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A semiclassical picture of spontaneous symmetry breaking in light front field theory is formulated. It is

based on a finite-volume quantization of self-interacting scalar fields obeying antiperiodic boundary

conditions. This choice avoids a necessity to solve the zero-mode constraint and enables one to define

unitary operators which shift the scalar field by a constant. The operators simultaneously transform the

light front Fock vacuum to coherent states with lower energy than the Fock vacuum and with nonzero

expectation value of the scalar field. The new vacuum states are noninvariant under the discrete or

continuous symmetry of the Hamiltonian. Spontaneous symmetry breaking is described in this way in the

two-dimensional ��4 theory and in the three-dimensional Oð2Þ-symmetric sigma model. A qualitative

treatment of topological kink solutions in the first model and a derivation of the Goldstone theorem in the

second one are given. Symmetry breaking in the case of periodic boundary conditions is also briefly

discussed.
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I. INTRODUCTION

Spontaneous symmetry breaking is a fundamental non-
perturbative phenomenon of quantum field theory. It oc-
curs when the Hamiltonian of a theory is symmetric under
a group of transformations while the ground state is non-
invariant. For continuous symmetries it follows that there
exists a field operator (elementary or composite) with non-
zero expectation value in this vacuum state. As a conse-
quence, the spectrum of such a theory contains a massless
state, the Nambu-Goldstone boson [1–3], if the space di-
mension is greater than one [4,5]. This overall picture of
the broken phase is well understood in the conventional
field theory which parametrizes the space-time by means
of the four-vector x� ¼ ðt; x; y; zÞ.

On the other hand, spontaneous symmetry breaking
(SSB) still remains a bit mysterious in the light front (LF)
field theory, which is defined by the choice of the LF vari-
ables x� ¼ ðxþ; x�; x; yÞ, x� ¼ x0 � x3, and by quantiza-
tion on a surface of constant LF time xþ. The main reason
for difficulties with obtaining a clear picture of SSB in the
LF theory is that, due to positivity of the LF momentum
operator Pþ, the vacuum state of the interacting LF theory
coincides with the free Fock vacuum if independent Fou-
rier modes carrying pþ ¼ 0 (dynamical LF zero modes)
can be neglected. This simplicity of the vacuum state is
very useful in bound-state calculations but it appears to
be problematic in other nonperturbative issues because it
prohibits any vacuum structure in continuum LF theories
where dynamical zero modes seem indeed to be negligible.
It is often believed that the vacuum aspects enter into the
LF theory via nondynamical constrained zero modes which
are in principle obtained as solutions of corresponding
constraint equations.

The present work is based on a different concept: the
‘‘trivial’’ LF vacuum, being a simple but rigorously defined
nonperturbative state, is viewed as an intermediate con-
struction, not the ultimate physical vacuum state. It can of-
ten be systematically transformed into more complex ob-
jects by unitary operators that implement a symmetry of a
given field theoretic model. These operators are well-
defined (at least with a cutoff on number of field modes)
in an infrared-regularized formulation—quantization in a
finite volume (or on a line of length L in two dimensions)
with fields (anti)periodic in space coordinates. Large gauge
transformations and chiral symmetry are two examples of
this approach [6,7]. A similar treatment for scalar field
theories has not been given so far. The reason was that
symmetry generators in a scalar theory always annihilate
the LF Fock vacuum because, due to positivity of the mo-
mentumPþ, they cannot contain terms composed of purely
creation operators [8,9] if there are no dynamical zero
modes in the theory. Without such terms it is not possible
to transform the LF Fock vacuum into a more complex
object and therefore one cannot construct multiple vacua
which are a necessary condition for any SSB. A simple
observation that underlies the present work is that for
scalar theories with polynomial self-interaction and nega-
tive quadratic term the LF Fock vacuum is not the state of
minimum LF energy [10]. The energy is lower in a specific
coherent state and this state is not annihilated by the
symmetry generators. Hence, the unitary operators imple-
menting the discrete or continuous symmetry will gener-
ate, when applied to this state, a discrete or continuous set
of new (semiclassical) vacuum states.
Light front versions of SSB have been studied by a few

groups of authors. In the unbroken phase, a zero-mode
coherent state vacuum has been derived in ��4 theory in
two dimensions and used along with the variational method
[11]. Scalar zero mode has been assumed to be an in-*fyziluma@savba.sk
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dependent dynamical variable. If one imposes periodic
boundary conditions (a standard choice), this mode is
however a dependent variable satisfying an operator con-
straint. Approximate methods of its solution indicated a
development of the broken phase above the critical cou-
pling [12,13]. The value of the critical coupling and the
critical exponent � have also been determined using the
Haag expansion [14]. In the broken phase, a variational
approach with a coherent state j�i as a trial lowest-energy
state was used for small coupling with the zero mode
manifestly neglected [15]. Two (approximately) degener-
ate lowest energy levels were found and the correct value
of the mass of the lowest excitation in the broken phase (a
kink) was extracted by minimizing the expectation value of
the Hamiltonian in the j�i states subject to the constraint
on the dimensionless momentum K ¼ L

2�P
þ. The subse-

quent discrete light-cone quantization (DLCQ ) studies
confirmed this picture in truly nonperturbative calculations
and led to a detailed prediction of kink and antikink mass
and a few additional observables [16,17].

