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We study the stability of noncommutative spaces in matrix models and discuss the continuum limit

which leads to the noncommutative Yang-Mills theories. It turns out that most noncommutative spaces

in bosonic models are unstable. This indicates perturbative instability of fuzzy RD pointed out by

Van Raamsdonk and Armoni et al. persists to nonperturbative level in these cases. In this sense, these

bosonic noncommutative Yang-Mills theories are not well-defined, or at least their matrix model

formulations studied in this paper do not work. We also show that noncommutative backgrounds are

stable in a supersymmetric matrix model deformed by a cubic Myers term, though the deformation itself

breaks supersymmetry.
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I. INTRODUCTION

Yang-Mills theory on a noncommutative space (non-
commutative Yang-Mills theory, or simply NCYM) has
attracted much interest in theoretical physics. It appears
as an effective theory of string theory or its matrix models
around certain flux backgrounds [1–6]. NCYM contains
some interesting physical properties like spacetime uncer-
tainty and peculiar solitonic solutions [7]. We also notice
that it naturally contains gravity (for recent progress, see
e.g. [8,9]). To understand the nonperturbative aspects of
NCYM better, we need the nonperturbative formulation of
it. Matrix models are expected to be the most promising
approach. Using a matrix model, NCYM is realized as an
effective theory of a matrix model around a certain back-
ground. However, such backgrounds are unstable for some
cases and whether the theories are well-defined or not is a
nontrivial question. It is well-defined only when the back-
grounds are stable. In this note, we will discuss stability of
noncommutative spaces and argue what kinds of NCYM
can be realized using matrix models.

Realization of NCYM in matrix models is of interest
also from emergent geometry point of view. The origin of
this concept goes back to the early 1980s. The first ex-
ample, as far as we know, is large-N reduction [10–12]
which claims that large-N gauge theories are equivalent to
their one point reduced models. In these models, spacetime
is embedded in gauge fields [11–13]. We can also find it in
the context of quantum theory of gravity. From this point of
view, spacetime should emerge as a result of some dynami-
cal mechanism. As nonperturbative formulations of string
theory, various matrix models are proposed [2,3] and,
especially in the Ishibashi-Kawai-Kitazawa-Tsuchiya
(IKKT) matrix model [3], various interpretations are given

to realize emergent geometry [9,14,15]. This concept is
also discussed in the context of AdS/CFT [16,17].
NCYM is another example of emergent geometry. Let us

briefly explain how it shows up and what kind of double-
scaling limit is necessary. We only consider NCYM on a
flat noncommutative space and mainly take the continuum
limit in which the noncommutativity parameter � is fixed.
We set the gauge group to be Uð1Þ unless otherwise men-
tioned but generalization to UðnÞ is straightforward.
For concreteness, let us consider zero-dimensional

SUðNÞ matrix models with a twisted boundary condition
[12] or a Myers term added [18]. For these models, it is
known that compact noncommutative spaces like fuzzy
spheres are classical solutions. Once we fix �, volume of
the space and the UV cutoff are related to the matrix size
N. Therefore, the gauge coupling gNC runs with N. Strictly
speaking, renormalizability of NCYM is a subtle problem.
In principle, using numerical simulations, the scaling is
determined nonperturbatively so that some renormaliza-
tion condition is satisfied. For example, in [19],D ¼ 2 case
is discussed and renormalization is performed so that the
expectation value of the Wilson loop with the same area in
a physical unit is kept fixed. This result is equivalent to the
one for the one-loop calculation. In principle, we can
similarly perform renormalization for the case of D ¼ 4,
however, it is hard with current numerical resources.
Therefore, we rely on the one-loop calculation for this
case [20]. It is known that for non-Abelian gauge theory,
the scaling of the gauge coupling turns out to be the same
as that of the commutative case. On the other hand, the case
of Abelian gauge theory is extremely different and it is
known that the beta function is the same as that of non-
Abelian gauge theory on commutative space. That is, for
NCYM, Abelian gauge theory is also asymptotically free
as a result of the existence of nonplanar diagrams.
In order for NCYM to be well-defined, noncommutative

spaces must be stable in this double scaling limit. However,
in some cases gNC runs into a region where the space is not
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stable anymore. We show that this is the case for most of
bosonic models. Therefore, as suspected for a long time
[21], NCYM on fuzzy RD is not well-defined nonperturba-
tively (At least matrix model formulations discussed in this
paper do not work). Here we also notice that D ¼ 2 pure
NCYM is only one exception that we have found in this
paper. In other words, NCYM describes a wrong vacuum
and hence noncommutative spacetime is not an emergent
background in this case. This is not necessarily a negative
conclusion—we can say that NCYM correctly describes
gravitational instability.

On the other hand, once supersymmetry is introduced
we can expect that fuzzy spaces are stabilized because of
the Bogomol’nyi-Prasad-Sommerfield monopoles (BPS)
nature and noncommutative super Yang-Mills theory
(NCSYM) on fuzzy R4 is realized. In order to formulate
NCSYM on fuzzy R4, we add a cubic Myers term to the
usual IKKT-like matrix models. One thing we notice here
is the fact that these models themselves do not have super-
symmetry but it recovers in the double scaling limit.

