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O. Ögetbil*

Physics Department, Pennsylvania State University, University Park, Pennsylvania 16802, USA
(Received 9 September 2008; published 4 November 2008)

The five-dimensional stable de Sitter ground states in N ¼ 2 supergravity obtained by gauging

SOð1; 1Þ symmetry of the real symmetric scalar manifold (in particular, a generic Jordan family manifold

of the vector multiplets) simultaneously with a subgroup Rs of the R-symmetry group descend to four-

dimensional de Sitter ground states under certain conditions. First, the holomorphic section in four

dimensions has to be chosen carefully by using the symplectic freedom in four dimensions; second, a

group contraction is necessary to bring the potential into a desired form. Under these conditions, stable

de Sitter vacua can be obtained in dimensionally reduced theories (from 5D to 4D) if the semidirect

product of SOð1; 1Þ with Rð1;1Þ together with a simultaneous Rs is gauged. We review the stable de Sitter

vacua in four dimensions found in earlier literature for N ¼ 2 Yang-Mills Einstein supergravity with the

SOð2; 1Þ � Rs gauge group in a symplectic basis that comes naturally after dimensional reduction.

Although this particular gauge group does not descend directly from five dimensions, we show that its

contraction does. Hence, two different theories overlap in certain limits. Examples of stable de Sitter

vacua are given for the cases: (i) Rs ¼ Uð1ÞR, (ii) Rs ¼ SUð2ÞR, and (iii) N ¼ 2 Yang-Mills/Einstein

supergravity theory coupled to a universal hypermultiplet. We conclude with a discussion regarding the

extension of our results to supergravity theories with more general homogeneous scalar manifolds.
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I. INTRODUCTION

Supergravity theories are local gauge theories of super-
symmetry and were first formulated in 1970s [1–3].1 There
are two ways of studying supergravity in a certain dimen-
sion. Either one can construct it directly from field content
and symmetries (both local and global) that the action must
have, or one can obtain them from higher dimensions by
dimensional reduction. Supergravity theories that are ob-
tained purely by dimensional reduction from 10- or 11-
dimensional supergravity are low energy effective limits of
some superstring theory/M theory. In such cases, their
scalar manifold is the moduli space of the compactifica-
tion. For certain extended supergravity theories, gauging a
symmetry of the action may yield a potential term Vð�Þ of
scalar fields. The ground states of the resulting theory are
determined by the critical points (say, �0) of the potential
term.

Scalar fields play a fundamental role in the description
of cosmological models. In fact, the assumption that the
energy-momentum tensor is dominated by scalar potential
energy density Vð�Þ has been the starting point of many
inflationary models2 [6,7]. If the value of the potential at its
critical point is positive [V0j�0

¼ 0, Vð�0Þ> 0],3 the case

with zero kinetic energy ð _� ¼ 0Þ corresponds to de Sitter

space with a positive cosmological constant. The current
accelerated expansion of the Universe [8,9] can be ex-
plained by either a positive vacuum energy Vð�0Þ or a

scalar field in a slow-roll regime _�2=2 � Vð�Þ on a near
de Sitter background (quintessence) [10–12].
There are two possible ways of explaining the positive

vacuum energy in terms of scalar potentials Vð�Þ. The
observed cosmological constant may correspond to the
minimum of a scalar potential, in which case the
Universe will continue to accelerate forever. However,
the de Sitter regime might be transient; i.e. it might corre-
spond to a local maximum or a saddle point of the scalar
potential. Models with slow-roll inflation ðjV00j � jVjÞ and
fast-roll inflation ðjV00j � jVjÞ have been considered in
[13]. In such cases either the scalar potential vanishes as
the field rolls to � ! 1 and the Universe reaches a
Minkowski stage, or the scalar field rolls to the minimum
of the potential with Vð�Þ< 0 [or Vð�Þ ! �1, such that
the potential does not have a minimum at all] and the
Universe may eventually collapse.
The evidence of a small positive cosmological constant

attracted interest in finding stable de Sitter ground state
solutions in supersymmetric theories. In the context of
supersymmetric theories, anti-de Sitter (AdS) ground
states emerge naturally in contrast to de Sitter ground
states. This is due to the fact that the de Sitter superalgebras
usually have noncompact R-symmetry subalgebras, which
leads to the existence of ghosts if the supersymmetry is to
be fully preserved. Nevertheless, exact supersymmetry is
not observed in nature, and supersymmetry must be a
broken symmetry. There are two main approaches to study
de Sitter ground state solutions of supersymmetric theories.
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1For a review about gauged supergravity theories of various

dimensions that have been studied extensively since then, see
[4].

2For a general review and further references on inflationary
cosmology, see [5].
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One can start from a fundamental theory (a superstring or
M theory), study compactifications on various internal
manifolds, and, with the combined effects of the warped
geometries of the internal manifold and tree-level correc-
tions to the 4D Kähler potential, obtain a potential in four
dimensions that admits de Sitter critical points [14–24]. On
the other hand, one can search for such potentials in the
extended gauged supergravity theories directly [13,25–34].
Figure 1 shows two examples obtained from 4D, N ¼ 2
supergravity theories [25–27]. A novel result of these
studies is that the mass squared of the scalar fields is on
the order of the cosmological constant, i.e. the value of the
scalar potential at its extremum,

m2
� ��: (1.1)

Any quantum corrections to the scalar masses will be
related to the cosmological constant � ¼ 3H2

0 �
10�120M4

Planck and will be very small [13].

In this paper, we will take the second approach and start
with studying five-dimensional gauged supergravity theo-
ries [35–38] that received renewed attention more recently
due their role within the AdS/CFT correspondences in
string theory [39–42], the Randall-Sundrum braneworld
scenario [43–45], and M/superstring theory compactifica-
tions on Calabi-Yau manifolds with fluxes [46–49]. It is
believed that the 5D,N ¼ 8 gauged supergravity [36–38]
is a consistent nonlinear truncation of the lowest lying
Kaluza-Klein modes of type IIB supergravity on AdS5 �

S5 [50–54]. Moreover, certain braneworld scenarios based
on M theory compactifications have 5D, N ¼ 2 gauged
supergravity as their effective field theories [55–59].
We adopt the convention introduced in [60] to classify

the gaugings of N ¼ 2 supergravity theories in five and
four dimensions. The ungauged N ¼ 2 supergravity
coupled to vector and/or hypermultiplets is referred to as
(ungauged) Maxwell-Einstein supergravity theories
(MESGT). In the absence of hypermultiplets, these theo-
ries have a global symmetry group of the form
G� SUð2ÞR4 in five dimensions, where G is generally
the isometry group of the scalar manifold of the vector
multiplets,5 and SUð2ÞR is the automorphism group of the
underlying supersymmetry algebra, which is also com-
monly referred as the ‘‘R-symmetry group.’’ Theories ob-
tained by gauging aUð1ÞR subgroup of SUð2ÞR by coupling
a linear combination of vector fields to the fermions [35],
which are the only fields that transform nontrivially under
SUð2ÞR, are called gauged Maxwell-Einstein supergravity
theories (gauged MESGT). On the other hand, if only a
subgroup K of the symmetry groupG of the action is being

FIG. 1 (color online). Examples of de Sitter extrema in supergravity theories. (a) Stable minima with a flat direction. The potential
belongs to the 4D, N ¼ 2 supergravity coupled to 3 vector multiplets, considered in [25]. This figure is taken from [26]. (b) Saddle
point, where the scalar rolls into a Minkowski minimum on one side and anti-de Sitter minimum on the other. This is 4D, N ¼ 2
supergravity coupled to 1 hypermultiplet, considered in [27]. The potential includes instanton corrections.

4The global symmetry group is G� SUð2; 1Þ if a universal
hypermultiplet is coupled to the theory where SUð2; 1Þ is the
isometry group of the hyperscalar manifold. Note that SUð2ÞR �
SUð2; 1Þ.

5For the generic non-Jordan family, which will be defined in
the next section, a parabolic subgroup of G is the symmetry of
the whole Lagrangian [61].
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gauged, the theory is referred to as a Yang-Mills/Einstein
supergravity theory (YMESGT). Note that the theories
which include tensor fields fall into this category. A theory
with a gauge group K �Uð1ÞR is called a gauged Yang-
Mills/Einstein supergravity theory (gauged YMESGT).

Pure 5D, N ¼ 2 supergravity was constructed in
[62,63], coupling to vector multiplets was done in
[35,64], and tensor fields were added to the theory in
[60]. Coupling of hypers to these theories was done in
[65]. Vacua of Uð1ÞR gauged 5D, N ¼ 2 MESGTs and
YMESGTs without hypers and tensors were studied in
[35]. Vacua of the generic Jordan family models, which
will be defined in the next section, with Abelian gaugings
and tensors have been investigated in [66], the full
R-symmetry group gauging was done in [67], and a study
for vacua of some other gauged theories were carried out in
[68]. We will give two examples from the literature
[66,68,69] of the stable de Sitter vacua of 5D, N ¼ 2
supergravity theories coupled to vector, tensor multiplets
and a universal hypermultiplet. Then, following the dimen-
sional reduction process of [64,70], we will look for
de Sitter ground states in four dimensions. The analysis
in 5D is somewhat easier than in 4D, mainly because in 4D,
theU duality is an on-shell symmetry, whereas in 5D it is a
symmetry of the Lagrangian. Moreover, 5D theories have
real geometry, while the geometry in 4D is complex.
Therefore, whereas our study in 5D in an earlier work
[69] covered all possible ground states, in 4D, motivated
by experimental observations, we will concentrate only on
de Sitter solutions.

The organization of this paper is as follows. In Sec. II,
we start with reviewing the field content of the 5D,N ¼ 2
supergravity. The potential terms arising from noncompact
SOð1; 1Þ real scalar manifold isometry gauging and a sub-
group Rs of the R-symmtery group SUð2ÞR will be given. It
will turn out that an SOð1; 1Þ � Rs gauged YMESGT has
stable de Sitter ground states in five dimensions. Section III
takes the story down to four dimensions. The symplectic
freedom related to the de Roo-Wagemans rotations will be
used to find de Sitter ground states. In fact, the stable five-
dimensional de Sitter ground states we will demonstrate in
Sec. II and those found in [25,26] coincide in certain limits.
This relation is revealed by introducing contractions on the
gauge groups. Most of the calculations of this section use
the symmetric generic Jordan family as the scalar mani-
fold, although in the last subsection we discuss extending
our results to the more general homogeneous scalar mani-
folds. Section IV collects the summary of all of our results
and proposes future directions. In Appendix A, one can
find the bosonic part of the four- and five-dimensional
Lagrangians, the elements of very special geometry, and
the derivation of the potential terms from more fundamen-
tal quantities. In Appendix B, we list the Killing vectors
and their corresponding prepotentials of the hyperscalar
manifold isometries that will be used to carry out the

hypergaugings throughout the paper. Appendix C gives
the quadratic coordinate transformations between the pa-
rametrization we use in the paper and Calabi-Vesentini
coordinates that were used in [25,26]. Certain scalar po-
tential terms are given in Appendix D in their full form due
to their lengthiness. They will be referred within the text in
Sec. III. The contents of this paper constitute part of the
author’s Ph.D. thesis [71].

II. FIVE-DIMENSIONAL N ¼ 2 SUPERGRAVITY
THEORIES

A. The basics and the scalar potential terms

The field content of the ungauged (before tensor or
hypermultiplet coupling) N ¼ 2 MESGT is

fem̂�̂;�i
�̂; A

I
�̂; �

i~a; ’~xg; (2.1)

where

i ¼ 1; 2; I ¼ 1; 2; . . . ; ~nþ 1;

~a ¼ 2; 3; . . . ; ~nþ 1; ~x ¼ 2; 3; . . . ; ~nþ 1:

The ‘‘graviphoton’’ is combined with the ~n vector fields of
the ~n vector multiplets into a single ð~nþ 1Þ-plet of vector
fields AI

�̂ labeled by the index I. The indices ~a; ~b; . . . and

~x; ~y; . . . are the flat and the curved indices, respectively, of
the ~n-dimensional target manifold M5

VS of the real scalar

fields, which we will define below.
The bosonic part of the Lagrangian is given in

Appendix A. The global symmetries of these theories are
of the form SUð2ÞR �Gð5Þ, where SUð2ÞR is the

R-symmetry group of the N ¼ 2 Poincaré superalgebra
and Gð5Þ is the subgroup of the group of isometries of the

scalar manifold that extends to the symmetries of the full
action. Gauging a subgroup Kð5Þ of Gð5Þ requires dualiza-
tion of some of the vector fields to self-dual tensor fields if
they are transforming in a nontrivial representation of Kð5Þ.
More formally, the field content, when 2nT of the vector
fields are dualized to tensor fields, becomes

fem̂�̂;�i
�̂; A

I
�̂; B

M
�̂ �̂; �

i~a; ’~xg; (2.2)

where now

i ¼ 1; 2; I ¼ 1; 2; . . . ; nV þ 1;

M ¼ 1; 2; . . . ; 2nT; ~I ¼ 1; 2; . . . ; ~nþ 1;

~a ¼ 2; 3; . . . ; ~nþ 1; ~x ¼ 2; 3; . . . ; ~nþ 1;

with ~n ¼ nV þ 2nT . Tensor multiplets come in pairs with
four spin-1=2 fermions [i.e. two SUð2ÞR doublets] and two
scalars. Tensor coupling generally introduces a scalar po-
tential of the form [60]:

PðTÞ
ð5Þ ¼

3
ffiffiffi
6

p
16

hI�MN
I hMhN: (2.3)
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Here �MN
I are the transformation matrices of the tensor

fields and h~I and h
~I are elements of the ‘‘very special’’

geometry of the scalar manifold M5
VS that has the metric

a
o
~I ~J which is used to raise and lower the indices ~I; ~J; . . . .
When the full R-symmetry group SUð2ÞR is being

gauged, the potential gets the contribution

PðRÞ
ð5Þ ¼ �4Cij ~K�ijh ~K; (2.4)

where i and j are adjoint indices of SUð2Þ. If, instead, the
Uð1ÞR subgroup is being gauged, the contribution to the
potential becomes

PðRÞ
ð5Þ ¼ �4CIJ ~KVIVJh ~K: (2.5)

The expressions that lead to the derivation of the above
potential terms can be found in Appendix A.

