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Q-lumps associated with the noncommutative CPN model in 2þ 1 dimensions are constructed. These

are solitonic configurations which are time dependent and rotate with constant angular frequency. Energy

of the Q-lumps is E ¼ 2�kþ �jQj, and we find that in a regime in which the noncommutativity

parameter � is related to the moduli determining the size of the lumps, it can be viewed to depend on � via

the Noether charge Q. We present a collective coordinate-type analysis signalling that CP1 Q-lumps

remain stable under small radiative perturbations.
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I. INTRODUCTION

It was shown by Leese [1] quite some time ago that the
CP1 model in 2þ 1 dimensions modified by the addition
of a certain potential term admitsQ-ball [2] type solutions.
These are time dependent configurations with conserved
topological charge (winding number) and Noether charge,
and named Q-lumps in the literature [1]. Q-lumps of the
CP1 model are constructed by finding a simple extension
of the Bogomol’nyi-Prasad-Sommerfield (BPS) equations.
Existence of this BPS-type bound ensures finite energy
solutions, which are determined in terms of the Noether
charge Q, the coupling constant of the potential and the
winding number k 2 Z. For finiteness of the energy, it is
necessary that k � 2, since the Noether charge of the k ¼ 1
configurations diverges logarithmically. However, k ¼ 1
lumps can exist as a part of a configuration of multilumps.
Q-lump configurations in the CPN models have also been
studied in the literature [3]. They appear as stationary
solutions of Kähler sigma models modified by a potential
term which is left invariant under the transformations
generated by a Killing vector of the target manifold. In
general, the moduli space of the CPN Q-lumps is smaller
than that of the pure CPN model lumps, since a solution
with a given value of Q may be scaled to give another
solution with a different value ofQ [1,3]. It was also found
that (4, 4)-supersymmetric 1þ 1-dimensional sigma mod-
els with hyper-Kähler target spaces admit Q-kink solu-
tions. These are stationary configurations, which also
saturate a BPS-type bound and carry 1=2 of the supersym-
metry [4]. More recent investigations indicated that N ¼
2 supersymmetric four-dimensional hyper-Kähler sigma
models have Q-lump configurations which are 1=4 or
1=8 BPS states [5,6]. Q-lumps of the N ¼ 2 supersym-
metric CPN model carrying half of the supersymmetries
has appeared in [7].

Noncommutative (NC) field theories have been under
investigation for about a decade now. Among them, field
theories defined on the Groenewold-Moyal (GM) type

deformations of spacetime [i.e. the noncommutative alge-

bra A�ðRðdþ1ÞÞ] hold a considerably large part of the
literature. (See, for instance [8,9] for comprehensive re-
views.) Formulation of instantons and solitons on the GM
spacetime and other noncommutative spaces, such as the
noncommutative tori and fuzzy spaces, have been exten-
sively studied and found to present very rich mathematical
structures [8–11]. CPN models on the GM spacetime have
been formulated and their BPS configurations were found
in [12]. Stability properties of these models as well as the
UðNÞ chiral model on the GM spacetime have been studied
in considerable detail in [13]. NC Q-balls were investi-
gated in [14].
It is therefore desirable to explore the Q-lump configu-

rations associated with the NC CPN models. It appears to
be rather straightforward to construct these configurations
and it turns out that they strongly resemble their commu-
tative cousins, and they too rotate with constant angular
frequency in time. Nevertheless, we also find that in a
regime in which the noncommutativity parameter � is
related to the moduli determining the size of the lumps,
the energy of the NCQ-lump configurations can be viewed
to depend on � via the Noether charge Q.
In the next section, Q-lump configurations of the NC

CPN model is presented. In Sec. III, we focus on the CP1

modelQ-lumps and first see that at the elementary classical
level their stability properties are similar to that of the
commutative model. Subsequently, we present a
collective-coordinate-type analysis signalling that NC
CP1 model Q-lumps remain stable under small radiative
perturbations. Contrary to the behavior of commutative
Q-lumps, we find that the period of fluctuations around
the radially symmetric Q-lump configurations depend, in
addition to �, on a function Að�0Þ of the ratio of the initial
size of the lump to the scale of the noncommutativity

parameter �0 :¼ �0ffiffiffiffi
2�

p . We discuss this and other related

findings in some detail and compare it with the properties
of the commutative theory and show that our results go
smoothly to those of the latter as � tends to zero.
Throughout this paper, we work on the Groenewald-

Moyal spacetime A�ðR2þ1Þ defined by the commutation*seckin.kurkcuoglu@itp.uni-hannover.de
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relations

½x̂�; x̂�� ¼ i���; �; � ¼ 0; 1; 2; (1.1)

and assume that the spatial coordinates commute with time
t ¼ x0, i.e. �0i ¼ 0.