Organization of this paper is as follows. In Sec. II we
study bosonic matrix models to formulate bosonic NCYM.
We first discuss the twisted Eguchi-Kawai model [12] and
explain that we cannot formulate D ¼ 4 pure NCYM [22]
while we can formulate D ¼ 2 pure NCYM. Next, we
discuss bosonic analogues of IKKT matrix models with a
cubic Myers term and analyze the stability of solutions like
fuzzy spheres. We show that we cannot formulate D ¼ 4
and D ¼ 2 NCYM with adjoint scalars using this formu-
lation. We also demonstrate that pureD ¼ 2NCYM can be
realized by adding a potential term to an adjoint scalar. In
the end of this section, we comment on other scaling limits
like the commutative limit. In Sec. III we study approxi-
mately supersymmetric matrix models with a cubic Myers
term to formulate NCSYM and show that the approximate
supersymmetry stabilizes fuzzy spaces.

II. BOSONIC MATRIX MODELS AND BOSONIC
NCYM ON FUZZY RD

In this section, we study bosonic matrix models and their
double scaling limit which leads to bosonic NCYM on
fuzzy RD. In Sec. II A we briefly review the twisted
Eguchi-Kawai model (TEK) [12] and discuss the stability
of the ground state [22,23]. In Sec. II B we explain the
formulation of NCYM using TEK [5,24] and explain the
double scaling limit. It turns out that NCYM on fuzzy R4

cannot be realized using it [22]. In Sec. II C we introduce
bosonic analogue to IKKT matrix model with a cubic
Myers term, which has fuzzy S2 � S2 as a classical solu-
tion. We show that this background is unstable in the
double scaling limit. Discussion in this subsection applies
also to other deformations with a cubic Myers term. In
Sec. II D we study other possible limits including commu-
tative limit.

A. Twisted Eguchi-Kawai model

Twisted Eguchi-Kawai model [12] is a unitary matrix
model defined by the action

STEK ¼ ��N
X
���

Z�� TrðU�U�U
y
�U

y
� Þ; (2.1)

where U� are N � N unitary matrices with the Greek

indices run from 1 to D and � is the inverse of the
’t Hooft coupling. We mainly concentrate on the case of
D ¼ 4. We comment on the case ofD ¼ 2 in the end of the
next subsection where we discuss matrix formulation of
NCYM on fuzzy R2.
The phase factors Z�� are defined by

Z�� ¼ expð2�in��=NÞ; n�� ¼ �n�� 2 ZN:

In this paper, we use the skew-diagonal twist which is
written as

ðn��Þ ¼
0 L 0 0
�L 0 0 0
0 0 0 L
0 0 �L 0

0
BBB@

1
CCCA; (2.2)

where L ¼ ffiffiffiffi
N
p

corresponds to the lattice size [12]. There
are other ways of twisting, but the discussion is completely
parallel and the conclusion is the same as far as the double
scaling limit which leads to NCYM is concerned.
In the weak coupling limit (�! 1), the path-integral is

dominated by configurations with the minimum value of

the action. This configuration Uð0Þ� ¼ �� is called ‘‘twist

eater’’ and satisfies the ’t Hooft algebra

���� ¼ Z������: (2.3)

For the skew-diagonal twist, we can easily construct a twist
eater configuration by introducing L� L ‘‘shift’’ matrix

ŜL and ‘‘clock’’ matrix ĈL

Ŝ L ¼

0 1 0 � � � 0
0 0 1 � � � 0
..
. ..

. ..
. . .

. ..
.

0 0 0 � � � 1
1 0 0 � � � 0

0
BBBBBB@

1
CCCCCCA;

ĈL ¼

1
e2�i=L

e2�i�2=L
. .
.

e2�iðL�1Þ=L

0
BBBBBB@

1
CCCCCCA:

(2.4)

These matrices satisfy

Ĉ LŜL ¼ e�2�i=LŜLĈL; (2.5)

and then we can construct a twist eater configuration for
the above skew-diagonal twist as
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�1 ¼ ĈL � 1L; �2 ¼ ŜL � 1L;

�3 ¼ 1L � ĈL; �4 ¼ 1L � ŜL:
(2.6)

This twist eater configuration is nothing but fuzzy T4 in the
context of NCYM. We will explain the relation between
fuzzy T4 and fuzzy R4 when we use TEK as a potential
nonperturbative formulation of NCYM on fuzzy R4 in the
next subsection.

In [22], it was shown, by the Monte-Carlo study of TEK,
that the configuration deviates from the �� and the fuzzy

torus collapses in a certain range of the inverse ’t Hooft
coupling �. The upper boundary of this region scales as

�c ’ 0:0034N þ 0:25: (2.7)

We can estimate this behavior easily and somehow roughly
as follows. For simplicity, we assume that the fuzzy torus
U� ¼ �� collapses to the identity configuration U� ¼ 1N .

The difference of energy between these configurations is

�S ¼ STEKðU� ¼ 1NÞ � STEKðU� ¼ ��Þ ¼ 8�2�N:

(2.8)

Far from the weak coupling limit, the system has quantum
fluctuations. Especially quantum fluctuations about twist
eater is known to be OðN2Þ [25]. Roughly expecting that
the fuzzy torus collapses if the fluctuation around twist-
eater configuration exceeds the energy difference �S, we
can estimate the critical point �L

c on which the torus begins
to collapse as1

�c � N; (2.9)

which is consistent with the numerical results (2.7).