We will look at the cases where the scalar manifold
M5

VS is a symmetric space. Such spaces are further divided

in two categories, depending on whether they are associ-
ated with a Jordan algebra or not. The spaces that are

associated with Jordan algebras are of the form M5
VS ¼

Str0ðJÞ
AutðJÞ , where Str0ðJÞ and AutðJÞ are the reduced structure

group and the automorphism group, respectively, of a real,
unital Jordan algebra J, of degree three [64,72], or more
specifically,

(i) generic Jordan family:

J ¼ R � �~n: M5
VS ¼

SOð~n� 1; 1Þ � SOð1; 1Þ
SOð~n� 1Þ ;

~n � 1;

(ii) magical Jordan family:

JR3 : M
5
VS ¼

SLð3;RÞ
SOð3Þ ; ~n ¼ 5;

JC3 : M
5
VS ¼

SLð3;CÞ
SUð3Þ ; ~n ¼ 8;

JH3 : M
5
VS ¼

SU	ð6Þ
Uspð6Þ ; ~n ¼ 14;

JO3 : M
5
VS ¼ E6ð�26Þ

F4

; ~n ¼ 26;

(2.6)

(iii) generic non-Jordan family:

M 5
VS ¼

SOð1; ~nÞ
SOð~nÞ ; ~n � 1:

In addition to the supergravity multiplet, nV vector
multiplets, and 2nT tensor multiplets, one can couple hy-
permultiplets into the theory. A universal hypermultiplet

f�a; qXg (2.7)

contains a spin-1=2 fermion doublet A ¼ 1; 2 and four real
scalars X ¼ 1; . . . ; 4. The total manifold of the scalars� ¼
ð’; qÞ then becomes

M 5
scalar ¼ M5

VS 
MQ;

with dimRM5
VS ¼ nV þ 2nT and dimQMQ ¼ 1. The qua-

ternionic hyperscalar manifold MQ of the scalars of a

single hypermultiplet has the isometry group SUð2; 1Þ.
Gauging a subgroup of this group introduces an extra
term in the scalar potential [65]

PðHÞ
ð5Þ ¼ 2N iAN iA; (2.8)

where N iA ¼ ð ffiffiffi
6

p
=4ÞhIKX

I f
iA
X , with fiAX being the quater-

nionic vielbeins, fiAX fYiA ¼ gXY , gXY is the metric of the
quaternionic-Kähler hypermultiplet scalar manifold [73]

ds2 ¼ dV2

2V2
þ 1

2V2
ðd�þ 2�d	� 2	d�Þ2

þ 2

V
ðd	2 þ d�2Þ; (2.9)

and KX
I being the Killing vectors given in Appendix B

together with their corresponding prepotentials. The deter-
minant of the metric is 1=V6, and it is positive definite and
well behaved everywhere except V ¼ 0. But, since in the
Calabi-Yau derivation V corresponds to the volume of the
Calabi-Yau manifold [58], we restrict ourselves to the
positive branch V > 0.
When the R symmetry is gauged in a theory that con-

tains hypers, the potential PðRÞ
ð5Þ gets some modification due

to the fact that the fermions in the hypermultiplet are
doublets under the R-symmetry group SUð2ÞR. It becomes

PðRÞ
ð5Þ ¼ �4CIJ ~K ~PI � ~PJh ~K; (2.10)

where ~PI are the prepotentials corresponding to the Killing
vectors KX

I .
The total scalar potential, which includes terms from

tensor coupling, R-symmetry gauging, and hypercoupling,
is given by

Pð5Þ � e�1Lpot ¼ �g2PðTÞ
ð5Þ � g2RP

ðRÞ
ð5Þ � g2HP

ðHÞ
ð5Þ

� �g2Pð5Þ ¼ �g2ðPðTÞ
ð5Þ þ �PðRÞ

ð5Þ þ 
PðHÞ
ð5Þ Þ; (2.11)

where � ¼ g2R=g
2 and 
 ¼ g2H=g

2; gR, gH, and g are
coupling constants, which need not be all independent.
Any point on the scalar manifold where the first derivatives
of the total scalar potential with respect to all scalars vanish
will be a solution to the corresponding model.
Supersymmetry of the solutions.—Demanding super-

symmetric variations of the fermions vanish at the critical
points of the theory, the conditions that need to be satisfied
are found as [66,73]

hW ~ai ¼ hP~ai ¼ hN iAi ¼ 0; (2.12)
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where W ~a and P~a are defined in (A4). Any ground state
that does not satisfy all of these conditions is not super-
symmetric. One can see that any supersymmetric solution
must be of the form

Pð5Þj�c ¼ �4� ~P � ~Pð�cÞ; (2.13)

which is negative semidefinite. Hence we know from be-
ginning that any de Sitter-type ground state of the theories
we will consider will have broken supersymmetry. The
parametrization of the Killing vectors of the hyperscalar
manifold, which is outlined in Appendix B, yieldsKX

I jqc �
0 for noncompact generators. Here the point qc ¼ fV ¼
1; � ¼ � ¼ 	 ¼ 0g is the base point of the hyperscalar
manifold; i.e. the compact Killing vectors of the hyper-
isometry generate the isotropy group of this point. This
point will be used as the hypercoordinate candidate of the
critical points. As a consequence, hN iAi � 0, and hence
theories including noncompact hypergauging will not have
supersymmetric critical points either.

B. Gauging a compact symmetry group
of the hyperisometry

The total potential is of the form Pð5Þ ¼ PðTÞ
ð5Þ þ �PðRÞ

ð5Þ þ

PðHÞ

ð5Þ . The most general way of doing simultaneous Uð1ÞR
gauging together withUð1ÞH gauging of the hypermultiplet
isometry ð� ¼ 
Þ is done by selecting a linear combination
of compact Killing vectors from (B3). One can easily see
that, at the base point qc ¼ fV ¼ 1; � ¼ � ¼ 	 ¼ 0g of the
hyperscalar manifold, all of these compact generators van-
ish. Therefore one hasN iA ¼ 0 and as a consequence [68]

PðHÞ
ð5Þ jqc ¼

@PðHÞ
ð5Þ

@’

��������qc
¼ @PðHÞ

ð5Þ
@q

��������qc
¼ 0: (2.14)

PðTÞ
ð5Þ is a function of the real scalars ’~x only. On the other

hand, PðRÞ
ð5Þ of (2.10) is of the form PðRÞ

ð5Þ � fð’ÞgðqÞ, where
gðqÞ ¼ ~PI � ~PJðqÞ�IJ for the generic family. gðqÞ has an
extremum point at the base point of the hyperscalar mani-

fold (i.e. dgdq jqc ¼ 0). This leads to

@PðTÞ
ð5Þ

@q

��������qc
¼ @PðRÞ

ð5Þ
@q

��������qc
¼ @Pð5Þ

@q

��������qc
¼ @2Pð5Þ

@’@q

��������qc
¼ 0;

and hence the Hessian is in block-diagonal form. The fact
that gðqÞ � 0 makes it impossible to convert the nonmini-
mum critical points that correspond to the upper block of

the Hessian ð@2Pð5Þ
ð@’Þ2 Þ to minimum points of the potential or

change its sign at the critical point. Therefore a Uð1ÞH
gauging will not change the nature of an existing critical
point. One can arrive at the same result by gauging a
SUð2ÞH subgroup of the isometry group SUð2; 1Þ of the
hyperscalar manifold.

Equation (2.14) does not hold for noncompact genera-
tors of the hyperisometry. Indeed gauging a noncompact
hypersymmetry generally leads to stable and unstable
de Sitter ground states in five dimensions as was shown
in a previous work [69]. However, this topic will not be
covered in this paper. Instead we will concentrate on study-
ing de Sitter ground states that result from gauging a non-
compact symmetry of the real scalar manifold of the vector
multiplets.

C. Two models with stable de Sitter ground states

The real scalar manifolds of the two models we will
discuss belong to the generic Jordan family.6 These two
models will play an important role in the four-dimensional
stable dS vacua calculations in Sec. III.
The theory being considered is N ¼ 2 supergravity

coupled to ~n Abelian vector multiplets and with real scalar
manifold M5

VS ¼ SOð~n� 1; 1Þ � SOð1; 1Þ=SOð~n� 1Þ,
~n � 1. The cubic polynomial can be written in the form
[66]

NðhÞ ¼ 3
ffiffiffi
3

p
2

h1½ðh2Þ2 � ðh3Þ2 � � � � � ðh~nþ1Þ2�: (2.15)

The nonzero C~I ~J ~K’s are

C122 ¼
ffiffiffi
3

p
2

;

C133 ¼ C144 ¼ � � � ¼ C1;~nþ1;~nþ1 ¼ �
ffiffiffi
3

p
2

;

and their permutations. The constraint N ¼ 1 can be
solved by

h1 ¼ 1ffiffiffi
3

p jj’jj2 ; ha ¼
ffiffiffi
2

3

s
’a; (2.16)

with a; b ¼ 2; 3; . . . ; ~nþ 1 and jj’jj2 ¼ ’a�ab’
b, where

�ab ¼ ðþ�� . . .�Þ. The scalar field metric g~x ~y and

vector field metric a
o
~I ~J that appear in the kinetic terms in

the Lagrangian are positive definite in the region jj’jj2 >
0. In order to have theories that have a physical meaning,
our investigation is restricted to this region. As a conse-
quence, one must have ’2 � 0.
The isometry group of the real scalar manifold M5

VS is

Gð5Þ ¼ SOð~n� 1; 1Þ � SOð1; 1Þ. The gauging of an

SOð1; 1Þ or an SOð2Þ subgroup of SOð~n� 1; 1Þ will lead
to dualization of vectors to tensor fields, and this gives a
scalar potential term. In the generic Jordan family there are
no vector fields that are nontrivially charged when the
gauge group is non-Abelian, and hence gauging a non-
Abelian subgroup of Gð5Þ will not give a scalar potential

6It is possible to embed these models into magical Jordan
family theories, provided that there is a sufficient number of
vector fields to perform the respective gaugings [69].
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term. It is also possible to gauge the R-symmetry group
SUð2ÞR or its subgroup Uð1ÞR.

Gauging SOð1; 1Þ symmetry.—The SOð1; 1Þ subgroup of
the isometry group of the scalar manifold acts nontrivially
on the vector fields A2

�̂ and A3
�̂. Hence these vector fields

must be dualized to antisymmetric tensor fields. The index
~I is decomposed as

~I ¼ ðI;MÞ;
with I; J; K ¼ 1; 4; 5; . . . ; ~nþ 1 and M;N; P ¼ 2; 3. The
fact that the only nonzero CIMN are C1MN for the theory
at hand requires A1

�̂ to be the SOð1; 1Þ gauge field because

of�M
IN ��MPCIPN [cf. Eq. (2.3)]. All of the other AI

�̂ with

I � 1 are spectator vector fields with respect to the
SOð1; 1Þ gauging. The potential term (2.3) that comes
from the tensor coupling is found to be (taking �23 ¼
��32 ¼ �1)

PðTÞ
ð5Þ ¼

1

8

½ð’2Þ2 � ð’3Þ2�
jj’jj6 : (2.17)

For the function W~x that enters the supersymmetry trans-
formation laws of the fermions, one obtains

W4 ¼ W5 ¼ � � � ¼ W~nþ1 ¼ 0;

W2 ¼ � ’3

4jj’jj4 ;

W3 ¼ ’2

4jj’jj4 :

(2.18)

SinceW3 can never vanish, there can be noN ¼ 2 super-
symmetric critical point.

Taking the derivative of the total potential Pð5Þ ¼ PðTÞ
ð5Þ

with respect to ’~x, one finds

@’2Pð5Þ ¼ B’2; @’3Pð5Þ ¼ �B’3;

@’bPð5Þ ¼ �B’b þ ’b

4jj’jj6 ; b ¼ 4; . . . ; ~nþ 1;

where

B ¼ � 3

4

ð’2Þ2 � ð’3Þ2
jj’jj8 þ 1

4jj’jj6 < 0: (2.19)

Since @’2Pð5Þ cannot be brought to zero, the potential

Pð5Þ ¼ PðTÞ
ð5Þ alone does not have any critical points.

However, one can gauge R symmetry to get additional
potential terms.

1. SOð1; 1Þ � SUð2ÞR symmetry gauging

For such a gauging, one needs at least ~n � 5. Choosing
A4
�̂, A

5
�̂, and A6

�̂ as the SUð2ÞR gauge fields, one finds

Pð5Þ ¼ PðTÞ
ð5Þ þ �PðRÞ

ð5Þ ;

with

PðRÞ
ð5Þ ¼ 6jj’jj2 (2.20)

and PðTÞ
ð5Þ given in (2.17). Taking the derivative of the total

potential with respect to ’~x, one finds

@’2Pð5Þ ¼ ðBþ 12�Þ’2;

@’3Pð5Þ ¼ �ðBþ 12�Þ’3;

@’bPð5Þ ¼ �ðBþ 12�Þ’b þ ’b

4jj’jj6 ;

b ¼ 4; . . . ; ~nþ 1;

(2.21)

with B defined in (2.19). Setting the first equation to zero
means

B ¼ �12� (2.22)

since’2 � 0. The last equation then implies’b
c ¼ 0. From

(2.22) we find

1

jj’cjj6 ¼ 24�: (2.23)

The value of jj’cjj2 ¼ ð’2
cÞ2 � ð’3

cÞ2 is fixed by � but not
’2

c and ’3
c individually. The value of the potential at these

critical points is

Pð5Þj’c ¼ 3

8jj’cjj4
; (2.24)

and therefore it corresponds to a one-parameter family of
de Sitter ground states. The stability of the critical points is
checked by calculating the eigenvalues of the Hessian of
the potential, which are easily found as

�
0;
3½ð’2

cÞ2 þ ð’3
cÞ2�

jj’cjj8
;

1

4jj’cjj6
; . . . ;

1

4jj’cjj6|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð~n�2Þ times

�
:

The eigenvalues are all non-negative, and thus the one-
parameter family of de Sitter critical points is found to be
stable [69].