II. Q-LUMPS OF THE NC CPN MODEL

To facilitate the construction of the NC CPN Q-lumps,
we start with the Lagrangian

L ¼ 2��12 Tr@�P@
�Pþ VðPÞ; (2.1)

where P is a projector living in the space A�ðR2þ1Þ �
MatðN þ 1Þ and we also have that Tr ¼ TrF � TrMatðNþ1Þ,
where F is the standard Fock space.

The CPN manifold is defined through the ðN þ
1Þ-component complex unit vector

� ¼ u
1

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uyuþ 1
p ; u �

u1
u2
..
.

uN

0
BBBB@

1
CCCCA; �y� ¼ 1:

(2.2)

� is the partial isometry associated with the projector P via
P ¼ ��y.

The potential term VðPÞ in (2.1) may be given as

VðPÞ ¼ �2��12�
2Tr½�ðNþ1Þ2�1; P�2; (2.3)

where �ðNþ1Þ2�1 is the ‘‘hypercharge’’ generator of the

global UðN þ 1Þ symmetry of the NC CPN model and �
is a constant with dimensions of mass. We observe that
VðPÞ breaks the globalUðN þ 1Þ symmetry of the pure NC
CPN model down toUð1Þ �UðNÞ. The absolute minimum
for the potential occurs at P ¼ 0, thus the global Uð1Þ
symmetry is not spontaneously broken and Q-ball type
solutions are possible [1,2]. Let us now see how they
come about.
The energy, topological charge and the Noether charge

for the model may be given by the expressions

E ¼ 2��TrP@iP@iPþ 2��12 Tr@tP@tP

� 2��12�
2Tr½�ðNþ1Þ2�1; P�2; (2.4)

k ¼ �

i
"ijTrP@iP@jP; (2.5)

Q ¼ 2��iTr�ðNþ1Þ2�1½P; @tP�: (2.6)

Let us now consider the BPS-type inequality

2��12TrðP@�P� i"��P@�PÞð@�PP� i"�	@	PPÞþ2��12Trð@tP� i�½�ðNþ1Þ2�1;P�Þð@tP� i�½�ðNþ1Þ2�1;P�yÞ� 0: (2.7)

It implies immediately the bound

E � 2�jkj þ �jQj; (2.8)

which is saturated by the configurations satisfying

P@�P� i"��P@�P ¼ 0; @tP� i�½�ðNþ1Þ2�1; P� ¼ 0:

(2.9)

We observe that the solutions of the above self-duality
equations are given by the BPS configurations of the NC
CPN model [7], which now rotate with an angular fre-
quency. The parameter � can be rescaled for a given CPN

model with fixed N such that the angular frequency of
rotations are �. Then, the solutions can be specified by
the partial isometry

�ðz; tÞ ¼ uðzÞe�i�t

1

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uyuþ 1
p ; (2.10)

where for self-dual solutions u ¼ uðzÞ is holomorphic in
z ¼ x1 þ x2 with ½z; �z� ¼ 2�, and anti-self-dual solutions
are antiholomorphic u ¼ uð�zÞ.

For the NC CP1 model we have

Pðu; uy; tÞ ¼ u 1
uyuþ1

uy u 1
uyuþ1

e�i�t

1
uyuþ1

uye�i�t 1
uyuþ1

 !
; (2.11)

while in the CP2 model, Q-lumps are specified by the

projector

Pðu; uy; tÞ ¼
u1

1

 u

y
1 u1

1

 u

y
2 u1

1

 e

�i�t

u2
1

 u

y
1 u2

1

 u

y
2 u2

1

 e

�i�t

1

 u

y
1e

�i�t 1

 u

y
2e

�i�t 1



0
BB@

1
CCA
(2.12)

where 
 ¼ uy�u� þ 1.
The potential terms in these models may also be ex-

pressed as

VðuÞ :¼ ���2TrF

�
u

1

ðuyuþ 1Þ2 u
y þ uyu

ðuyuþ 1Þ2
�
;

(2.13)

