to contain gluons. In this way we avoid having to
perform any nontrivial sums over superpartners in the
initial construction of an Ansatz for the amplitude. In the
course of verifying the Ansatz, we need to evaluate the cuts
inD dimensions. Here we rely on the equivalence ofN ¼
4 super-Yang-Mills theory to N ¼ 1 super-Yang-Mills in
ten dimensions, dimensionally reduced to four dimensions.
In ten dimensions the theory consists of only a gluon and a
gluino, greatly simplifying the supersymmetry bookkeep-
ing. For the case ofN ¼ 8 supergravity, we do not need to
carry out any explicit sums over the supermultiplet: the
KLT relations allow us to automatically incorporate all
supermultiplet sums directly from the corresponding
super-Yang-Mills results.

Reference [2] demonstrated that the three-loop four-
point amplitude ofN ¼ 8 supergravity is ultraviolet finite
for D< 6. However, this left unanswered the question of
whether there are any further hidden cancellations which
could increase the critical dimension even further. Here we
address this question by computing the divergence in D ¼
6, using our new representation for the amplitude. We find
that the coefficient of the (logarithmic) divergence is non-
zero, implying that no further cancellations exist. This
result establishes a nonvanishing coefficient for a
‘‘D6R4’’ counterterm for the D ¼ 6 version of maximal
supergravity, whose purely gravitational piece has six de-
rivatives acting on a particular combination of four
Riemann tensors. We shall also give values for the diver-
gences in dimensional regularization in D ¼ 7, 9, 11,
which are of some interest in studies of M theory dualities
[56].

In this article, we also present the complete three-loop
four-point amplitude of N ¼ 4 super-Yang-Mills theory,

in terms of a set of integrals dressed by color factors
involving non-Abelian structure constants. (The integrals
themselves have already appeared in Ref. [2].) This am-
plitude has strong infrared divergences in D ¼ 4� 2� as
� ! 0, which begin at order 1=�6. The infrared properties
ofN ¼ 4 super-Yang-Mills amplitudes are of some inter-
est, both in their own right and because of their structural
similarity to those of other gauge theories such as QCD.
Although much of the infrared behavior of gauge-theory
amplitudes is well understood through the factorization
and exponentiation of soft and collinear divergences [57],
the color-nontrivial soft anomalous dimension matrix [58]
has only been computed explicitly through two loops [59].
At this order the matrix was found to be proportional to the
one-loop matrix, with a proportionality constant given by
the cusp anomalous dimension [60]. It is natural to con-
jecture that the same property should hold at higher orders.
The three-loop soft anomalous dimension matrix is the

only unknown quantity entering the infrared divergences of
the three-loop four-point amplitude in N ¼ 4 super-
Yang-Mills theory. It does not appear in the leading-color
amplitude [61]. Thus the � expansion of the subleading-
color terms in the complete amplitude would provide a
crisp test of the proportionality of the matrix at three loops.
Because soft properties are fairly insensitive to the matter
content of a theory (the states with spin <1), if the pro-
portionality holds for N ¼ 4 super-Yang-Mills theory, it
is very likely to hold for a general gauge theory. The �
expansion of the subleading-color terms in the amplitude
requires a knowledge of the seven nonplanar integrals that
appear. The two planar integrals are known analytically
through the finite, Oð�0Þ, terms [61,62]. However, the
nonplanar integrals pose a more difficult challenge and
are as yet uncalculated.
Another application for the � expansion of the nonplanar

integrals would be in the search for potential iterative
structures in subleading-color terms, analogous to those
previously found in the planar amplitudes [49,61,63,64].
The infrared divergences of one-loop graviton ampli-

tudes were studied in a classic paper byWeinberg [65]. The
one-loop divergences can be exponentiated to give the
leading poles in � at L loops, �1=�L. The infrared behav-
ior is less singular than in gauge theory because collinear
divergences are suppressed, and simpler because no color
matrices appear. However, there are still open questions
about how subleading poles in � behave. At two loops,
there has been progress recently in showing how these
poles can be iterated for the four-point N ¼ 8 supergrav-
ity amplitude [66]. Explicit expressions for the nonplanar
three-loop integrals would help check how this iteration of
singular terms continues to higher order. It could also be
used to search for any potential pattern of iteration for the
finite terms [66].
It is well-known that N ¼ 8 supergravity contains a

noncompact E7ð7Þ duality symmetry [1,67]. Its explicit

1In practice, such terms appear in theories with less than the
maximal amount of supersymmetry, and in maximally super-
symmetric amplitudes with more than four external states.
However, they have not been found to occur for four-point
amplitudes in N ¼ 4 super-Yang-Mills theory or N ¼ 8 su-
pergravity, although the reason for their absence is still unclear.
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action on fields in both light-cone gauge and covariant
versions of the Lagrangian has been studied recently
[68]. The nontrivial constraints it imposes on the emission
of soft scalars at tree level have also been explored [10].
However, there is probably still more to learn about how
E7ð7Þ constrains multiloop amplitudes. Some insight might

be provided by the new form of the three-loop amplitude
that we give here.

This paper is organized as follows. In Sec. II we review
the results previously obtained at two and three loops in
both N ¼ 4 super-Yang-Mills and N ¼ 8 supergravity
[2]. In Sec. III we give the full color-dressed N ¼ 4
amplitude. Then in Sec. IV we present a form of theN ¼
8 supergravity amplitude in which each term exhibits the
same ultraviolet behavior as the full amplitude. In Sec. V
we show that the three-loop four-point amplitude diverges
logarithmically in D ¼ 6, so there are no further hidden
cancellations. In this section we also present the three-loop
divergences in D ¼ 7, 9, 11. We give our conclusions in
Sec. VI.

II. GENERAL STRATEGYAND PREVIOUS THREE-
LOOP RESULTS

In Ref. [38] the two-loop four-point N ¼ 8 supergrav-
ity amplitude was evaluated. It was also shown that certain
classes of higher-loop contributions could be evaluated to
all loop orders. These so-called ‘‘iterated two-particle cut
contributions’’ can be reduced to trees through successive
two-particle cuts. The same sewing algebra appears in each
two-particle cut, in essentially the same way as in N ¼ 4
super-Yang-Mills theory [39]. In the case of this theory,
examining the powers of loop momenta in the numerator of
the generic iterated two-particle cut contribution suggested
the finiteness bound [38],

D<
6

L
þ 4 ðL > 1Þ; (2.1)

where D is the dimension of space-time and L the loop
order. (The case of one loop, L ¼ 1, is special; the ampli-
tudes are ultraviolet finite for D< 8, not D< 10.) The
bound (2.1) differs somewhat from earlier superspace
power counting [69], although all bounds confirm the
ultraviolet (UV) finiteness of N ¼ 4 super-Yang-Mills
theory in D ¼ 4. This bound (2.1) has since been con-
firmed to all loop orders [17] using N ¼ 3 harmonic
superspace [70]. Explicit computations demonstrate that
this bound is saturated through at least four loops
[11,38,39,63].