2. SOð1; 1Þ �Uð1ÞR symmetry gauging

The calculation in [66] for ~n ¼ 3 was later generalized
to arbitrary ~n � 3 in [68]. Let us briefly quote their results.
A linear combination A�̂½Uð1ÞR� ¼ VIA

I
�̂ of the vector

fields is taken as theUð1ÞR gauge field. The scalar potential
is now

Pð5Þ ¼ PðTÞ
ð5Þ þ �PðRÞ

ð5Þ ;

where

O. ÖGETBIL PHYSICAL REVIEW D 78, 105001 (2008)

105001-6



PðRÞ
ð5Þ ¼ �4

ffiffiffi
2

p
V1Vi’

ijj’jj�2 þ 2jVj2jj’jj2; (2.25)

with i ¼ 4; . . . ; ~nþ 1 and jVj2 ¼ ViVi. Demanding
@’~xPð5Þ ¼ 0, one obtains the following conditions:

’i
c

jj’cjj4
¼ 16

ffiffiffi
2

p
�V1Vi;

1

jj’cjj6
¼ � 1

2
ð16 ffiffiffi

2
p

�V1jVjÞ2 þ 8�jVj2;
(2.26)

with the constraints

jVj2 > 0; 32�ðV1Þ2 < 1: (2.27)

Given a set of VI subject to (2.27), we see that jj’jj2 and’i

[and thus ð’2Þ2 � ð’3Þ2] are completely determined by

(2.26) but ’2 and ’3 are otherwise undetermined. The
value of the potential at this one-parameter family of
critical points becomes

Pð5Þj’c ¼ 3�jj’jj2jVj2ð1� 32�ðV1Þ2Þ; (2.28)

and this corresponds to de Sitter vacua. The stability is
checked by calculating the eigenvalues of the Hessian of
the potential at the critical point. We can use the SOð1; 1Þ
invariance together with the SOð~n� 2Þ of the’i to take for
any critical point ’c ¼ ð’2; 0; ’4; 0; . . . ; 0Þ. With these
choices the Hessian becomes block-diagonal at the critical
point. ’3 is a zero mode, and the sector ’5; . . . ; ’~nþ1

consists of a unit matrix times 1
4 jj’jj�6. The only non-

diagonal part of the Hessian is

@~x@~yPð5Þj~x;~y¼2;4 ¼ �
ð’2Þ2½6ð’2Þ2 þ 5ð’4Þ2� �’2½8ð’2Þ2’4 þ 3ð’4Þ3�
�’2½8ð’2Þ2’4 þ 3ð’4Þ3� 1

4 ½2ð’2Þ4 þ 37ð’2Þ2ð’4Þ2 þ 5ð’4Þ4�
 !

;

with � ¼ jj’jj�8½2ð’2Þ2 � ð’4Þ2��1. The determinant and
the trace of this part of the Hessian are

det@@Pð5Þ ¼ 12ð’2Þ6 � 12ð’2Þ4ð’4Þ2 þ 11ð’2Þ2ð’4Þ4
4jj’jj14½2ð’2Þ2 � ð’4Þ2�2 ;

tr @@Pð5Þ ¼ 26ð’2Þ4 þ 57ð’2Þ2ð’4Þ2 þ 5ð’4Þ4
4jj’jj8½2ð’2Þ2 � ð’4Þ2� ;

respectively, which are both positive because of ð’2Þ2 >
ð’4Þ2, and therefore the family of critical points is found to
be stable. We note that, although the above quantities are
both positive, they are slightly different than the ones
found in [68], where the authors fixed the coupling con-
stants with � ¼ 1. Figure 2 shows the plot of the potential
(2.25) for the special case ~n ¼ 3, V1 ¼ 0, and � ¼ 1.

III. FOUR-DIMENSIONALN ¼ 2 SUPERGRAVITY
THEORIES

Having discussed two possible gaugings that result in
de Sitter ground states from the scalar potentials ofN ¼ 2
supergravity theories with symmetric scalar manifolds in
five dimensions, we now move on to de Sitter ground states
of the four-dimensional N ¼ 2 supergravity theories ob-
tained by dimensional reduction. The details of the dimen-
sional reduction process can be found in [64,70]. Here we
quote the necessary tools for the calculation of the scalar
potentials. The bosonic sectors of the Lagrangians before
and after the dimensional reduction are given in
Appendix A.
Before we begin, let us see what kind of ground states we

would get just by considering ordinary dimensional reduc-
tion. The dimensionally reduced potential derived from
(2.11), in the absence of hypers7 reads (A25) and (A27)

Pð4Þ ¼ e��PðTÞ
ð5Þ þ �e��PðRÞ

ð5Þ þ 3
4e

�3�a
o
~I ~JðAIM

~I
I ~K
h

~KÞ
� ðAJM

~J
J ~L
h
~LÞ; (3.1)

where M
~I
I ~K

are the Kð5Þ-transformation matrices defined in

(A28). The scalars of the above potential are ’~x, AI, and�.
Taking the � derivative of the potential, setting it equal to
zero, and plugging the result back into the potential gives
us the value of the potential at the critical point �c as

FIG. 2 (color online). The extrema of the potential Pð5ÞðR; �Þ
due to SOð1; 1Þ �Uð1ÞR gauging, evaluated at ’4 ¼ 0; V1 ¼ 0
and � ¼ 1; with parametrization ’2 ¼ R cosh�, ’3 ¼ R sinh�.
The zero eigenvalue of the Hessian corresponds to the flat
direction of the potential at its minima.

7Adding hypers results in an additional PðHÞ
ð4Þ in the dimension-

ally reduced potential (3.1), which is given in (A26). The two
terms of PðHÞ

ð4Þ have the same powers of � and AI as the first and
third terms above and can be absorbed in them by proper field
redefinitions, and hence it will not change our result.
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Pð4Þj�c ¼ �3
2e

�3�a
o
~I ~JðAIM

~I
I ~K
h
~KÞðAJM

~J
J ~L
h
~LÞ: (3.2)

The derivative of the potential with respect to any AI must
vanish at the critical point. Hence we arrive at

AI
@Pð4Þ
@AI

���������c
¼ 3

2
e�3�AIAJa

o
~I ~JM

~I
I ~K
M

~J
J ~L
h

~Kh
~L ¼ 0: (3.3)

So if a critical point exists the potential vanishes there [cf.
Eq. (3.2)], and there is no possibility for an (anti)de Sitter
ground state. Since cosmological observations imply that
the Universe has a very small positive cosmological con-
stant, we must find a way around this problem.

It was shown in [70] that the dimensionally reduced 5D
Yang-Mills-Einstein supergravity theories coupled to ten-
sor multiplets result in 4D theories that have gauge groups
of the form Kð4Þ ¼ Kð5Þ2H nTþ1, where H nTþ1 is a

Heisenberg group of dimension nT þ 1 and 2 denotes the
semidirect product. On the other hand, stable de Sitter
vacua were found for 4D, N ¼ 2 theories in [25], where
the authors showed that the three necessary ingredients to
obtain stable de Sitter vacua are non-Abelian, noncompact
gauge groups, SOð2; 1Þ, in particular; Fayet-Iliopoulos (FI)
terms that are possible only for SUð2Þ or Uð1Þ factors,
which can be identified by the SUð2ÞR or Uð1ÞR gaugings,
and the de Roo-Wagemans (dRW) rotation. The last ingre-
dient uses additional symmetries in four dimensions, where
the isometry group is larger than in five dimensions. In
order to make use of these symmetries, we first need to
review the structure of the complex geometry of four-

dimensional N ¼ 2 supergravity theories. Once this is
achieved, it will be easier to see the five-dimensional
origins of de Sitter ground states that we will show how
to obtain in four dimensions.

A. The geometry

The scalar manifold of the theory we studied in the last
section, when reduced to four dimensions, is the special
Kähler manifold [64,74]

M 4
VS ¼ ST ½2; n� 1� ¼ SUð1; 1Þ

Uð1Þ
SOð2; n� 1Þ

SOð2Þ � SOðn� 1Þ :
(3.4)

In four dimensions, there are n ¼ ~nþ 1 vector multiplets
and n complex scalars. The ðnþ 1Þ field strengths F A��

and their magnetic duals GA�� transform in the ð2; nþ 1Þ
representation of the U-duality group U ¼ SUð1; 1Þ �
SOð2; n� 1Þ. The models with stable de Sitter vacua that
we will discuss in this section originate from the five-
dimensional YMESGTs with gauge groups SOð1; 1Þ �
Uð1ÞR or SOð1; 1Þ � SUð2ÞR. The SOð1; 1Þ factor, as we
will show, will become a subgroup of SOð2; n� 1Þ in four
dimensions. This is similar to the models with stable
de Sitter vacua found in [25], where the full SOð2; 1Þ is
gauged. Note that the SUð1; 1ÞG symmetry of the pure 5D,
N ¼ 2 supergravity reduced to four dimensions is not the
SUð1; 1Þ ¼ SOð2; 1Þ factor in the four-dimensional
U-duality group U. It is rather a diagonal subgroup of
SUð1; 1Þ times an SOð2; 1Þ subgroup of SOð2; n� 1Þ under
which the following decompositions occur [75]:

SOð2; 1Þ � SOð2; n� 1Þ  SOð2; 1Þ � SOð2; 1Þ � SOðn� 2Þ  SOð2; 1ÞG � SOðn� 2Þ;
ð2; nþ 1Þ ¼ ð2; 3; 1Þ � ð2; 1; n� 2Þ ¼ ð4; 1Þ � ð2; 1Þ � ð2; n� 2Þ:

Note that the four-dimensional graviphoton transforms
in the spin-3=2 representation of SOð2; 1ÞG along with
some linear combination of the other vectors in the theory,
and, due to the mixing, one can say that it does not descend
directly from the five-dimensional graviphoton. Instead, it
is a linear combination of the vector that comes from the
dimensional reduction of the fünfbein and the vector that is
obtained by the dimensional reduction of the five-
dimensional graviphoton. We will address this issue in
Sec. III C 2.

The scalars can be used to define the complex coordi-
nates [64,70]

z
~I ¼ 1ffiffiffi

3
p A

~I þ ie�ffiffiffi
2

p h
~I: (3.5)

These n complex coordinates can be interpreted as the
inhomogeneous coordinates of the ðnþ 1Þ-dimensional
complex vector ð~I ¼ 1; . . . ; nÞ

XA ¼ X0

X
~I

� �
¼ 1

z
~I

� �
: (3.6)

One can introduce the prepotential8

FðXAÞ ¼ � 1

3
ffiffiffi
3

p C~I ~J ~K

X
~IX

~JX
~K

X0
(3.7)

to write the holomorphic (symplectic) section

8Note that the prepotential given here differs by a factor
ffiffiffi
6

p
from that of [70].
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�0 ¼ XA

FB

� �
¼ XA

@BF

� �
¼

X0

XI

XM

F0

FI

FM

0
BBBBBBBB@

1
CCCCCCCCA
¼

1
zI

zM
1

3
ffiffi
3

p ½CIJKz
IzJzK þ 3CIMNz

IzMzN�
� 1ffiffi

3
p ½CIJKz

JzK þ CIMNz
MzN�

� 2ffiffi
3

p CMNIz
NzI

0
BBBBBBBBB@

1
CCCCCCCCCA
; (3.8)

with ~I ¼ ðI;MÞ. The reason the above manifold is called a
special Kähler manifold is that one can write a Kähler
potential in terms of the holomorphic section �:

K ¼ � logðih�j ��iÞ ¼ � log½ið �XAFA � �FAX
AÞ�: (3.9)

The Kähler potential is used to form the Kähler metric on
the scalar manifoldM4

VS of the four-dimensional theory as

g~I �~J
� @~I@�~J

K: (3.10)

It is also possible to introduce the covariantly holomorphic
section [76–79]

V ¼ LA

MB

� �
� eK=2� ¼ eK=2 XA

FB

� �
; (3.11)

which obeys

r�~I
V ¼ ð@�~I

� 1
2@�~I

KÞV ¼ 0: (3.12)

By defining

U~I ¼ r~IV ¼
�
@~I þ

1

2
@~IK

�
V � fA~I

hBj~I

 !
; (3.13)

the period matrix is introduced via relations

�MA ¼ �N AB
�LB; hAj~I ¼ �N ABf

B
~I
; (3.14)

which can be solved by introducing two ðnþ 1Þ � ðnþ 1Þ
vectors

fA~C ¼ fA~I
�LA

 !
; hAj ~C ¼ hAj~I

�MA

� �
(3.15)

and setting

�N AB ¼ hAj ~C � ðf�1Þ ~CB: (3.16)

Whenever the prepotential F exists, the period matrix has
the form [80–82]

N AB ¼ �FAB þ 2i
ImðFACÞ ImðFBDÞLCLD

ImðFCDÞLCLD
; (3.17)

where FAB ¼ @A@BF.
A symplectic rotation C of the holomorphic section

obeys CT!C ¼ ! for

! ¼ 0 1nþ1

�1nþ1 0

� �
:

B. Gauge group representation and dRW angles

The special Kähler manifold (3.4) of vector multiplets
has the isometry group Gð4Þ ¼ SUð1; 1Þ � SOð2; n� 1Þ. If
we are to gauge a subgroup Kð4Þ � Gð4Þ, then the symplec-

tic representation R of Gð4Þ, under which the electric field

strengths and their magnetic duals transform, must be
decomposed as

Gð4Þ  Kð4Þ; R ¼ adj:þ adj:þ singletsþ singlets:

(3.18)

The electric and magnetic field strengths are in the doublet
representation of SUð1; 1Þ and in the nþ 1 vector repre-
sentation of SOð2; n� 1Þ. The noncompact non-Abelian
gauge group Kð4Þ ¼ SOð2; 1Þ which is a necessary ingre-

dient to obtain stable de Sitter vacua in 4D, N ¼ 2
supergravity is embedded in SOð2; n� 1Þ. The SOð2; 1Þ
generators tA form an adjoint representation. The symplec-
tic embedding of this representation into the fundamental
representation of Spð2ðnþ 1Þ;RÞ is given by

TA ¼ tA 0
0 �tTA

� �
2 Spð2ðnþ 1Þ;RÞ; A ¼ 0; 2; 3;

(3.19)

and the corresponding algebra ½TA; TB� ¼ fCABTC is

½T0; T2� ¼ T3; ½T2; T3� ¼ �T0; ½T3; T0� ¼ �T2:

(3.20)

Here fCAB are the structure constants of the algebra.