Vðu1; u2Þ ¼ 2���2TrF

�
u1

1


2
uy1 þ u2

1


2
uy2 þ 
� 1


2

�
:

(2.14)

These generalize the expression V ¼ �2
R
d2xg��u�u�,

g�� being the Fubini-Study metric on CPN , given in [3]
for the CPN models for the values N ¼ 1, 2 and they
collapse to it in the commutative limit.
It is apparent that the time dependence of these solutions

is exactly the same as that obtained in [1,3] for theQ-lumps
of the commutativeCPN models. Likewise, these solutions
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may have finite energy only for winding numbers k � 2.
This is due to the fact that the Noether charge Q diverges
for configurations with k ¼ 1, as can be seen by inspecting
the trace involved. We will return to the detailed study of
these traces shortly.

The contribution to the energy due the Noether charge
lifts the degeneracy of a class of solutions in the solution
space of solitons of arbitrary sizes. This is quite expected
as the addition of the potential term breaks the scaling
invariance of the NC CPN model even at the level of
solutions.1 For instance, this is so for the radially symmet-
ric configurations of the CP1 model:

u¼ ð2�Þk=2
�k

akei�t; ½a;ay� ¼ 1; k� 1; �� 0;

(2.15)

where � characterizes the size of the soliton. These fea-
tures are essentially the same as those found for the com-
mutative Q-lumps.

However, it is important to remark that in contrast to the
commutative theory, computing the Noether charge or the
energy for a given configuration with a generic winding

number k is not an easy task. Even for the class of winding
number k configurations specified by (2.15), it is rather
difficult to compute the traces involved inQ. Explicitly, we
have

jQj ¼ 2��2��2k�kð�Þ ¼ ��22��2k�2�kð�Þ;

� ¼ �ffiffiffiffiffiffi
2�

p ;
(2.16)

where

�kð�Þ :¼ 1

2
TrF

�
aykak

½aykak þ �2k�2 þ ak
1

½aykak þ �2k�2 a
yk
�

¼ X1
j¼0

ðjþkÞ!
j!

ððjþkÞ!
j! þ �2kÞ2 : (2.17)

The series �kð�Þ converges for k � 2 as can be verified by
applying Raabe’s test, while it diverges for k ¼ 1. For
small values of k, the series �kð�Þ may be summed by
using Mathematica or formulas from [15]. For k ¼ 2 we
have2

�2ð�Þ ¼
�sec2ð12�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�4

p
Þð�2��4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�4

p
þ ð1� 2�4Þ sinð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�4

p
ÞÞ

2ð1� 4�4Þ3=2 : (2.18)

This result will be made use of in the next section to
concretely demonstrate the new features encountered in
the stability properties of NC Q-lumps under small radia-
tive perturbations.

The expression in (2.16) suggests that the Noether
charge Q is determined by k, �, �, and �. In the commu-
tative theory, Q depends on k, �, and � already [1], thus it
is important to assess if and how the new alleged depen-
dence of Q on � is genuine. For this purpose, let us first
observe that for the solutions of the form (2.15) the moduli
space metric is given by

ds2 ¼ ��k22k�2k�2ðtÞ�kð�ðtÞÞðd�2Þ ¼: gkð�ðtÞÞðd�2Þ:
(2.19)

Thus, it depends on k and �ðtÞ only. In order to claim thatQ
indeed depends on �, there should be a way to fix our
position in the moduli space while � is still allowed to vary.
From (2.19) it is clear how this could be achieved. Namely,
allowing � and � to vary while keeping � fixed, the moduli
space metric does not change; however, Q continues to
vary with �. In other words, taking � proportional to �2, we
can think of Q as a function of either � or �. It is only in

this regime that Q (and consequently the energy) may be
viewed to depend on �.
It is also important to study the case when � is fixed and

� is allowed to vary. In this situation, although both the
metric gkð�Þ andQ continue to vary with �, we notice from
(2.16) and (2.19) that we can always write Q ¼
� �

2k�1k2
�2gkð�Þ, and thus the factor gkð�Þ entirely com-

pensates for the change in the moduli space metric as � is
varied and consequently we can view Q as a function of �.
Finally, we note that the commutative limit is recovered

by taking � ! 1, keeping � fixed and taking � ! 0.