In Ref. [38] the iterated two-particle cuts of N ¼ 8
supergravity amplitudes were analyzed, leading to the
proposal that the four-point N ¼ 8 supergravity ampli-
tude should be UV finite for

D<
10

L
þ 2 ðL > 1Þ: (2.2)

(Just as for N ¼ 4 super-Yang-Mills theory, the one-loop
case is special; N ¼ 8 supergravity amplitudes are UV
finite forD< 8, notD< 12 [9].) The formula (2.2) implies
that in D ¼ 4 the first potential divergence can appear at
five loops. This result was supported by studying cuts with
an arbitrary number of intermediate states, but restricted to
maximally-helicity-violating amplitudes on either side of
the cut. The formula is also consistent with bounds ob-
tained by Howe and Stelle [17], assuming the existence of
an N ¼ 6 harmonic superspace [70]. However, as men-
tioned in the Introduction, explicit three-loop computations
[2] have found cancellations beyond this bound.
To verify the validity of a loop amplitude in a massless

gauge theory, it suffices to check its ordinary unitarity cuts
in D dimensions [71]. At L loops, these cuts may have
from 2 to Lþ 1 particles in the intermediate state.
However, instead of working out the ordinary cuts directly,
one may cut the loop amplitudes with l < L loops further,
eventually arriving at different products of tree amplitudes,
each with four or more external legs. For a three-loop four-
point amplitude, the initial two-particle cuts contain the
product of a two-loop four-point amplitude with a tree-
level four-point amplitude, or the product of two one-loop
four-point amplitudes; the initial three-particle cuts consist
of the product of a one-loop five-point amplitude with a
tree-level five-point amplitude; and the four-particle cuts
consist of the product of two tree-level six-point ampli-
tudes. After cutting the one- and two-loop amplitudes
further, in all possible ways, we arrive at the set of gener-
alized cuts shown in Fig. 1. These generalized cuts are
sufficient for constructing the three-loop four-point ampli-
tudes in any massless theory, starting from tree amplitudes.
Of the cuts in Fig. 1, the iterated two-particle cuts (a) to

(f) were originally evaluated in Refs. [38,39] in N ¼ 4
super-Yang-Mills and N ¼ 8 supergravity theories. The
remaining ones, (g) through (k), were evaluated in Ref. [2]
for both theories, determining the complete amplitudes. In
general, to determine a three-loop four-point amplitude we
must evaluate the cuts with distinct labels of external legs.
For gravity or color-dressed gauge-theory amplitudes, the
various permutations of legs of the tree amplitudes com-
posing the cuts are automatically included. However,
color-ordered gauge-theory tree-level partial amplitudes
must be explicitly sewn in nonplanar fashion to construct
higher-loop nonplanar subleading-color amplitudes.
The generalized-cut method for finding the amplitude is

algorithmic: one first constructs an initial Ansatz that
reproduces one cut. Then, subsequent cuts of the amplitude
are compared against the corresponding cuts of the current
Ansatz. If any discrepancy is found in a later cut, it is
eliminated by adding to the Ansatz terms that vanish when
all the earlier cut conditions are imposed. At the end of this
procedure, an integral representation of the loop amplitude
is obtained with the correct cuts in all channels. This result
is the complete on-shell amplitude.
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In carrying out this construction, tadpole integrals and
bubble contributions on external legs are dropped. Such
contributions have no cuts on shell, and their integrals
vanish in dimensionally-regularized amplitudes for mass-
less particles. One might be concerned about potential UV
contributions from bubble integrals on external legs, as
k2i ! 0. Such terms can appear in gauge theory, and cancel
collinear infrared singularities according to 1=�UV þ
1=�IR ¼ 0. However, in N ¼ 8 supergravity amplitudes
they can be neglected, because they are suppressed by
additional powers of k2i ! 0 compared to gauge theory,
and also by supersymmetric cancellations.

At one loop, through the level of finite terms, massless
supersymmetric amplitudes in the N ¼ 4 theory are de-
termined completely by their four-dimensional cuts [37].
Unfortunately, no such theorem has been demonstrated at
higher loops. Because we wish to identify the smallest
dimension D for which an ultraviolet divergence occurs,
we must ensure that all results are valid in D dimensions.
Evaluating the cuts in D dimensions [71] makes the cal-
culation significantly more difficult, because powerful
four-dimensional spinor methods [72] can no longer be
used. Some of this additional complexity is avoided by

performing internal-state sums in terms of the (simpler)
on-shell gauge supermultiplet of D ¼ 10, N ¼ 1 super-
Yang-Mills theory instead of theD ¼ 4,N ¼ 4multiplet.
By using the KLT relations [40], which are valid in any
number of dimensions for the field content of maximal
supergravity, the D-dimensional cuts of N ¼ 4 super-
Yang-Mills theory can then be reassembled into those of
N ¼ 8 supergravity [38].
In general, the KLT relations give us a rather efficient

means of evaluating gravity cuts, since gauge-theory am-
plitudes are generally simpler to evaluate than gravity
amplitudes. As an example, consider the cut in Fig. 1(j)
for N ¼ 8 supergravity,

CðjÞ
N¼8 ¼

X
N¼8 states

Mtree
5 ð1; 2; l3; l2; l1Þ

�Mtree
4 ð�l2;�l3; l4; l5Þ

�Mtree
5 ð3; 4;�l1;�l5;�l4Þ; (2.3)

where the sum runs over all physical states that cross any
cut line. The KLT relations [40–42] for these tree ampli-
tudes are,

Mtree
4 ð�l2;�l3; l4; l5Þ ¼ �iðl4 þ l5Þ2Atree

4 ð�l2;�l3; l4; l5ÞAtree
4 ð�l2;�l3; l5; l4Þ;

Mtree
5 ð1; 2; l3; l2; l1Þ ¼ iðl1 þ k1Þ2ðl3 þ k2Þ2Atree

5 ð1; 2; l3; l2; l1ÞAtree
5 ð1; l1; l3; 2; l2Þ þ f1 $ 2g;

Mtree
5 ð3; 4;�l1;�l5;�l4Þ ¼ iðl4 � k3Þ2ðl1 � k4Þ2Atree

5 ð3; 4;�l1;�l5;�l4ÞAtree
5 ð3;�l4;�l1; 4;�l5Þ þ f3 $ 4g;

(2.4)

where we follow the notation of Ref. [42]. The Atree
n are color-ordered gauge-theory tree amplitudes, while the Mtree

n are
supergravity tree amplitudes, with an overall factor of the coupling ð�=2Þn�2 removed. Inserting the KLT relations into the
cut (2.3), we obtain,

FIG. 1. A sufficient set of generalized cuts for determining any massless three-loop four-point amplitude. Each blob represents a tree
amplitude. Cuts (a)–(f) are iterated two-particle cuts.
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CðjÞ
N¼8 ¼ iðl4 þ l5Þ2ðl1 þ k1Þ2ðl3 þ k2Þ2ðl4 � k3Þ2ðl1 � k4Þ2

� X
N¼4 states

Atree
5 ð1; 2; l3; l2; l1ÞAtree

4 ð�l2;�l3; l4; l5ÞAtree
5 ð3; 4;�l1;�l5;�l4Þ

� X
N¼4 states

Atree
5 ð1; l1; l3; 2; l2ÞAtree

4 ð�l2;�l3; l5; l4ÞAtree
5 ð3;�l4;�l1; 4;�l5Þ

þ f1 $ 2g þ f3 $ 4g þ f1 $ 2; 3 $ 4g: (2.5)

This equation gives theN ¼ 8 supergravity cut directly in
terms of products of two N ¼ 4 super-Yang-Mills cuts.
The relation is depicted in Fig. 2, for one of the four terms
in the sum over external-leg permutations. One of the
gauge-theory cuts is planar, while the second is nonplanar.2

An important feature of this construction is that, once
the sums over all superpartners are performed in theN ¼
4 super-Yang-Mills cuts, the corresponding superpartner
sum in N ¼ 8 supergravity follows simply from the KLT
relations. In fact, any simplifications performed on the
gauge-theory cuts can be immediately carried over to
gravity cuts.