In addition to the SOð2; 1Þ, one can gauge a Uð1ÞR (or
SUð2ÞR) R-symmetry group for theories with n > 2 (or
n > 4) vector multiplets using the remaining vectors (or
a linear combination of them) as gauge fields. The dRW
angles, as first introduced forN ¼ 4 supergravity [83,84]
and later used in N ¼ 2 supergravity as an ingredient to
obtain de Sitter vacua [25,26], parametrize the relative
embedding of the R-symmetry group within Spð2ðnþ
1Þ;RÞ. They mix the electric and magnetic components
of the symplectic section prior to the gauging by a ‘‘non-
perturbative’’ rotation. The dRW-rotation matrix has to be
chosen in such a way that it commutes with SOð2; 1Þ
symmetry gauging. For example, we will use the following
dRW matrix for the models where we gauge a SOð2; 1Þ �
Uð1ÞR symmetry [25,26]:
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R ¼
1n 0 0 0
0 cos� 0 sin�
0 0 1n 0
0 sin� 0 cos�

0
BBB@

1
CCCA: (3.21)

The holomorphic section and the covariantly holomorphic
section are rotated via

� ! �R ¼ R�; V ! VR ¼ RV: (3.22)

C. Symplectic rotation

The symplectic section (3.8) is written in the most
natural way when one comes from five down to four
dimensions. But it has shortcomings. The translations
zM ! zM þ bM act on the symplectic section in such a
way that the electric components mix with magnetic ones
so that the transformation matrix is not block-diagonal,
which is not suitable if symmetries are to be gauged in the
standard way. In this section we will give two inequivalent
examples of symplectic rotations that will bring �0 in
bases where this problem does not occur.

1. Günayd�n-McReynolds-Zagermann (GMZ) rotation

We start with observing how �0 varies under the infini-
tesimal translation zM ! zM þ bM [70]:

�0 ¼

X0

XI

XM

F0

FI

FM

0
BBBBBBBB@

1
CCCCCCCCA
!

X0

XI

XM

F0

FI

FM

0
BBBBBBBB@

1
CCCCCCCCA
þ

0
0

bMX0

�bMFM

� 2ffiffi
3

p bMCIMNX
N

� 2ffiffi
3

p bNCIMNX
I

0
BBBBBBBBB@

1
CCCCCCCCCA
:

(3.23)

In the original basis a combined infinitesimal translation
and infinitesimal K transformation with parameter I is
generated by

O ¼ 12nþ2 þ B 0
C �BT

� �
; (3.24)

with

B ¼
0 0 0

0 IfKIJ 0

bM 0 I�M
IN

0
BB@

1
CCA;

C ¼
0 0 0

0 0 BIM

0 BMI 0

0
BB@

1
CCA;

(3.25)

where

BIM :¼ �2ffiffiffi
3

p CIMNb
N: (3.26)

By having a closer look at (3.23) we see that
ðX0; FI; X

MÞ transform among themselves, as do
ðF0; X

I; FMÞ. In order to make the translations block-
diagonal we exchange F0 with X0 and FM with XM. The
symplectic rotation

XA

FB

 !
!

�XA

�FB

 !
� S

XA

FB

 !
;

FA
��

G��B

 !
!

�FA
��

�G��B

0
@

1
A � S

FA
��

G��B

 !
;

LA

MB

 !
!

�LA

�MB

 !
� S

LA

MB

 ! (3.27)

that achieves this is [70]

S ¼

0 0 0 1 0 0
0 �J

I 0 0 0 0
0 0 0 0 0 DMN

�1 0 0 0 0 0
0 0 0 0 �J

I 0
0 0 DMN 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
; (3.28)

where DMN ¼ � ffiffiffi
2

p
�MN and DMND

NP ¼ �P
M.

The potential terms.—The holomorphic Killing vectors

K
~I
A ¼ ig

~I �~J@�~J
PA; (3.29)

that are determined in terms of the Killing prepotentials
[80,82,85–87]

PA ¼ eKð �FBf
B
AC

��X
C þ ��FBf

B
AC

�XCÞ; (3.30)

can be used to show that the potential in the canonical form

V ¼ eKð �XA �K
~I
AÞg�~I

~Jð ��XB
K

~J
BÞ (3.31)

is indeed equal to PðTÞ
ð4Þ of (A25) [70]. Here, f

A
BC’s are the

structure constants of the gauge group.

Now we turn to the calculation of the potential PðRÞ
ð4Þ

rising from the R-symmetry gauging. For gauge groups
with Uð1Þ or SOð3Þ ¼ SUð2Þ factors, there is a superre-
normalizable term, known as an FI term [88,89] that can be
added to the Lagrangian. The variation of this term under a
supersymmetry transformation is a total derivative, and it
yields a supersymmetric term in the action. FI terms are
used in effective field theories for standard model building
or cosmology quite often. It has been recently emphasized
that these terms in N ¼ 1 or N ¼ 2, D ¼ 4 supersym-
metric models are related to R-symmetry gauging [90,91].
Here we will verify this statement by reformulating an

already known PðRÞ
ð4Þ potential, coming from five dimen-

sions, in terms of complex geometry elements and compar-
ing the expressions. The potential term we will consider is
given by [85]
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V 0 ¼ ðUðABÞ � 3 ��L
ðA �LBÞÞP x

AP
x
B; (3.32)

where UAB is defined as

UAB � fA~I f
B
�~J
g
~I �~J ¼ �1

2ðImN Þ�1jAB � ��L
A �LB: (3.33)

The negative definite term in (3.32) is the gravitino mass
contribution, while the UAB term is the gaugino shift con-
tribution. P x

A are called the triholomorphic moment maps
for the gauge group action on quaternionic scalars, with x
being an SUð2Þ index. When a hypermultiplet is coupled to
the theory, the potential (3.32) carries contact interactions
between the real and hyperscalars. In this case the triholo-
morphic moment maps P x

A that describe the action of the
R-symmetry gauge group on the quaternionic scalars are
associated to the Killing prepotentials of the isometries of
the hyperscalar manifold [85,92]. This is analogous to the
five-dimensional theory (cf. Appendixes A and B). An FI
term can be assigned to the moment maps if (and only if
[91]) hypers are absent from the theory. For such models
the triholomorphic moment maps satisfy the equivariance
condition [25,85,92]

� �xyzP y
AP

z
B ¼ fCABP

x
C: (3.34)

In the SUð2ÞR case, one can set fxyz ¼ e�xyz, where e is

some number, and this condition is satisfied via

P x
A ¼

���x
y for A ¼ 3þ y;

0 otherwise;
(3.35)

whereas, in the Uð1ÞR case, for each generator one can set
an FI term

P x
A ¼

�
e�x

3 A: index for the Uð1ÞR gauge vector;
0 otherwise:

(3.36)

Example.—Let us now calculate the V0 potential for a
specific model with n ¼ 4 vector multiplets where the
Uð1ÞR gauge field is a linear combination of A1

� and A4
�.

This is indeed the model we discussed in Sec. II C 2 before
the dimensional reduction. Using (2.25) and (A27), one can
write the Uð1ÞR potential in four dimensions as

PðRÞ
ð4Þ ¼ e��PðRÞ

ð5Þ

¼ e��ð�4
ffiffiffi
2

p
V1V4’

4jj’jj�2 þ 2ðV4Þ2jj’jj2Þ:
(3.37)

On the other hand, the moment map for this type of
gauging can be written as

P x
A ¼ �x3ðe1�A1 þ e4�A4Þ; (3.38)

where e1 and e4 parametrize the linear combination of the
gauge fields. Then the potential (3.32) becomes

V 0
n¼4 ¼ e21ðUð11Þ � 3 ��L

ð1 �L1ÞÞ þ 2e1e4ðUð14Þ � 3 ��L
ð1 �L4ÞÞ

þ e24ðUð44Þ � 3 ��L
ð4 �L4ÞÞ; (3.39)

and after some calculation one can find

Uð11Þ � 3 ��L
ð1 �L1Þ ¼ 0;

Uð14Þ � 3 ��L
ð1 �L4Þ ¼ � Imz4

ðImz2Þ2 � ðImz3Þ2 � ðImz4Þ2 ;

Uð44Þ � 3 ��L
ð4 �L4Þ ¼ 1

2 Imz1
: (3.40)

By using (2.16) and (3.5) on (3.40), we conclude that

V0
n¼4 ¼ PðRÞ

ð4Þ if we identify e1 ¼ �ð83Þ1=4V1 together with

e4 ¼ �ð83Þ1=4V4.

One can arrive at a similar conclusion by gauging the

full SUð2ÞR instead. In this case PðRÞ
ð4Þ ¼ 6e��jj’jj2 and

V0 ¼ 3=ð2 Imz1Þ, which are again directly proportional to
each other.

2. A new basis

The GMZ rotation we discussed in the last subsection
resolves the block-diagonality problem of translational
symmetries, but there are a few more steps to take in order
to find a symplectic section that will allow us to find
de Sitter vacua. First, it is convenient to work in a sym-
plectic section that satisfies the constraint

XA�ABX
B ¼ FA�

ABFB ¼ 0 (3.41)

for �AB ¼ diagðþ þ� . . .�Þ9 so that the SOð2; n� 1Þ
invariance is evident. Note that we restrict our analysis to
the generic Jordan family (3.4). Other types of scalar
manifolds will be discussed in Sec. III G.
Under infinitesimal translations zM ! zM þ bM, �0

transforms as in (3.23). We noted that ðX0; FI; X
MÞ trans-

form among themselves, as do ðF0; X
I; FMÞ. This time we

are exchanging some of XI with FI keeping in mind that we
are constrained by (3.41). Exchanging all of XI with FI will
not leave this equation invariant. Therefore we decompose
the index I as I ¼ ð1; iÞ, swap X1 with F1, and keep the
other Xi and Fi intact. By looking at (3.23) we see that one
must have

bMCiMNX
N ¼ 0 (3.42)

in order to keep the translations block-diagonal. This is
indeed satisfied for all types of gaugings of the generic
Jordan family isometries.
As we discussed earlier, the bare graviphoton in four

dimensions is a linear combination of the vectors A0
� and

A1
� which are obtained by reduction from five dimensions.

By taking a linear combination of X0 and F1 (F0 and X1)

9In general, the order of the þ and � entries depend on the
type of gauging, but their numbers are fixed.
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for ~X0 ð ~F0Þ, we isolate the bare graviphoton as ~A0
�. The

new symplectic section ~� is given by the rotation of�0 by

~S ¼

1ffiffi
2

p 0 0 0 0 1ffiffi
2

p 0 0

0 0 0 ~�M
1N 0 0 0 0

0 0 �j
i 0 0 0 0 0

1ffiffi
2

p 0 0 0 0 � 1ffiffi
2

p 0 0

0 � 1ffiffi
2

p 0 0 1ffiffi
2

p 0 0 0

0 0 0 0 0 0 0 ~�1M
N

0 0 0 0 0 0 �j
i 0

0 1ffiffi
2

p 0 0 1ffiffi
2

p 0 0 0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA
:

(3.43)

The rescaling ~�M
IN � ffiffiffi

2
p

�M
IN ¼ 2ffiffi

3
p �MPCINP is done for

future convenience. It is easy to verify that the matrix S is
symplectic. More explicitly, we have

~� ¼

~X0

~XM

~Xj

~X1

~F0
~FM
~Fj
~F1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
¼ ~S�0 ¼ ~S

X0

X1

Xi

XN

F0

F1

Fi

FN

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼

1ffiffi
2

p � 1ffiffi
6

p ðC1JKz
JzK þ C1MNz

MzNÞ
~�M
1Nz

N

zi
1ffiffi
2

p þ 1ffiffi
6

p ðC1JKz
JzK þ C1MNz

MzNÞ
� 1ffiffi

2
p z1 þ 1

3
ffiffi
6

p ðCIJKz
IzJzK þ 3CIMNz

IzMzNÞ
� 2ffiffi

3
p ~�1M

PCPNIz
NzI

� 1ffiffi
3

p CiJKz
JzK

1ffiffi
2

p z1 þ 1
3
ffiffi
6

p ðCIJKz
IzJzK þ 3CIMNz

IzMzNÞ

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA
:

(3.44)

Here 0 is now the graviphoton index. The combined infini-
tesimal zM ! zM þ bM translation and infinitesimal Kð5Þ
transformation with parameter I is generated by the
symplectic matrix

~O � ~SO~S�1 ¼ 12nþ2 þ
~B ~C
~CT � ~BT

 !
; (3.45)

with

~B ¼

0 1ffiffi
2

p ~�1M
PBP1 0 0

1ffiffi
2

p ~�M
1Nb

N I�M
IN 0 1ffiffi

2
p ~�M

1Nb
N

0 0 IfkIj 0

0 � 1ffiffi
2

p ~�1M
PBP1 0 0

0
BBBBBBBB@

1
CCCCCCCCA
;

~C ¼ 1ffiffiffi
2

p

0 0 �If1Ij 0

0 0 0 0

�IfjI1 0 0 IfjI1

0 0 If1Ij 0

0
BBBBB@

1
CCCCCA; (3.46)

where BIM :¼� 2ffiffi
3

p CIMNb
N . In order to represent the com-

bined translations and Kð5Þ transformations by block-

diagonal matrices, one must have an algebra with f1Ij¼
fjI1¼0. Here the index 1 corresponds to the five-

dimensional graviphoton, which can only be a gauge field
if the gauge group is Abelian because it is a singlet under
the action of five-dimensional isometry group SOð~n�1;1Þ.
Therefore this condition is automatically satisfied, and

hence ~C¼0. Next, by setting ~BC
B¼AfCAB one can find

fjik; fMIN ¼ �M
IN;

f0MN ¼ �f1MN ¼ � 1ffiffiffi
3

p �1M
PC1PN;

fMN0 ¼ fMN1 ¼ ��M
1N

(3.47)

as nonvanishing components, as well as M ¼ �bM.

D. de Sitter vacua

We will now demonstrate how to obtain stable de Sitter
vacua by starting with the holomorphic section (3.44). The
model to be considered is 4D, N ¼ 2 supergravity
coupled to n ¼ 4 vector multiplets with gauge group
Kð4Þ ¼ SOð2; 1Þ �Uð1ÞR. This model can be trivially ex-

tended to arbitrary n as we will discuss at the end of this
section. Note that this type of gauging was first used in
[25,26] to obtain de Sitter vacua where the authors pre-
ferred to use Calabi-Vesentini coordinates to parametrize
the complex scalars. The mapping between our notation
and theirs can be found in Appendix C.