III. STABILITY OF NC CP1 Q-LUMPS

Elementary classical stability properties of the NC
Q-lumps are also quite similar to their commutative coun-
terparts. As the NC Q-lumps saturate the BPS-type bound,
they are automatically classically stable configurations.
The quantum stability of Q-lumps requires the energy-
charge ratio to be smaller than the meson mass in the
theory [1]. For the present case, the maximum energy
transferable to radiating mesons is E0 ¼ E� 2�N due to
the topological stability of the NC Q-lump configuration,

and hence the energy-charge ratio is given as E0
Q ¼ �, due to

2�3ð�Þ is also available through Mathematica but significantly
more complicated then �2ð�Þ.

1Recall that the CPN model action in NC spacetime is not
scale invariant due to the noncommutativity; however, its soli-
tonic solutions retain this feature.
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the BPS-type bound. This is precisely the same situation
encountered for the commutative Q-lumps, which appear
to be at the threshold of quantum stability. Consequently,
the same crucial question regarding the radiative stability
of theQ-lumps, which was analyzed in detail by Leese [1],
is also of essential interest here. To be more precise,
although the NC Q-lumps appear to be quantum mechani-
cally stable (more accurately at the threshold of quantum
stability), it is easily seen that any small perturbation could
start a continuous emission of radiating mesons as the ratio
E0
Q grows larger once such a process is initiated, and this

would eventually lead the Q-lump to shrink to a spike.
Therefore, the question which needs to be answered is
whether such a continuous emission of radiating mesons
is classically possible. Leese analyzed this problem using
numerical techniques and also provided a rather simple
analytic discussion that corroborates with his numerical
findings that such radiative instabilities are not present as
long as there is a potential barrier between Q-lumps with
winding number k and configurations consisting of
Q-lumps with winding number k0 < k present together
with some mesons at larger distances. The situation in
the noncommutative setting appears to be somewhat
more complicated, and at present we will not attempt to
give a full result using numerical techniques. In what
follows, we apply the aforementioned analytical procedure
to the NC Q-lumps. This will help us to see some new
features of these configurations and also allow us to show
that they remain stable under small radiative perturbations.

The most general radially symmetric configuration (not
necessarily a solution) with winding number k may be
given by

u ¼ ð2�Þk=2
�kðN̂; tÞa

keic ðN̂;tÞ; �ðN̂; tÞ � 0: (3.1)

In (3.1), N̂ ¼ aya is the number operator, which maps to
the square of the radial coordinate under the diagonal
coherent states map. Assuming that the system remains
approximately radially symmetric during the time evolu-

tion, we can drop the N̂ dependence in �ðN̂; tÞ and c ðN̂; tÞ.
Then, the associated Lagrangian becomes

Lk ¼ 2�kþ 2��
�2kðtÞ
�k

�
�2 �

�
�ðtÞ02
�ðtÞ2 k

2 þ c 02ðtÞ
��

��k

�
�ðtÞffiffiffiffiffiffi
2�

p
�
; (3.2)

where 0 denotes the derivatives with respect to t.
Lkð�ðtÞ; c ðtÞÞ specifies a dynamical system in �ðtÞ and

c ðtÞ. Let us now consider a small perturbation around the
Q-lump configuration (2.11)

�ðtÞ ¼ �0 þ "ðtÞ; c ðtÞ ¼ tð�þ �ðtÞÞ; (3.3)

where �0 stands for �ðt ¼ 0Þ for short. Using the equation
of motion for c ðtÞ and (3.3) we have

c 0ðtÞ ¼ �
�2k
0 �kð �0ffiffiffiffi

2�
p Þ

�2kðtÞ�kð�ðtÞffiffiffiffi2�p Þ : (3.4)

For our purposes, we only need the equation of motion3 for
�ðtÞ at first order in "ðtÞ. This takes the form

"00ðtÞ þ 4�2

k2
A2
kð�0Þ"ðtÞ þOð"2ðtÞÞ ¼ 0; (3.5)

where

Akð�Þ :¼
�
kþ 1

2
�0

@��kð�Þj�¼�0

�kð�0Þ
�
; �0 ¼ �0ffiffiffiffiffiffi

2�
p :

(3.6)

Thus, the width of the radially symmetric lumps oscillate
under small perturbations albeit with a period  ¼ �k

�Akð�0Þ ,
which now depends on the function Akð�0Þ of �0 ¼ �0ffiffiffiffi

2�
p in

contrast to the commutative theory. We conclude that the
Q-lump configurations remain stable under small radiative
perturbations. As �0 gets larger (i.e. � 	 �0), we have that
�kð�0 ! 1Þ 
 �2�2k

0 and hence Akð�0 ! 1Þ ! 1. The
commutative limit is, therefore, smoothly recovered.
It is possible to investigate the behavior of Ak¼2ð�0Þ in

more detail. In Fig. 1, we have plotted the response of
A2ð�0Þ. We observe that A2ð�0Þ smoothly approaches to the
value 1 as �0 ! 1 and hence  approaches its commuta-
tive value. Put another way, we could state that the non-
commutativity leads to more rapid oscillations around the
Q-lump configuration.