In the calculation of Ref. [2], cut (i) in Fig. 1 was used as
the starting point. In fact, this cut detects all terms in the
complete three-loop four-point amplitude for N ¼ 4
super-Yang-Mills theory, and almost all terms for the
case of N ¼ 8 supergravity. The result of matching
cut (i) with an Ansatz for the N ¼ 4 super-Yang-Mills
amplitude, and then checking the result on the other cuts in
Fig. 1, is that the amplitude can be expressed as a linear
combination of the parent integrals shown in Fig. 3, with

numerator factors NðxÞ given in Table I. Similarly, the
three-loop four-point amplitude of N ¼ 8 supergravity
can be expressed in terms of the same parent integrals,
but with different numerators. The numerators for this
case, as determined in Ref. [2], are shown in Table II. In
Fig. 3 the (outgoing) momenta of the external legs are
denoted by ki with i ¼ 1, 2, 3, 4, while the momenta of
the internal legs are denoted by li with i � 5. For conve-
nience we define

sij ¼ ðki þ kjÞ2; �ij ¼ 2ki � kj; ði; j � 4Þ;
sij ¼ ðki þ ljÞ2; �ij ¼ 2ki � lj; ði � 4; j � 5Þ;
sij ¼ ðli þ ljÞ2; �ij ¼ 2li � lj; ði; j � 5Þ: (2.6)

We have altered the labeling compared to Ref. [2], as a
notational convenience, which will allow us to write some-
what more compactly the new representation of the N ¼
8 supergravity amplitude constructed here.

By definition, the integrals composing the amplitudes
are of the form

IðxÞ ¼ ð�iÞ3
Z �Y3

i¼1

dDqi
ð2�ÞD

�
NðxÞQ
14
j¼5 l

2
j

; (2.7)

where the qi’s are three independent loop momenta, the li’s
are the momenta of the propagators of the diagrams, and

theNðxÞ are the numerator factors appearing in Tables I and
II. For example, the contribution of diagram (e) of Fig. 3 to
theN ¼ 8 supergravity amplitude is found by combining

its propagators with the numerator NðeÞ ¼ ½s12s46�2 �
½s12ðk4 þ l6Þ2�2 given in Table II; the result is the integral

IðeÞ ¼ ð�iÞ3
Z dDl6

ð2�ÞD
Z dDl7

ð2�ÞD
Z dDl8

ð2�ÞD

� ½s12ðk4 þ l6Þ2�2
l26l

2
7l

2
8ðl6 � k1Þ2ðl6 � k1 � k2Þ2ðl7 � k4Þ2ðl8 � k3Þ2

� 1

ðl6 þ l7Þ2ðk1 þ k2 � l6 þ l8Þ2ðk1 þ k2 þ l7 þ l8Þ2
:

(2.8)

The complete supergravity amplitude is given in terms
of the integrals in Fig. 3

Mð3Þ
4 ¼

�
�

2

�
8
s12s13s14M

tree
4

X
S3

�
IðaÞ þ IðbÞ þ 1

2
IðcÞ þ 1

4
IðdÞ

þ 2IðeÞ þ 2IðfÞ þ 4IðgÞ þ 1

2
IðhÞ þ 2IðiÞ

�
; (2.9)

where the numerators of each integral are given in Table II,
� is the gravitational coupling, andMtree

4 is the supergravity
tree amplitude. In each term, S3 denotes the set of six

FIG. 2. The KLT relations allow us to map the gravity cuts into
sums over pairs of gauge-theory cuts. Here we display a pair of
gauge-theory cuts needed to evaluate the gravity cut shown in
Fig. 1(j). The remaining pairs are obtained by permuting the
external legs 1 $ 2 and 3 $ 4.

2It is possible to use the total S3 permutation symmetry of
s12s14A

tree
4 ð1; 2; 3; 4Þ to partially ‘‘untwist’’ the four-point ampli-

tude in the second Yang-Mills cut, so as to make manifest its
reflection symmetry under f1 $ 4; 2 $ 3g.
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permutations of three external legs, say f2; 3; 4g, which lead
from ðs12; s23Þ to the six independent ordered pairs of
Mandelstam invariants s12, s13, s14, serving as arguments
of the integral. The numerical coefficients in front of each
integral in Eq. (2.9) are symmetry factors. They equal 4=S,
where S is the number of elements in the discrete symme-
try group of the diagram. Because of supersymmetry Ward
identities, the expression (2.9) is valid for any of the 2564

combinations of four particles from the 256-dimensional
N ¼ 8 multiplet. A remarkable property of the result is

that the dimension D appears explicitly only in the loop
integration measure; in theories with less than maximal
supersymmetry we have no reason to believe that this
property will continue to hold.
In this presentation of the amplitude, the UV behavior of

the integrals (e)–(i) is worse than that of the full amplitude.
In particular, the numerator factors for these integrals are
quartic in the loop momenta. However, as discussed in
Ref. [2], nontrivial cancellations between diagrams cause
the overall degree of divergence to be milder, in line with
the behavior of the corresponding amplitude of N ¼ 4
super-Yang-Mills theory. In that amplitude, Table I shows
that each term is at most quadratic in the loop momenta. In

the case of a quartic behavior for NðxÞ, the condition for an
integral IðxÞ in Eq. (2.7) to be finite in D dimensions is
3Dþ 4< 20, orD< 16=3. This inequality corresponds to
theN ¼ 8 finiteness bound (2.2) proposed in Ref. [38]. In

the case of a quadratic NðxÞ, the finiteness condition for IðxÞ
is improved to 3Dþ 2< 20, or D< 6.
In Ref. [2] a cancellation between integrals (e)–(i) in

Fig. 3 was found using Table II, and working in the
‘‘vacuum approximation’’ in which external momenta
were neglected. This approximation was adequate for

FIG. 3. The different parent integrals in terms of which four-point three-loop amplitudes may be expressed.

TABLE I. The numerator factors NðxÞ for the integrals IðxÞ in
Fig. 3 for N ¼ 4 super-Yang-Mills theory. The first column
labels the integral, the second column the relative numerator
factor. An overall factor of s12s14A

tree
4 has been removed. The

invariants sij and �ij are defined in Eq. (2.6).

Integral IðxÞ NðxÞ for N ¼ 4 Super-Yang-Mills

(a)–(d) s212
(e)–(g) s12s46
(h) s12ð�26 þ �36Þ þ s14ð�15 þ �25Þ þ s12s14
(i) s12s45 � s14s46 � 1

3 ðs12 � s14Þl27

TABLE II. The numerator factors NðxÞ for the integrals IðxÞ in Fig. 3 for N ¼ 8 supergravity, as determined in Ref. [2]. The first
column labels the integral, the second column the relative numerator factor. In this form of the amplitude, individual terms behave
worse in the ultraviolet than does the sum over all contributions.

Integral IðxÞ NðxÞ for N ¼ 8 Supergravity

(a)–(d) ½s212�2
(e)–(g) ½s12s46�2
(h) ðs12s89 þ s14s11;14 � s12s14Þ2 � s212ð2ðs89 � s14Þ þ l26Þl26 � s214ð2ðs11;14 � s12Þ þ l25Þl25

�s212ð2l28l210 þ 2l27l
2
9 þ l28l

2
7 þ l29l

2
10Þ � s214ð2l211l213 þ 2l212l

2
14 þ l211l

2
12 þ l213l

2
14Þ þ 2s12s14l

2
5l

2
6

(i) ðs12s45 � s14s46Þ2 � ðs212s45 þ s214s46 þ 1
3 s12s13s14Þl27
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demonstrating finiteness forD< 6, but not for determining
the coefficient of the D ¼ 6 (potential) divergence. Below,
in Sec. IV, wewill present a nontrivial rearrangement of the

results in Table II, so that each NðxÞ is quadratic in the loop
momenta, and hence each contribution satisfies the bound
(2.1) with L ¼ 3. In Sec. V we will then integrate each
contribution near D ¼ 6, in order to compute the logarith-
mic divergence.

III. COLOR DRESSING N ¼ 4 SUPER-YANG-
MILLS AMPLITUDES

Before turning to the case of N ¼ 8 supergravity, we
first present the complete color-dressed amplitude of
N ¼ 4 super-Yang-Mills theory. Although the contribut-
ing integrals were presented in Ref. [2] for use as input into
the supergravity calculation, they were not explicitly as-
sembled into the complete color-dressed amplitude. Here
we present the explicit color dressing in terms of Lie
algebra structure constants, fabc. This type of dressing is
natural3 for Feynman diagrams with particles in the adjoint
representation. It has been used to color-decompose tree
and one-loop amplitudes [73], and to prove the Kleiss-
Kuijf relations between tree-level color-ordered partial
amplitudes [74]. It has also played an important role in
the recent discovery of additional nontrivial tree-level
identities [44].

