
Fermionic vacuum polarization by a cylindrical boundary in the cosmic string spacetime

E. R. Bezerra de Mello,1,* V. B. Bezerra,1,+ A.A. Saharian,1,2,‡ and A. S. Tarloyan2,3

1Departamento de Fı́sica, Universidade Federal da Paraı́ba, 58.059-970, Caixa Postal 5.008, João Pessoa, PB, Brazil
2Department of Physics, Yerevan State University, 0025 Yerevan, Armenia

3Yerevan Physics Institute, 0036 Yerevan, Armenia
(Received 8 September 2008; published 26 November 2008)

The vacuum expectation values of the energy-momentum tensor and the fermionic condensate are

analyzed for a massive spinor field obeying the MIT bag boundary condition on a cylindrical shell in the

cosmic string spacetime. Both regions inside and outside the shell are considered. By applying to the

corresponding mode sums a variant of the generalized Abel-Plana formula, we explicitly extract the parts

in the expectation values corresponding to the cosmic string geometry without boundaries. In this way the

renormalization procedure is reduced to that for the boundary-free cosmic string spacetime. The parts

induced by the cylindrical shell are presented in terms of integrals rapidly convergent for points away from

the boundary. The behavior of the vacuum densities is investigated in various asymptotic regions of the

parameters. In the limit of large values of the planar angle deficit, the boundary-induced expectation

values are exponentially suppressed. As a special case, we discuss the fermionic vacuum densities for the

cylindrical shell on the background of the Minkowski spacetime.
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I. INTRODUCTION

It is well known that different types of topological
objects may have been formed in the early universe after
Planck time by the vacuum phase transition [1]. Depending
on the topology of the vacuum manifold these are domain
walls, strings, monopoles, and textures. Among them the
cosmic strings are of special interest. Although the recent
observational data on the cosmic microwave background
radiation have ruled out cosmic strings as the primary
source for primordial density perturbations, they are still
candidates for the generation of a number of interesting
physical effects such as the generation of gravitational
waves, gamma ray bursts, and high-energy cosmic rays
(see, for instance, [2]). Recently, cosmic strings attract a
renewed interest partly because a variant of their formation
mechanism is proposed in the framework of brane inflation
[3].

In the simplest theoretical model describing the infinite
straight cosmic string the spacetime is locally flat except on
the string where it has a delta shaped Riemann curvature
tensor. In quantum field theory the corresponding nontri-
vial topology induces nonzero vacuum expectation values
(VEVs) for physical observables. Explicit calculations for
the geometry of a single cosmic string have been done for
different fields [4–29]. Vacuum polarization effects by
higher-dimensional composite topological defects consti-
tuted by a cosmic string and global monopole are inves-
tigated in Refs. [30] for scalar and fermionic fields.
Another type of vacuum polarization arises when bounda-
ries are present. The imposed boundary conditions on

quantum fields alter the zero-point fluctuations spectrum
and result in additional shifts in the vacuum expectation
values of physical quantities. This is the well-known
Casimir effect (for a review see [31]). In Ref. [32], we
have studied both types of sources for the polarization of
the scalar vacuum, namely, a cylindrical boundary and a
cosmic string, assuming that the boundary is coaxial with
the string and that on this surface the scalar field obeys
Robin boundary condition. For a massive scalar field with
an arbitrary curvature coupling parameter we evaluated the
Wightman function and the vacuum expectation values of
the field squared and the energy-momentum tensor. The
polarization of the electromagnetic vacuum by a conduct-
ing cylindrical shell in the cosmic string spacetime is
investigated in [33] (for a combination of topological and
boundary-induced quantum effects in the gravitational
field of a global monopole see Refs. [34–36].)
Continuing in this line of investigation, in the present

paper we analyze the polarization of the fermionic vacuum
by a cylindrical shell coaxial with the cosmic string on
which the field obeys the MIT bag boundary condition. We
evaluate the fermionic condensate and vacuum expectation
values of the energy-momentum tensor in both interior and
exterior regions of the shell. The renormalized vacuum
expectation value of the energy-momentum tensor for a
fermionic field in the geometry of a cosmic string without
boundaries is investigated in [7,9,21,22,28]. In addition to
describing the physical structure of the quantum field at a
given point, the energy-momentum tensor acts as a source
of gravity in the Einstein equations and plays an important
role in modelling a self-consistent dynamics involving the
gravitational field. In the problem under consideration all
calculations can be performed in a closed form and it
constitutes an example in which the topological and
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boundary-induced polarizations of the vacuum can be
separated in different contributions.

From the point of view of the physics in the region
outside the string, the geometry considered in the present
paper can be viewed as a simplified model for the non-
trivial core. This model presents a framework in which the
influence of the finite core effects on physical processes in
the vicinity of the cosmic string can be investigated. In
particular, it enables to specify conditions under which the
idealized model with the core of zero thickness can be
used. The corresponding results may shed light upon fea-
tures of finite core effects in more realistic models, includ-
ing those used for stringlike defects in crystals and
superfluid helium. In addition, the problem considered
here is of interest as an example with combined topological
and boundary-induced quantum effects in which the vac-
uum characteristics such as energy density and stresses can
be found in closed analytic form. From the results of the
present paper, as a special case, we obtain the fermionic
Casimir densities for a cylindrical shell withMIT boundary
conditions in the Minkowski background (for the com-
bined effects of a magnetic fluxon and MIT boundary
conditions on the vacuum energy of a Dirac field see
Refs. [37]). Note that, in addition to traditional problems
of quantum field theory under the presence of material
boundaries, the Casimir effect for cylindrical geometries
can also be important to the flux tube models of confine-
ment [38,39] and for determining the structure of the
vacuum state in interacting field theories [40].

We have organized the paper as follows. In the next
section, the eigenspinors for the region inside the cylindri-
cal boundary are constructed and the eigenvalues of the
corresponding quantum numbers are specified. These ei-
genspinors are the basis for the analysis of the Casimir
densities in the following sections. In Sec. III, by using a
variant of the generalized Abel-Plana formula, we extract
from the mode sum of the fermionic condensate the part
corresponding to the geometry of a cosmic string without
the shell. The part induced by the shell is investigated in
various asymptotic regions for the parameters. Section IV
is devoted to the investigation of the boundary-induced
parts in the vacuum expectation value of the energy-
momentum tensor inside the cylindrical shell. The vacuum
densities in the region outside the cylindrical shell are
discussed in Sec. V. The main results of the paper are
summarized in Sec. VI. In the appendix we give an alter-
native representation for the fermionic condensate and the
expectation value of the energy-momentum tensor for a
massive fermionic field in the geometry of a cosmic string
without boundaries.

II. EIGENSPINORS INSIDE A CYLINDRICAL
SHELL

We consider the background spacetime corresponding to
an infinitely long straight cosmic string with the conical

line element

ds2 ¼ dt2 � dr2 � r2d�2 � dz2; (2.1)

where 0 � � � �0 � 2� and the spatial points ðr; �; zÞ
and ðr;�þ�0; zÞ are to be identified. The planar angle
deficit is related to the mass per unit length of the string,
�0, by 2���0 ¼ 8�G�0, where G is the Newton gravi-
tational constant. In the discussion below, in addition to the
parameter �0, we will use the combination

q ¼ 2�=�0: (2.2)

The dynamics of a massive fermionic field is governed
by the Dirac equation

i��r�c �mc ¼ 0; (2.3)

with the covariant derivative operator defined as

r� ¼ @� þ ��: (2.4)

Here �� ¼ e
�
ðaÞ�

ðaÞ are the Dirac matrices in curved space-

time and �� is the spin connection given in terms of the flat

space Dirac matrices �ðaÞ by the relation

�� ¼ 1
4�

ðaÞ�ðbÞe�ðaÞeðbÞ�;�: (2.5)

Note that in this formula ‘‘;’’ means the standard covariant
derivative for vector fields. In the relations above e

�
ðaÞ is the

tetrad basis satisfying e
�
ðaÞe

�
ðbÞ�

ab ¼ g��, where �ab is the

Minkowski spacetime metric tensor.
In this paper we are interested in the change of the VEVs

of the fermionic condensate and the energy-momentum
tensor for a fermionic field, induced by a cylindrical shell
coaxial with the string on which the field obeys the MIT
bag boundary condition:

ð1þ i��n�Þc ¼ 0; r ¼ a; (2.6)

where a is the cylinder radius and n� ¼ ð0; 1; 0; 0Þ is the
outward-pointing normal to the boundary. For the evalu-
ation of the VEVs we will use the direct mode summation
procedure. In this approach we need to have the complete
set of the eigenfunctions satisfying boundary condition
(2.6).
In order to find these eigenfunctions, we will use the

standard representation of the flat space Dirac matrices:

�ð0Þ ¼ 1 0
0 �1

� �
; �ðaÞ ¼ 0 �a

��a 0

� �
; a¼ 1;2;3;

(2.7)

with�1,�2,�3 being the Pauli matrices. We take the tetrad
fields in the form used before in [41] (see also [28,42]):

e�ðaÞ ¼
1 0 0 0
0 cosðq�Þ � sinðq�Þ=r 0
0 sinðq�Þ cosðq�Þ=r 0
0 0 0 1

0
BBB@

1
CCCA; (2.8)
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where the index a identifies the rows of the matrix. With
this choice, the gamma matrices are given by

�0 ¼ �ð0Þ; �l ¼ 0 �l

��l 0

� �
; l ¼ 1; 2; 3; (2.9)

where we have introduced the 2� 2 matrices

�1 ¼ 0 e�iq�

eiq� 0

 !
; �2 ¼ � i

r

0 e�iq�

�eiq� 0

 !
;

�3 ¼ 1 0

0 �1

 !
: (2.10)

For the spin connection and the combination appearing in
the Dirac equation we find

�� ¼ 1� q

2
�ð1Þ�ð2Þ	2

�; ���� ¼ 1� q

2r
�1; (2.11)

and the Dirac equation takes the form�
��@� þ 1� q

2r
�1 þ im

�
c ¼ 0: (2.12)

For positive frequency solutions, assuming the time-
dependence of the eigenfunctions in the form e�i!t and
decomposing the bispinor c into the upper and lower
components, denoted by ’ and 
, respectively, we find
the equations�

�l@l þ 1� q

2r
�1

�
’� ið!þmÞ
 ¼ 0;

�
�l@l þ 1� q

2r
�1

�

� ið!�mÞ’ ¼ 0:

(2.13)

Substituting the function 
 from the first equation into the
second one, we obtain the second order differential equa-
tion for the function ’:�

�gnl@n@l þ 1

r
@1 þ q� 1

r
�1�2@2

� ðq� 1Þ2
4r2

þ!2 �m2

�
’ ¼ 0; (2.14)

where n, l ¼ 1, 2, 3. The same equation is obtained for the
function 
.

Because the above equation is in diagonal matrix form,
we decompose the spinor ’ into the upper, ’1, and lower,
’2, components. Taking the eigenfunctions corresponding

to these components in the form ’l ¼ RlðrÞeiðqnl�þkz�!tÞ,
l ¼ 1, 2, we can see that the solutions of the equations for
the radial functions, regular on the string, are expressed in
terms of the Bessel function of the first kind: RlðrÞ ¼
ClJ�l

ð�rÞ, where the order is defined by the relations

�1 ¼ jqn1 þ ðq� 1Þ=2j; �2 ¼ jqn2 � ðq� 1Þ=2j;
(2.15)

with n1;2 ¼ 0;�1;�2; . . . , and

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � k2 �m2

p
: (2.16)

Hence, the components of the upper spinor are given by the
formula

’l ¼ ClJ�l
ð�rÞ exp½iðqnl�þ kz�!tÞ�; l ¼ 1; 2:

(2.17)

Having the upper spinor, we can find the components 
l of
the lower one by using the first equation in (2.13). From
this equation we find the following relations:

n2 ¼ n1 þ 1; �2 ¼ �1 þ �n1 ; �n1 � sgnðn1Þ;
(2.18)

and


l ¼ BlJ�l
ð�rÞ exp½iðqnl�þ kz�!tÞ�; l ¼ 1; 2;

(2.19)

with the coefficients

B1 ¼
kC1 � i�n1�C2

!þm
; B2 ¼ � kC2 � i�n1�C1

!þm
:

We can see that the bispinor with the components defined
by relations (2.17) and (2.19) is an eigenfunction of the
projection of the total momentum along the cosmic string:

Ĵ 3c ¼
�
�i@� þ i

q

2
�ð1Þ�ð2Þ

�
c ¼ qjc ; (2.20)

where

j ¼ n1 þ 1=2; j ¼ �1=2; �3=2; . . . (2.21)

For the further specification of the eigenfunctions we
can impose an additional condition relating the constants
C1 and C2. As such a condition, following [43], we will
require the following relations between the upper and
lower components:


1 ¼ ’1; 
2 ¼ �’2


: (2.22)

From the expressions for the spinor components we find
the eigenvalues of the parameter ,

 ¼ s � !þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � k2

p

k
; s ¼ �1; (2.23)

and the relation

C2 ¼ i�n1
s

�
ðmþ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � k2

p
ÞC1; (2.24)

for the coefficients in (2.17).
Hence, the positive frequency solutions to the Dirac

equation, specified by the set of quantum numbers � ¼
ð�; j; k; sÞ, has the form
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c ðþÞ
� ¼ CðþÞ

�

J�1
ð�rÞ

i�jsb
ðþÞ
s J�2

ð�rÞeiq�
sJ�1

ð�rÞ
�i�jb

ðþÞ
s J�2

ð�rÞeiq�

0
BBBBBB@

1
CCCCCCA

� exp½iðqðj� 1=2Þ�þ kz�!tÞ�; (2.25)

where the orders of the Bessel functions are defined in
terms of j as

�1 ¼ jqj� 1=2j ¼ qjjj � �j=2;

�2 ¼ jqjþ 1=2j ¼ qjjj þ �j=2:
(2.26)

In (2.25) and in the consideration below we use the nota-
tions

bð�Þ
s ¼ �mþ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p

�
: (2.27)

Note that one has the relation bð�Þ
s ¼ 1=bð�Þ

s .
The eigenvalues of the radial quantum number � are

determined from the boundary condition (2.6) imposed on
the eigenspinor (2.25). For fixed values of j and s, this
leads to the single equation

J�1
ð�aÞ þ �jb

ðþÞ
s J�2

ð�aÞ ¼ 0: (2.28)

Using the recurrence relations for the Bessel functions, this
equation may also be written in the form

~J �1
ð�aÞ ¼ 0: (2.29)

Here and in what follows we use the notation

~J�1
ðxÞ ¼ xJ0�1

ðxÞ þ ð�� s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ�2

q
� �j�1ÞJ�1

ðxÞ
¼ �x�j½J�2

ðxÞ þ �jb
ð�Þ
s J�1

ð�aÞ�; (2.30)

with� ¼ ma. Wewill denote the solutions of Eq. (2.29) by
�a ¼ ��1;l, l ¼ 1; 2; . . . , assuming that they are arranged

in ascending order. Now the set of quantum numbers is
specified by � ¼ ðl; j; k; sÞ.

The coefficient CðþÞ
� in (2.25) is determined from the

normalization condition

Z
d3x

ffiffiffiffi
�

p
c ðþÞþ

� c ðþÞ
�0 ¼ 	��0 ; (2.31)

where � is the determinant of the spatial metric and the
integration goes over the region inside the cylindrical shell.
The delta symbol on the right-hand side of Eq. (2.31) is
understood as the Dirac delta function for continuous
quantum numbers (k) and the Kronecker delta for discrete
ones ðl; j; sÞ. Substituting the eigenspinors (2.25) into Eq.
(2.31) and using the value of the standard integral involving
the square of the Bessel function [44], we find

ðCðþÞ
� Þ�2 ¼ 2��0a

2J2�1
ðxÞ

2
s þ 1

x2
½2ðx2 þ�2Þ

þ sð2�1�j þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ�2

q
þ��; (2.32)

with the notation x ¼ �a.
The negative frequency eigenspinors are found in a way

similar to that used above for the positive frequency ones
and have the form

c ð�Þ
� ¼ Cð�Þ

�

J�2
ð�rÞ

i�jsb
ð�Þ
s J�1

ð�rÞeiq�
sJ�2

ð�rÞ
�i�jb

ð�Þ
s J�1

ð�rÞeiq�

0
BBBBBB@

1
CCCCCCA

� exp½�iðqðjþ 1=2Þ�þ kz�!tÞ�; (2.33)

with the same notations as in (2.25). The boundary condi-
tion imposed on this eigenspinor leads to the same Eq.