In four dimensions, it is usually assumed that the scalar
zero mode contains a constant piece. As a consequence,
symmetry breaking is found to manifest itself in a rather
unusual way by a nonconservation of the current even in
the symmetry limit while the physical vacuum is identified
with the Fock vacuum [18,19]. The concept of vacuum
triviality underlies also an approach to dynamical symme-
try breaking [20] based on a derivation of gap equations
from the LF constraint equations.

In the broken phase, considered scalar models possess
two or more degenerate minima of the classical potential.
As already indicated, one might expect that even in the
LF theory the Fock vacuum is not the true physical vacuum
in this case and that a unitary operator could be constructed
which would shift the scalar field�ðxÞ to the true minimum
of the LF energy. Unfortunately, for �ðxþ; x�Þ periodic
in the space coordinate x�, such a construction is very
difficult. This is due to the complicated nonlinear opera-
tor zero-mode constraint. On the other hand, choosing
antiperiodic boundary conditions in x� [21] (which is a
consistent choice for polynomial interactions with even
powers of fields) allows one to define shift operators which
transform the Fock vacuum to new states that correspond
to lower LF energy. They are coherent states of a large
but finite number of Fourier modes. For simplicity, we
will illustrate this mechanism in two well-known low-
dimensional scalar models. The first one is the two-
dimensional ��4 theory in broken phase, possessing
classically two degenerate ground states. The second
model is a three-dimensional O(2)-symmetric linear sigma
model. It has a continuum of degenerate vacuum states and
one can expect the Goldstone phenomenon to take place.
Both models are superrenormalizable. Renormalization
can be performed by normal ordering the Hamiltonian or
equivalently by adding a mass counterterm (a tadpole) in

the first case and a tadpole together with the second-order
self-energy counterterm in the second case [22,23].
A short description of SSB in the case of periodic

boundary conditions will also be given. We will show
that some features of the broken phase are similar in both
cases. Since our approach is based on the quantization in a
finite spatial volume with antiperiodic boundary condi-
tions, we use the correspondingly defined sign function
and Dirac’s delta function. Their regularized form is dis-
played in the Appendix.

II. SPONTANEOUS SYMMETRY BREAKING
IN ��4ð1þ 1Þ THEORY

Let us consider two-dimensional ��4 theory in the
broken phase. It is defined by the covariant Lagrangian
density

L ¼ 1

2
@��@��þ 1

2
�2�2 � �

4
�4; �2 > 0; (1)

which is invariant under the discrete transformation of the
real scalar field �ðxÞ ! ��ðxÞ. Classically, the potential

energy in (1) has two minima at�c ¼ ��=
ffiffiffiffi
�

p
. In the tree-

level analysis, one usually shifts the field by ��c and
obtains two Lagrangians which reveal the particle spec-
trum of the theory in terms of ‘‘small’’ oscillations above
�c. The original symmetry becomes hidden in the sense
that the two Lagrangians are individually not symmetric
under �ðxÞ ! ��ðxÞ but the symmetry operation trans-
forms one to the other. Recall that due to the existence of
more than one minimum of the potential, the model ex-
hibits in addition to symmetry breaking also nontrivial
topological properties [24]. There exist solutions of the
classical equations of motion with finite energy which in-
terpolate between the minima. They carry a conserved to-
pological charge, proportional to the difference of the field
values at the boundaries, and corresponding to the con-

served topological current k� ¼
ffiffiffi
�

p
� ��	@	�.

The Lagrangian (1) is expressed in terms of the LF
variables as

L lf ¼ 2@þ�@��þ 1

2
�2�2 � �

4
�4; (2)

where @� ¼ @=@x�. We restrict the spatial coordinate by
�L � x� � L. In order to obtain a clear physical picture
of SSB it is desirable to avoid the complicated nonlinear
operator zero-mode constraint present in the case of
periodic boundary conditions. We impose therefore the
antiperiodic boundary condition (BC) �ðLÞ ¼ ��ð�LÞ
which results in discrete Fourier modes

pþ
n ¼ 2�

L
n; n ¼ 1=2; 3=2; . . .1: (3)

The antiperiodic BC also implies that in the quantum
theory we can define the operator of the topological charge

Q ¼
ffiffiffi
�

p
� ½�ðLÞ ��ð�LÞ� ¼ 2

ffiffiffi
�

p
� �ðLÞ.
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The standard canonical treatment yields the energy-
momentum tensor components Tþ� and Tþþ which define
the LF Hamiltonian P�

P� ¼ 1

2

Z þL

�L
dx�Tþ�ðx�Þ

¼ 1

2

Z þL

�L
dx�:

�
��2�2 þ �

2
�4

�
: ; (4)

as well as the LF momentum operator

Pþ ¼ 1

2

Z þL

�L
dx�Tþþðx�Þ ¼ 1

2

Z L

�L
dx�4:½@��@���: :

(5)