Color dressing in terms of structure constant factors is
very simple for noncontact contributions. Such terms, in
which no propagator is canceled by a numerator factor, are

those in the numerator factors NðxÞ in Table I that do not
contain a factor of l2i . [The only explicit factor of l

2
i appears

in NðiÞ; there are also implicit factors of l2i in expressions
such as �26 ¼ s26 � l26 in integral (h).] The noncontact

contributions are detectable from the maximal cuts, which
have only three-point amplitudes. In N ¼ 4 super-Yang-
Mills theory, all such amplitudes are proportional to a
factor of fabc. Thus the appropriate color factor for a

noncontact term in a numerator NðxÞ is found simply by
dressing each three-point vertex in the corresponding par-
ent graph ðxÞ in Fig. 3 with an fabc.

The color factors for contact-term contributions with a
canceled propagator are somewhat less obvious, because
they are determined from cuts containing four- or higher-
point amplitudes. Such amplitudes are not proportional to a
single product of fabc’s, but contain multiple terms. The
color factors can always be expressed as sums of products
of fabc’s, but it is conceivable that not all such products
would be of the same form as one of the (nonvanishing)
noncontact terms. However, for the three-loop four-point
amplitude, we find that they are all of the same form, so

that the contact terms in each NðxÞ can be consistently

dressed with the same graphical color factor as the non-
contact terms. We have confirmed the consistency of this
assignment by evaluating all the generalized cuts in Fig. 1
using tree amplitudes dressed with full color factors as the
building blocks. The evaluation of these cuts is a complete
check of the color dressing. The check requires use of color
Jacobi identity rearrangements of the type described in
Ref. [73]. For general amplitudes, we expect the same
property to hold: Once the contact terms are assigned to
parent integrals in a way consistent with unitarity cuts that
use color-ordered amplitudes, then the full color-dressed
amplitudes should be obtained simply by dressing the
parent integrals with an fabc at each three-vertex.
In summary, the fully color-dressed three-loop four-

point N ¼ 4 super-Yang-Mills amplitude is given by,

Að3Þ
4 ¼ � 1

4
g8s12s14A

tree
4

X
S4

�
CðaÞIðaÞ þ CðbÞIðbÞ þ 1

2
CðcÞIðcÞ

þ 1

4
CðdÞIðdÞ þ 2CðeÞIðeÞ þ 2CðfÞIðfÞ þ 4CðgÞIðgÞ

þ 1

2
CðhÞIðhÞ þ 2CðiÞIðiÞ

�
; (3.1)

where g is the gauge coupling, CðxÞ are the color factors,

and IðxÞðs; tÞ are D-dimensional loop integrals correspond-
ing to the nine diagrams in Fig. 3. The sum runs over the 24
independent permutations of legs f1; 2; 3; 4g, denoted by
S4. The permutations in S4 act on both kinematic and color
labels. In the case of the gravity amplitude (2.9) the S4 sum
could be collapsed to an S3 sum, holding leg one fixed,
because the summand exhibits an additional symmetry due
to the kinematic identities s12 ¼ s34, s13 ¼ s24, and s14 ¼
s23. In the Yang-Mills case, the presence of color factors
with no such manifest symmetry prevents us from collaps-
ing the sum. Other than this minor difference, note the
similarity of the gravity (2.9) and gauge-theory amplitudes
(3.1), including the symmetry factors of each integral. In
Eq. (3.1), Atree

4 is the color-ordered tree amplitude
Atree
4 ð1; 2; 3; 4Þ. With the factor of s12s14, it has the required

overall crossing and Bose symmetry of color-dressed
gauge-theory amplitudes.

FIG. 4. Color factors for the super-Yang-Mills amplitude are
obtained simply by dressing the diagrams in Fig. 3 with an ~fabc

at each three-vertex. All contact terms pick up the same color
factor as the parent (noncontact) diagrams with which they are
associated.

3One may, alternatively, use a color dressing in terms of group
generators in the fundamental representation; such dressings
maintain a close relation with the double-line notation.
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As illustrated in Fig. 4, the color factorsCðxÞ are given by
dressing each three-vertex of the parent diagrams in Fig. 3
with modified structure constants,

~f abc ¼ i
ffiffiffi
2

p
fabc ¼ Trð½Ta; Tb�TcÞ; (3.2)

where fabc are the standard structure constants, and the

Hermitian generators are normalized via Tr½TaTb� ¼ �ab.

The ~fabc should follow the clockwise ordering of the
parent diagram vertices, respecting the ordering of each
vertex in Fig. 3. The color factor associated with each
integral is then easy to write down. For example, for
diagrams (a) and (i) we have,

CðaÞ ¼ ~fa1;a5;a6 ~fa2;a9;a5 ~fa3;a13;a14 ~fa4;a11;a13 ~fa6;a7;a8 ~fa7;a9;a12 ~fa8;a10;a11 ~fa10;a12;a14 ;

CðiÞ ¼ ~fa1;a8;a5 ~fa2;a10;a7 ~fa3;a6;a9 ~fa4;a13;a12 ~fa5;a11;a13 ~fa6;a12;a14 ~fa7;a14;a11 ~fa8;a10;a9 :
(3.3)

The other factors work similarly. The factors for the differ-
ent permutations in Eq. (3.1) are obtained by permuting the
external labels f1; 2; 3; 4g.

IV. N ¼ 8 SUPERGRAVITYAMPLITUDE WITH
MANIFEST ULTRAVIOLET BEHAVIOR

The three-loop four-point N ¼ 8 amplitude presented
in Ref. [2] has better UV behavior than each integral taken
separately. It is therefore natural to try to find a represen-
tation in which each integral exhibits a behavior no worse
than the complete amplitude. One may attempt to manipu-
late the numerator factors in Table II, by moving terms
between different integral contributions until the leading
two powers of loop momenta cancel. This procedure turns
out to be significantly more difficult than simply recon-
structing the amplitude from scratch using the method of
maximal cuts [45], as we do here. By isolating in any one
cut a small number of terms in the amplitude, it becomes
much simpler to find Ansätze for new compact forms of the
amplitude, and to arrange the amplitude so that no term has
a worse behavior than the complete amplitude.

We start with an Ansatz for the amplitude in terms of
Feynman integrals with numerator polynomials containing
arbitrary parameters. We require that each numerator poly-
nomial is at most quadratic in the loop momenta,

NðxÞ ¼ X
aðxÞij li � lj þ

X
bðxÞi;j;m;nli � kjlm � kn

þX
cðxÞi;j li � kj þ dðxÞ; (4.1)

where aðxÞij , b
ðxÞ
i;j;m;n, c

ðxÞ
i;j , and dðxÞ are polynomials in the

external momenta containing free parameters. In the sums
we include only those terms not simply related to the others
via momenta conservation. To determine the parameters
we replace the numerators in Eq. (2.9) with the numerators
in (4.1), and compare the cut of the Ansatz against the cut
of the amplitude,X

states

Atree
ð1Þ A

tree
ð2Þ A

tree
ð3Þ � � �Atree

ðmÞ ; (4.2)

using kinematics that place all cut lines on shell, l2i ¼ 0.
Although the comparison can be done analytically, it is

generally simplest to generate kinematic solutions numeri-
cally [45]. If no solution to the cut conditions are found,
then we enlarge the Ansatz until one is found. For the
N ¼ 8 supergravity three-loop four-point amplitude, the
quadratic numerator Ansatz (4.1) is sufficient.
We start by analyzing cuts with the maximum number of

cut propagators. The nine distinct—up to relabellings of
external legs—maximal cuts for the three-loop four-point
amplitude are displayed in Fig. 5. As discussed in Ref. [45],
by choosing appropriate D ¼ 4 kinematics, we can force
all cut lines to be gluons in the super-Yang-Mills case.
Similarly, in the supergravity case, the same kinematics
will force all cut lines to be gravitons. Remarkably, these
‘‘singlet cuts’’ turn out to be sufficient to determine the
noncontact terms in four-point amplitudes in N ¼ 4
super-Yang-Mills theory and in N ¼ 8 supergravity, in
all known cases.
Contact terms, containing numerator factors of l2i , can-

not be determined frommaximal cuts, because the l2i are all
set to zero in these kinematics. To determine the contact
terms, we systematically reduce the number of cut lines,
until all potential contact terms are identified. In Fig. 6, we
show some near-maximal cuts that are particularly helpful
for determining all the contact terms in the three-loop four-