1. Potential PðTÞ
ð4Þ from global isometry gauging

The global isometry group Gð4Þ for the model with

4 vector multiplets is SUð1; 1Þ � SOð2; 3Þ. A potential is
introduced by gauging the subgroup SOð2; 1Þ � SOð2; 3Þ:

PðTÞ
ð4Þ ¼ eKð �XA �K

~I
AÞg�~I

~Jð ��XB
K

~J
BÞ: (3.48)

The structure constants fABC of the SOð2; 1Þ algebra (3.20)
read

f302 ¼ f203 ¼ �f320 ¼ �f230 ¼ 1; f032 ¼ �f023 ¼ 1:

(3.49)

O. ÖGETBIL PHYSICAL REVIEW D 78, 105001 (2008)

105001-12



The gauge fields are the ‘‘timelike’’ ~A0
�, ~A2

� and the

‘‘spacelike’’ ~A3
� with respect to SOð2; 3Þ with signature

ðþ þ���Þ; and the Killing vectors determined by
(3.29) and (3.30) are given by

~K0 ¼

0

�w3

�w2

0

0
BBBBB@

1
CCCCCA; ~K2 ¼

0

� 1ffiffi
2

p w2w3

1
2
ffiffi
2

p ð2� w2
2 � w2

3 þ w3
4Þ

� 1ffiffi
2

p w3w4

0
BBBBBBB@

1
CCCCCCCA;

~K3 ¼

0
1

2
ffiffi
2

p ð2þ w2
2 þ w2

3 þ w3
4Þ

1ffiffi
2

p w2w3

1ffiffi
2

p w2w4

0
BBBBBBB@

1
CCCCCCCA; (3.50)

where we defined w~I � z
~I. The full potential term is given

in (D1). It simplifies significantly when evaluated at
ReðwiÞ ¼ 0:

PðTÞ
ð4Þ jReðwiÞ¼0 ¼ ðImw2

2 � Imw2
3Þð2þ jjImwjj2Þ2

16 Imw1jjImwjj4 ; (3.51)

with jjImwjj2 � ðImw2
2 � Imw2

3 � Imw2
4Þ. Note also that

this potential term satisfies

@PðTÞ
ð4Þ

@ReðwiÞ

��������ReðwiÞ¼0
¼ 0: (3.52)

2. Uð1ÞR potential

We are considering a theory with n ¼ 4 vector multip-
lets, and the vector field that gauges theUð1ÞR symmetry is
~A1
�. Hence we choose the moment map to be

P x
A ¼ �x3�A1: (3.53)

Then the Uð1ÞR potential term is given by

PðRÞ
ð4Þ ¼ U11 � 3 �~L

1 ~L1 (3.54)

with the following definitions:

~LA � SLA

UAB � fA~I f
B
�~J
g
~I �~J ¼ �1

2ðImN Þ�1jAB � �~L
A ~LB;

(3.55)

A; B ¼ ð0; 2; 3; 4; 1Þ.

3. No dRW rotation

For simplicity let us assume no de Roo-Wagemans
rotation. One can show that [85]

UAB � 3 �~L
A ~LB ¼ � �AB

2 Imw1

; (3.56)

with �AB :¼ diagðþ þ���Þ. Then the potential (3.54)

is

PðRÞ
ð4Þ ¼

1

2 Imw1

� 1

e�h1
� e��jj’jj2; (3.57)

where an overall positive multiplier is neglected. We note
that this potential is proportional to the last term of (3.37),
and, because of the diagonality of (3.56), one cannot get a
term proportional to the first term by using a linear combi-
nation of vectors as the gauge field. One way to interpret
this is as follows: Because of the symplectic rotation
(3.43), the five-dimensional gauge field A1

�̂ is decomposed

in two parts. One part contributes to the four-dimensional

gauge vector ~A1
� and the other to the four-dimensional bare

graviphoton ~A0
�. It is this second part of A

1
�̂ that leads to the

first term of (3.37), which does not contribute to the four-
dimensional gauge field in this particular choice of the
holomorphic section.

4. dRW rotation

The de Roo-Wagemans matrix (3.21) rotates the sym-
plectic section [(3.44), with n ¼ 4] to

1
2
ffiffi
2

p ð2� jjwjj2Þ
w2

w3

w4
1

2
ffiffi
2

p ð2þ jjwjj2Þðcos�þ w1 sin�Þ
� 1

2
ffiffi
2

p w1ð2� jjwjj2Þ
�w1w2

w1w3

w1w4

� 1
2
ffiffi
2

p ð2þ jjwjj2Þðsin�� w1 cos�Þ

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

; (3.58)

where jjwjj2 � ½w2
2 � w2

3 � w2
4�. Using MATHEMATICA we

evaluated the potential as

PðRÞ
ð4Þ ¼

j cos�þ w1 sin�j2
2 Imw1

: (3.59)

This potential agrees with [25] by applying the coordinate
transformations outlined in Appendix C.

5. Critical points

The total potential of the current model with n ¼ 4
vector multiplets and Kð4Þ ¼ SOð2; 1Þ �Uð1ÞR gauge

group evaluated at ReðwiÞ ¼ 0 is given by

Pð4ÞjReðwiÞ¼0 ¼ ðPðTÞ
ð4Þ þ �PðRÞ

ð4Þ ÞjReðwiÞ¼0

¼ 1

2 Imw1

�
�ðImw2

2 � Imw2
3Þð2þ jjImwjj2Þ2

8jjImwjj4

þ �j cos�þ w1 sin�j2
�
: (3.60)
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The critical points of this potential have coordinates which
obey

w1 ¼ � cot�þ i csc�ffiffiffiffi
�

p ; ðImw2Þ2 � ðImw3Þ2 ¼ 2;

Rewi ¼ 0; Imw4 ¼ 0; (3.61)

and the potential evaluated at these points is

Pð4Þj�c ¼ ffiffiffiffi
�

p
sin� ¼ 1

Imwc
1

; (3.62)

which is positive definite in the physically relevant re-
gion10 ð0< �< �Þ. Writing (3.61) in terms of real scalar
fields, we obtain the conditions

Ai
c ¼ ’4

c ¼ 0; A1
c ¼ � ffiffiffi

3
p

cot�;

e3�c ¼ 6
ffiffiffi
6

p
csc�ffiffiffiffi
�

p ; ½ð’2
cÞ2 � ð’3

cÞ2� ¼ 6e�2�c :

(3.63)

We see that, for a given �, the values of all of the scalars,
including the dilaton �, at the critical point are fixed. The
only exception is that the term ½ð’2

cÞ2 � ð’3
cÞ2� is fixed

whereas ’2
c and ’3

c are not, individually. Observe that
this was also the case in five dimensions when the gauge
group was Kð5Þ ¼ SOð1; 1Þ �Uð1ÞR (cf. Sec. II C 2).

The stability of this family of critical points can be
studied by calculating the eigenvalues of the Hessian of
the potential evaluated at the extremum. When this is
normalized by the inverse of the metric (3.10)

g
~I �~Jj�c ¼

4 Imw2
1 0 0 0

0 4 ðImw2
2 � 1Þ 4 Imw2 Imw3 0

0 4 Imw2 Imw3 4 ðImw2
2 � 1Þ 0

0 0 0 4

0
BBB@

1
CCCA;

(3.64)

it gives the mass matrix of the scalar fields

@~I@
~JPð4Þ

Pð4Þ

���������c
¼

2 0 0 0
0

Imw2
2

2
1
2 Imw2 Imw3 0

0 � 1
2 Imw2 Imw3 � Imw2

3

2 0
0 0 0 1

0
BBB@

1
CCCA

(3.65)

with ‘‘complex’’ eigenvalues (2, 1, 1, 0).11 Thus the family
critical points corresponds to stable de Sitter vacua.

One can extend this result to a theory coupled to an
arbitrary number n > 2 of vector multiplets by trivially

extending the holomorphic section, and the value of the
potential at the extremumwill not change. The mass matrix
will contain n� 3 diagonal entries with the value 1, and
the values of the extra scalars at the extremum will be zero.

E. The five-dimensional connection

Dimensionally reducing a 5D, N ¼ 2 YMESGT with
isometry gauging group Kð5Þ yields a 4D, N ¼ 2
YMESGT with an isometry gauging group Kð4Þ ¼
Kð5Þ2H nTþ1 [70], where nT is the number of tensor mul-

tiplets coupled to the theory and H nTþ1 is the Heisenberg
group generated by translations and the central charge.
This Heisenberg group factor exist only if tensors are
coupled to the theory.
The model discussed in the last section with gauge group

Kð4Þ ¼ SOð2; 1Þ �Uð1ÞR has stable de Sitter vacua.

Unfortunately, it cannot be obtained from five dimensions
directly. One can immediately think of gauging a subgroup
Kð5Þ ¼ SOð1; 2Þ of the global isometry group for one of the

three families (2.6) in five dimensions. For the generic
Jordan family, the resulting theory after dimensional re-
duction still has the gauge group Kð4Þ ¼ SOð1; 2Þ. This
type of gauging does not yield a scalar potential in five
dimensions because tensors are absent from the theory, but
it does in four dimensions due to the last term of (3.1). For
the magical Jordan family, there will be tensors transform-
ing under SOð1; 2Þ, and hence the gauge group in four
dimensions is SOð1; 2Þ2H nTþ1; for the generic non-
Jordan family, SOð1; 2Þ is not gaugeable because one
cannot find vector fields that transform under the adjoint
representation of SOð1; 2Þ to use as the gauge fields. The
first two of these families allow for four-dimensional theo-
ries with an SOð1; 2Þ factor in the gauge group, but this is
not the same SOð2; 1Þ gauge group factor we discussed in
the last section. The former one is a subgroup of
SOð1; 2Þ � SOð1; n� 3Þ � SOð2; n� 1Þ and has one
timelike and two spacelike dimensions, whereas the latter
is a subgroup of SOð2; 1Þ � SOðn� 2Þ � SOð2; n� 1Þ
and has two timelike and one spacelike dimensions.
Therefore the model with the SOð2; 1Þ gauge group factor
we discussed in the last section does not originate from five
dimensions.12

Nevertheless, this is not the end of the story. In five
dimensions de Sitter vacua were found for the SOð1; 1Þ �
Uð1ÞR gauging, and in four dimensions they were found for
the SOð2; 1Þ �Uð1ÞR gauging. In this section, we will
show that under an appropriate group contraction of
SOð2; 1Þ one can find a theory which can be obtained
from the five-dimensional SOð1; 1Þ �Uð1ÞR theory under
another appropriate group contraction and that has a po-
tential that allows stable de Sitter ground states.

10The imaginary part of w1 is proportional to 1=jj’jj2, which
has to be positive definite in order to have positive kinetic terms
in the Lagrangian. See Sec. II C for a more thorough discussion.
11The reason why we called these complex eigenvalues is based
on the fact that the derivatives @~I are with respect to the complex
scalars z

~I. The same mass matrix can be obtained by taking the
derivatives with respect to �z

~�I.

12However, this does not rule out the possibility that the
SOð1; 2Þ gauging may result in non-Minkowski ground states
in four dimensions. See Sec. III F 5 for this type of gauging.
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1. Contracting the algebra

A geometrical interpretation for the contraction can be
given by introducing the n-dimensional inhomogeneous
coordinates ua (a ¼ 0; 2; 3; . . . ; n) that parametrize a hy-
perboloid embedded in n-dimensional space by
ua�

abub ¼ R2, where �ab ¼ diagðþ þ� . . .�Þ and R is
the radius of curvature. The scalars vkðk ¼ 2; 3; . . . ; nÞ
parametrize an ðn� 1Þ-dimensional hypersurface. This
hypersurface is mapped onto the hyperboloid embedded
in n-dimensional space by the stereographical projection

u0 ¼ R2 � jjvjj2
R2 þ jjvjj2 R; uk ¼ 2R2vk

R2 þ jjvjj2 ; (3.66)

where jjvjj2 ¼ ½v2
2 � v2

3 � � � � � v2
n�. The inverse map-

ping is

vk ¼ Ruk
Rþ u0

: (3.67)

For n ¼ 4, the SOð2; 1Þ symmetry on the four-dimensional
hyperboloid is generated by the Killing vectors, which in
terms of homogeneous hypersurface coordinates are for-
mulated by

~K 0 ¼
0

�w3

�w2

0

0
BBB@

1
CCCA; ~K2 ¼

0
� w2w3

R
R2�w2

2�w2
3þw2

4

2R� w3w4

R

0
BBBB@

1
CCCCA;

~K3 ¼
0

R2þw2
2þw2

3þw2
4

2R
w2w3

R
w2w4

R

0
BBB@

1
CCCA:

(3.68)

Note that if the real vi are extended to the complex wi and

R ¼ ffiffiffi
2

p
, these are the same Killing vectors we evaluated in

(3.50). By taking the large R limit, the hyperboloid is
locally flattened and the group is contracted [93,94] to

SOð1; 1Þ2Rð1;1Þ. Let us observe this by defining the new
generators as

~K 0
0 � ~K0; ~K0

2 � 2 ~K2

R
; ~K0

3 � 2 ~K3

R
(3.69)

and evaluating the Lie brackets

½ ~K0
0; ~K

0
2� ¼ ~K0

3; ½ ~K0
0; ~K

0
3� ¼ ~K0

2;

½ ~K0
2; ~K

0
3� ¼ � 4

R2
~K0
0:

(3.70)

By taking the limit R ! 1, the last of these Lie brackets
vanishes, and we see that the new Killing vectors generate
the Lie algebra of the Poincaré group in two dimensions
which is the semidirect product of ‘‘Lorentz boosts’’

SOð1; 1Þ with ‘‘translations’’ Rð1;1Þ.
Meanwhile, for the five-dimensional gauge group

Kð5Þ ¼ SOð1; 1Þ, the structure constants (3.47) determine

the following algebra in four dimensions:

�
T0 � T1ffiffiffi

2
p ; T2

	
¼ 0;

�
T0 þ T1ffiffiffi

2
p ; T3

	
¼ T2;�

T0 � T1ffiffiffi
2

p ; T3

	
¼ 0;

�
T0 þ T1ffiffiffi

2
p ; T2

	
¼ T3;

½T2; T3� ¼ T0 � T1ffiffiffi
2

p :

(3.71)

They define the Lie algebra of a central extension of the Lie
algebra SOð1; 1Þ sS Rð1;1Þ, with the central charge corre-

sponding to the generator 1ffiffi
2

p ðT0 � T1Þ. Here ‘‘sS ’’ denotes

‘‘semidirect sum.’’ 1ffiffi
2

p ðT0 þ T1Þ rotates T2 and T3 into each

other and corresponds to the bare graviphoton in five
dimensions which acted as the SOð1; 1Þ gauge field. Note
that this result parallels completely the situation in
Sec. III C 1 (cf. [70]).
By defining the new generators

W0

W1

W2

W3

0
BBB@

1
CCCA ¼

1 1 0 0
�� � 0 0
0 0 � 0
0 0 0 �

0
BBB@

1
CCCA

ðT0 � T1Þ=
ffiffiffi
2

p
ðT0 þ T1Þ=

ffiffiffi
2

p
T2

T3

0
BBB@

1
CCCA;
(3.72)

one can rewrite the algebra as

½W2; W3� ¼ 1
2ð�2W0 � �W1Þ; ½W0; W2� ¼ W3;

½W0; W3� ¼ W2; ½W1; W2� ¼ �W3;

½W1; W3� ¼ �W2:

(3.73)

In the limit � ! 0 the transformation matrix above be-
comes noninvertible, but this is expected since information
is generically lost during group contractions, and the alge-
bra reduces to SOð1; 1Þ sS Rð1;1Þ without central charge.
This is the same algebra as (3.70) in the large R region.
Thus the two different limits of the two different theories
overlap. Now, we will calculate the extrema of the scalar
potential that they will generate.