B. TEK and NCYM on fuzzy RD

TEK is a potential nonperturbative formulation of pure
NCYM on fuzzy RD. [5,24]. In order to realize the for-
mulation, we notice that fuzzy RD is realized as a tangent
space of fuzzy TD. We can determine whether we can
formulate the NCYM or not by analyzing the stability of
the torus in the double scaling limit. Here we review the
formulation of NCYM on R4 using TEK and especially
discuss the double scaling limit [22] and the stability of the
fuzzy T4. We also comment on the case of D ¼ 2.

By taking U� ¼ eiaA� , where a corresponds to the lat-

tice spacing, and expanding the action of TEK (2.1), we
have its continuum version as

STEK ¼ � 1

4g2
X
���

Trð½A�; A�� � i���Þ2; (2.10)

up to higher order terms in a, where

��� ¼
2�n��

Na2
;

1

4g2
¼ a4�N: (2.11)

Then, by expanding the action around a classical solution
(2.10)

Að0Þ� ¼ p̂�; ½p̂�; p̂�� ¼ i���; (2.12)

we obtain the Uð1Þ NCYM on fuzzy R4 as follows. Let us
define the ‘‘noncommutative coordinate’’ x̂� ¼
ð��1Þ��p̂�. Then we have

½x̂�; x̂�� ¼ �ið��1Þ��: (2.13)

This commutation relation is the same as that of coordi-
nates on fuzzyR4 with noncommutativity parameter �, and
hence functions of x̂ can be mapped to functions on fuzzy
R4. More precisely, we have the following mapping rule:

fðx̂Þ ¼X
k

~fðkÞeikx̂ $ fðxÞ ¼X
k

~fðkÞeikx;

fðx̂Þgðx̂Þ $ fðxÞ ? gðxÞ; i½p̂�; �� $ @�;

Tr$
ffiffiffiffiffiffiffiffiffi
det�
p
4�2

Z
d4x;

(2.14)

where ? represents the noncommutative product,

fðxÞ ? gðxÞ ¼ fðxÞ exp
�
� i

2
@
 
�ð��1Þ�� ~@�

�
gðxÞ; (2.15)

and we obtain Uð1Þ NCYM with coupling constant

g2NC ¼ 4�2g2=
ffiffiffiffiffiffiffiffiffi
det�
p

: (2.16)

In order to keep the noncommutative scale � finite, we
should take the double scaling limit with

a�1 ��� N1=4: (2.17)

As we have explained the identification to formulate
pure NCYM using TEK, we next determine the double
scaling limit explicitly and discuss the stability of the fuzzy
T4. The one-loop beta function for D ¼ 4 Uð1Þ NCYM is
given by [20]

�1�loopðgNCÞ ¼ � 1

ð4�Þ2
11

3
g3NC þOðg5NCÞ: (2.18)

Therefore, the inverse ’t Hooft coupling � scales as

�� 1

g2NC
� log�� logN: (2.19)

Since we know that the torus collapses below the critical
point �c which scales as (2.7), we can see that the fuzzy T

4

collapses in the double scaling limit. Therefore we finally
see that we cannot formulate D ¼ 4 pure NCYM using
TEK.
Before closing this subsection we comment on the re-

sults for D ¼ 2. In this case, Eqs. (2.2) and (2.6) are
replaced by

1In this paper, we often estimate the power of N only and we
use ‘‘A� B’’ (resp. ‘‘A & B’’) to represent that the order of A is
equal to (resp. equal to or less than) that of B.
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ðn��Þ ¼ 0 1
�1 0

� �
: (2.20)

and

�1 ¼ ĈN; �2 ¼ ŜN: (2.21)

This corresponds to a fuzzy T2. In order to take the double
scaling limit with the noncommutative parameter ��
ða2NÞ�1 fixed, we must scale the lattice spacing as a�
N�1=2. For D ¼ 2, the double scaling limit is determined
by numerical simulations as [19]

�� N: (2.22)

In this scaling, g2 � g2NC does not run, which is consistent

with the one-loop beta function for D ¼ 2. Since we know
that fuzzy T2 does not collapse inD ¼ 2 TEK (This case is
exceptional because there are no physical degrees of free-
dom.), we see that we can formulateD ¼ 2 pure NCYM on
fuzzy R2. For detailed simulations and renormalizability
see [19].

C. Matrix model with a cubic Myers term

In this section, we use an bosonic analog to IKKT-type
matrix model with a cubic Myers term. More concretely,
we consider a matrix model which has S2 � S2 as a clas-
sical solution by choosing the cubic term coupling appro-
priately. Then we discuss the stability of fuzzy S2 � S2.
Although we use the specific solution, this argument itself
can be applied to the case of other compact noncommuta-
tive manifolds like fuzzy S2 and fuzzy CP2.2

Let us start with the d ¼ 6 bosonic analog to IKKT
model with a cubic Myers term. The action is written as

S ¼ 1

g2
Tr

�
� 1

4
½A�; A��2 þ 2i

3
�f���A�A�A�

�
; (2.23)

where A� isN � N hermitian matrix and the Greek indices

run from 1 to 6. In the cubic term, f��� is the structure
constant of SUð2Þ � SUð2Þ and � is a constant which
characterizes the radii of fuzzy spheres. We choose the
totally antisymmetric tensor f��� such that the only non-
zero components are f123 ¼ f456 ¼ 1 and their
permutations.