FIG. 5. The nine maximal cuts used to determine the inte-
grands, up to contact terms. All propagator lines are taken to be
cut, with the momenta satisfying on-shell conditions. The verti-
ces represent on-shell three-point amplitudes.
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point amplitudes. In this figure every line represents a cut
propagator (i.e., with the momenta taken on shell). In these
cases, again by appropriate choices of kinematics [45], we
can force almost all lines to be gluons or gravitons.

By carrying out this procedure in D dimensions, we can
apply the maximal-cut method to any theory, including
QCD. However, to take advantage of four-dimensional
spinor simplifications and singlet cuts, we restrict the
momenta to four dimensions, which can potentially drop
contributions. Such contributions, if any, must later be
identified and restored using D-dimensional cuts. For
maximally supersymmetric four-point amplitudes, the
four-dimensional cuts appear to be sufficient for determin-
ing all nonvanishing contributions. This empirical obser-
vation has been verified directly for N ¼ 4 super-Yang-
Mills theory through four loops in the planar case [75], and
through three loops in the nonplanar case [2]. As men-
tioned in the Introduction, in nonmaximally supersymmet-
ric theories, and in maximally supersymmetric amplitudes
with more than four external states, amplitudes typically
contain extra terms proportional to the (�2�) dimensional
components of the loop momenta [64]. The reason why
such terms are absent in maximally supersymmetric four-
point amplitudes is not presently understood by us. For the
planar case it may be related to dual conformal invariance
[76], but this relationship is rather speculative as the latter
notion seems to be a four-dimensional one. The reason why
such terms appear for more than four external legs may be
connected with the existence of nontrivial contractions of
the four-dimensional Levi-Civita tensor for five or more

external states, but not in the four-point case. That is, one
should be able to rewrite the integrals containing (�2�)
dimensional components of the loop momenta using Levi-
Civita contractions, because these contractions distinguish
between four and (�2�) dimensional components.
In constructing the amplitude, we can also take advan-

tage of a variety of pictorial rules [39,44,45,48] for obtain-
ing more complicated contributions from simpler ones.
To find compact forms of the N ¼ 8 amplitude we

evaluated 98 possible maximal and near-maximal-cut top-
ologies that contain up to two contact terms. The nine
maximal cuts are depicted in Fig. 5. The set of maximal
cuts begins with all graphs with only cubic vertices. For the
applications to four-point amplitudes in maximally super-
symmetric theories, we can discard the subset of graphs
which contain triangle subgraphs or those which are one-
particle reducible. We can also discard graphs containing a
two-particle cut that exposes such graphs at two loops.
Such cuts will lead to vanishing contributions. The surviv-
ing nine maximal cuts are in one-to-one correspondence
with the nine parent integrals depicted in Fig. 3. Then 27
distinct single contact-term diagrams are obtained from the
nine maximal-cut topologies by systematically collapsing
one propagator, removing ones related by symmetry.
Similarly 62 double contact terms are obtained by collaps-
ing two propagators, again removing ones related by sym-
metry. The 18 cuts illustrated in Figs. 5 and 6 turn out to be
sufficient for finding a representation of the amplitude
which exhibits quadratic dependence on the loop momenta
in the numerators, and thus manifestly obeys the bound
(2.1) for L ¼ 3. Of course, these cuts by themselves do not
rule out other potential contributions, including those with
three or more collapsed propagators. For this we rely on the
generalized cuts in Fig. 1, evaluated in D dimensions.
In general there is a large freedom in assigning numera-

tor factors containing loop momenta to parent integrals,
especially when no color factors are present to distinguish
different integrals, as in the supergravity case. For ex-
ample, scalar products of loop momenta with external
momenta can often be rearranged using the observation
that such products can be expressed as differences of
inverse propagators, e.g., 2ki � lj ¼ ðki þ ljÞ2 � l2j . As an-

other particularly simple example, note that when assign-
ing contact terms to parent diagrams, as illustrated in

FIG. 6. Nine near-maximal cuts that are especially helpful for
obtaining the contact terms for the new form of the supergravity
amplitude. All propagator lines are taken to be cut, with the
momenta satisfying on-shell conditions. The darker vertices
represent on-shell four- and five-point amplitudes; the lighter
ones depict three-point amplitudes.

FIG. 7. A contact term can be assigned to parent diagrams by
inserting a propagator multiplied by a numerator factor which
cancels it. A contact term (a) can be distributed amongst the
three propagator diagrams (b), (c), and (d), by including appro-
priate numerator factors to cancel the propagators.
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Fig. 7, any four-point contact term (a) can be expressed as a
combination of propagator diagrams (b)–(d) with appro-
priate numerator factors. The precise form is subject only
to the constraint that the contributions add up to the contact
term. Moreover, by using momentum conservation (and
on-shell conditions on any cut legs) we can move contri-
butions around within a larger diagram.

A particularly compact form for the supergravity ampli-
tude is shown in Table III. The complete amplitude is given

by Eq. (2.9), in which the numerators NðxÞ in Table II are
replaced by those in Table III. Each numerator respects the
symmetry of its corresponding diagram. Because the new
formmatches theD-dimensional cuts displayed in Fig. 1, it
is completely equivalent to the earlier form. The two forms
are, however, rather nontrivially related. In particular, the
form in Table II has numerator terms which are quartic in
loop momenta, while the form in Fig. 3 is merely quadratic.
The form in Table III is by no means unique. The large
freedom, mentioned previously, in assigning numerator
factors to a parent graph implies that there are continuous
families of numerators with the same quadratic behavior
that satisfy all cut conditions. As a check, we have eval-
uated the logarithmic divergence of the various forms at
D ¼ 6, and we find that it is independent of each of the free
parameters, as expected.

V. DIVERGENCES IN HIGHER DIMENSIONS

As demonstrated in Ref. [38], the two-loop four-graviton
N ¼ 8 supergravity amplitude saturates the finiteness
bound (2.1), having a critical dimension Dc ¼ 7. The
values of the two-loop divergence in dimensions between
D ¼ 7 and D ¼ 11 were also calculated in that reference,
in dimensional regularization. In this section we carry out a
similar analysis at three loops, using the new representa-
tions of the amplitudes given in Table III. We prove that in
N ¼ 8 supergravity the bound (2.1) is saturated at L ¼ 3;
that is, a logarithmic UV divergence is present in D ¼ 6.
We also give the explicit values of the dimensionally-
regulated power-law divergences in D ¼ 7, 9, 11. Other
than the critical dimension Dc ¼ 6, odd dimensions are
also interesting because of the connection to M theory
dualities [56] in dimensions D ¼ 9, 11. From a technical

standpoint, it is easier to compute the three-loop divergen-
ces in odd dimensions than it is in even dimensions. In odd
dimensions the only divergences that arise in dimensional
regularization are from two-loop subdivergences.