The field expansion in terms of the Fourier modes at xþ ¼
0 reads

�ð0; x�Þ ¼ 1ffiffiffiffiffiffi
2L

p X1
n¼1=2

1ffiffiffiffiffiffiffi
pþ
n

p ½ane�ði=2Þpþ
n x

� þ ayneði=2Þp
þ
n x

��:

(6)

The annihilation and creation operators are required to

satisfy the quantization condition ½am; ayn � ¼ 
mn. As a
consequence, one recovers the usual commutator at equal
LF times,

½�ð0; x�Þ; �ð0; y�Þ� ¼ � i

8
�aðx� � y�Þ; (7)

where �aðx�Þ is the antiperiodic sign function

�aðx�Þ ¼ 4i

L

X1
n¼1=2

1

pþ
n

½e�ði=2Þpþ
n x

� � eði=2Þpþ
n x

��; (8)

defined in terms of the discrete momenta (3). The conju-
gate momentum �� is not equal to the time derivative of

the scalar field in the LF theory. It is a dependent variable,
determined by �ðxÞ itself, �� ¼ 2@�� [25]. Hence, the

alternative form of the basic commutation relation, follow-
ing from Eq. (7), is

½�ð0; x�Þ;��ð0; y�Þ� ¼ i

2

aðx� � y�Þ; (9)

where 
aðx�Þ is the antiperiodic delta function 
aðx�Þ ¼
1=2@��aðx�Þ. The same quantization rules can be obtained
more rigorously by the Dirac-Bergmann method [26] for
constrained systems.

Consider now a unitary operator

UðbÞ ¼ exp

�
�2ib

Z þL

�L
dx���ðx�Þ

�
: (10)

For antiperiodic boundary conditions, it reduces to

UðbÞ ¼ e�8ib�ðLÞ (11)

and translates the field �ðx�Þ by a constant b as can
be easily shown by using the operator identity
expðAÞB expð�AÞ ¼ Bþ ½A; B� þ . . . :

UðbÞ�ðx�ÞU�1ðbÞ ¼ �ðx�Þ � 8ib½�ðLÞ; �ðx�Þ�
¼ �ðx�Þ � b�aðL� x�Þ: (12)

Thus, the antiperiodic scalar field can be shifted by a
constant without violating its antiperiodicity. The reason
for that is the simple property of the sign function �aðL�
x�Þ: it is equal to 1 for all x� in the box except for the
endpoints where it drops to zero. This is of course a direct
consequence of the basic property �að0Þ ¼ �að2LÞ ¼ 0. It
is much more difficult to perform a similar shift of the field
in the case of periodic boundary condition because of the
presence of the a priori unknown operator zero mode.
Recall for comparison that, since in the conventional
spacelike quantization the conjugate momentum is a dy-
namical quantity, the volume integration in the shift opera-
tor analogous to Eq. (10) projects out only its zero-mode
component [27].
We should note however that the above considerations

were a bit formal and the actual situation is slightly more
complicated. The point is that the operatorUðbÞ (11) exists
(is nonzero) only if we impose a cutoff on the number of
modes [see Eq. (17) and the discussion after Eq. (23)].
Consequently, the sign function in (12) is replaced by a
truncated series ��ðx�Þ defined by Eq. (8) with n � �.
We may useUðbÞ to generate a family of shifted vacuum

states jbi ¼ UðbÞj0i, where j0i is the Fock vacuum
anj0i ¼ 0. Can one of these states be a better candidate
for the true physical vacuum? To determine this, let us
minimize the expectation value of the LF Hamiltonian,

hbjP�jbi ¼ h0jU�1ðbÞP�UðbÞj0i

¼ h0j 1
2

Z þL

�L
dx�Tþ�

b ðx�Þj0i; (13)

where

Tþ�
b ðx�Þ ¼ :

�
��2ð�þ b��ðL� x�ÞÞ2

þ �

2
ð�þ b��ðL� x�ÞÞ4

�
: : (14)

As shown in the Appendix, for sufficiently large value of�
the function ��ðL� x�Þ differs only negligibly from unity
on the interval�L � x� � L. The same is true also for its
powers. We will therefore suppress henceforth the symbol
of the sign function in the formulae similar to (14). Also,
due to the finite number of Fourier modes, the function
��ðL� x�Þ does not have an exactly rectangular shape but
it is smooth in the neighborhood of the points x� ¼ �L
(see the Appendix).
Now, for the expectation value of the energy we find

hbjP�jbi ¼ Lb2ð�2 b2 ��2Þ which has a nontrivial mini-

mum for b2 ¼ �2

� � v2. The LF energy density is lower in

the new vacuum jvi:
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hvjP�jvi=2L ¼ ��4

4�
< h0jP�j0i=2L ¼ 0: (15)

The vacuum expectation value (VEV) of the scalar field in
this state coincides with the position of the minimum of the
classical potential

hvj�ðxÞjvi ¼ h0jU�1ðvÞ�ðxÞUðvÞj0i
¼ �ffiffiffiffi

�
p ��ðx� � LÞ ¼ �ffiffiffiffi

�
p : (16)

The last equality holds in the sense discussed after
Eq. (14). The fact that the field expectation value is not a
perfect constant is irrelevant here. The crucial point is that
the scalar field can be shifted by a nonoperator piece which
is a c number multiplied by a function approaching unity
for the number of field modes tending to infinity [28].