The equation of motion for this model is

½½A�; A��; A�� þ 2i�f���A�A� ¼ 0: (2.24)

A classical solution called fuzzy S2 � S2 is given by

Að0Þ� ¼ �J�; (2.25)

where J� is a generator of SUð2Þ � SUð2Þ which satisfies

½J�; J�� ¼ if���J�: (2.26)

J� can be expressed as3

J1;2;3 ¼ JðsÞ1;2;3 � 12sþ1; J4;5;6 ¼ 12sþ1 � JðsÞ1;2;3 (2.27)

where JðsÞ is the spin-s generator and N ¼ ð2sþ 1Þ2. In
this case two fuzzy spheres have the same radius and
square of the radius R of the fuzzy sphere is given by

R2 ¼X3
i¼1
ðAð0Þi Þ2 ¼ �2sðsþ 1Þ: (2.28)

Expanding the matrix model (2.23) about (2.27), we
obtain NCYM on fuzzy S2 � S2 coupled to two adjoint
scalars. By zoomingup the north pole, i.e. considering only
states with J3 � J6 � s, we formally obtain NCYM on
fuzzy R4 with two adjoint scalars, which originate from
transverse directions of the fuzzy S2 � S2. Because

½Að0Þ1 ; Að0Þ2 � ¼ ½Að0Þ4 ; Að0Þ5 � ¼ i�2J3 � i�2s; (2.29)

the noncommutativity parameter � is

�� �2s� �2
ffiffiffiffi
N
p

: (2.30)

In order to keep � fixed, we must scale � as

�� N�1=4; (2.31)

and therefore the momentum cutoff scales as

�� �s� N1=4: (2.32)

As a result, in order to take the continuum limit with �
fixed, we have to scale g2 as [20]

g�2 ¼ 4�2

�2
g�2NC � log�� logN: (2.33)

We can easily see that fuzzy S2 � S2 collapses when
1
g2
& N, because the energy difference between fuzzy S2 �

S2 and A� ¼ 0 is of order �4N2

g2
� N

g2
, while quantum fluc-

tuations are of order N2. Therefore, fuzzy S2 � S2 collap-
ses when we take the double scaling limit (2.31) and (2.33)
and then we cannot take the continuum limit.
This bound was derived more rigorously using a Monte-

Carlo simulation. Interestingly, this bound can also be
derived through perturbative calculations of the matrix
model [27]. First, notice that eigenvalues are concentrated
around the origin after the collapse of fuzzy sphere. This
can be confirmed by numerical simulations. Then it is
reasonable to assume that, in the perturbative analysis,
such instability can be detected by considering only ‘‘re-

2The argument below can be parallelly applied to the case of
fuzzy S2 and fuzzy CP2 because they are classical solutions of
(2.23) with f��� appropriately chosen. Fuzzy S4, however, is a
classical solution to a bosonic matrix model with a quintic Myers
term. In this case, perturbative calculation is not valid. In [26], it
is numerically shown that S4 is unstable in a bosonic matrix
model.

3We can also combine generators with different spins, but the
argument does not change qualitatively.
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scaled fuzzy sphere’’ Arescaled
� ¼ Að0Þ� � const and by cal-

culating its free energy as a function of the radius. At large
enough coupling, there is a minimum to the free energy,
which indicates that the background is stable. However,
below some critical point, the minimum disappears and we
can expect that the background is not stable anymore. This
is actually the case and the critical value obtained in this
way agrees with the numerical result very accurately. For
details, see [27]. In the next section, we assume the validity
of the perturbative calculation and use it to justify the
matrix formulation of supersymmetric noncommutative
Yang-Mills theory.

Here we comment on results for the formulation of D ¼
2 NCYM with an adjoint scalar. Let us take f��� to be the
structure constant ���� of SUð2Þ where the Greek indices

run from 1 to 3. As a classical solution of this matrix model
we can obtain fuzzy S2. By zooming up the north pole as
we did above, we obtain the NCYM on fuzzy R2. In order
for the noncommutativity parameter to be fixed, we have to
scale the coupling constant for the cubic Myers term as

�� N�1=2: (2.34)

Because the potential difference between the fuzzy S2 and

A� ¼ 0 is of order �4N3

g2
� N

g2
while one-loop fluctuation is

of order N2, fuzzy S2 collapses when 1
g2
& N. On the other

hand, we can see the gauge coupling constant g2 does not
run similarly to the case of Sec. II B. Therefore, we cannot
take the continuum limit as D ¼ 2 NCYM with an adjoint
scalar.

1. Adding potential terms for adjoint scalars

In [28], another matrix model formulation of NCYM is
introduced. This matrix model has fuzzy S2 as a classical
solution. In the original paper above, the commutative limit
�! 1 was studied. In this section, we rather discuss the
double scaling limit with � fixed and see whether we can
use this matrix model to formulate NCYM.

For this model the action is given by

S ¼ 1

4g2
Tr

�
ð�Ai þ i�ijkAjAkÞ2 þ

�
A2
i �

�2

4
ðN2 � 1Þ

�
2
�
:

(2.35)

By expanding the action about a classical solution

Ai ¼ �Ji; (2.36)

where Ji are SUð2Þ generators with spin s ¼ N�1
2 , NCYM

on fuzzy S2 is realized. (The second term in (2.35) gives
potential for adjoint scalar.) To take a continuum limit with
a fixed noncommutativity parameter, we should take
large-N limit with g2 fixed and �� 1ffiffiffi

N
p .

However, we can easily see that this background can
collapse to a point e.g.