A. Divergence in the critical dimension D ¼ 6.

We already know that for N ¼ 4 super-Yang-Mills
theory the finiteness bound is saturated through at least
four loops [11]. Is the bound (2.1) saturated for N ¼ 8
supergravity as well? It would of course be rather surpris-
ing if N ¼ 8 supergravity were better behaved in the UV
than N ¼ 4 super-Yang-Mills theory—but surprises have
happened before. It is nevertheless important to confirm
that no further ‘‘hidden’’ cancellations exist. Because we
now have a compact analytic expression for the amplitude,
without additional spurious divergences that cancel be-
tween integrals, we can settle the issue simply by evaluat-
ing the integrals near D ¼ 6 and assembling the amplitude
in this dimension. If the amplitude diverges in D ¼ 6, then
no further cancellations exist at three loops, beyond those
found in Ref. [2], and exhibited manifestly by the numera-
tor factors in Table III.
In its critical dimension, where an integral first develops

a divergence, the divergence is logarithmic. This implies
that the residue of the 1=� pole is constant, after all factors
of external momentum in the numerator are taken out of
the integral. To evaluate this constant we may choose the
external momenta and invariants in any convenient way. In
particular, we may expand the integrand for small external
momenta and keep the leading term. A key advantage of
the new representation of the amplitude in Table III, com-
pared to the original one in Table II, is that no integral has a
critical dimension below the expected critical dimension of
the amplitude. This simplifies the evaluation of the diver-
gence because it receives contributions only from the
leading term in the small-momentum expansion.
In addition we can drop all integrals with a critical

dimension larger than 6. Inspecting Table III, Fig. 3, and
Eq. (2.7), we see that integrals (a)–(d) are all finite in D ¼
6, so we need only evaluate the integrals (e)–(i). These
integrals have numerators quadratic in the loop momenta.
We expand at small external momenta, keeping only the
UV-divergent integrals which are independent of the ex-

TABLE III. A form for theN ¼ 8 supergravity numerator factors NðxÞ for the integrals IðxÞ in Fig. 3 appearing in Eq. (2.9), in which
all terms are at most quadratic in the loop momenta. The first column labels the integral, the second column the relative numerator
factor.

Integral IðxÞ NðxÞ for N ¼ 8 Supergravity

(a)–(d) ½s212�2
(e)–(g) s212�35�46
(h) ðs12ð�26 þ �36Þ þ s14ð�15 þ �25Þ þ s12s14Þ2 þ ðs212ð�26 þ �36Þ � s214ð�15 þ �25ÞÞð�17 þ �28 þ �39 þ �4;10Þ

þs212ð�17�28 þ �39�4;10Þ þ s214ð�28�39 þ �17�4;10Þ þ s213ð�17�39 þ �28�4;10Þ
(i) ðs12�45 � s14�46Þ2 � �27ðs212�45 þ s214�46Þ � �15ðs212�47 þ s213�46Þ

��36ðs214�47 þ s213�45Þ þ l25s
2
12s14 þ l26s12s

2
14 � 1

3 l
2
7s12s13s14
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ternal momenta, apart from the explicit factors of external
momenta appearing in the numerator. Lorentz invariance
implies that we can replaceZ

dDq1d
Dq2d

Dq3q
�
i q

�
j fðq1; q2; q3Þ

! ���

D

Z
dDq1d

Dq2d
Dq3qi � qjfðq1; q2; q3Þ; (5.1)

because ��� is the only available tensor that can have a

divergent coefficient. Contracting both sides with ���

shows that the prefactor on the right-hand side is indeed
1=D. For the purpose of computing the leading UV singu-
larity in the critical dimension, this identity allows us to
replace any two-tensor integral with simpler scalar inte-
grals, obtained by rewriting qi � qj as a linear combination

of inverse propagators.
Keeping only the leading terms at small external mo-

menta and using Eq. (5.1), we replace the diagrams in
Fig. 3 with the simpler vacuum diagrams shown in
Fig. 8. We have,

IðaÞ ! 0; IðbÞ ! 0; IðcÞ ! 0; IðdÞ ! 0;

IðeÞ !�s312
3

VðAÞ; IðfÞ !�s312
3

VðBÞ;

IðgÞ !�s312
3

VðBÞ;

IðhÞ ! 2

3
ð2s313� 3s12s13s14ÞVðBÞ þ ð�s313þ s12s13s14ÞVðCÞ;

IðiÞ ! 1

6
ð2s313� 5s12s13s14ÞVðAÞ � 1

3
ðs313 þ 3s12s13s14ÞVðBÞ;

(5.2)

where we used

s312 þ s313 þ s314 ¼ 3s12s13s14 (5.3)

to simplify the expressions, and we set D ¼ 6 in the
coefficients. Multiplying the above expressions by their
numerical prefactors in Eq. (2.9) and summing over the
permutations, it is not hard to find that the leading UV
divergence in D ¼ 6 is

Mð3Þ;D¼6�2�
4 jpole ¼ �

�
�

2

�
8ðs12s13s14Þ2Mtree

4

� ½10ðVðAÞ þ 3VðBÞÞ�: (5.4)

The coefficient of the vacuum-like diagram VðCÞ, which
arises only from IðhÞ, vanishes after the permutation sum.
These features are a consequence of the specific represen-
tation of the numerators given in Table III.
To determine whether the leading 1=� pole in Eq. (2.9)

cancels, we must evaluate the UV behavior of the vacuum
integrals (A) and (B) in Fig. 8. A convenient means for
doing so is to restore some momentum dependence in order
to regulate the infrared divergences. We can reinterpret the
calculation as that of a typical propagator integral, simply
by injecting some arbitrary external momentum at
appropriately-chosen vertices, and applying standard tech-
niques developed for this problem (see, for example, the
review by Grozin [77]). Because the divergence is loga-
rithmic in the critical dimension, the injected momentum
does not appear in the leading UV pole in dimensional
regularization; thus it has no effect on the result. We there-
fore promote the vacuum-like diagrams (A) and (B) in
Fig. 8 to propagator diagrams, while leaving all internal
lines massless, as shown in Fig. 9. Then we can use
dimensional analysis to simplify each three-loop propaga-
tor diagram down to a product of a two-loop propagator
diagram and a one-loop bubble diagram. [Although we do
not need it here, diagram (C) in Fig. 8 can be evaluated in a
similar fashion.]
As shown in Fig. 9, to evaluate the integrals, we factor

out a two-loop propagator diagram formed from the two
upper loops on the left side of diagrams (A) and (B). By
dimensional analysis, the two-loop propagator subintegrals
are given by

PðAÞ
2-loop ¼

KðAÞ
2-loop

ð4�ÞD
1

ðl2Þ7�D
; PðBÞ

2-loop ¼
KðBÞ

2-loop

ð4�ÞD
1

ðl2Þ7�D
;

(5.5)

where l is the momentum flowing through the two-loop

propagator diagram and KðAÞ
2-loop and K

ðBÞ
2-loop are constants to

be determined by explicit integration. The factor of

FIG. 8. Vacuum-like diagrams describing the leading behavior.
The labels 1, 2 indicate whether the corresponding propagator
appears to the first or second power.