Inserting the field expansion (6) into the definition of
UðvÞ, we get a coherent state representing the physical
vacuum of the model in the semiquantum approximation:

jvi ¼ exp

�
v

X�
n¼1=2

~cnðayn � anÞ
�
j0i

¼ N exp

�
v

X�
n¼1=2

~cna
y
n

�
j0i; (17)

where

~c n ¼ 4ð�1Þn�1=2=
ffiffiffiffiffiffiffi
�n

p
;

N ¼ exp

�
�v2

2

X�
n¼1=2

~c2n

�
� exp

�
� 8v2

�
ln�

�
:

(18)

Notice that the coherent states (17) are L-independent and
also correctly normalized, hvjvi ¼ 1. Further, the scalar

product h�vjvi ¼ N 4 ¼ ��32v2=� and thus the overlap
between the two vacua is very small for large value of �
(and approaches zero for� tending to infinity). This means
that, in contrast to the spacelike theory, the two vacua
become orthogonal even in the finite volume in the (for-
mal) limit of infinite number of degrees of freedom.

The corresponding multiparticle spaces cannot be gen-

erated by applying creation operators ayn on jvi because
these states do not form an orthogonal basis. Instead, one
can transform the original Fock states, built on j0i, by
means of UðvÞ [29,32]. The Hamiltonian matrix elements
will be (up to normalization) of the form

h0jam1
am2

. . . ami
U�1ðvÞP�UðvÞaynj . . .ayn2ayn1 j0i: (19)

Thus, the physically relevant Hamiltonian is the trans-
formed (‘‘effective’’) one, equal toP�

ðvÞ ¼ U�1ðvÞP�UðvÞ:

P�
ðvÞ ¼

1

2

Z þL

�L
dx�:

�
2�2�2 þ �

2
�4 þ 2�v�3 ��4

2�

�
: :

(20)

It has a correct sign of the term quadratic in � and hence it
describes a massive scalar field with mass equal to

ffiffiffi
2

p
�.

However, it has lost the symmetry of the original Ham-
iltonian under �ðxÞ ! ��ðxÞ—this symmetry has been
broken by choosing jvi as the vacuum state. Actually, the
theory originally had also the second ground state. This
one can demonstrate by considering a unitary operator that
implements the original discrete symmetry

Vð�Þ ¼ exp

�
�i�

X�
n¼1=2

aynan
�
: (21)

It acts correctly on the creation and annihilation operators

Vð�ÞanV�ð�Þ ¼ �an; Vð�ÞaynV�ð�Þ ¼ �ayn (22)

and hence leaves P� invariant, Vð�ÞP�V�ð�Þ ¼ P�. The
operator Vð�Þ generates the second vacuum

Vð�Þjvi ¼ j � vi; (23)

since Vð�ÞUðvÞ ¼ Uð�vÞVð�Þ. The latter relation follows
from the operator identity expðAÞ expðBÞ ¼ expðe�BÞ�
expðAÞ, valid if ½A; B� ¼ �B (� ¼ real parameter.) We
easily find h�vj�ðx�Þj � vi ¼ �v. The corresponding
effective Hamiltonian P�

ð�vÞ in the space sector built on

j � vi coincides with the expression (20) up to the opposite
sign of the cubic term. Although both Hamiltonians
are individually not invariant, they are connected by the
‘‘parity’’ transformation P�

ð�vÞ ¼ Vð�ÞP�
ðvÞV

�1ð�Þ and

vice versa. We can choose either of the two vacua and their
corresponding effective Hamiltonian to describe the physi-
cal system under study.
An alternative way of obtaining the coherent state vac-

uum (17) is to minimize the expectation value of the Ham-

iltonian in the coherent states j�i, j�i � expðP �na
y
n Þj0i,

imposing the condition that the expectation value of the
antiperiodic field is constant (which drops to zero at the
interval boundaries to satisfy antiperiodicity). If one re-
quires instead of a constant value for h�j�ðx�Þj�i the
value �v for �L � x� � 0 and v for 0 � x� � L, i.e.
a steplike shape, one obtains a configuration that also
minimizes the LF energy and qualitatively approximates
a kink [16]:

j�i ¼ exp

�
v

X�
n¼1=2

�nðayn � anÞ
�
j0i; �n ¼ 4iffiffiffiffiffiffiffi

�n
p :

(24)

In x representation, the state j�i can be expressed in terms
of the unitary operator WðvÞ as

j�i ¼ WðvÞj0i; WðvÞ ¼ ei8v�ð0Þ (25)

and one easily obtains

h�j�ðxÞj�i ¼ h0jW�1ðvÞ�ðxÞWðvÞj0i ¼ v��ðx�Þ; (26)
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which is the result indicated above. Note also that the kink
state j�i has for large� a negligibly small overlap with the
vacuum state [33] hvj�i � expð� ln�Þ. These states are
orthogonal in the formal limit � ! 1. They belong to the
sectors with different topological charges (superselection
sectors):

h�jQj�i ¼ v�1h0jW�1ðvÞ�ðLÞWðvÞj0i ¼ 8i½�ðLÞ; �ð0Þ�
¼ ��ðLÞ ¼ 1:

hvjQjvi ¼ v�1h0jU�1ðvÞ�ðLÞUðvÞj0i
¼ v�1h0j�ðLÞj0i ¼ 0: (27)

Quantitative predictions of the properties of kink and anti-
kink in quantum theory were obtained by LF Hamiltonian
matrix diagonalizations using discretized light-cone quan-
tization [15,16].