2. Potential by ðSOð1; 1Þ2Rð1;1ÞÞ �Uð1ÞR gauging

Using the Killing vectors (3.69) in the large R limit, the
potential (3.48) is calculated as in (D2). When evaluated at
ReðwkÞ ¼ 0 (k ¼ 2; 3; . . . ; n), it takes the form

PðTÞ
ð4Þ jReðwkÞ¼0 ¼ ðImw2

2 � Imw2
3Þð4þ jjImwjj2Þ2

64 Imw1jjImwjj4 ; (3.74)

where jjImwjj2 � ðImw2
2 � Imw2

3 � � � � � Imw2
nÞ. This

potential term satisfies

@PðTÞ
ð4Þ

@ReðwkÞ

��������ReðwkÞ¼0
¼ 0: (3.75)
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The dRW rotation is done prior to the gauging. One must

choose the Uð1ÞR gauge field ~Ab
� among ~Ai

�

(i ¼ 4; . . . ; n)13 and dRW rotate ~Xb and ~Fb into each other.
The dRW matrix is given by

R ¼

1n�1 0 0 0 0
0 cos� 0 sin� 0
0 0 1n 0 0
0 sin� 0 cos� 0
0 0 0 0 1

0
BBBBB@

1
CCCCCA; (3.76)

where we chose b ¼ n. Note that with this type of gauging
one must have n > 3 vector multiplets [cf. n > 2 for the
SOð2; 1Þ �Uð1ÞR gauging after the dRW rotation (3.21)].
The calculation of the Uð1ÞR potential is similar to the last
case, but it has the same expression

PðRÞ
ð4Þ ¼

j cos�þ w1 sin�j2
2 Imw1

: (3.77)

The critical points of the total potential Pð4Þ ¼
PðTÞ
ð4Þ þ �PðRÞ

ð4Þ are given by

wc
1 ¼ � cot�þ i csc�ffiffiffiffiffiffi

2�
p ; ðImwc

2Þ2 � ðImwc
3Þ2 ¼ 4;

Rewc
k ¼ 0; Imwc

i ¼ 0; (3.78)

and the value of the potential evaluated at these points is

Pð4Þj�c ¼
ffiffiffiffi
�

2

s
sin� ¼ 1

2 Imwc
1

: (3.79)

Writing these in terms of real scalars, we again see that, for
a given �, the values of all of the scalars, including the
dilaton �, at the critical point are fixed. The only exception
is that the term ½ð’2

cÞ2 � ð’3
cÞ2� is fixed whereas ’2

c and ’
3
c

are not, individually.
The mass matrix for this potential evaluated at the

family of critical points is

@~I@
~JPð4Þ

Pð4Þ

���������c
¼

2 0 0 0
0

Imw2
2

4
1
4 Imw2 Imw3 0

0 � 1
4 Imw2 Imw3 � Imw2

3

4 0
0 0 0 1

0
BBB@

1
CCCA;

(3.80)

which has eigenvalues (2, 1, 1, 0) and hence the extrema
correspond to stable de Sitter vacua. The zero eigenvalue is
due to the remaining SOð1; 1Þ symmetry and means that
there is a flat direction along the extrema.

The effect of group contraction to the potential.—
Without the contraction outlined in the last subsection,

i.e. using the structure constants of the algebra (3.71), the

potential PðTÞ
ð4Þ evaluated at ReðwiÞ ¼ 0 is given by

Imw2
2 � Imw2

3

2 Imw1jjImwjj4 : (3.81)

Subtracting this expression from (3.74) will give the con-
tribution of the group contraction to the scalar potential as

ðImw2
2 � Imw2

3ÞPþP�
64 Imw1jjImwjj4 ; (3.82)

where P� ¼ jjImwjj2 þ 4ð1� ffiffiffi
2

p Þ. This term is positive
definite in the neighborhood of the extrema, where

jjImwjj2 � 4. A quick calculation shows that the PðTÞ
ð4Þ

potential (3.81), together with the PðRÞ
ð4Þ potential (3.77),

does not have any critical points.

F. More examples

1. ðSOð1; 1Þ2Rð1;1ÞÞ � SUð2ÞR gauging

In order to do such a gauging along with a dRW rotation,

one must have n > 5 vector multiplets. PðTÞ is as given in
(3.74).
For the SUð2ÞR gauging, the moment map is as defined

in (3.35), and the gauge fields are chosen to be ~Ab
� (b ¼

n� 2; n� 1; n). ~Xb and ~Fb are rotated into each other via
the dRW matrix

R ¼

1n�3 0 0 0 0
0 cos�13 0 sin�13 0
0 0 1n�2 0 0
0 � sin�13 0 cos�13 0
0 0 0 0 1

0
BBBBB@

1
CCCCCA: (3.83)

The resulting SUð2ÞR potential is given by

PðRÞ
ð4Þ ¼ ðUðABÞ � 3 �~L

ðA ~LBÞÞP x
AP

x
B

¼ Xn
y¼n�2

ðUðyyÞ � 3 �~L
ðy ~LyÞÞ ¼ 3j cos�þ w1 sin�j2

2 Imw1

;

(3.84)

which differs from (3.77) only by a factor of 3. Each
SUð2ÞR generator gives the same contribution as the
Uð1ÞR generator in the Abelian case. The total potential is

Pð4ÞjReðwkÞ¼0 ¼ ðPðTÞ
ð4Þ þ �PðRÞ

ð4Þ ÞjReðwkÞ¼0

¼ ðImw2
2 � Imw2

3Þð4þ jjImwjj2Þ2
64 Imw1jjImwjj4

þ 3�j cos�þ w1 sin�j2
2 Imw1

: (3.85)

The critical points of the total potential Pð4Þ ¼
PðTÞ
ð4Þ þ �PðRÞ

ð4Þ are given by

13Choosing ~A1
� as theUð1ÞR gauge field as we did in Sec. III D 4

would result in rotating ~X1 and ~F1 into each other. But in this
case, the presence of tensors makes it impossible to keep the
translations block-diagonal.
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wc
1 ¼ � cot�þ i csc�ffiffiffiffiffiffi

6�
p ; ðImwc

2Þ2 � ðImwc
3Þ2 ¼ 4;

Rewc
k ¼ 0; Imwc

i ¼ 0; (3.86)

and the value of the potential evaluated at these points is

Pð4Þj�c ¼
ffiffiffiffiffiffi
3�

2

s
sin� ¼ 1

2 Imwc
1

: (3.87)

Writing these in terms of real scalars, we again see that, for
a given �, the values of all of the scalars, including the
dilaton �, at the critical point are fixed. The only exception
is that the term ½ð’2

cÞ2 � ð’3
cÞ2� is fixed whereas ’2

c and ’
3
c

are not, individually.
The mass matrix for this potential evaluated at the

family of critical points is

@~I@
~JPð4Þ

Pð4Þ

���������c
¼

2 0 0 0
0

Imw2
2

4
1
4 Imw2 Imw3 0

0 �1
4 Imw2 Imw3 � Imw2

3

4 0
0 0 0 1n�3

0
BBB@

1
CCCA;

(3.88)

which has eigenvalues

ð2; 1; . . . ; 1|fflfflffl{zfflfflffl}
ðn�2Þ times

; 0Þ;

and hence the extrema correspond to stable de Sitter vacua
with a flat direction due to the remaining SOð1; 1Þ
symmetry.

2. ðSOð1; 1Þ2Rð1;1ÞÞ �Uð1ÞR gauging with hypers

The authors of [25] studied a model with 5 vector mul-
tiplets and 4 hypermultiplets; the scalars of the hypermul-

tiplets spanned the hyperbolic space SOð4;2Þ
SOð4Þ�SOð2Þ , and the

gauge group was SOð2; 1Þ � SUð2Þ. Here we shall consider
the coupling of a single hypermultiplet to supergravity and
an arbitrary number n of vector multiplets. We use the

same symmetric space MQ ¼ SUð2;1Þ
SUð2Þ�Uð1Þ formalism for the

scalar manifold of a single hypermultiplet that we also
studied on five dimensions in Sec. II. The scalars that
span this space are qX ¼ ðV; �; 	; �Þ. Gauging

ðSOð1; 1Þ2Rð1;1ÞÞ �Uð1ÞR gives three contributions to the
scalar potential.

PðTÞ
ð4Þ is not affected by the hypercoupling, so we take it as

given in (3.74). Meanwhile, gauging hyperisometries in-
troduces the potential term (A26), which is written in the
canonical form as [85,95]

PðHÞ
ð4Þ ¼ 4eKðKX

A
�~X
AÞgXYðKY

B
~XBÞ; (3.89)

with KX
A ¼ VAY

aTX
a (a ¼ 1; 2; 3), where VA determine the

linear combination of vectors to use as the Uð1ÞR gauge
field. Ya, on the other hand, determine the linear combina-
tion of the hyperisometries TX

a that are gauged. TX
a , the

Killing vectors that generate the symmetries of the isome-
try group SUð2; 1Þ, are given in Appendix B. At the base
point qc ¼ ðV ¼ 1; � ¼ 	 ¼ � ¼ 0Þ of the hyperscalar
manifold, where the hyperspace metric gXY (2.9) becomes
diagonal, this potential satisfies

PðHÞ
ð4Þ jqc ¼

@PðHÞ
ð4Þ

@w~I

��������qc
¼ @PðHÞ

ð4Þ
@q

��������qc
¼ 0 (3.90)

because of the vanishing Killing vectors at that point. The
third contribution is the Uð1ÞR potential

PðRÞ
ð4Þ ¼ ðUðABÞ � 3 ��L

ðA �LBÞÞ ~P A
~P B; (3.91)

where the momentummap is written in terms of the Killing

prepotentials as ~P A ¼ VAY
a ~Pa. We choose ~An

� as the

Uð1ÞR gauge field and set Vn ¼ 1. The dRW-rotation ma-
trix that mixes the electric and the magnetic components of
the holomorphic section is given in (3.76).
The total potential

Pð4ÞjReðwiÞ¼0;qc ¼ ½PðTÞ
ð4Þ þ �ðPðRÞ

ð4Þ þ PðHÞ
ð4Þ Þ�ReðwkÞ¼0;qc

¼ ðImw2
2 � Imw2

3Þð4þ jjImwjj2Þ2
64 Imw1jjImwjj4

þ �j cos�þ w1 sin�j2ðYaYaÞ
8 Imw1

has extrema at

�c ¼
�
wc

1 ¼ � cot�þ i
ffiffiffi
2

p
csc�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðYaYaÞp ;

ðImwc
2Þ2 � ðImwc

3Þ2 ¼ 4; Rewc
k ¼ 0; Imwc

i ¼ 0;

Vc ¼ 1; �c ¼ 	c ¼ �c ¼ 0

�
;

where it takes the value

Pð4Þj�c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðYaYaÞp
2
ffiffiffi
2

p sin� ¼ 1

2 Imwc
1

:

The values of all of the scalars at the critical point are fixed,
except w2 and w3, which satisfy ðImwc

2Þ2 � ðImwc
3Þ2 ¼ 4.

This remaining SOð1; 1Þ symmetry leads to a flat direction
along the extrema. Joining the scalar indices � ¼ ð~I; XÞ,
the expression for the mass matrix is written as
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@�@
�Pð4Þ

Pð4Þ

���������c
¼

2 0 0 0
0

Imw2
2

4
1
4 Imw2 Imw3 0 . . .

0 � 1
4 Imw2Imw3 � Imw2

3

4 0
0 0 0 1n�3

..

.
1
4

1
1
2

1
8

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA
;

where the last 4 entries belong to the hypers. This matrix
has all non-negative eigenvalues

ð2; 1; . . . ; 1|fflfflffl{zfflfflffl}
ðn�2Þ times

; 0; 14; 1;
1
2;

1
8Þ;

where again the last 4 entries are the masses of the hyper-
scalars, and hence the extrema correspond to stable
de Sitter vacua.

3. Yet another holomorphic section?

Applying a symplectic transformation

~X A ! ~FA; ~FA ! � ~XA (3.92)

on the holomorphic section [(3.44), with n ¼ 4], acting on

it with the dRW matrix (3.76), and gauging Kð4Þ ¼
ðSOð1; 1Þ2Rð1;1ÞÞ �Uð1ÞR lead to the scalar potential

Pð4ÞjReðwkÞ¼0 ¼ ½PðTÞ
ð4Þ þ �PðRÞ

ð4Þ �ReðwkÞ¼0

¼ ðImw2
2 � Imw2

3Þð4þ jjImwjj2Þ2ðRew2
1 þ Imw2

1Þ
64 Imw1jjImwjj4

þ �
j sin�� w1 cos�j2

2 Imw1

; (3.93)

which has critical points at

wc
1 ¼

ffiffiffiffiffiffi
2�

p
sin�

1þ 2�cos2�
ð ffiffiffiffiffiffi

2�
p

cos�þ iÞ;
ðImwc

2Þ2 � ðImwc
3Þ2 ¼ 4; Rewc

k ¼ Imwc
i ¼ 0:

At this family of critical points, the potential takes the
value of

Pð4Þj�c ¼
ffiffiffiffi
�

2

s
sin�; (3.94)

and the mass matrix
@~I@

~JPð4Þ
Pð4Þ

has eigenvalues (2, 1, 1, 0);
hence, this corresponds to stable dS vacua with a flat
direction for 0< �<�.