(2.28) for the eigenvalues of �. The coefficient Cð�Þ
� is

found from the orthonormalization condition which is

similar to (2.31) and has the form Cð�Þ
� ¼ CðþÞ

� =bð�Þ
s .

III. FERMIONIC CONDENSATE

Fermionic condensate is evaluated by using the mode-
sum formula

h0j �c c j0i ¼ X
�

�c ð�Þ
� c ð�Þ

� ; (3.1)

where �c ð�Þ
� ¼ c ð�Þþ

� is the Dirac adjoint and

X
�

¼ X
j¼�1=2;�3=2;���

Z þ1

�1
dk

X
s¼�1

X1
l¼1

: (3.2)

Substituting the eigenspinor (2.33) into (3.1), we find

h0j �c c j0i ¼ X
�

ð2
s � 1ÞCð�Þ2

� ½bð�Þ2
s J2�ð�rÞ

� J2�þ�j
ð�rÞ��¼��;l=a; (3.3)

where s is defined by the expression (2.23) and

� ¼ �1 ¼ qjjj � �j=2: (3.4)

The fermionic condensate given by formula (3.3) is diver-
gent and some regularization procedure is necessary. We
will assume that a cutoff function is introduced in formula
(3.3) without explicitly writing it.
As the explicit form for ��;l is not known, formula (3.3)

is not convenient for the direct evaluation of the conden-
sate. In addition, the separate terms in the mode sum are
highly oscillatory for large values of the quantum numbers.
A convenient form can be obtained by applying to the
series over l the summation formula, previously derived
in Ref. [35] (see, also, [45]). In [35] by using the general-
ized Abel-Plana formula, it has been shown that for a
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function hðzÞ analytic in the half-plane Rez > 0 and sat-
isfying the condition

jhðzÞj< "ðxÞecjyj; z ¼ xþ iy; jzj ! 1; (3.5)

with c < 2 and "ðxÞ ! 0 for x ! 1, the following formula
takes place:

X1
l¼1

T�ð��;lÞhð��;lÞ ¼
Z 1

0
hðxÞdxþ �

2
Res
z¼0

�
hðzÞ

~Y�ðzÞ
~J�ðzÞ

�

� 1

�

Z 1

0
dx

�
e���ihðxe�i=2ÞK

ðþÞ
� ðxÞ

IðþÞ
� ðxÞ

þ e��ihðxe��i=2ÞK
ð�Þ
� ðxÞ

Ið�Þ
� ðxÞ

�
; (3.6)

where I�ðxÞ, K�ðxÞ are the modified Bessel functions, and

T�ðzÞ is defined by the relation

zT�1
� ðzÞ ¼ J2�ðzÞ

�
z2 þ ð�� �j�Þð�2 � s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ�2

q
Þ

þ sz2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ�2

p �
: (3.7)

In formula (3.6) we used the notations

Fð�ÞðzÞ¼
�
zF0ðzÞþð��s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�z2

p ��j�ÞFðzÞ; jzj<�;

zF0ðzÞþð��si
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2��2

p ��j�ÞFðzÞ; jzj>�;

(3.8)

for a given function FðzÞ.
By taking into account the relation

Cð�Þ2
� ¼ k2x

8��0a!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ�2

p þ s�

a!þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ�2

p T�ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ�2

p ; (3.9)

we can write the mode sum for the fermionic condensate in
the form

h0j �c c j0i ¼ � 1

4��0a
2

X
�

xT�ðxÞ
a!

f�ðx; xr=aÞjx¼��;l
;

(3.10)

with the notation

f�ðx; yÞ ¼ ð�� s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ�2

q
ÞJ2�ðyÞ

þ ð�þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ�2

q
ÞJ2�þ�j

ðyÞ: (3.11)

Note that in (3.10)

a! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ k2a2 þ�2

q
; (3.12)

and we have the property

e���if�ðxe�i=2; ye�i=2Þ ¼ e��if�ðxe��i=2; ye��i=2Þ;
(3.13)

for x < �. Now we apply to the sum over l in (3.10)
formula (3.6) taking hðxÞ ¼ xfðx; xr=aÞ=ða!Þ. For this
function the residue term in (3.6) vanishes. The part in
the fermionic condensate with the last integral on the right-
hand side of (3.6) vanishes in the limit a ! 1, whereas the
part with the first integral does not depend on a. From here
it follows that the latter presents the fermionic condensate
in the geometry of a cosmic string without boundaries. This
can also be seen by direct evaluation.
Indeed, when the cylindrical boundary is absent, the

positive and negative frequency eigenspinors are still given
by formulae (2.25) and (2.33), where now the spectrum for
� is continuous, 0 � � <1. The corresponding normal-
ization coefficients are found from the condition (2.31) and
have the form

ðCð�Þ
� Þ�2 ¼ 2��0

2
s þ 1

�
ð1þ bð�Þ2

s Þ: (3.14)

Substituting the eigenspinors into the mode-sum formula
(3.1), for the fermionic condensate in the geometry of a
cosmic string without boundaries we find

h0j �c c j0is ¼ � q

8�2

X
j¼�1=2;�3=2;���

Z þ1

�1
dk

Z 1

0
d�

X
s¼�1

�

!

� ½ðm� s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p
ÞJ2�ð�rÞ

þ ðmþ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p
ÞJ2�þ�j

ð�rÞ�: (3.15)

This coincides with the result obtained from the first term
on the right of formula (3.6) applied to mode sum (3.10).
Formula (3.15) is further simplified by taking into account
the expression for � and after the summation over s:

h0j �c c j0is ¼ �qm

�2

X
j

Z 1

0
dk

Z 1

0
d�

�

!
½J2qj�1=2ð�rÞ

þ J2qjþ1=2ð�rÞ�: (3.16)

Here and in what followsX
j

¼ X
j¼1=2;3=2;���

: (3.17)

As it is seen from formula (3.16), for a massless field the
fermionic condensate vanishes in the boundary-free cos-
mic string spacetime. Since the geometry outside of the
string is flat, the renormalization of the fermionic conden-
sate given by (3.16) is done by subtracting the correspond-
ing quantity for the boundary-free Minkowski spacetime.
The latter is obtained from (3.16) taking in this formula
q ¼ 1. Note that for the Minkowski case the summation
over j is explicitly done by using the formula

X
j

½J2j�1=2ð�rÞ þ J2jþ1=2ð�rÞ� ¼ 2
X1
n¼0

0
J2nð�rÞ ¼ 1; (3.18)

where the prime on the sign of summation means that the
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n ¼ 0 term should be halved. The renormalized fermionic
condensate in the geometry of a cosmic string without
boundaries is further investigated in the appendix.

From the discussion above it follows that, after the
application of the summation formula (3.6), the part in
the fermionic condensate with the second integral on the
right-hand side of this formula corresponds to the VEV
induced by the presence of the cylindrical shell. By using
property (3.13) and noting that under the change s ! �s

we have FðþÞðxÞ ! Fð�ÞðxÞ, Fð�ÞðxÞ ! FðþÞðxÞ, the fermi-
onic condensate in the geometry with the cylindrical shell
is presented in the decomposed form

h0j �c c j0i ¼ h0j �c c j0is þ h �c c icyl: (3.19)

Here the second term on the right-hand side,

h �c c icyl ¼ q

4�3a2
X

j¼�1=2;�3=2;���

X
s

Z þ1

�1
dk

�
Z 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2þa2k2
p dxxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 ��2 � a2k2
p KðþÞ

� ðxÞ
IðþÞ
� ðxÞ

� ½ð�� is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ��2

q
ÞI2�ðxr=aÞ

� ð�þ is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ��2

q
ÞI2�þ�j

ðxr=aÞ�; (3.20)

is the part in the fermionic condensate induced by the
cylindrical boundary. The number of the integrations in
this formula is reduced by using the relation

Z 1

0
dk

Z 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þa2k2

p dx xGðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ��2 � a2k2

p ¼ �

2a

Z 1

�
duuGðuÞ:

(3.21)

Further, redefining s ! �s in the part of the summation
over the negative values j, it can be seen that the negative
and positive values of j give the same contributions to the
fermionic condensate. Finally, we arrive at the following
formula:

h �c c icyl ¼ q

�2a3

X
j

Z 1

�
dx xRe

� �K�j
ðxÞ

�I�j
ðxÞ F�j

ðx; xr=aÞ
�
;