Finally, let us discuss the LF momentum of the coherent-
state vacuum UðvÞj0i and of the transformed Fock states

UðvÞaym1
aym2

. . . j0i. Our vacua are not momentum eigen-
states since they are by definition only eigenstates of the
annihilation operator. They represent an approximation to
the true physical vacuum. One can calculate expectation
values of physical quantities in these states. The VEVof an
unordered Pþ would be

hvjPþjvi ¼ 2
Z þL

�L
dx�h0j½@�ð�ðxÞ þ v��ðL� x�ÞÞ�2j0i

¼ �

L

X�
n¼1=2

�
nþ 32

�
v2

�
: (28)

The first term on the right-hand side is removed by normal
ordering. The second term, equal to 16v2
�ð0Þ, is a con-
sequence of the fact that @���ðL� x�Þ ¼ �2
�ðL� x�Þ
which for � ! 1 is singular just at the endpoints x� ¼
�L. For finite� the second term is a finite constant C. It is
also present in the expectation values of the LF momentum
of particle states

h0jalU�1ðvÞPþUðvÞayl j0i ¼ pþ
l þ C;

h0jakalU�1ðvÞPþUðvÞayk ayl j0i ¼ pþ
k þ pþ

l þ C;
(29)

and similarly for higher many-particle states. Thus the LF
momentum of the transformed states is shifted by the same
constant value which is physically irrelevant since it can-
cels in the differences between any two levels. We shall
therefore subtract this unphysical constant. Let us remark
that the necessity to perform the (trivial) renormalization
of the Pþ operator may seem a little unusual but actually it
is natural and physically transparent: the shift of the scalar
field due to UðvÞ is almost precisely equal to a constant in
the whole box except for the small neighborhood of the
endpoints. The expectation values of the momentum op-
erator receive large but common contributions from the
neighborhood of the endpoints due to an x� integral over
½
�ðL� x�Þ�2.

Since the approximative vacuum states jvi are not ei-
genstates of Pþ, the translational invariance of the theory
can only be formulated in a weaker form. The Heisenberg
equation �2i@��ðxÞ ¼ ½Pþ; �ðxÞ� is satisfied on the
vacuum state in the sense of matrix elements. The usual

condition expði ~a 	 ~PÞjvaci ¼ jvaci implying hvacj expði ~a 	
~PÞjvaci ¼ 1 is replaced by hvj expði2a�PþÞjvi ¼
expði2a�CÞ here.
As is well-known, the studied two-dimensional scalar

model exhibits a second-order phase transition from sym-
metric to broken phase [22]. This has been demonstrated at
the level of effective Hamiltonians by varying the coupling
constant and keeping the mass parameter fixed.
On the other hand, the DLCQ method with antiperiodic

fields has been used recently to study the mass eigenvalue
spectrum and other observables in the broken phase for
strong coupling [34]. An interesting level crossing, a
change in the expectation value of the integral of the �2

operator, and an evidence of kink condensation has been
obtained suggesting an onset of symmetry restoring phase
transition.
Our formulation of the broken phase in the two-

dimensional ��4 theory may also be used in the Hamil-
tonian matrix diagonalizations for strong coupling [35].
One can test a possibility that the new matrix elements (19)
generated by working with the vacuum jvi and the Ham-
iltonian P�

v may be important for an improved description
of the energy eigenstates and of other observables for small
coupling constant and especially for strong coupling and
the symmetry restoration region.
Recall that in the DLCQ method one diagonalizes

Hamiltonian matrices for a fixed value of the dimension-
less momentum K ¼ L

2�P
þ. The value of K determines

simultaneously the maximum momentum mode in the
Fock expansion of the field and hence the summation in
the coherent-state vacuum (17) will be truncated by K.
The corresponding transformed DLCQ Hamiltonian ~H ¼
2�
L P� takes the form

~H ¼ ��2
X�

n¼1=2

1

n
Ay
nAn þ �

8�

X�
klmn

1ffiffiffiffiffiffiffiffiffiffiffi
klmn

p

� ½2Ay
k AlAmAn
k;lþmþn þ 3Ay

k A
y
l AmAn
kþl;mþn

þ 2Ay
k A

y
l A

y
mAn
kþlþm;n�;

An ¼ U�1ðvÞanUðvÞ ¼ an þ v~cn: (30)

For large � this Hamiltonian approaches the limiting form
(20) as can be shown by evaluating explicitly the powers of
the operators An, regrouping terms, and using the definition
of the sign function in terms of discrete modes. In real
DLCQ computations one should diagonalize the above
Hamiltonian calculated in the Fock basis for given value
of K � 40–60 and then extrapolate results to K ! 1.
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A. SSB with periodic boundary conditions