A1 ¼ A2 ¼ 0; A3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 � 1
p

2
: (2.37)

We can easily see the difference of tree-level potential at

(2.36) and a (2.37) is of order �4N3

g2
, while quantum fluctua-

tions are of order N2 in the double scaling limit. Therefore
we can see that the critical coupling is 1

g2c
� N and fuzzy S2

collapses in the limit with 1
g2
& 1

g2c
.

In [29] a slightly generalized version of (2.35),

S ¼ N Tr

�
� 1

4
½Xi; Xj�2 þ 2i�

3
�ijkXiXjXk �m2�2X2

i

þ 2m2

N2 � 1
ðX2

i Þ2
�
; (2.38)

was studied both numerically and perturbative and the
critical point is found to be

�c ¼
�

8

m2 þ ffiffiffi
2
p � 1

�
1=4

: (2.39)

By redefining the field and by identifying parameters as

Ai ¼ g1=2N1=4Xi; m2 � N2; �� g1=2N1=4�;

(2.40)

we obtain (2.35) from (2.38) up to Oð1Þ factors. With this
identification, the scaling of the critical coupling becomes

1

g2c
� ðN1=4�c�

�1Þ4 � N; (2.41)

which agrees with the rough estimation just below (2.37).
Therefore it finally follows that we cannot formulate D ¼
2 NCYM with an adjoint scalar using (2.35).
However, the generalized model (2.38) has another

NCYM limit. To prevent the fuzzy sphere from collapsing

in the continuum limit (g2 fixed and �� 1=
ffiffiffiffi
N
p

) we have
to scale 1

g2c
& Oð1Þ. To realize this scaling with the redefi-

nition of the field and identification of � shown in (2.40),
we have to scale m as

m2 * N3; (2.42)

instead ofN2. Since last two terms in (2.38) are rewritten as

N � 2m2

N2 � 1
Tr

�
X2
i �

N2 � 1

4
�2

�
2 þ const; (2.43)

they suppress the fluctuation perpendicular to fuzzy sphere.
Therefore, an adjoint scalar, which corresponds to this
direction decouples and we obtain D ¼ 2 pure NCYM
with the scaling (2.42).
Before closing this subsection let us remark on the

subtlety in the above argument. The bound (2.39) is ob-
tained by calculating the free energy of the rescaled fuzzy
sphere. However, if the value of m is extremely large, the
instability (if exists) cannot be captured in this way, be-
cause collapse without changing the value of A2

i is more
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economical. If adjoint scalars decouple, the situation is
analogous to the case of TEK. In D ¼ 2 TEK, fuzzy T2

does not collapse. Therefore in the case of fuzzy S2, we do
not expect this kind of instability. On the other hand, in the
case of fuzzy S2 � S2 or fuzzy CP2 with adjoint scalar
potentials [30,31], we expect this instability similarly to
fuzzy T4 in D ¼ 4 TEK and hence NCYM on fuzzy R4

cannot be obtained.4 It is desirable to check it directly with
Monte-Carlo simulation.

D. Other limits

So far, we considered the continuum limit with the
noncommutativity parameter fixed and showed that most
of bosonic models have instability. In this subsection, we
discuss other possible limits. For concreteness we consider
the D ¼ 4 TEK model.

First, let us consider the case in which the fuzzy torus
does not collapse. The noncommutativity parameter is ex-
pressed as

�� 1ffiffiffiffi
N
p

a2
� �2ffiffiffiffi

N
p : (2.44)

To prevent the fuzzy torus from collapsing, the momentum
cutoff must be large enough so that

log�� 1

g2
���4�N * ��4N2: (2.45)

On the other hand, to keep the volume of noncommutative

space a
ffiffiffiffi
N
p � ffiffiffiffi

N
p

=� nonzero, � cannot be so large:

� &
ffiffiffiffi
N
p

: (2.46)

The only solution to the above constraints (2.45) and (2.46)
is

�� ffiffiffiffi
N
p

; �� ffiffiffiffi
N
p

; (2.47)

up to log� corrections. In this limit, noncommutativity
length ��1 goes to zero and the spacetime volume is fixed.
This limit has been studied in many references. This limit
is of interest as an alternative to the lattice gauge theory,
because it might provide a simpler way to introduce chiral
fermions [33].

Next let us consider the case that fuzzy torus does
collapse. From D-brane point of view, it just means
D-brane collapses to lower dimensional configuration.
From NCYM perspective this limit seems not to have a
sensible continuum limit because there is no extended
direction. In [34] a slightly different model with two
commutative and two noncommutative dimensions has
been studied numerically. In that case two noncommutative
dimensions collapse similarly to our case, but numerical
results suggest that there is a continuum limit with two

commutative noncompact directions and two compact,
finite size ‘‘noncommutative’’ directions. Such models
would be interesting as a toy model for compactification
mechanism in matrix models.