(3.22)

where

�j ¼ qj� 1=2; (3.23)

and the function F�j
ðx; yÞ is given by the expression

F�j
ðx; yÞ ¼ ð�� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ��2

q
ÞI2�j

ðyÞ

� ð�þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ��2

q
ÞI2�j

ðyÞ: (3.24)

In (3.22), for the modified Bessel functions we use the
barred notations

�F �ðxÞ ¼ xF0
�ðxÞ þ ð�� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ��2

q
� �ÞF�ðxÞ

¼ �FxF�þ1ðxÞ þ ð�� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ��2

q
ÞF�ðxÞ;

(3.25)

with F ¼ I, K, and �I ¼ 1, �K ¼ �1.
The boundary-induced part (3.22) is finite for points

away from the cylindrical shell and the renormalization
is necessary for the boundary-free part, h0j �c c j0is, only.
Note that the ratio in the integrand of Eq. (3.22) may also
be presented in the form

�K�ðxÞ
�I�ðxÞ ¼ � W�ðxÞ ��þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ��2

p
x2½I2�þ1ðxÞ þ I2�ðxÞ� þ 2�xI�ðxÞI�þ1ðxÞ

;

(3.26)

where

W�ðxÞ ¼ x2½I�þ1ðxÞK�þ1ðxÞ � K�ðxÞI�ðxÞ�
þ 2�xI�ðxÞK�þ1ðxÞ: (3.27)

For a massless fermionic field, from (3.22) and (3.26) we
find

h �c c icyl ¼ � q

�2a3

X
j

Z 1

0
dx x

I2�j
ðxr=aÞ þ I2�jþ1ðxr=aÞ
I2�j

ðxÞ þ I2�jþ1ðxÞ
:

(3.28)

In this case the boundary-free part vanishes and the fermi-
onic condensate is always negative.
Now we turn to the investigation of the fermionic con-

densate given by Eq. (3.22) in the asymptotic regions of the
parameters. For large values of the cylinder radius we use
the asymptotic formulae for the modified Bessel functions
when the argument is large. By taking into account that the
main contribution into the integral in (3.22) comes from the
lower limit of the integral, to the leading order we find

h �c c icyl 	 � qm

4�a2
e�2am

X
j

X
	¼�1

ð1þ 	qjÞI2qj�	=2ðmrÞ;

(3.29)

for am 
 1. For a massless field, expanding the integrand
in (3.28) we see that the main contribution is due to the
term with j ¼ 1=2 and one has

h �c c icyl 	 � 21�qq

�2a3
ðr=aÞq�1

�2ððqþ 1Þ=2Þ
�
Z 1

0
dx

xq

I2ðq�1Þ=2ðxÞ þ I2ðqþ1Þ=2ðxÞ
; (3.30)

for r � a.
For points near the string, r=a � 1, the main contribu-

tion into the boundary-induced VEV (3.22) comes from the
lowest mode j ¼ 1=2 and to the leading order we find
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h �c c icyl 	 21�qqðr=aÞq�1

�2a3�2ððqþ 1Þ=2Þ
Z 1

�
dx xq Re

� �Kðq�1Þ=2ðxÞ
�Iðq�1Þ=2ðxÞ

� ð�� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ��2

q
Þ
�
: (3.31)

This quantity is nonzero in the case of the cylindrical
boundary in the Minkowski bulk and vanishes for the
cosmic string geometry with q > 1. For a massless field
formula (3.31) is reduced to Eq. (3.30). For points near the
boundary the main contribution comes from large values of
j and in this case we can use the uniform asymptotic
expansions for the modified Bessel functions for large
values of the order (see, for instance, [46]). In this way,
to the leading order we have

h �c c icyl 	 � 1

4�2ða� rÞ3 ; (3.32)

for ð1� r=aÞ � 1. As we see, the leading term does not
depend on the planar angle deficit and corresponds to the
same one obtained for a cylindrical boundary in the
Minkowski bulk.

Now we consider the limit when the parameter q is large
which corresponds to small values of �0 and, hence, to a
large planar angle deficit. In this limit the order of the
modified Bessel functions in (3.22) is large and we replace
these functions by their uniform asymptotic expansions.
Assuming fixed value of the ratio r=a, the integral is
estimated by the Laplace method and to the leading order
we have

h �c c icyl 	�q2 exp½�ð1� ðr=aÞ2Þ�=2�
2�2r3½1� ðr=aÞ2�

�
r

a

�
q
; q
 1:

(3.33)

Hence, for large values of the angle deficit the fermionic
condensate is exponentially suppressed.

IV. ENERGY-MOMENTUM TENSOR

In this section we consider the VEV of the energy-
momentum tensor of the fermionic field inside a cylindri-
cal shell on which the field satisfies the boundary condition
(2.6). This VEV can be evaluated by making use of the
mode-sum formula

h0jT��j0i ¼ i

2

X
�

½ �c ð�Þ
� ðxÞ�ð�r�Þc

ð�Þ
� ðxÞ

� ðrð� �c ð�Þ
� ðxÞÞ��Þc

ð�Þ
� ðxÞ�; (4.1)

with the negative frequency eigenspinors given by (2.33).
We can see that the vacuum energy-momentum tensor is
diagonal and the separate components are given by the
formulae (no summation over �)

h0jT�
� j0i ¼ q

8�2a3
X
�

x3T�ðxÞ
a!

fð�Þ� ðx; xr=aÞjx¼��;l
; (4.2)

where the following notations were introduced

fð0Þ� ðx; yÞ ¼ � a2!2

x2

��
1� s�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ�2
p �

J2�ðyÞ

þ
�
1þ s�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ�2
p �

J2�þ�j
ðyÞ
�
;

fð1Þ� ðx; yÞ ¼ J2�ðyÞ þ J2�þ�j
ðyÞ � 2�þ �j

y
J�ðyÞJ�þ�jðyÞ;

fð2Þ� ðx; yÞ ¼ 2�þ �j
y

J�ðyÞJ�þ�jðyÞ;

fð3Þ� ðx; yÞ ¼ ðk2=!2Þfð0Þ� ðx; yÞ: (4.3)

The other notations in (4.2) are the same as in (3.10). The
VEV given by (4.2) is divergent and, as in the case of the
fermionic condensate, it is assumed that a cutoff function is
present. Now, we can explicitly verify that the VEVs (4.2)
satisfy the trace relation

h0jT�
� j0i ¼ mh0j �c c j0i:

In order to extract from the VEV of the energy-
momentum tensor the part corresponding to the geometry
of a string without boundaries, we apply to the series over l
in (4.2) the summation formula (3.6) with

hðxÞ ¼ x3

a!
fð�Þ� ðx; xr=aÞ: (4.4)

In a way similar to that used in the case of the fermionic
condensate, the VEV can be written in the decomposed
form:

h0jT�
�j0i ¼ h0jT�

�j0is þ hT�
�icyl; (4.5)

where h0jT�
�j0is is the fermionic energy-momentum tensor

in the geometry of a cosmic string when the cylindrical
shell is absent. The second term on the right-hand side of
formula (4.5) is induced by the cylindrical shell and is
given by the formula (no summation over �)

hT�
�icyl ¼ q

�2a4
X
j

Z 1

�
dx x3 Re

� �K�j
ðxÞ

�I�j
ðxÞ F

ð�Þ
�j
ðx; xr=aÞ

�
;

(4.6)

where �j is defined by Eq. (3.23). In this formula we have

introduced the notations

Fð0Þ
�j
ðx; yÞ ¼ �2=x2 � 1

2

X
	¼�1

	

�
1þ 	i�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 ��2
p �

I2qj�	=2ðyÞ;

Fð1Þ
�j
ðx; yÞ ¼ I2�j

ðyÞ � I2�jþ1ðyÞ � ð2qj=yÞI�j
ðyÞI�jþ1ðyÞ;

Fð2Þ
�j
ðx; yÞ ¼ ð2qj=yÞI�j

ðyÞI�jþ1ðyÞ; (4.7)

and Fð3Þ
� ðx; yÞ ¼ Fð0Þ

� ðx; yÞ. Note that the function for the

radial component is also presented in the form
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Fð1Þ
�j
ðx; yÞ ¼ I�j

ðyÞI0�jþ1ðyÞ � I�jþ1ðyÞI0�j
ðyÞ: (4.8)

As we see, the vacuum stress along the axis of the string is equal to the energy density. Of course, this property is a direct
consequence of the boost invariance along this axis.