FIG. 9. Reduction of three-loop propagator diagrams appear-
ing in the D ¼ 6� 2� UV divergences of N ¼ 8 supergravity.
The numbers near each propagator indicate the power or index to
which it is raised.
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1=ðl2Þ7�D effectively results in a remaining one-loop bub-
ble integral with a propagator raised to the power (7�D).
The two-loop propagator integrals in each case are finite in
D ¼ 6. We evaluated them using integration by parts [78],
with the result,

KðAÞ
2-loop ¼ 1; KðBÞ

2-loop ¼ 	3 � 1
3: (5.6)

The remaining one-loop bubble integrals are also
straightforward to evaluate; for arbitrary exponents n1
and n2 of the two propagators, they are given by [77]

Ibubbleðn1; n2Þ � �i
Z dDp

ð2�ÞD
1

ððpþ kÞ2Þn1ðp2Þn2

¼ ð�1Þn1þn2

ð4�ÞD=2
Gðn1; n2Þð�k2Þ�ðn1þn2�D=2Þ;

(5.7)

where

Gðn1; n2Þ ¼ �ð�D=2þn1 þn2Þ�ðD=2�n1Þ�ðD=2� n2Þ
�ðn1Þ�ðn2Þ�ðD�n1 �n2Þ :

(5.8)

InD ¼ 6� 2�, for the two cases in Fig. 9 we have n1 ¼
1þ 2� and n2 ¼ 2. The bubble integral in both cases
provides the UV divergence in D ¼ 6� 2�,

Gð1þ 2�; 2Þ ¼ �ð3�Þ�ð2� 3�Þ�ð1� �Þ
�ð1þ 2�Þ�ð2Þ�ð3� 4�Þ ¼

1

6�
þOð1Þ:

(5.9)

Recalling the normalization of the integrals IðxÞ defined in
Eq. (2.7), and collecting factors from Eqs. (5.6) and (5.7),
we obtain the UV singularity of the vacuum-like
diagrams (A) and (B),

VðAÞ ¼ � 1

ð4�Þ9
�
1

6�
þOð1Þ

�
; (5.10)

VðBÞ ¼ � 1

ð4�Þ9
�
1

6�

�
	3 � 1

3

�
þOð1Þ

�
: (5.11)

We have confirmed these results by direct numerical inte-
gration of the vacuum-like diagrams, using a mass regula-
tor to define the integrals. Using Eq. (5.4), we obtain

M ð3Þ;D¼6�2�
4 jpole ¼ 1

�

5	3
ð4�Þ9

�
�

2

�
8ðs12s13s14Þ2Mtree

4 :

(5.12)

Note that the simple functional dependence of Eq. (5.12)
on the kinematic variables s12, s13, and s14 is fixed by
dimensional analysis and Bose symmetry, given that it
should contain a factor of s12s13s14M

tree
4 . The identity

(5.3) can be used to help establish this fact.
Notice also the cancellation of the rational parts of

KðAÞ
2-loop and KðBÞ

2-loop, in the combination VðAÞ þ 3VðBÞ ap-

pearing in Eq. (5.4). Thanks to this cancellation, the loga-
rithmic UV divergence (5.12) possesses a uniform degree
of transcendentality (in which 	n is assigned degree n, and
rational numbers degree zero). This property is common to
infrared-regulated amplitudes, near D ¼ 4, in N ¼ 4
super-Yang-Mills theory and N ¼ 8 supergravity; here
we see it persists to the level of the three-loop UV singu-
larity at D ¼ 6.
As mentioned earlier, the fact that Eq. (5.12) is nonzero

establishes that, in comparison with N ¼ 4 super-Yang-
Mills theory,N ¼ 8 supergravity is no better behaved (as
well as no worse behaved) in the ultraviolet through three
loops.

B. UV divergences in odd dimensions

Next we turn to the computation of three-loop divergen-
ces in dimensions above six. To simplify the analysis, we
restrict our attention to the behavior near odd values of D,
namely D ¼ 7, 9, 11.
According to the convergence theorem, a Feynman in-

tegral is convergent if the degree of divergence of all one-
particle-irreducible subintegrals is negative. Together with
the Bogoliubov-Parasiuk-Hepp-Zimmermann subtraction
it also implies that, after subtracting all subdivergences,
the remaining overall divergence (arising when all loop
momenta are scaled to infinity at the same rate) has a local
(polynomial) dependence on external momentum invari-
ants. In dimensional regularization it is easy to see that, in
odd dimensions and at an odd loop order, no such overall
divergences may exist. Indeed, the dimension of any such
loop integral is odd, and so the result of the integration
depends on a half-integer power of momentum invariants.
However, such a dependence would be nonlocal. Hence its
coefficient must be finite after the subtraction of all sub-
divergences. Thus, after subtracting the subdivergences, all
three-loop integrals must be finite in odd dimensions. For
the same reason, no subtraction is necessary for one-loop
subintegrals in odd dimensions. Therefore, the first diver-
gent subintegrals have two loops, and they completely
determine the leading UV divergence of the three-loop
integrals to which they belong.

FIG. 10. The two-loop subdivergence contributions to the
three-loop local divergence. The black vertex represents a two-
loop local divergence. In dimensional regularization, near a
dimension greater than four, contributions (b) and (c) vanish
because they are proportional to a positive power of a vanishing
invariant. The complete contribution is given by summing over
the inequivalent permutations of external legs.
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The above arguments hold for general off-shell integrals.
Our case is somewhat simpler due to the masslessness of
the external momenta. Consider the potential two-loop
subdivergences shown in Fig. 10. In principle, there can
be contributions from two-loop four-, five-, and six-point
subdivergences. (There is no three-point subdivergence in
any supergravity theory.) However, from dimensional
analysis in D> 4 dimensions we can easily show that
both diagrams (b) and (c) vanish, because they are propor-
tional to vanishing invariants. For example, inserting a
five-point two-loop divergence into the third loop, as
shown in Fig. 10(b), amounts to computing

Z dDq

ð2�ÞD
Pðq; k1; k2Þ
q2ðqþ k4Þ2

� ðk24ÞD�4þnq=2: (5.13)

Here Pðq; k1; k2Þ is a polynomial depending on the loop
and external momenta, and nq counts the power of q in the

numerator of a given term. Even for terms with no powers
of q in the numerator, forD � 6 the integral is proportional
to a positive power of k24 ¼ 0 and therefore vanishes. With
additional powers of loop momenta q in the numerator, the
vanishing is even stronger.

Similarly, integral (c) in Fig. 10 must vanish, because no
external invariant appears. It is interesting to note that the
three-loop integrals (d), (h), and (i) in Fig. 3 do not have
two-loop four-point subintegrals. (This property is tied to
the fact that integrals (h) and (i) cannot be detected via two-
particle cuts. Integral (d) can be detected in this way, but
only by a cut that splits it into a product of two one-loop
integrals.) Thus, only the integrals (a), (b), (c), (e), (f), and
(g) in Fig. 3 contribute to the divergence in odd dimen-

sions. The first odd dimension in which a divergence
appears in the three-loop amplitude is D ¼ 7, because
this is the dimension where the first two-loop subdiver-
gence appears [38].
To evaluate the contribution of the two-loop subdiver-

gence, in principle we need the divergent parts of the two-
loop planar and nonplanar double-box integrals with two
off-shell external legs. However, a simple observation
allows us to obtain the desired result using only double-
box integrals with all massless legs. Indeed, at the level of
the singular terms in D � 7, the difference between the
massive (off-shell) and massless integrals are terms pro-
portional to the square of the massive momenta. When
these additional terms are inserted in the triangle graph
shown in Fig. 10, they cancel at least one of the propagators
of the triangle integral, leaving behind a bubble integral
with a massless momentum flowing through it. As ex-
plained above, such integrals vanish in dimensional
regularization.
Using this observation, an efficient strategy is to com-

bine the divergences of the subintegrals into divergences of
on-shell subamplitudes. This is done simply by grouping
together the remaining one-loop integrals with the same
remaining propagators, which is effectively done in
Fig. 10. With this reorganization we directly evaluate the
divergence in Fig. 10(a), with the two internal legs, 5 and 6,
placed on shell. All other contributions vanish. The
contact-term vertex represents the divergence of the on-
shell two-loop four-point amplitude. These divergences
have been computed in Ref. [38] and are given by,

Mð2Þ;D¼7�2�
4 jpole ¼ 1

2�ð4�Þ7
�

3
ðs212 þ s213 þ s214Þ �

�
�

2

�
6 � s12s13s14M

tree
4 ;

Mð2Þ;D¼9�2�
4 jpole ¼ 1

4�ð4�Þ9
�13�

9072
ðs212 þ s213 þ s214Þ2 �

�
�

2

�
6 � s12s13s14M

tree
4 ;

Mð2Þ;D¼11�2�
4 jpole ¼ 1

48�ð4�Þ11
�

5 791 500
ð438ðs612 þ s613 þ s614Þ � 53s212s

2
13s

2
14Þ �

�
�

2

�
6 � s12s13s14M

tree
4 ;

(5.14)

for external legs labeled 1, 2, 3, 4. The factor s12s13s14
cancels all kinematic poles in the tree amplitudes Mtree

4 ,
making these divergences local. (In fact, the product
s12s13s14M

tree
4 in the case of four gravitons may be repre-

sented as the matrix element on four-particle states of a
particular contraction of four Riemann tensors, often de-
noted simply by ‘‘R4’’.) We have also obtained the same
result (5.14) by evaluating the two-loop subdivergences
integral by integral, using the results of Ref. [38].