Observe that, when � ¼ �=2, apart from the X0&F1 and
X1&F0 mixing in the transformation (3.43), this corre-
sponds to the GMZ holomorphic section that we intro-
duced in Sec. III C 1. Although this seems like just a
specific case, it will play an important role in finding stable
de Sitter vacua when we study general homogeneous scalar
manifolds below.

4. de Sitter vacua from GMZ holomorphic section

The procedure of obtaining de Sitter ground states using
the GMZ holomorphic section, which is obtained by acting
on �0 by the transformation matrix (3.28), involves a

similar group contraction. Consider a five-dimensional
SOð1; 1Þ gauged YMESGT coupled to ~n ¼ 3 vector mul-
tiplets that has A1

�̂ as the gauge field. The vectors A2
�̂ and

A3
�̂ are charged under the gauge group and need to be

dualized to tensors. After the dimensional reduction, this
becomes a four-dimensional theory coupled to n ¼ 4 vec-

tor multiplets with a gauge group Kð4Þ ¼ SOð1; 1Þ2Rð1;1Þ
with central charge [70]. The structure constants are

f023 ¼ � ffiffiffi
2

p
; f213 ¼ f312 ¼

1ffiffiffi
2

p ; (3.95)

which are antisymmetric in the lower indices. With these
structure constants, one can calculate the Killing vectors
(3.29) that generate Kð4Þ as

~K 0 ¼ 0; ~K1 ¼
0

w3=
ffiffiffi
2

p
w2=

ffiffiffi
2

p
0

0
BB@

1
CCA;

~K2 ¼
0
�1
0
0

0
BBB@

1
CCCA; ~K1 ¼

0
0
�1
0

0
BBB@

1
CCCA:

(3.96)

The contraction will be done by going to a basis with the
following rotation of the Killing vectors:
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~K 0
0 ¼ ~K0 � ~K1; ~K0

1 ¼ ~K0 þ ~K1;

~K0
2 ¼ ~K2; ~K0

3 ¼ ~K3:
(3.97)

It is straightforward to show that the new Killing vectors

generate SOð1; 1Þ2Rð1;1Þ without central charge. After

some calculation we found that the potential PðTÞ, defined
in (3.48), is indeed equal to the PðTÞ given in (3.93).

In addition to Kð4Þ, one can also gauge the Uð1ÞR sym-

metry. Choosing the gauge field as A4
�, this will result in a

potential term PðRÞ
ð4Þ ¼ 1=ð2 Imw1Þ that is the PðRÞ

ð4Þ given in

(3.93) when � ¼ �=2. The calculation in the last subsec-

tion shows that the total potential Pð4Þ ¼ PðTÞ
ð4Þ þ �PðRÞ

ð4Þ has
de Sitter minima with a flat direction.

5. SOð1; 2Þ gauging from five dimensions

One can start with a gauged YMESGT in five dimen-
sions with an isometry gauging group Kð5Þ ¼ SOð1; 2Þ. For
the generic Jordan family, the only charged vector fields
are the gauge fields A2

�̂, A
3
�̂, and A4

�̂, which transform

under the adjoint representation of this SOð1; 2Þ. There
are no tensor fields, and no scalar potential is introduced.

After the dimensional reduction, the gauge group is still
SOð1; 2Þ, but this is a different subgroup of the global
isometry group in four dimensions than what we gauged
in Sec. III D. The former one is a subgroup of SOð1; 1Þ �
SOð1; n� 2Þ � SOð2; n� 1Þ and has one timelike and
two spacelike dimensions, whereas the latter is a subgroup
of SOð2; 1Þ � SOðn� 2Þ � SOð2; n� 1Þ and has two
timelike and one spacelike dimensions. In contrast to the
case before the dimensional reduction, gauging SOð1; 2Þ
results in a scalar potential in four dimensions due to the
second term in (A25). Taking the structure constants as
f234 ¼ �f342 ¼ �f423 ¼ 1, this potential is evaluated to be

PðTÞ
ð4Þ ¼

Q23 þQ24 �Q34

2 Imw1jjImwjj4 ; (3.98)

with Qkl ¼ ðwk �wl � wl �wkÞ2. Unfortunately, this potential
does not admit any ground states other than Minkowskian.
One can gauge Uð1ÞR (in four dimensions) in addition to
the SOð1; 2Þ symmetry which adds the term (3.77) to the
potential. But it is easy to verify that the total potential does
not have any critical points in this case.

At this point, perhaps it is worth mentioning again that
the four-dimensional theories that have different holomor-
phic sections as their starting points, which are related by
just a symplectic transformation, describe different phys-
ics. For the generic Jordan family, an Kð5Þ ¼ SOð1; 2Þ �
Uð1ÞR gauged YMESGT has Minkowski and anti-de Sitter
ground states in five dimensions. The Minkowski ground
states survive in four dimensions if one works with the
GMZ holomorphic section, due to a term in the Uð1ÞR
potential that does not exist in the potential that is derived

from our holomorphic section. We stressed this issue below
Eq. (3.57).

G. Beyond generic Jordan family

For the holomorphic section we obtained by the rotation
(3.43), satisfying Eq. (3.42) was crucial to keep the trans-
lations block-diagonal. This equation is trivially satisfied
for the generic Jordan family ðCiMN ¼ 0Þ, but for other
types of scalar manifolds, such as the magical Jordan
family, it does not hold, in general. This problem can be
evaded by dRW rotating all ~Xi and ~Fi by �=2 radians. The
entire symplectic transformation matrix, including the
dRW rotation with � ¼ �=2,

�S ¼

0 1ffiffi
2

p 0 0 � 1ffiffi
2

p 0 0 0

0 0 0 0 0 0 0 DMN

0 0 �j
i 0 0 0 0 0

0 � 1ffiffi
2

p 0 0 � 1ffiffi
2

p 0 0 0
1ffiffi
2

p 0 0 0 0 1ffiffi
2

p 0 0
0 0 0 DMN 0 0 0 0
0 0 0 0 0 0 �i

j 0
1ffiffi
2

p 0 0 0 0 � 1ffiffi
2

p 0 0

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

(3.99)

acts on �0 in the following way:

�� ¼

�X0

�XM

�Xj

�X1

�F0
�FM
�Fj

�F1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
¼ �S�0 ¼ �S

X0

X1

Xi

XN

F0

F1

Fi

FN

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

Here DMN ¼ � ffiffiffi
2

p
�MN and DMND

NP ¼ �P
M, and, again,

we decomposed the index I as I ¼ ð1; iÞ.
Furthermore, in order to gauge �K � Kð4Þ �Uð1ÞR ¼

ðSOð1; 1Þ2Rð1;1ÞÞ �Uð1ÞR which was the four-dimensional
gauge group for the theories with de Sitter solutions that
originate from five dimensions, the isometry group needs
to contain a subgroup SOð2; r� 1Þ, with r � 3.
So far, we have studied symmetric space scalar mani-

folds only. Now we relax this restriction and look for
homogeneous (but not necessarily symmetric) space scalar
manifolds that have SOð2; r� 1Þ, r � 3, as a subsector.
We have to reanalyze how the holomorphic section trans-
forms under the translations zM ! zM þ bM because CIJM

does not necessarily vanish in homogeneous spaces:
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��! ��

þ

1ffiffi
2

p bMDMN
�XNffiffi

2
3

q
DMNbPfC1NPð �X1� �X0Þþ ffiffiffi

2
p

CiNP
�Xig

0
1ffiffi
2

p bMDMN
�XN

�
ffiffi
2
3

q
bMfC1MND

NP �FPþC11M
�X0� �X1ffiffi

2
p �C1jM

�Xjg
1ffiffi
2

p DMNb
Nð �F0þ �F1Þ

�
ffiffi
2
3

q
bMfCiMND

NP �FPþCi1M
�X0� �X1ffiffi

2
p �CijM

�Xjg
�

ffiffi
2
3

q
bMfC1MND

NP �FPþC11M
�X0� �X1ffiffi

2
p �C1jM

�Xjg

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

:

Observe that, in order to keep the translations block-

diagonal, i.e. to have �XA and �FA transform among them-
selves,

CIJM ¼! 0 (3.100)

must hold.
de Wit and Van Proeyen classified homogeneous very

special manifolds and gave their corresponding cubic pol-
ynomials in [96,97]. These spaces are of the form G=H,
where G is the isometry group and H is its isotropy sub-
group. G is not necessarily semisimple; thus not all of the
homogeneous spaces have a clear name. In their classifi-
cation, the homogeneous spaces are denoted as Lðq; PÞ.
Here q characterizes the real Clifford algebras [Cðqþ
1; 0Þ] that are in one-to-one correspondence with homoge-
neous special manifolds. These have signatures ðqþ 1; 1Þ
for real (in five dimensions) and ðqþ 2; 2Þ for Kähler (in
four dimensions) manifolds, which are related to each
other with what is called the r map. The non-negative
integer P denotes the multiplicity of the representation of
the Clifford algebra. For q � 4m (m is a non-negative
integer), P is unique. When q ¼ 4m, there are two inequi-
valent representations. In this case the homogeneous space
is denoted by Lð4m;P; _PÞ. Note that Lð4m;P; 0Þ ¼
Lð4m; 0; PÞ � Lð4m;PÞ. Table I lists the special cases
where Lðq; PÞ are symmetric manifolds. The cubic poly-
nomial that has an invariance group that acts transitively on
the special real manifolds can be specified in the general
form

NðhÞ ¼ C~I ~J ~Kh
~Ih

~Jh
~K

¼ 3fĥ1ðĥ2Þ2 � ĥ1ðĥ�Þ2 � ĥ2ðĥmÞ2 þ ��mnĥ
�ĥmĥng;
(3.101)

where the index ~I ¼ 1; . . . ; n is decomposed into I ¼
1; 2; �;m, with � ¼ 3; . . . ; ðqþ 3Þ and m ¼ ðqþ
4Þ; . . . ; ðqþ 3þ ðPþ _PÞDqþ1 ¼ nÞ. The dimension

Dqþ1 of the irreducible representation of the Clifford

algebra with positive signature in qþ 1 dimensions is
given by

D qþ1 ¼ 1 for q ¼ �1; 0; Dqþ1 ¼ 2 for q ¼ 1;

Dqþ1 ¼ 4 for q ¼ 2; Dqþ1 ¼ 8 for q ¼ 3; 4;

Dqþ1 ¼ 16 for q ¼ 5; 6; 7; 8; Dqþ8 ¼ 16Dq:

The constraint r � 3 translates into q � 0. Hence we

immediately see that �K is not gaugeable for generic non-
Jordan family Lð�1; PÞ. Let us investigate the cases ðq ¼
0Þ and ðq > 0Þ separately.
Case 1 ðq ¼ 0Þ.—If either of P or _P vanishes, the

homogeneous space corresponds to the symmetric generic
Jordan family, which we have studied already. For non-
vanishing P and _P, one can write the cubic polynomial as

NðhÞ ¼ 3fh1½ðh2Þ2 � ðh3Þ2 � ðhxÞ2� � ðh2 � h3Þðh _xÞ2g
(3.102)

after the reparametrization

ĥ1 ¼ h2 þ h3; ĥ2 ¼ h1 þ h2 � h3

2
;

ĥ3 ¼ �h1 þ h2 � h3

2
; ĥx ¼ hx; ĥ _x ¼ h _x;

where the index m is decomposed into P indices x and _P
indices _x. The fields h2 and h3 are charged under the gauge
group Kð4Þ, and the corresponding vector fields A2

� and A3
�

need to be dualized to tensor fields. Hence the index ~I ¼
ðI;MÞ is split as follows: I ¼ 1; x; _x; M ¼ 2; 3. But then
C _x _yM � 0, and hence the translations will not remain

block-diagonal; i.e. Kð4Þ is not gaugeable in the standard

way.

TABLE I. Symmetric very special manifolds. Lð�1; PÞ, which
correspond to the generic non-Jordan family, are symmetric in
five dimensions but not their images under the r map. Lð0; PÞ is
the generic Jordan family, and the last 4 entries are the magical
Jordan family manifolds. The number n is the complex dimen-
sion of the Kähler space, which also is the number of vector
multiplets in four dimensions. This table is adapted from [96].

Lðq; PÞ n Real Kähler

Lð�1; 0Þ 2 SOð1; 1Þ ½SUð1;1Þ
Uð1Þ �2

Lð�1; PÞ 2þ P SOðPþ1;1Þ
SOðPþ1Þ

Lð0; PÞ 3þ P SOð1; 1Þ � SOðPþ1;1Þ
SOðPþ1Þ

SUð1;1Þ
Uð1Þ � SOðPþ2;2Þ

SOðPþ2Þ�SOð2Þ
Lð1; 1Þ 6 S‘ð3;RÞ

SOð3Þ
Spð6Þ
Uð3Þ

Lð2; 1Þ 9 S‘ð3;CÞ
SUð3Þ

SUð3;3Þ
SUð3Þ�SUð3Þ�Uð1Þ

Lð4; 1Þ 15 SU	ð6Þ
Spð3Þ

SO	ð12Þ
SUð6Þ�Uð1Þ

Lð8; 1Þ 27 E6

F4

E7

E6�Uð1Þ
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Case 2 ðq > 0Þ.—All of these spaces Lðq > 0; P; _PÞ,
which also include the symmetric magical Jordan family

for (q ¼ 1; 2; 4; 8; P ¼ 1), contain Kð4Þ ¼ SOð1; 1Þ2Rð1;1Þ

subsectors. Consider the cubic form in the most general
form as given in (3.101). Choosing A1

� as the gauge field,

one can find a Kð4Þ generator such that ĥ2 and ĥ3 rotate into
each other keeping ðĥ2Þ2 � ðĥ3Þ2 fixed. Because they are
charged under the gauge group, the corresponding vector

fields need to be dualized to tensor fields. The rest of ĥ� are
Kð4Þ singlets, and a linear combination of the correspond-

ing vector fields can be used as the Uð1ÞR [or even SUð2ÞR
if q � 3] gauge field(s). hm form ðPþ _PÞDqþ1=2 doublets

under Kð4Þ, and their corresponding vector fields are dual-

ized to tensor fields. All of the conditions are satisfied, and
we conclude that the homogeneous spaces of the type

Lðq > 0; PÞ admit stable de Sitter vacua when �K is gauged.