III. SUPERSYMMETRIC MATRIX MODEL AND
NONCOMMUTATIVE SUPER YANG-MILLS

In the previous section, we have discussed various ma-
trix model formulations of bosonic NCYM. In this section
we explain the formulation of noncommutative super
Yang-Mills (NCSYM). For this purpose we introduce ma-
trix models with an approximate supersymmetry and per-
turbatively discuss stability of noncommutative spaces.
Let us consider the IKKT-like matrix model [3] with a

cubic Myers term

S ¼ 1

g2
Tr

�
� 1

4
½A�; A��2 þ 2i

3
�f���A�A�A�

� 1

2
�c��½A�; c �

�
; (3.1)

where A� and c are bosonic and fermionic Hermitian

SUðNÞ matrices, Greek indices run from 1 to d (d ¼ 4,
6, 10), c has a spinor index and �� is the SOðdÞ Gamma
matrix. f��� is the structure constant of a Lie group whose
rank r is less than d. Except for the cubic Myers term, we
can obtain this action from D-dimensionalN ¼ 1 SUðNÞ
super Yang-Mills by dimensional reduction.
Since numerical simulations for these matrix models are

difficult, except for d ¼ 4 case [35] due to the notorious
sign problem, it is difficult to discuss stability of back-
grounds nonperturbatively. Hence, we provide only pertur-
bative arguments, which works perfectly well for bosonic
models. The perturbative argument is carried out similarly
to the case of bosonic analog of IKKT-like matrix model
with a cubic Myers term.
Although this model is not supersymmetric,5 the non-

commutative background can be stabilized for any value of
�. At large � it is stable because potential barrier is very
high and, furthermore, fluctuations are suppressed due to
approximate supersymmetry. At small �, it can be stabi-
lized since this model is almost supersymmetric (at � ¼ 0
the supersymmetry recovers) and this background is almost
BPS.
As a concrete example, let us take d ¼ 10 and f��� to be

the structure constant of SUð2Þ � SUð2Þ. Fuzzy S2 � S2

(2.27) is one of the classical solutions for it. (Indeed, there
is a subtlety for this background. We will discuss it in
Sec. III A). Quantum corrections to this background is
calculated in [38]. Here we consider the deformation in
radial direction only as we have explained in Sec. II C. Up

4There are models in which adjoint scalars are dropped by
hand. We expect the situation is the same [31,32].

5d ¼ r ¼ 3model with the cubic term is supersymmetric [36].
However, in this case the finiteness of partition function is not
known for generic N [37].
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to the leading order of 1=N, the tree-level action �tree and
the one-loop correction �1�loop for rescaled fuzzy sphere

P� ¼ ð1þ �Þ�J� are calculated as

�tree ¼ �4N2

4g2

�
ð1þ �Þ4 � 4

3
ð1þ �Þ3

�
;

�1�loop ¼ N � 2 log2 �
�
2þ �2

ð1þ �Þ2
�
:

(3.2)

(See Appendix A for derivation.) If we scale �� N�1=4,
we have

�tree ��Ng�2; �1�loop � N: (3.3)

The matrix model we are considering here is expected to
realizeD ¼ 4N ¼ 4NCSYM in the continuum limit and
then the coupling g does not run at one-loop level in this
limit.

From (3.3), the one-loop correction is smaller than tree-
level action provided that g2 is sufficiently small. We also

notice that n-loop effect is OðNðg2=ð�4NÞÞn�1Þ ¼
Ng2ðn�1Þ as a result of approximate supersymmetry
(SUSY) and higher loop effects are negligible in this
case [38]. We therefore see that the classical minimum
� ¼ 0 survives after taking into account quantum correc-
tions and we can expect that the fuzzy S2 � S2 does not
collapse. On the other hand, at strong coupling it might
collapse. To overcome this difficulty, it is probably useful
to consider a supersymmetric deformation in [39,40].

In the above construction using the matrix model with
the cubic Myers term, only extended supersymmetry can
be realized. In order to construct N ¼ 1 NCSYM, super-
symmetric generalization of TEK would be necessary.

A. Subtlety for S2 � S2 case

In this subsection we discuss a subtlety for fuzzy S2 �
S2 background.

Because fuzzy S2 has smaller free energy, fuzzy S2 � S2

is not stable; one of the S2 can shrink, while the other
expands [41]. We notice that SUð2Þ � SUð2Þ is preserved
in this process and that this instability cannot be read off
from the one-loop effective action (3.2). To avoid this
instability, we should use four-dimensional fuzzy mani-
folds with higher symmetry, e.g. the fuzzy CP2. CP2 can
be stable since the symmetry must be broken during the
transition to S2. The effective action does not change
qualitatively [42] and we can realize D ¼ 4 N ¼ 4
NCSYM using CP2.

It is difficult to realize D ¼ 4 N ¼ 2 NCSYM using
matrix model formulation because of the instability of
fuzzy S2 � S2. Naively, if we add a cubic Myers term to
d ¼ 6 supersymmetric matrix model as above, four-
dimensional N ¼ 2 NCSYM is expected to be realized
in the continuum limit. In this case, the coupling runs as
g�2 � logN, and hence the background is stable. However,
to realize four-dimensional compact fuzzy space with 6

matrices in this model, we need to use S2 � S2. It is
necessary to fix the radii somehow, for example, by
quenching the background or adding a small potential
term to the adjoint scalars, while keeping the continuum
theory unchanged. Instead of fuzzy S2 � S2 the fuzzy S4

might be useful. To make fuzzy S4 a classical solution, we
have to add the quintic Myers term. However, it is difficult
to discuss the stability because perturbative calculation is
not valid.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we studied the stability of noncommutative
spaces in several matrix models and discussed whether or
not they provide nonperturbative formulation of noncom-
mutative Yang-Mills theory (NCYM). It turns out that most
of matrix model formulations of bosonic NCYM on fuzzy
RD do not work. The only exception we found is D ¼ 2
pure NCYM. In the context of D-branes dynamics, those
not realized correspond to false vacua. This might be a
negative conclusion if one regards NCYM itself as a UV
complete theory. However, as an effective description for a
D-brane system, these bosonic NCYM correctly reproduce
the instability of the system. According to [21], large one-
loop correction to free energy, which leads instability of
NCYM, is due to UV/IR mixing. Hence by eliminating
UV/IR mixing somehow, we expect that NCYM be
stabilized.
On the other hand, noncommutative super Yang-Mills