By using Eq. (3.26), we may write the expressions for the components of the energy-momentum tensor in a more explicit
form given by

hT0
0icyl ¼

q

2�2a4
X
j

Z 1

�
dx xð1��2=x2Þ

W�j
ðxÞ½I2�j

ðxr=aÞ � I2�jþ1ðxr=aÞ� � 2�I2�j
ðxr=aÞ

I2�jþ1ðxÞ þ I2�j
ðxÞ þ 2ð�=xÞI�j

ðxÞI�jþ1ðxÞ
; (4.9)

for the energy density and by (no summation over �)

hT�
�icyl ¼ � q

�2a4

X
j

Z 1

�
dx

x½W�j
ðxÞ ���Fð�Þ

�j
ðx; xr=aÞ

I2�jþ1ðxÞ þ I2�j
ðxÞ þ 2ð�=xÞI�j

ðxÞI�jþ1ðxÞ
; (4.10)

for the radial and azimuthal stresses, � ¼ 1, 2.
The VEV of the fermionic energy-momentum tensor in

the geometry of a cosmic string when the cylindrical shell
is absent, corresponds to the first term on the right-hand
side of the summation formula (3.6). For this VEV we have
the mode sum (no summation over �)

h0jT�
� j0is ¼ q

8�2

X
j¼�1=2;�3=2;���

Z þ1

�1
dk

�
Z 1

0
d�

X
s¼�1

�3

!
fð�Þ� ð�a; �rÞ: (4.11)

The summation over s in this formula is done explicitly and
noting that the negative and positive values of j give the
same contributions, we find

h0jT�
� j0is ¼ q

�2

X
j

Z 1

0
dk

Z 1

0
d�

�3

!
gð�Þ�j

ð�; �rÞ; (4.12)

where now

gð0Þ�j
ð�; yÞ ¼ �!2

�2
½J2�j

ðyÞ þ J2�jþ1ðyÞ�;

gð1Þ�j
ð�; yÞ ¼ J2�j

ðyÞ þ J2�jþ1ðyÞ �
2qj

y
J�j

ðyÞJ�jþ1ðyÞ;

gð2Þ�j
ð�; yÞ ¼ 2qj

y
J�j

ðyÞJ�jþ1ðyÞ;

gð3Þ�j
ð�; yÞ ¼ ðk2=!2Þgð0Þ�j

ð�; yÞ: (4.13)

As in the case of the fermionic condensate, the VEV (4.12)
is renormalized by subtracting the corresponding VEV in
the Minkowski spacetime without boundaries. The
boundary-free renormalized VEV of the energy-
momentum tensor for a massive fermionic field is further
investigated in the appendix.

It can be explicitly verified that the boundary-induced
parts satisfy the trace relation hT�

�icyl ¼ mh �c c icyl and the

covariant conservation equation r�hT�
�icyl ¼ 0. For the

geometry under consideration the latter is reduced to the
single equation

@r½rhT1
1icyl� ¼ hT2

2icyl: (4.14)

This equation is easily checked by using the relation

@yðyFð1Þ
� ðx; yÞÞ ¼ Fð2Þ

� ðx; yÞ between the radial and azimu-

thal functions in (4.7). In the case of a massless fermionic
field, for the VEV induced by the cylindrical boundary
from (4.9) and (4.10) we have (no summation over �)

hT�
�icyl ¼ q

�2a4
X
j

Z 1

0
dx x3

� I�j
ðxÞK�j

ðxÞ � I�jþ1ðxÞK�jþ1ðxÞ
I2�j

ðxÞ þ I2�jþ1ðxÞ
Fð0;�Þ
�j

ðxr=aÞ;

(4.15)

where Fð0;�Þ
� ðyÞ ¼ Fð�Þ

� ðx; yÞ for � ¼ 1, 2, and the corre-

sponding function for the energy density is defined as

Fð0;0Þ
�j

ðyÞ ¼ �1
2½I2�j

ðyÞ � I2�jþ1ðyÞ�: (4.16)

In the special case with q ¼ 1, from the formulae given
above we obtain the fermionic Casimir densities for a
cylindrical boundary in the Minkowski spacetime. On the
left panel of Fig. 1 we have plotted the corresponding
VEVs for the energy density and radial stress as functions
of the radial coordinate for a massless fermionic field. On
the right panel the boundary-induced parts are presented in
the geometry of a cosmic string with the parameter q ¼ 2.
For large values of the cylinder radius the main contri-

bution into the integral in (4.6) comes from the lower limit
and in the leading order we have (no summation over �)

hT0
0icyl 	 � qm2

8�a2
e�2am

X
j

X
	¼�1

I2qj�	=2ðmrÞ;

hT�
� icyl 	 � q2m2

4�a2
e�2am

X
j

qjFð�Þ
�j
ðma;mrÞ;

(4.17)

where � ¼ 1, 2 and am 
 1. For a massless fermionic
field the main contribution comes from the j ¼ 1=2 term
and from (4.15) one finds
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hT0
0icyl 	 � 2�qqðr=aÞq�1

�2a4�2ððqþ 1Þ=2Þ
�
Z 1

0
dx xqþ2

� Iðq�1Þ=2ðxÞKðq�1Þ=2ðxÞ � Iðqþ1Þ=2ðxÞKðqþ1Þ=2ðxÞ
I2ðq�1Þ=2ðxÞ þ I2ðqþ1Þ=2ðxÞ

;

(4.18)

for the energy density and

hT1
1icyl 	

�2

qþ 1
hT0

0icyl; hT2
2icyl 	

�2q

qþ 1
hT0

0icyl;
(4.19)

for the radial and azimuthal stresses.
Now we consider the behavior of the boundary-induced

VEV of the energy-momentum tensor near the string and
for points near the boundary. In the first case one has
r=a � 1 and the main contribution in (4.6) comes from
the lowest mode j ¼ 1=2. By using the formulae for the
modified Bessel functions for small values of the argument,
to the leading order one finds (no summation over �)

hT�
�icyl 	 qðr=2aÞq�1

�2a4�2ððqþ 1Þ=2Þ

�
Z 1

�
dx xqþ2 Re

� �Kðq�1Þ=2ðxÞ
�Iðq�1Þ=2ðxÞ

Fð�ÞðxÞ
�
; (4.20)

where

Fð0ÞðxÞ ¼ �2=x2 � 1

2
ð1þ i�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ��2

q
Þ;

Fð2ÞðxÞ ¼ qFð1ÞðxÞ ¼ q=ðqþ 1Þ:
(4.21)

For a massless fermionic field this formula is reduced to the
results given by Eqs. (4.18) and (4.19).

For points near the cylindrical boundary, we replace the
modified Bessel functions by the corresponding uniform
asymptotic expansions for large values of the order. Unlike
to the case of the fermionic condensate here the leading
terms in the VEVs of the energy-momentum tensor vanish
and it is necessary to take the next terms in the asymptotic
expansions. In particular, for the function appearing in the
integrands of the vacuum stresses we have

Re

� �K�ð�xÞ
�I�ð�xÞ

�
	 1� t2 � 2�

1� t

�t2

2�
e�2��ðxÞ; (4.22)

where

t ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p ; �ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
þ ln

x

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p :

(4.23)

Substituting this into the expression for the azimuthal
stress, to the leading order we find

hT2
2icyl 	

1� 5�

60�2aða� rÞ3 ; ð1� r=aÞ � 1: (4.24)

The corresponding expressions for the radial stress and the
energy density are found from the conservation equation
and the trace relation by using the result (3.32) for the
fermionic condensate. In this way we obtain the following
formulae:

hT0
0icyl 	 � 1þ 10�

120�2aða� rÞ3 ;

hT1
1icyl 	

1� 5�

120�2a2ða� rÞ2 :
(4.25)

As in the case of the fermionic condensate, the leading
terms in the VEVs of the energy-momentum tensor com-
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FIG. 1 (color online). Boundary-induced parts in the VEVs of the energy density, a4hT0
0 icyl (full curves), and radial stress, a4hT1

1 icyl
(dashed curves), for a massless fermionic field as functions of the radial coordinate. The left panel is plotted for q ¼ 1 (Minkowski
spacetime) and for the right panel q ¼ 2.
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ponents do not depend on the planar angle deficit and are
the same as for a cylindrical boundary in the Minkowski
bulk. Note that, in dependence of the parameter �, the
vacuum stresses near the boundary can be either positive or
negative, whereas the energy density remains always nega-
tive. As the boundary-free part is finite everywhere outside
the string axis, for points near the boundary the total VEV
is dominated by the boundary-induced part.