To evaluate the remaining one-loop integrals, we again
make use of the observation that if a numerator factor
collapses either of the propagators in Fig. 10(a), labeled
by 5 and 6, then the integral vanishes because it depends
only on a massless external momentum, either k23 ¼ 0 or

k24 ¼ 0, as in Fig. 10(b). Therefore we may set l25 ¼ 0 and

l26 ¼ 0 in the numerators of the integrals. We may use the

on-shell two-loop divergence (5.14) and tree amplitude
directly in the integration, giving us

Mð3Þ;D
4 jpole ¼ 1

2

X
perms

X
N¼8 states

Z dDl5
ð2�ÞD

�Mð2Þ;D
4 ð�l5; 1; 2; l6Þjpole i

l26

�Mtree
4 ð�l6; 3; 4; l5Þ i

l25
; (5.15)

where the factor of 1=2 accounts for identical particles
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crossing the cut, and the sum over permutations runs over
the six distinct labellings of Fig. 10(a). To evaluate this
integral we note that the two-loop divergences (5.14) are
proportional to the tree-level four-graviton amplitude.
Thus, we may use the two-particle cut sewing relation
for tree-level amplitudes [38],X
N¼8 states

Mtree
4 ð�l5; 1; 2; l6Þ �Mtree

4 ð�l6; 3; 4; l5Þ

¼ is12s13s14M
tree
4 ð1; 2; 3; 4Þ

�
1

ðl5 � k1Þ2
þ 1

ðl5 � k2Þ2
�

�
�

1

ðl6 � k3Þ2
þ 1

ðl6 � k4Þ2
�
: (5.16)

In the sewing (5.15), the additional factor s12s13s14 appear-
ing in the two-loop divergences (5.14) should be relabeled
as,

s12s13s14 � s12ðl5 � k1Þ2ðl5 � k2Þ2: (5.17)

With this additional factor the first term in the bracket in
Eq. (5.16) simplifies as,

s12ðl5 � k1Þ2ðl5 � k2Þ2
�

1

ðl5 � k1Þ2
þ 1

ðl5 � k2Þ2
�

¼ s12½ðl5 � k2Þ2 þ ðl5 � k1Þ2� ¼ �s212; (5.18)

where we used the on-shell conditions on l5 and l6.
Because a propagator cancels, we are left with the expected
triangle integrals in Eq. (5.15).
The masslessness of the external legs leads to further

simplifications in handling tensor triangle integrals, which
arise from additional factors of s13 and s14 in the two-loop
divergences (5.14). If in these factors we let s13 � ðl5 �
k1Þ2 ¼ �2l5 � k1 and s14 � ðl6 þ k1Þ2 ¼ 2l6 � k1, then all
contractions l

�
i l

�
j ! ��� vanish, because they are propor-

tional to k21 ¼ 0. Hence we just need the Feynman parame-
ter polynomials obtained by shifting the loop momentum
in the usual way. Evaluating the integrals over the
Feynman parameters in the appropriate odd integer dimen-
sion, and combining the pieces, we obtain the following
three-loop divergences:

Mð3Þ
4 jD¼7�2�

pole ¼ � �5=2

�ð4�Þ21=2
�
�

2

�
8½s12s13s14Mtree

4 �X
Z3

ð�s12Þ5=2
1440

ð65s212 � 8s13s14Þ;

Mð3Þ
4 jD¼9�2�

pole ¼ � �5=2

�ð4�Þ27=2
�
�

2

�
8½s12s13s14Mtree

4 �X
Z3

13ð�s12Þ7=2
11 705 057 280

ð10 143s412 � 1296s212s13s14 þ 128s213s
2
14Þ;

Mð3Þ
4 jD¼11�2�

pole ¼ � �5=2

�ð4�Þ33=2
�
�

2

�
8½s12s13s14Mtree

4 �X
Z3

ð�s12Þ9=2
2 461 954 796 421 120 000

� ð3 180 433 113s612 � 247 667 992s412s13s14 þ 70 002 816s212s
2
13s

2
14 � 3 363 840s313s

3
14Þ;

(5.19)

where Z3 refers to cyclic permutations of legs 2, 3, and 4.
These divergences are really due to two-loop subdivergen-
ces in the bare theory. If we renormalize the theory at two
loops in D ¼ 7, 9, or 11, in order to cancel the divergences
in Eq. (5.14), then the corresponding three-loop divergence
in the renormalized theory will also be cancelled.

VI. CONCLUSIONS

Maximally supersymmetricN ¼ 8 supergravity theory
is potentially a perturbatively ultraviolet-finite pointlike
quantum field theory of gravity. In Ref. [2] a loop-integral
representation of the three-loop four-point amplitude of
N ¼ 8 supergravity was presented, which exhibited can-
cellations beyond those needed for finiteness. In this paper,
using the method of maximal cuts [45], we constructed an
alternate representation of this amplitude with all ultravio-
let cancellations manifest. By explicitly evaluating the
integrals, we demonstrated that N ¼ 8 supergravity [1]
diverges in D ¼ 6, matching the ultraviolet behavior of
N ¼ 4 super-Yang-Mills theory. Hence no further hidden
cancellations are present at three loops. We found that the
divergence has a uniform degree of transcendentality, and

is proportional to 	3. We also evaluated the divergence of
the three-loop four-graviton amplitude in 7, 9, and 11
dimensions; the latter results may be of interest in studies
of M theory dualities [56].
While explicit calculations in N ¼ 8 supergravity re-

veal cancellations beyond those needed for finiteness, their
origin remains to be fully unraveled. For a subset of con-
tributions, all-loop cancellations [11] follow from the ‘‘no-
triangle’’ property at one loop [4–10]. In Ref. [21] one-
loop cancellations in generic theories of gravity were
linked to unexpectedly soft behavior of tree-level gravity
amplitudes under large complex shifts of their momenta
[24–28]. This mechanism was also proposed as a source of
all-loop cancellations, which may be sufficiently strong to
render the N ¼ 8 theory finite, when combined with
supersymmetric cancellations. This line of reasoning has
been pursued further in Ref. [10]. Improved ultraviolet
properties in N ¼ 8 supergravity have also been linked
to M theory dualities [12,15] and to string theory non-
renormalization theorems [13,14].
We also presented the fully color-dressedN ¼ 4 super-

Yang-Mills three-loop four-point amplitude. In our color
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decomposition the contact terms are given the same color
factor as the parent diagram to which they are assigned.
The parent diagrams contain only three-vertices, each of
which carries an fabc color factor. The freedom to assign
contact terms to different parent diagrams, and thereby to
different color factors, cancels in the full amplitude. To
confirm our color dressing for the three-loop four-point
amplitudes, we evaluated the cuts using color-dressed tree
amplitudes as input. We expect that, in general, any am-
plitude in any gauge theory can be color dressed by first
assigning contact terms to parent diagrams, in a way that is
consistent with all color-ordered unitarity cuts. Then one
dresses the three-point vertices of the parent diagrams with
the appropriate fabc color factors.

Representations of amplitudes manifestly exhibiting all
ultraviolet cancellations, such as the one presented in this
paper, should be helpful for studying their properties and
for tracking the origin of the cancellations, at both three-
and higher-loop orders.
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