As discussed in the introduction, there have been at-
tempts to understand SSB in the LF theory either without
imposing boundary conditions explicitly or by employing
periodic ones, typically starting from the symmetric phase
of the theory. Some aspects have also been studied with the
antiperiodic fields [18,36]. Can one give a direct formula-
tion of the broken phase using periodic boundary condi-
tions (PBC)? The problem is complicated because one has
to solve the operator constraint for the dependent zero-
mode �0. At present, this appears possible only for small
coupling, where one can use perturbation theory. Per-
turbative solution is however quite interesting because it
corresponds to the semiclassical regime of the broken
phase and one can compare the results with the results of
the previous section. The physical picture obtained by
imposing antiperiodic boundary condition should be quite
accurate far from the critical region, i.e. for small value of
the coupling constant. Since a derivation of a semiclassical
vacuum state similar to the case of antiperiodic boundary
conditions seems not to be possible for PBC, one may
expect that the physical vacuum state will coincide with
the Fock vacuum and SSB will manifest itself by the
presence of two Hamiltonians [12].

The field equation for the scalar field following from the
Lagrangian (2) is

4@þ@�� ¼ �2�þ ��3: (31)

The scalar field can be decomposed as �ðxÞ ¼ �0ðxþÞ þ
’ðxþ; x�Þ, with�0 being the x

�-independent part carrying
pþ ¼ 0. Projection of the field equation (31) on the zero-
mode sector

�2�0 ¼ ��
Z þL

�L
dx�ð�0 þ ’Þ3 (32)

shows that �0 is a dependent variable which has to be
expressed in terms of all other (normal) modes [37]. The
perturbative solution of the classical zero-mode constraint
was given by Robertson [38] and has two physical
branches:

�ð1Þ
0 ¼ �ffiffiffiffi

�
p � 3

2

ffiffiffiffi
�

p
�

Z þL

�L

dx�

2L
’2 � 1

2

�

�2

Z þL

�L

dx�

2L
’3

�ð2Þ
0 ¼ � �ffiffiffiffi

�
p þ 3

2

ffiffiffiffi
�

p
�

Z þL

�L

dx�

2L
’2 � 1

2

�

�2

Z þL

�L

dx�

2L
’3:

(33)

To the given order it can be taken over to the quantum
theory since there is no ordering ambiguity. Note that the
solutions contain a constant piece and their structure differs
completely from the perturbative solution in the symmetric
phase [39] because of the opposite sign of the �2 term in

the field equation. Under ’ ! �’, we have�ð1Þ
0 ! ��ð2Þ

0

and vice versa. When these two solutions are inserted into
the PBC Hamiltonian, analogous to (4),

P� ¼ 1

2

Z þL

�L
dx�

�
��2ð�0 þ ’Þ2 þ �

2
ð�0 þ ’Þ4

�
;

(34)

one indeed gets through Oð�Þ two Hamiltonians

P�
ð�vÞ ¼

1

2

Z þL

�L
dx�

�
2�2’2 þ �

2
’4 � 2�

ffiffiffiffi
�

p
’3 ��4

2�

� 9

2
�’2

Z þL

�L

dx�

2L
’2

�
: (35)

Their structure is similar to the Hamiltonians P�
v from the

case of antiperiodic boundary conditions. Each Hamilto-
nian separately violates the symmetry under ’ ! �’ but
the transformation connects them. Any of them can be
chosen for calculating physical properties of the system.
Their eigenstates will also be connected by the parity
transformation. It is an interesting problem for DLCQ to
find the lowest energy levels of the Hamiltonians (35).

III. SYMMETRY BREAKING
IN �ð�
�Þ2ð2þ 1Þ THEORY

As the next step, we could consider a two-dimensional
theory of a self-interacting complex scalar field. The cor-
responding Hamiltonian has a continuous symmetry in-
stead of the discrete one. The full treatment requires a
discussion of the LF version of the Coleman theorem
which prohibits SSB in one space dimension [5]. Since
this topic deserves a separate analysis, here we will study
the Oð2Þ-symmetric sigma model in three dimensions. It is
defined by the classical Lagrangian density

L ¼ 1

2
@��

y@��þ 1

2
�2�y�� 1

4
�ð�y�Þ2: (36)

The system will be studied in a finite volume V ¼ 4LL?,
�L � x� � L, �L? � x? � L?. Scalar fields are taken
antiperiodic in both x� and the transverse coordinate x?. In
terms of two real scalar fields introduced by �ðxÞ ¼
�ðxÞ þ i�ðxÞ, the corresponding LF Lagrangian density

Llf ¼ 2@þ�@��þ 2@þ�@��� 1

2
ð@?�Þ2 � 1

2
ð@?�Þ2

þ�2

2
ð�2 þ �2Þ � �

4
ð�2 þ �2Þ2 (37)

is invariant under Oð2Þ rotations
�ðxÞ ! �ðxÞ cos�� �ðxÞ sin�;
�ðxÞ ! �ðxÞ sin�þ �ðxÞ cos�: (38)