Similar to the case of the fermionic condensate, it can be
seen that for large values of the parameter q the boundary-
induced part in the VEVof the energy-momentum tensor is
suppressed by the factor ðr=aÞq. The dependence of the
boundary-induced VEVs on the parameter q is presented in
Fig. 2 for a massless fermionic field. On the left (right)
panel the energy density and radial stresses are plotted for
the value of the ratio r=a ¼ 0:5 (r=a ¼ 1:5).

In Fig. 3 we give the boundary-induced parts in the
energy density and the radial stress in the geometry of a
cosmic string with q ¼ 2 as functions of the mass. The
graphs on the left panel are for the interior quantities at
r=a ¼ 0:5 and the graphs on the right panel are for the
exterior ones evaluated at r=a ¼ 1:5. As it is seen, we have

a nontrivial dependence on the mass and in the case of a
massive field the polarization effects induced by the
boundary can be stronger than for a massless field.

V. VACUUM DENSITIES IN THE EXTERIOR
REGION

A. Eigenspinors

In this section we consider the fermionic condensate and
the VEV of the energy-momentum tensor in the region
outside the cylindrical shell. As in the interior case this
can be done by the direct mode summation. The corre-
sponding eigenspinors have the form (2.25) and (2.33) with
the difference that now, instead of the Bessel functions
J�1;2

ð�rÞ, the linear combinations of the functions J�1;2
ð�rÞ

and Y�1;2
ð�rÞ should be taken, with Y�ðxÞ being the

Neumann function. The ratio of the coefficients in this
combination is determined from the boundary condition
(2.6) imposed on the cylindrical surface. In this way for the
positive and negative frequency eigenspinors we have the
expressions
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FIG. 2 (color online). Boundary-induced parts in the VEVs of the energy density, a4hT0
0 icyl (full curves), and radial stress, a4hT1

1 icyl
(dashed curves), for a massless fermionic field as functions of the parameter q. The left panel corresponds to the interior region with
r=a ¼ 0:5 and the right panel corresponds to the exterior region with r=a ¼ 1:5.
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FIG. 3 (color online). Boundary-induced parts in the VEVs of the energy density, a4hT0
0 icyl (full curves), and radial stress, a4hT1

1 icyl
(dashed curves), as functions of the parameter ma for q ¼ 2. The left panel corresponds to the interior region with r=a ¼ 0:5 and the
right panel corresponds to the exterior region with r=a ¼ 1:5.
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c ð�Þ
� ¼ Cð�Þ

�

Z��ð�a; �rÞ
is�n�b

ð�Þ
s Z��ð�a; �rÞeiq�

sZ��ð�a; �rÞ
�i�n�b

ð�Þ
s Z��ð�a; �rÞeiq�

0
BBBBBB@

1
CCCCCCA

� exp½�iðqðj� 1=2Þ�þ kz�!tÞ�; (5.1)

where the function Z�ðx; yÞ is defined by the formula

Z��ðx; yÞ ¼ ~Y�ðxÞJ��ðyÞ � ~J�ðxÞY��ðyÞ; (5.2)

and

�þ ¼ �1 ¼ �; �� ¼ �2; (5.3)

with �1;2 given by relations (2.26). Here the notation ~Y�ðxÞ
is defined by (2.30) with the replacement J ! Y.

The eigenspinors are orthonormalized by condition
(2.31), where now the radial integration goes over the
exterior region. The eigenvalues for � are continuous and
on the right-hand side of the normalization condition we
have 	ð�� �0Þ. Since the radial integral diverges for �0 ¼
�, the main contribution to this integral comes from large
values r and we can replace the Bessel and Neumann
functions with the arguments �r, by the corresponding
asymptotic expressions. In this way, for the normalization
coefficients in (5.1), we find

ðCð�Þ
� Þ�2 ¼ 2��0ð2

s þ 1Þð1þ bð�Þ2
s Þ 1

�
½~J2�ð�aÞ

þ ~Y2
�ð�aÞ�; (5.4)

where s and bð�Þ
s are defined by Eqs. (2.23) and (2.27).

B. Fermionic condensate

Substituting the eigenspinors (5.1) into the mode-sum
formula (3.1), for the fermionic condensate in the region
outside the cylindrical shell we obtain the formula

h0j �c c j0i ¼ q

8�2

X
�

�

!½ �J2�ð�aÞ þ �Y2
�ð�aÞ�

� ½ð�mþ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p
ÞZ2

�ð�a; �rÞ
� ðmþ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p
ÞZ2

�þ�j
ð�a; �rÞ�; (5.5)

where

X
�

¼ X
j¼�1=2;�3=2;���

Z þ1

�1
dk

Z 1

0
d�

X
s¼�1

: (5.6)

In order to extract from the VEV (5.5) the part induced by
the cylindrical shell, we subtract the fermionic condensate
for the geometry of a string without the shell. As it has been
shown before, the latter is given by formula (3.15). For
further evaluation of the difference, we use the identities

Z2
�þ�j

ð�a; �rÞ
~J2�ð�aÞ þ ~Y2

�ð�aÞ
� J2�þ�j

ð�rÞ

¼ � 1

2

X
l¼1;2

~J�ð�aÞ
~HðlÞ
� ð�aÞH

ðlÞ2
�þ�j

ð�rÞ; (5.7)

where �j ¼ 0 or �j, andH
ð1;2Þ
� ðxÞ are the Hankel functions.

As a result for the fermionic condensate we obtain

h0j �c c j0i ¼ h0j �c c j0is þ q

16�2

X
�

X
l¼1;2

�

!

~J�ð�aÞ
~HðlÞ
� ð�aÞ

� ½ðm� s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p
ÞHðlÞ2

� ð�rÞ
þ ðmþ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p
ÞHðlÞ2

�þ�j
ð�rÞ�: (5.8)

Now, in the complex plane � we rotate the integration
contour in the integral over � on the right-hand side of the
formula (5.8) by the angle �=2 for the l ¼ 1 term and by
the angle��=2 for the l ¼ 2 term. By using the symmetry
properties of the integrands, it can be seen that the parts of

the integrals over ð0; i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
Þ and ð0;�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
Þ are

cancelled. The number of the remaining integrations is
reduced by using the formula (3.21). In this way, introduc-
ing the modified Bessel functions, we present the fermionic
condensate in the decomposed form (3.19), where the part
induced by the cylindrical boundary in the region r > a is
given by the expression

h �c c icyl ¼ q

�2a3
X
j

Z 1

�
dx xRe

� �I�j
ðxÞ

�K�j
ðxÞF

ðexÞ
�j

ðx; xr=aÞ
�
;

(5.9)

where �j is defined by Eq. (3.23) and we are using the

notation

FðexÞ
�j

ðx; yÞ ¼ ð�� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ��2

q
ÞK2

�j
ðyÞ � ð�

þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ��2

q
ÞK2

�j
ðyÞ: (5.10)

Note that the ratio of the combinations of the modified
Bessel functions in (5.9) can be written in the form

�I�ðxÞ
�K�ðxÞ

¼ � W�ðxÞ ��� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ��2

p
x2½K2

�þ1ðxÞ þ K2
�ðxÞ� � 2�xK�ðxÞK�þ1ðxÞ

;

(5.11)

where the function W�ðxÞ is defined by Eq. (3.27). For a

massless fermionic field one has the formula

h �c c icyl ¼ q

�2a3
X
j

Z 1

0
dx x

K2
�j
ðxr=aÞ þ K2

�jþ1ðxr=aÞ
K2

�j
ðxÞ þ K2

�jþ1ðxÞ
;

(5.12)

and the fermionic condensate is positive.
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Let us consider the behavior of the fermionic condensate
in asymptotic regions of the parameter. In the limit a ! 0
with fixed values r, we introduce in (5.9) a new integration
variable y ¼ x=a and expand the integrand in powers of a.
The main contribution comes from the mode j ¼ 1=2 and
we have the leading term given below

h �c c icyl 	 21�qqða=rÞq
�2�2ððqþ 1Þ=2Þr3

Z 1

mr
dx xq½ðx2 � 2m2r2Þ

� K2
ðq�1Þ=2ðxÞ þ x2K2

ðqþ1Þ=2ðxÞ�: (5.13)