(NCSYM) on fuzzy R4 with extended supersymmetry can
be formulated using a supersymmetric matrix model de-
formed by a cubic Myers term. At least, as we have see
above, D ¼ 4 N ¼ 4 NCSYM in weak coupling is real-
ized using this formulation. Also in certain nonsupersym-
metric model with adjoint fermions, ZN symmetry is not
broken [43]. Then combining it with a twist prescription a
certain nonsupersymmetric NCYM will be obtained.
Here we comment on the formulations of NCSYM at

finite temperature. For this purpose, we consider super-
symmetric matrix quantum mechanics6 with Euclidean
time direction compactified and antiperiodic boundary
condition for fermionic variables imposed. At high tem-
perature, fermionic modes decouples and the theory be-
comes essentially bosonic. Therefore, we can expect that
noncompact fuzzy space cannot be constructed in the high
temperature limit. Whether NCSYM at nonzero tempera-
ture exists or not is a subtle problem and numerical simu-
lation along the line of [44,45] will be necessary.
Though we have discussed matrix models formulation

only in this paper, there is another candidate for nonper-

6Monte Carlo simulation for supersymmetric matrix quantum
mechanics without cubic term has been performed recently
[44,45], and incorporation of a cubic term [46] will be straight-
forward. Thermodynamical property of fuzzy sphere in bosonic
model is studied in [47].
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turbative formulation of bosonic NCYM [48]. However, it
seems to share the same problem with the matrix model
formulation considered in this paper. In [48] NCYM is
mapped to a lattice gauge theory with twisted boundary
condition. In the continuum limit with noncommutativity
parameter fixed, however, corresponding lattice gauge the-
ory goes to zero volume and essentially reduces to the TEK
model (see Appendix B.)

Of course, the pathology discussed above does not pre-
vent us from nonperturbative formulations of nongauge
theories on noncommutative spaces using matrix models.
For example, scalar field theories are well-defined and we
can numerically analyze them using matrix model formu-
lations [49,50]. We also notice, as explained in Sec. II D,
we can take the ‘‘commutative’’ limit of NCYM, in which

the noncommutativity length ��1=2 goes to zero.
Therefore, one may still regard NCYM as an alternative
to the lattice construction for gauge theories on commuta-
tive spaces.

In the end, we comment on the recent progress in TEK
and its relation to the matrix formulation of bosonic
NCYM. Since the collapse of the fuzzy sphere in TEK
model is nothing but the breakdown of ZN symmetry
(original motivation for TEK is to keep this symmetry
unbroken), construction for bosonic NCYM is tightly re-
lated to a modification of Eguchi-Kawai model [10] such
that ZN does not break and large-N reduction works.
Historically two options have been studied. One is TEK,
which works fine at D ¼ 2 but turns out to fail at D ¼ 4.
Another one is the quenched Eguchi-Kawai model (QEK)
[11], in which commutative and extended background is
‘‘quenched’’ by hand. Naively by combining twist and
quench prescriptions, i.e. by fixing noncommutative back-
ground by hand, NCYM seems to be realized. However, it
does not seem to work. Indeed, recently it was argued that
QEK does not work due to the following reason [51]. In
QEK, unitary link variables U�’s are constrained to be

V�e
iP�Vy�, where P� ¼ diagðp1

�; � � � ; pN
�Þ is fixed, V�’s

are unitary matrices and pi
�’s are distributed uniformly in

R4. Naively one expects V�’s fluctuate around 1N and,

therefore, ZN is not broken. However, what actually hap-
pens is that V�’s become certain permutation matrices, so

that quenched momenta are ‘‘locked’’ [51] and free energy
becomes smaller. Intuitively, this result implies, even if the
background is quenched by hand, V� can get a nontrivial

VEV and an essentially different background emerges.
The same can take place also when we quench the non-

commutative background. Such a subtlety does not exist in
a supersymmetric case, and D ¼ 4 N ¼ 2 NCSYM
would be realized by quenching fizzy S2 � S2 background.

Recently a new deformation to Eguchi-Kawai model
was proposed in [52]. They added potential terms for
Wilson lines to prevent ZN from breakdown and argued
that the additional terms do not contribute in the continuum
limit. If it really works, by combining this method with the

twist prescription, bosonic NCYM might be realized.
Then, it would be interesting to understand the meaning
of the deformation in the context of D-brane dynamics.
In this paper, we assumed the running of the coupling

constant is determined by one-loop beta function when we
discuss the case of D ¼ 4. However, renormalizability of
the NCYM is of course controversial. It will be better if we
can determine the running more rigorously, for example,
by calculating correlation functions using numerical
simulations.
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APPENDIX A: DERIVATION OF ONE-LOOP
EFFECTIVE ACTION IN SUPERSYMMETRIC

MATRIX MODEL

Let us expand the action

S ¼ 1

g2
Tr

�
� 1

4
½A�; A��2 þ 2i

3
�f���A�A�A�

� 1

2
�c��½A�; c �

�
(A1)

about the rescaled fuzzy sphere

P� ¼ ð1þ �Þ�J�: (A2)