The associated conserved current is j� ¼ �@��� @���.
The field expansions at xþ ¼ 0 are

�ðxÞ ¼ 1ffiffiffiffi
V

p X
n

1ffiffiffiffiffiffiffi
pþ
n

p ½aðpnÞe�ipn	x þ ayðpnÞeipn	x�; (39)
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�ðxÞ ¼ 1ffiffiffiffi
V

p X
n

1ffiffiffiffiffiffiffi
pþ
n

p ½cðpnÞe�ipn	x þ cyðpnÞeipn	x�: (40)

We use the notation x ¼ ðx�; x?Þ, n � ðn; n?Þ, pn ¼
ðpþ

n ; pn?Þ ¼ ð2�L n; �
L?

n?Þ with n, n? ¼ 1=2; 3=2; . . .1.

The conjugate momenta are �� ¼ 2@��, �� ¼ 2@��.
The � field operators satisfy the commutation relation

½�ð0; xÞ; �ð0; yÞ� ¼ � i

8
�aðx� � y�Þ
aðx? � y?Þ: (41)

The commutator of the � fields has the same form. The
Hamiltonian is

P� ¼
Z
V
d2x½ð@?�Þ2 þ ð@?�Þ2 þ 2Vð�2 þ�2Þ�;

Vð�2 þ�2Þ ¼ ��2

2
ð�2 þ�2Þ þ �

4
ð�2 þ�2Þ2; (42)

where d2x ¼ 1
2dx

�dx?. In principle, both �ðxÞ and �ðxÞ
can be transformed by the unitary operators U�ðbÞ and
U�ðbÞ in analogy with Eq. (12). It is simpler however to
start by shifting only one field which we choose in accord
with the standard treatment to be �:

U�ðbÞ�ðxÞUy
�ðbÞ ¼ �ðxÞ � b��ðL� x�Þ��ðx? � L?Þ;

(43)

with

U�ðbÞ ¼ exp

�
�4ib

Z
V
d2x��ðxÞ

�

¼ exp

�
�8ib

Z þL?

�L?
dx?�ðL; x?Þ

�
: (44)

By minimization of hb; 0jP�jb; 0i, where jb; 0i ¼
U�ðbÞj0i, we find that the (approximate) physical
vacuum jv; 0i ¼ U�ðvÞj0i corresponds to the value
b ¼ �ffiffiffi

�
p � v and

jv; 0i ¼ exp

�
�v

X
n

~cðpnÞ½ayðpnÞ � aðpnÞ�
�
j0i; (45)

~cðpnÞ ¼ 8

�

ffiffiffiffiffiffiffi
L?
2�

s
ð�1Þnþn?ffiffiffi

n
p

n?
: (46)

The rotations (38) are implemented by the unitary opera-
tors Vð�Þ ¼ ei�Q, where Q ¼ R

V d
2xjþðxÞ:

�ðxÞ ! Vð�Þ�ðxÞVyð�Þ; �ðxÞ ! Vð�Þ�ðxÞVyð�Þ;
(47)

Vð�Þ ¼ exp

�
�
X
n

ðayðpnÞcðpnÞ � cyðpnÞaðpnÞÞ
�
: (48)

The operators Vð�Þ extend the ‘‘primary’’ vacuum jv; 0i to
the infinite family jv;�i ¼ Vð�Þjvi. Explicitly, we get

j�;vi ¼ exp

�
�v

X
n

~cðpnÞ½ðayðpnÞ � aðpnÞÞ cos�

þ ðcyðpnÞ � cðpnÞÞ sin��
�
j0i: (49)

In spite of the presence of the box length L? in the
coherent state (45), the orthogonality hv;�jv;�0i ¼ 
��0

holds in the limit of infinite number of longitudinal
modes n.
We can interpret the relation for the vacuum and particle

matrix elements of P� [cf. Eq. (19)] as defining an effec-

tive Hamiltonian P�
v ¼ Uy

�ðvÞP�U�ðvÞ:

P�
v ¼

Z
V
d2x

�
ð@?�Þ2 þ ð@?�Þ2 þ 2�2�2

þ 2
ffiffiffiffi
�

p
��ð�2 þ �2Þ þ �

2
ð�2 þ �2Þ2

�
(50)

[see the remark after Eq. (14)]. The form of the above
Hamiltonian suggests that �ðxÞ corresponds to a massive
field because its mass term has a correct sign while the
mass term is missing for �ðxÞ which became a Goldstone
boson field. This tree-level result is more rigorously ex-
pressed by the Goldstone theorem.
In the usual proof of the Goldstone theorem [3], one

inserts a complete set of energy and momentum operator
eigenstates into the VEVof the commutator