IV. CONCLUSIONS AND OUTLOOK

In this paper we have constructed the Q-lump configu-
rations associated with the NC CPN models. We have
found that, similar to their commutative counterparts,
they too appear as extended field configurations, which
rotate with a fixed angular frequency in time, and saturate

0.5 1.0 1.5 2.0
κ 0

1.2

1.4

1.6

1.8

2.0

A2 κ 0

FIG. 1. Plot of A2ð�0Þ as a function of �0.

3The full equation of motion is given in the appendix for
completeness.
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a BPS-type bound. Quite interestingly, it was also found
that in a regime in which � is taken to be proportional to �2,
the energy of the NCQ-lump configurations can be viewed
to depend on � via the Noether charge Q. A collective
coordinate-type analysis helped us to show thatCP1 model
Q-lumps remain stable under small radiative perturbations.
Contrary to the behavior of the commutative Q-lumps, we
have also seen that, due to the noncommutativity the period
of fluctuations around the radially symmetric Q-lump con-
figurations depend on the function Að�0Þ leading to more
rapid oscillations around the Q-lump configuration.

It seems rather straightforward to obtain the supersym-
metric extensions of the NC Q-lumps following the ideas
of [7,16]. To be more concrete, focusing on the N ¼ 2

superspace A�ðR2þ1j4Þ with only the Moyal-type non-
commutativity, (i.e. Grassmann coordinates are unde-
formed and they anticommute), it is possible to consider
the supersymmetric Lagrangian

L ¼
Z

d2�TrDP �DP þW ð�Þ; (4.1)

where P � P ðx̂�; ��Þ is a projector in A�ðR2þ1j4Þ �
MatðN þ 1Þ, � � �ðx̂�; ��Þ is the partial isometry fulfill-

ingP ¼ ��y and�y� ¼ 1, andW ð�Þ is a superpotential.
Following [7], the superpotential can be taken to be of the
form

W ð�Þ ¼ �Tr�yK�; (4.2)

whereK ¼ diagð1; 1; 1; � � � ; 0Þ 2 MatðN þ 1Þ is a projec-
tor. It may be shown that this system leads to the same
bosonic NC CPN Q-lump configurations with half of the
supersymmetries, while the fermionic part is assumed to
vanish. Clearly, a comprehensive study of noncommutative
deformations of massive supersymmetric sigma models in
various dimensions still has to be made to shed more light
into their detailed structure.

There are several other issues which remain to be inves-
tigated. First of all, it should be possible to explore the
scattering of NC Q-lumps and compare it with those of the
commutative theory, as well as with those in the pure NC
CPN models. It may also be possible to explore the addi-
tion of topological terms, such as the Chern-Simons term
or a Berry phaselike term into the action. It appears that the
latter of these lead to divergent contributions in general
[17]. Nevertheless, it may be possible to regulate the con-
tribution of divergent traces by restricting the configuration
space to an infinite strip [18] or a disc [19] on the GM
plane. Such a regularization, however, also alters the struc-
ture of the pure sigma model lumps as well as theQ-lumps,
and further investigation is necessary to understand the
behavior of these configurations. We hope to report on
the progress on these topics elsewhere.
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APPENDIX

The equation for �ðtÞ is

�00ðtÞ þ 1

2

�
2ðk� 1Þ þ �ðtÞ @��kð�Þ

�kð�Þ
�
�02ðtÞ
�ðtÞ

þ 1

k2
ð�2 � c 02ðtÞÞ

�
kþ 1

2
�ðtÞ @��kð�Þ

�kð�Þ
�
�ðtÞ ¼ 0:

(A1)

As � ! 0, �ðtÞ @��kð�Þ
�kð�Þ ! 2ð1� kÞ and the result of the

commutative theory is recovered.
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