For a massless fermionic field, by using the result from
[44] for the integral involving the square of the MacDonald
function, from here we find

h �c c icyl 	 qðqþ 1Þ
2�2r3

�
a

r

�
q
; a=r � 1: (5.14)

At large distances from the cylindrical boundary, for a
massive field under the condition mr 
 1 the main con-
tribution into the integral in (5.9) comes from the lower
limit of the integration and to the leading order we find

h �c c icyl 	 q
ffiffiffiffiffiffiffi
mr

p
e�2mr

4
ffiffiffiffi
�

p
r3

X
j

Im

� �Iqj�1=2ðmaÞ
�Kqj�1=2ðmaÞ

�
: (5.15)

Here the imaginary part is easily taken by using Eq. (5.11).
As we could expect, in this limit the VEV is exponentially
suppressed. At large distances and for a massless field the
behavior of the fermionic condensate is described by Eq.
(5.14). Note that the decreasing of the fermionic conden-
sate at large distances is stronger than in the case when the
string is absent. For points near the boundary, by using the
uniform asymptotic expansions for the modified Bessel
functions, we can see that the leading term in the asymp-
totic expansion of the fermionic condensate over the dis-

tance from the boundary is given by the same expression
(3.32) as in the interior region.

C. VEV of the energy-momentum tensor

The VEV for the energy-momentum tensor in the exte-
rior region is found in the way similar to that for the
fermionic condensate. Here we omit the details of the
calculations and give the final result. The VEV is decom-
posed into the sum of boundary-free and boundary-induced
parts in the form given by (4.5). In the region outside the
cylindrical shell the boundary-induced part is (no summa-
tion over �)

hT�
�icyl ¼ q

�2a4

X
j

Z 1

�
dx x3 Re

� �I�j
ðxÞ

�K�j
ðxÞF

ðexÞð�Þ
�j

ðx; xr=aÞ
�
:

(5.16)

In this formula we introduced the notations

FðexÞð0Þ
�j

ðx; yÞ ¼ �2=x2 � 1

2

X
	¼�1

	

�
1

þ i	�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ��2

p �
K2

qj�	=2ðxr=aÞ;

FðexÞð1Þ
�j

ðx; yÞ ¼ K2
�j
ðyÞ � K2

�jþ1ðyÞ
þ ð2qj=yÞK�j

ðyÞK�jþ1ðyÞ;
FðexÞð2Þ
�j

ðx; yÞ ¼ �ð2qj=yÞK�j
ðyÞK�jþ1ðyÞ;

(5.17)

and FðexÞð3Þ
� ðx; yÞ ¼ FðexÞð0Þ

� ðx; yÞ. As an additional check we
can see that these VEVs satisfy the trace relation and the
covariant conservation equation. By using formula (5.11),
we can write the vacuum densities in the form

hT0
0icyl ¼

q

2�2a4
X
j

Z 1

�
dx xð1��2=x2Þ

W�j
ðxÞ½K2

�j
ðxr=aÞ � K2

�jþ1ðxr=aÞ� þ 2�K2
�jþ1ðxr=aÞ

K2
�jþ1ðxÞ þ K2

�j
ðxÞ � 2ð�=xÞK�j

ðxÞK�jþ1ðxÞ
; (5.18)

for the energy density and in the form (no summation over
�)

hT�
�icyl¼� q

�2a4
X
j

Z 1

�
dx

�
x½W�j

ðxÞ���FðexÞð�Þ
�j

ðx;xr=aÞ
K2

�jþ1ðxÞþK2
�j
ðxÞ�2ð�=xÞK�j

ðxÞK�jþ1ðxÞ
;

(5.19)

for the radial and azimuthal stresses, � ¼ 1, 2. We recall
that the summation over j in these formulae goes in accor-
dance with Eq. (3.17).

In the case of a massless fermionic field from (5.16) we
find the following expressions (no summation over �):

hT�
�icyl ¼ q

�2a4

X
j

Z 1

0
dx x3FðexÞð0;�Þ

�j
ðxr=aÞ

� I�j
ðxÞK�j

ðxÞ � I�jþ1ðxÞK�jþ1ðxÞ
K2

�j
ðxÞ þ K2

�jþ1ðxÞ
; (5.20)

where

FðexÞð0;0Þ
�j

ðyÞ ¼ 1
2½K2

�jþ1ðxr=aÞ � K2
�j
ðxr=aÞ�; (5.21)

and for the corresponding functions for the radial and

azimuthal stresses we have FðexÞð0;�Þ
� ðyÞ ¼ FðexÞð�Þ

� ðx; yÞ,
� ¼ 1, 2.
Now we turn to the investigation of the VEV in the

energy-momentum tensor induced by the cylindrical shell
in the exterior region in limiting cases. First let us consider
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the limit a ! 0 for fixed values r. Expanding the inte-
grands in powers of a, we can see that the main contribu-
tion comes from the terms with j ¼ 1=2, and the leading
terms are given by the expressions (no summation over �)

hT0
0icyl 	

21�qqmða=rÞq
�2�2ððqþ 1Þ=2Þr3

�
Z 1

mr
dx xqðx2 �m2r2ÞK2

ðq�1Þ=2ðxÞ;

hT�
�icyl 	 � 21�qqmða=rÞq

�2�2ððqþ 1Þ=2Þr3
Z 1

mr
dx xqþ2FðexÞð�Þ

ðq�1Þ=2ðx; xÞ;

(5.22)

with � ¼ 1, 2. For a massless field these terms vanish. In
this case from Eq. (5.20) we find the following leading
behavior (no summation over �):

hT�
�icyl 	 q2ðqþ 1ÞA�

�2ðq� 1Þðqþ 2Þr4
�
a

r

�
qþ1

; (5.23)

with the coefficients

A0 ¼ qþ 3

2ðqþ 4Þ ; A1 ¼ 1

qþ 4
; A2 ¼ �1: (5.24)

For q ¼ 1 the VEVs behave like ða=rÞ2r�4 lnða=rÞ.
At large distances from the cylinder and for a massive

field the main contribution comes from the lower limit of
the integral in (5.16). By using the asymptotic formulae for
the MacDonald function for large values of the argument,
we find

hT0
0icyl 	

m

2
h �c c icyl; hT1

1icyl 	 � 1

2mr
hT2

2icyl;

hT2
2icyl 	 � qme�2mr

2�r3
X
j

qjRe

� �Iqj�1=2ðmaÞ
�Kqj�1=2ðmaÞ

�
; (5.25)

for mr 
 1. As we see, in this limit hT1
1icyl � hT2

2icyl �
hT0

0icyl. At large distances from the cylinder and for a

massless field the asymptotic behavior of the boundary-
induced parts is given by formula (5.23).

The asymptotic behavior of the VEV for the energy-
momentum tensor near the cylindrical shell is found in a
way similar to that for the interior region and the leading
terms are given by the formulae (4.24) and (4.25). Hence,
near the boundary the energy density and the azimuthal
stress in the interior and exterior regions have opposite
signs, whereas the radial stresses have the same sign. The
boundary-induced parts in the VEVs of the energy density
and the radial stress for the exterior region are plotted in
Figs. 1–3 as functions of the radial coordinate and the
parameters q and ma.