½Q;�ðxÞ� ¼ �ðxÞ (51)

and then invokes translational invariance to show a singu-
larity in the spectral function for p2 ¼ 0 [3,40]. This means
that there exists a massless state in the spectrum. We can
proceed analogously because we have all the necessary
components for the proof. A difference with respect to the
usual theory is that here we have an explicit realization of
the vacuum in the Fock representation, not just an abstract
state with postulated properties. The states j�;vi represent
however only an approximative variational estimate of true
degenerate family of ground states. But its existence tells
us that there must exist exact eigenstates of the LF Ham-
iltonian with energy lower than the energy of the Fock
vacuum j0i. This is sufficient for the usual proof of the
Goldstone theorem. Some ingredients of the proof are
actually valid also if we used the approximative j�;vi
states. Namely, the above commutator (51) is a rigorous
consequence of Eqs. (38) and (47). To show that, one only
has to use the infinitesimal form of both transformation
laws and compare the leading terms in the expansion. The
vacuum expectation value of the commutator is

hv; 0j½Q;�ð0Þ�jv; 0i ¼ h0jU�1
� ðvÞ�ð0ÞU�ðvÞj0i ¼ v:

(52)
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If we denote the set of exact vacuum states by j��i, then
we should also have

h�0j½Q;�ð0Þ�j�0i ¼ h�0j�ð0Þj�0i ¼ fv; (53)

where fv is the expectation value (not known precisely) of
the � field in the true physical vacuum j��i. Let jni be the
set of simultaneous eigenstates of the LF energy and
momentum operators P�jni ¼ p�jni where p� ¼
ðE�

n ; P
þ
n ; P

1
nÞ. Inserting such a complete set in the form

of 1̂ ¼ P
njnihnj into the relation (53), using the definition

of the charge operator as a volume integral of jþðxÞ as well
as the translational invariance of the theory,

jþðxÞ ¼ expðix�P�Þjþð0Þ expð�ix�P
�Þ;

expðix�P�Þj��i ¼ j��i;
(54)

we find

2

V

X
n


2ðp
n
Þ exp

�
� i

2
E�
n x

þ
�
h�0jjþð0Þjnihnj�ð0Þj�0i

� 2

V

X
n


2ðp
n
Þ exp

�
i

2
E�
n x

þ
�
h�0j�ð0Þjnihnjjþð0Þj�0i

¼ fv: (55)

It follows from the VEV of the volume integral of the
commutator ½@�j�; �ð0Þ� ¼ 0 that fv has indeed to be

xþ-independent:��
@þ

Z
V
d2xjþðxÞ þ

Z
V
d2x@�j�ðxÞ

þ
Z
V
d2x@?j?ðxÞ

�
; �ð0Þ

�
¼ 0; (56)

where the second and the third term in the commutator
vanishes due to the fact that the current obeys periodic BC
in x� and x?. In order that the left-hand side of Eq. (55) is
also xþ-independent, there must exist an eigenstate jGi
of P� which for pþ ¼ 0, p? ¼ 0 has E� ¼ 0 (so that the
xþ dependence vanishes), while h�0j�ð0ÞjGi � 0,
h�0jjþð0ÞjGi � 0. Since M2 ¼ E�pþ � p2

?, this state is

massless. Note that the Nambu-Goldstone state is not
simply cyðkÞj�0i since the latter is not an eigenstate of
P�. The correct linear combination of Fock states can be
(at least in principle) obtained by a Hamilton matrix
diagonalization.

IV. CONCLUSIONS

To summarize, in this work a novel strategy to the
spontaneous symmetry breaking phenomenon in the light
front description was formulated. The approach is based on
quantization in a finite volume and on a unitary trans-
formation of the Fock LF vacuum to the ground states
with lower value of the LF energy. These semiclassical

vacua are degenerate and have a form of boson coherent
states. The general properties of a spontaneously broken
phase of the theory including existence of the massless
Goldstone boson have been derived. We believe that the
present picture of spontaneous symmetry breaking in light
front field theory in terms of semiclassical vacuum states
adds a further evidence that there is no conflict between the
‘‘triviality’’ of the LF vacuum of interacting models and a
rich nonperturbative content of quantum field theory.
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APPENDIX

We present a few details of the regularized Dirac delta
function and the sign function in this Appendix for com-
pleteness. Regularization is performed in two steps: a cut-
off on number of modes (as discussed in the main text) and
a convergence factor governed by a small parameter �. The
corresponding formulae read


�ðx� � y�Þ ¼ 1

2L

X�
n¼1=2

ðe�ði=2Þpþ
n ðx��y��i�Þ

þ eði=2Þpþ
n ðx��y�þi�ÞÞ;

��ðx� � y�Þ ¼ 4i

L

X�
n¼1=2

1

pþ
n

ðe�ði=2Þpþ
n ðx��y��i�Þ

� eði=2Þpþ
n ðx��y�þi�ÞÞ:

(A1)

The �i� terms in the exponents ensure a smooth behavior
in the neighborhood of the points where these functions
diverge (for � ! 1) or drop to zero. This is quite analo-
gous to the continuum theory where the same convergence
factors guarantee existence of corresponding integrals that
replace the discrete series (A1) [41]. Figures 1–4 display
differences between the functions with and without the
convergence factors for typical values of the box length
and of the number of field modes. The shifted function
��ðL� x�Þ is equal to unity to a very high precision over
the whole interval jx�j � L except for the endpoints x� ¼
�L where it behaves in the same manner as ��ðx�Þ in the
neighborhood of x� ¼ 0.
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