At tree level, we have

�tree ¼ �4

g2
Nsðsþ 1Þ

�
ð1þ �Þ4 � 4

3
ð1þ �Þ3

�

� �4N2

4g2

�
ð1þ �Þ4 � 4

3
ð1þ �Þ3

�
; (A3)

where N ¼ ð2sþ 1Þ2. Then, the one-loop effective action
is [3]

�1loop ¼ 1

2
Tr log

�
	�� � �f���

1þ �

adJ�

ðadJÞ2
�

� 1

4
Tr log

��
1þ i

2
���f���

adJ�

ðadJÞ2
�
1þ �11

2

�
:

(A4)

To leading order in N, we have
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�1loop ¼ 1

2
Tr

�
1

2

�
�f���

1þ �

adJ�

ðadJÞ2
�
2
�

� 1

4
Tr

�
� 1

2

�
i

2
���f���

adJ�

ðadJÞ2
�
2 1þ �11

2

�

¼
�
2þ �2

ð1þ �Þ2
�
Tr

1

ðadJÞ2

¼ N � 2 log2 �
�
2þ �2

ð1þ �Þ2
�
; (A5)

where we have used [38]

Tr
1

ðadJÞ2 ¼ Tr
1

ðadJðsÞ � 1Þ2 þ ð1 � adJðsÞÞ2

¼X2s
j¼1

X2s
j0¼1

ð2jþ 1Þð2j0 þ 1Þ
jðjþ 1Þ þ j0ðj0 þ 1Þ ’ 2N log2:

(A6)

APPENDIX B: LATTICE FORMULATION

Lattice regularization [48] relates commutative UðNÞ
lattice gauge theory on twisted torus to a ‘‘lattice regulari-
zation’’ of Uð1Þ NCYM on periodic fuzzy torus. Basically
this relation is as a result of the fact that the Morita
equivalence holds at lattice level.

For simplicity, we consider the D ¼ 4UðNÞ gauge the-
ory on a rectangular four-torus with period L. The action is

S ¼ � 1

g2
X
x

X
���

tr½U�ðxÞU�ðxþ a�̂ÞU�ðxþ a�̂Þy

�U�ðxÞy�; (B1)

where U� are unitary matrices which correspond to UðNÞ
gauge fields. They satisfy twisted boundary condition

U�ðxþ l�̂Þ ¼ ��U��
y
�; (B2)

where �� are twist eaters appeared in Sec. II A.

We now introduce a map �̂ðxÞ between lattice fields

U�ðxÞ and operators Û� as

Û � ¼
X
x

�̂ðxÞU�ðxÞ (B3)

where the mapping function �̂ðxÞ is defined as

�̂ðxÞ ¼
�
l

a

�
N X
mi2Z=n

�Y4
i¼1

eikaðx̂a�xaÞ
�
; (B4)

where ka is a momentum ka ¼ 2�ma=l and n is a integer
n ¼ l=a.

In order to relate operators Û� to noncommutative Uð1Þ
gauge fields, we now introduce another mapping function

�̂0ðx0Þ defined as

�̂ 0ðx0Þ ¼
�
l0

�

�
N
e��i

P
a<b

ma�abmb
X

ma2Z=n0

�Y4
a¼1

eik
0
aðx̂a�x0aÞ

�
;

(B5)

where l0 ¼ l
ffiffiffiffi
N
p

, k0a ¼ 2�ma=l
0, n0 ¼ l0=a and

�ab ¼
0 � 0 0
�� 0 0 0
0 0 0 �
0 0 �� 0

0
BBB@

1
CCCA

ab

; � ¼ 1ffiffiffiffi
N
p : (B6)

We have used primed quantities to represent those on a

lattice corresponding to �0. This �̂0ðx0Þ maps the noncom-
mutative lattice fields to operators whose dimensionless
noncommutativity parameters is �. Because of the twist

boundary condition ofU�ðxÞ the operator Û� have another

expansion using �̂0ðx0Þ,
Û � ¼

X
x0
�̂0ðx0ÞU0�ðx0Þ (B7)

whereU0�ðx0Þ are noncommutativeUð1Þ gauge fields which
live in periodic torus whose size is l0 and the dimensionless
noncommutativity parameter is �.
Now we gain a map from UðNÞ gauge fields U�ðxÞ on a

twisted commutative torus to the noncommutative Uð1Þ
gauge fields U0�ðx0Þ on a periodic fuzzy torus. Indeed the

action (B1) is rewritten in terms of U0�ðx0Þ as

S ¼ � 1

g02
X
x0

X
���

tr½U0�ðx0Þ ? U0�ðx0 þ a�̂Þ

? U0�ðx0 þ a�̂Þy ? U0�ðx0Þy�; (B8)

where

g02 ¼ Ng2: (B9)

The dimensionful noncommutativity parameter, which
appears in commutators of coordinates is given by

� ¼ � � l
02

2�
¼ l2

ffiffiffiffi
N
p
2�

: (B10)

Now let us consider the limit which leads to fuzzy R4

with finite value of �. To fix �, we have to take

l� N�1=4; (B11)

that is, we have to take infinitely small twisted torus and the
model essentially reduces to TEK. Therefore it is plausible
that the center symmetry Uð1Þ breaks down. This means
that the fuzzy torus collapses and we cannot realize fuzzy
R4 which is expected to appear as a tangent space of the
torus.
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