VI. CONCLUSION

In this paper the vacuum polarization effects are inves-
tigated for a fermionic field in the geometry of a cosmic

string with a coaxial cylindrical shell. We have assumed
that on the shell the field obeys the MIT bag boundary
condition. In order to evaluate the fermionic condensate
and the VEV of the energy-momentum tensor one needs
the complete set of normalized eigenspinors satisfying the
boundary condition. This set for the region inside the
cylindrical shell is considered in Sec. II. The corresponding
mode sums for both fermionic condensate and the energy-
momentum tensor contain a series over the zeros of the
combination (2.30) of the Bessel function of the first kind
and its derivative. For the summation of these series we
used a variant of the generalized Abel-Plana formula pre-
viously derived in Ref. [35]. This formula allows us to
extract from the respective VEVs the parts corresponding
to the cosmic string geometry without a cylindrical shell
and to present the part induced by the shell in terms of
exponentially convergent integrals for points away from
the boundary. In this way the renormalization procedure
for the fermionic condensate and the energy-momentum
tensor is reduced to the renormalization of the correspond-
ing quantities in the geometry of the boundary-free cosmic
string. The renormalized VEV of the energy-momentum
tensor for a fermionic field in the boundary-free geometry
is well investigated in literature. In the appendix, by using
the Abel-Plana summation formula, we give alternative
integral representations for both fermionic condensate
and the energy-momentum tensor in the case of a massive
field.
In the region inside the shell, the parts in the VEVs

induced by the presence of the cylindrical boundary are
given by formula (3.22) for the fermionic condensate and
by Eqs. (4.9) and (4.10), for the vacuum energy densities
and stresses. These formulae are further simplified for a
massless fermionic field with the vacuum densities given
by Eqs. (3.28) and (4.15). For points near the cylindrical
shell the boundary-induced parts in the VEVs dominate
over the boundary-free parts and diverge on the cylindrical
shell. These types of divergences are well known in quan-
tum field theory with boundaries and are investigated for
various bulk and boundary geometries. In the problem
under consideration, the leading terms in the asymptotic
expansions in powers of the distance from the boundary are
given by Eq. (3.32) for the fermionic condensate and by
Eqs. (4.9) and (4.10) for the components of the energy-
momentum tensor. These leading terms do not depend on
the planar angle deficit and are the same as for a cylindrical
boundary in the Minkowski bulk. The boundary-induced
parts in the VEVs vanish on the string axis for q > 1 and
are nonzero in the case of a cylindrical boundary in the
Minkowski bulk. Since the boundary-free part diverges on
the string axis, for points near the string it dominates. For
large values of the parameter q, which corresponds to a
large planar angle deficit, the boundary-induced VEVs are
suppressed by the factor ðr=aÞq. The boundary-induced
VEVs have nontrivial dependence on the mass of the field
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and, as it is illustrated by Fig. 3, for a massive field the
polarization effects can be stronger than for a massless one.

Fermionic vacuum densities in the region outside a
cylindrical shell with the MIT bag boundary condition
are investigated in Sec. V. Subtracting from the mode
sums the parts corresponding to the geometry of a string
without boundaries and by making use of a complex rota-
tion, we have derived explicit expressions for the
boundary-induced VEVs. The corresponding parts in the
fermionic condensate and the energy-momentum tensor
are given by Eqs. (5.9), (5.18), and (5.19). When the
cylinder radius goes to zero, for a fixed value of the radial
distance, the boundary-induced part in the VEV of the
energy-momentum tensor vanishes as aq for a massive
field and as aqþ1 for a massless one. At large distances
from the cylindrical shell this part is exponentially sup-
pressed for a massive field and decay as r�4ðr=aÞqþ1 in the
case of a massless field. Note that in the latter case the
boundary-free part behaves as r�4 and it dominates at large
distances. For points near the cylindrical shell the leading
terms in the asymptotic expansions in powers of the dis-
tance from the boundary are given by the same formulae as
for the interior region. In this limit the total VEV is
dominated by the boundary-induced part. In dependence
of the mass, the vacuum stresses can be either positive or
negative, whereas the energy density is positive. In the
special case q ¼ 1, from the formulae derived in the
present paper we obtain the fermionic Casimir densities
for a cylindrical boundary in the Minkowski spacetime.

We have considered the idealized geometry of a cosmic
string with zero thickness. A realistic model for cosmic
string has a nontrivial structure on a length scale defined by
the phase transition at which it is formed. As it has been
shown in Refs. [13,14,23], the internal structure of the
string may have non-negligible effects even at large dis-
tances. Here we note that when the cylindrical boundary is
present, the VEVs of the physical quantities in the exterior
region are uniquely defined by the boundary conditions and
the bulk geometry. This means that if we consider a non-
trivial core model with finite thickness b < a and with the
line element (2.1) in the region r > b, the results in the
region outside the cylindrical shell will not be changed. In
regards to the interior region, the formulae given in this
paper are the first stage of the evaluation of the VEVs and
other effects could be present in a realistic cosmic string.
Note that from the point of view of the physics in the
exterior region the cylindrical surface with the MIT bag
boundary condition can be considered as a simple model of
nontrivial string core.
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APPENDIX: VACUUM DENSITIES IN THE
GEOMETRY OFA COSMIC STRING WITHOUT

BOUNDARIES

In this appendix we consider the renormalized fermionic
condensate and the VEV of the energy-momentum tensor
in the cosmic string geometry when the cylindrical shell is
absent. For a massless field the vacuum energy-momentum
tensor was found in [7,9]. Fermionic propagators for a
massive field are considered in Refs. [21,22]. In the case
of a massive field, a representation of the VEVs for the
energy-momentum tensor in terms of contour integrals is
given in [28]. Here alternative integral formulae are given
by applying to the corresponding mode sums the Abel-
Plana formula. We will do these calculations by using the
mode-sum formulae (3.16) and (4.12) for the boundary-
free VEVs.
First let us consider the fermionic condensate. The

renormalization is done by subtracting the corresponding
quantity for the Minkowski background. The latter is ob-
tained from (3.16) putting q ¼ 1. Substituting in the cor-
responding formulae

1

!
¼ 2ffiffiffiffi

�
p

Z 1

0
dse�!2s2 ;

integrating over k and �, and introducing a new integration
variable y ¼ r2=2s2, we find the following representation
of the renormalized fermionic condensate:

h �c c is;ren ¼ h0j �c c j0is � h0j �c c j0iM
¼ � m

2�2r2

Z 1

0
dye�m2r2=y�y

� X
	¼�1

X
j

½qIqj�	=2ðyÞ � Ij�	=2ðyÞ�: (A1)

Next, we apply to the series over j the Abel-Plana summa-
tion formula in the form (see, for example, [31,45])

X1
n¼0

fðnþ 1=2Þ ¼
Z 1

0
dxfðxÞ � i

Z 1

0
dx

fðixÞ � fð�ixÞ
e2�x þ 1

:

(A2)

It is easily seen that for the summand in (A1) the first
integral on the right-hand side of (A2) vanishes and, hence,
the divergent parts are explicitly cancelled. Introducing the
MacDonald function, we arrive at the following expres-
sion:
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h �c c iren ¼ 2m

�3r2

Z 1

0
dy e�m2r2=2y�y

�
Z 1

0
dx gðq; xÞ Im½Kixþ1=2ðyÞ�; (A3)

where the notation

gðq; xÞ ¼ coshð�xÞ
�

1

e2�x=q þ 1
� 1

e2�x þ 1

�
(A4)

is introduced.
In a similar way we can find the formula for the renor-

malized VEV of the energy-momentum tensor. For the
renormalized energy density and the azimuthal stress we
have the representations given below:

hT0
0is;ren ¼

r�4

2�2

Z 1

0
dy ye�m2r2=2y�y

� X
	¼�1

X
j

½qIqj�	=2ðyÞ � Ij�	=2ðyÞ�;

hT2
2is;ren ¼

r�4

�2

Z 1

0
dy ye�m2r2=2y�y

� X
	¼�1

	
X
j

j½q2Iqj�	=2ðyÞ � Ij�	=2ðyÞ�: (A5)

By making use of summation formula (A2) to the series
over j, we find the following formulae for the renormalized
VEVs:

hT0
0is;ren ¼ � 2

�3r4

Z 1

0
dyðyþm2r2Þe�m2r2=2y�y

�
Z 1

0
dxgðq; xÞ Im½Kixþ1=2ðyÞ�;

hT2
2is;ren ¼

4

�3r4

Z 1

0
dy ye�m2r2=2y�y

�
Z 1

0
dx xgðq; xÞRe½Kixþ1=2ðyÞ�: (A6)

The radial stress is found from (A3) and (A6) by using the
trace relation.
Formulae (A6) are further simplified for a massless

fermionic field. The integration over y is done by using
the formula

Z 1

0
dy ye�yKixþ1=2ðyÞ ¼ �ð4x2 þ 1Þ

24 coshð�xÞ ð2ixþ 3Þ: (A7)

Substituting this into Eq. (A6) and integrating over x, we
find

hT0
0is;ren ¼ � 1

3
hT2

2is;ren ¼ �ðq2 � 1Þð7q2 þ 17Þ
2880�2r4

: (A8)

In the massless case the radial stress is equal to the energy
density.
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