IV. DISCUSSIONS

Stable de Sitter vacua of 4D, N ¼ 2 YMESGTs were
found in [25,26]. The main goal of this paper was to relate
these four-dimensional theories to the theories in five
dimensions with various gaugings. The authors of these
papers asserted that three ingredients are necessary to
obtain de Sitter vacua:

(i) noncompact gauge groups,
(ii) FI terms, and
(iii) dRW rotation.
The noncompact gauge group they used in the three models
they studied is SOð2; 1Þ. We showed that this is not the only
gauge group that admits a potential that one needs to obtain
de Sitter vacua. One can indeed contract this group to

SOð1; 1Þ2Rð1;1Þ, and de Sitter vacua is preserved under
this contraction. We need to emphasize that whereas the
SOð2; 1Þ gauged theories do not directly descend from five
dimensions, their contracted counterparts do. FI terms are
available for gauge groups that haveUð1Þ or SUð2Þ factors.
The variation of such terms in the Lagrangian is a total
derivative, and they yield supersymmetric terms in the
action. References [90,91] point out that adding FI terms
to the Lagrangian is indeed equivalent to gauging R sym-
metry. In the three models they studied, Fre, Trigiante and
Van Proeyen considered N ¼ 2 supergravity with a com-

plex scalar manifold of the formM4
VS ¼ ST ½2; n� 1� ¼

SUð1;1Þ
Uð1Þ � SOð2;n�1Þ

SOð2Þ�SOðn�1Þ , parametrized by Calabi-Vesentini

coordinates. These correspond to the symmetric generic
Jordan family, which describes the geometry of a real

manifold of the form M5
VS ¼ SOð~n�1;1Þ�SOð1;1Þ

SOð~n�1Þ in five di-

mensions. Here n and ~n denote the number of vector
multiplets coupled to supergravity in four and five dimen-
sions, respectively, and they are related by n ¼ ~nþ 1. For
such theories one has a certain amount of freedom to
choose a holomorphic (symplectic) section upon dimen-

sional reduction. This freedom is parametrized by dRW
angles �. Different choices of � yield different gauged
models with different physics. We use the notation of
[70,74] to parametrize the complex manifold instead of
Calabi-Vesentini coordinates for two main reasons. First,
in the former parametrization the five-dimensional connec-
tion is as clear as it could be, as the complex scalar fields
are obtained directly from dimensional reduction, and,
second, generalizing the results to homogeneous manifolds
is significantly easier. The mapping between two parame-
trizations can be found in Appendix C.
As we stressed earlier, stable de Sitter vacua exist in

five-dimensional SOð1; 1Þ � Rs gauged YMESGTs, where
the Rs denotes a subgroup of the full R-symmetry group
SUð2ÞR [67–69]. These theories descend to four-
dimensional theories that have the gauge group

ðSOð1; 1Þ2Rð1;1ÞÞ � Rs with a central charge [70]. The
procedure in establishing de Sitter ground states in four
dimensions from these theories includes finding an appro-
priate holomorphic section by means of a dRW rotation
and contracting the gauge group. The contraction rotates
some of the group generators into each other, eliminates
the central charge, and gives a positive definite contribu-
tion to the potential. Without this contribution, the poten-
tial does not have any ground states, and that makes the
group contraction essential. We showed that these theories
can also be obtained from four-dimensional SOð2; 1Þ � Rs

gauged YMESGTs, which were considered in [25,26] to
have stable de Sitter vacua, by means of a different
contraction.
In analogy to five dimensions, the theories with generic

Jordan family scalar manifolds have stable de Sitter vacua

for ðSOð1; 1Þ2Rð1;1ÞÞ � Rs gaugings. Rs can be either
Uð1ÞR or SUð2ÞR. In either case, the de Sitter minima in
four dimensions that we found has a flat direction. Recall
that this was also the case in five dimensions before the
dimensional reduction. In addition to vector/tensor multip-
lets, one can couple a universal hypermultiplet and simul-
taneously gauge Uð1Þ or SUð2Þ symmetry of its
quaternionic hyperscalar manifold. We showed that, again
in analogy to five dimensions, this type of extra gauging
preserves the nature of the de Sitter ground states. The
theories with noncompact hyperisometry gauging, which
lead to stable de Sitter ground states in five dimensions,
still need to be checked in four dimensions to complete the
analogy. This topic is not covered in this paper, and we
leave it for future investigation.
The same results can be achieved by starting either with

the GMZ symplectic section [70] or with the symplectic
section that we introduced in (3.44), which has a closer
connection to the Calabi-Vesentini basis used in [25,26].
While in either case a gauge group contraction that rotates
some of the generators into each other and eliminates the
central charge is essential, it should be noted that one does
not need an extra dRW rotation for the GMZ symplectic
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section, because it is already ‘‘dRW rotated’’ by � ¼ �=2
radians with respect to our symplectic section.

In four dimensions, general homogeneous (but not nec-
essarily symmetric) scalar manifolds Lðq; PÞ admit
de Sitter vacua provided that they contain a

ðSOð1; 1Þ2Rð1;1ÞÞ � Rs subsector. These spaces are limited
to Lðq � 0; PÞ. For the symmetric generic Jordan family
spaces Lð0; PÞ, one has the freedom to choose the dRW
angle from 0< �< �. This choice affects the values of the
scalar fields and the value of the potential at the de Sitter
minima. For the spaces of type Lðq > 0; PÞ, on the other
hand, the value of the dRW angle has to be fixed to � ¼
�=2; otherwise the translational variations of the holomor-
phic section do not become block-diagonal, and one cannot
gauge the theory in the standard way. Observe that the
GMZ symplectic section carries this rotation to begin with.

The spaces of the type Lðq � 0; PÞ have de Sitter min-
ima, but one can analyze them for other ground states.
However, the analysis of extrema of the homogeneous
spaces in their full generality is involved and requires a
separate study.

Having found the recipe that starts with a five-
dimensional SOð1; 1Þ �Uð1ÞR gauged N ¼ 2 YMESGT
and ends with stable de Sitter vacua in four dimensions,
one can ask the question: Is it possible to embed the theory
into a fundamental superstring theory or M theory? There
are several directions one can take to answer this question.
Compactifications of type IIA and type IIB superstring
theories on Calabi-Yau threefolds yield ungauged super-
gravity theories in four dimensions. Using the same
method, it was shown in [46] that a 5D, N ¼ 2 MESGT
coupled to hypers can be obtained by compactifying 11-
dimensional supergravity. In particular, the Hodge number
hð1;1Þ of the threefold corresponds to the number of vector

fields (including graviphoton) in the resulting 5D, N ¼ 2
MESGT, whereas hð2;1Þ þ 1 corresponds to the number of

hypermultiplets. Type IIA or type IIB supergravity in ten
dimensions compactified on T6 results in N ¼ 8 super-
gravity in four dimensions. Similarly, 5D, N ¼ 8 super-
gravity can be obtained by compactifying 11-dimensional
supergravity on T6. By orbifolding (modding out by dis-
crete groups) the four-dimensional theory, Sen and Vafa
considered examples of models with broken supersymme-
tries [98]. In one of the several models, the scalar manifold
belongs to the generic Jordan family. As was pointed out in
[99], another model they considered is the JH3 of the

magical Jordan family. These results can be extended to
the 11D-to-5D compactifications. However, these types of
compactifications result in ungauged theories. Whether
one can obtain gauged versions of these theories is an
open problem to be investigated.

One should note that the no-go theorem of [100] asserts
that a Minkowskian ðRdÞ or de Sitter ðdSdÞ theory in d
dimensions cannot be obtained from a higher dimensional
supergravity theory by a nonsingular compactification if

the higher (for our consideration, 10- or 11-) dimensional
supergravity theory
(i) does not have an action with higher curvature

corrections,
(ii) admits a nonpositive potential, or
(iii) contains massless fields with positive kinetic energy

terms.
As the authors point out, there are possible ways to evade
this no-go theorem, namely,
(i) including higher curvature stringy corrections in the

supergravity equations,
(ii) starting from a theory that already has a positive

cosmological constant,
(iii) starting from an alternative supergravity theory that

has negative kinetic energy terms for some scalar
fields (e.g. type IIa* supergravity theories considered
by [101]), or

(iv) choosing the internal space to be noncompact, i.e.
doing a ‘‘noncompact compactification.’’

In fact, the last case is known to produce lower dimensional
theories with noncompact gaugings [30,102], which, as
was found in the literature and demonstrated in this paper,
is a necessary ingredient to obtain five- and four-
dimensional de Sitter vacua.
Meanwhile, after solving the stabilization problem of

compactification of internal dimensions [14,103] by incor-
porating instanton corrections to the superpotential [cf. (i)],
it was possible to find de Sitter vacua from string theory.
This moduli stabilization fixes the runaway behavior of the
axion-dilaton fields, which was also a problem we encoun-
tered upon dimensional reduction in the beginning of
Sec. III. In the original Kachru-Kallosh-Linde-Trivedi
(KKLT) scenario, the moduli stabilization brings the mini-
mum of the scalar potential to a finite negative value. Then
the addition of an anti-D3 brane lifts this minimum to a
state with positive vacuum energy. In our construction, on
the other hand, a similar effect was established through
dRW rotation and gauging the noncompact SOð1; 1Þ sub-
group of the global isometry group of the scalar manifold
simultaneously with a subgroup of the R-symmetry group.
Finding a relation between our and a KKLT-like scenario is
an interesting problem, and we leave this for a future study.
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APPENDIX A: ‘‘VERY SPECIAL GEOMETRY,’’
THE LAGRANGIANS IN FIVE AND FOUR

DIMENSIONS, AND THE DERIVATION OF THE
POTENTIAL TERMS

The bosonic sector of the 5D, N ¼ 2 gauged Yang-
Mills-Einstein supergravity14 coupled to tensor and hyper-
multiplets is described by the Lagrangian [with metric
signature ð� þþþþÞ] [60,65,104]

ê�1Lð5Þ ¼ � 1

2
R̂� 1

4
a
o
~I ~JH

~I
�̂ �̂H

~J �̂ �̂

� 1

2
gXYD�̂q

XD�̂qY � 1

2
g~x ~yD�̂’

~xD�̂’~y

þ ê�1

6
ffiffiffi
6

p CIJK�
�̂ �̂ �̂ �̂ 	̂FI

�̂ �̂F
J
�̂ �̂A

K
	̂

þ ê�1

4g
��̂ �̂ �̂ �̂ 	̂�MNB

M
�̂ �̂D�̂B

N
�̂ 	̂ � Pð5Þð’; qÞ:

(A1)

Here, non-Abelian field strengths F I
�̂ �̂ � FI

�̂ �̂ þ
gfIJKA

J
�̂A

K
�̂ ðI ¼ 1; 2; . . . ; nV þ 1Þ of the gauge group Kð5Þ

and the self-dual tensor fields BM
�̂ �̂ ðM ¼ 1; 2; . . . ; 2nTÞ are

grouped together to define the tensorial quantity H ~I
�̂ �̂ �

ðF I
�̂ �̂; B

M
�̂ �̂Þ, with ~I ¼ 1; 2; . . . ; nV þ 2nT þ 1. The poten-

tial term Pð5Þð’; qÞ is given by

Pð5Þð’; qÞ ¼ g2ðPðTÞ
ð5Þ ð’Þ þ �PðRÞ

ð5Þ ð’; qÞ þ 
PðHÞ
ð5Þ ðqÞÞ;

(A2)

where

PðTÞ
ð5Þ ¼ 2W~xW

~x; PðRÞ
ð5Þ ¼ �4 ~P � ~Pþ 2 ~P~x � ~P~x;

PðHÞ
ð5Þ ¼ 2N XN X;

(A3)

and � ¼ g2R=g
2, 
 ¼ g2H=g

2. The quantities given in the
above expression are defined as

W~x � �
ffiffiffi
6

p
8

�MNhM~xhN ¼
ffiffiffi
6

p
4

hIK~x
I ; ~P � hI ~PI;

~P~x � hI~x ~PI; N X �
ffiffiffi
6

p
4

hIKX
I ; (A4)

where K~x
I and KX

I are Killing vectors acting on the scalar
and the hyperscalar parts, respectively, of the total scalar

manifold M5
scalar ¼ M5

VS 
MQ; ~PI are the Killing pre-

potentials which will be defined below;�MN is the inverse
of �MN , which is the constant invariant antisymmetric
tensor of the gauge group Kð5Þ; and hI and hI~x are elements

of the very special manifold M5
VS described by the hyper-

surface

NðhÞ ¼ C~I ~J ~Kh
~Ih

~Jh
~K ¼ 1; ~I; ~J; ~K ¼ 1; . . . ; ~nþ 1;

(A5)

of the ~nþ 1-dimensional space M ¼ fh~I 2 R~nþ1jNðhÞ ¼
C~I ~J ~Kh

~Ih
~Jh

~K > 0g with metric

aIJ ¼ �1
3@I@J lnNðhÞ: (A6)

The terms PðTÞ
ð5Þ and PðHÞ

ð5Þ are semipositive definite in the

physically relevant region, whereas PðRÞ
ð5Þ can have both

signs. M5
VS is determined completely by the totally sym-

metric tensor C~I ~J ~K. The scalar field metric on this hyper-
surface is the induced metric from the embedding space,
which is given by

g~x ~y ¼ 3
2a~I ~Jh

~I
;~xh

~J
;~yjN¼1 ¼ �3C~I ~J ~Kh

~Ih
~J
;~xh

~K
;~yjN¼1; (A7)

where ‘‘; ~x’’ denotes a derivative with respect to ’~x. The
definitions

a
o
~I ~J � a~I ~JjN¼1 ¼ �2C~I ~J ~Kh

~K þ 3h~Ih~J;

h~I � C~I ~J ~Kh
~Jh

~K ¼ a
o
~I ~Jh

~J;

h
~I
~x � �

ffiffiffi
3

2

s
h
~I
;~x;

h~I ~x � a
o
~I ~Jh

~J
~x ¼

ffiffiffi
3

2

s
h~I;~x

(A8)

help us write the algebraic constraints of the very special
geometry

h
~Ih~I ¼ 1; h

~I
~xh~I ¼ h~I ~xh

~I ¼ 0; h
~I
~xh

~J
~ya
o
~I ~J ¼ g~x ~y:

(A9)

There are also differential constraints to be satisfied:

h~I ~x;~y ¼
ffiffiffi
2

3

s
ðg~x ~yh~I þ T~x ~y ~zh

~z
~I
Þ;

h
~I
~x;~y ¼ �

ffiffiffi
2

3

s
ðg~x ~yh

~I þ T~x ~y ~zh
~I ~zÞ;

(A10)

where ‘‘;’’ is the covariant derivative using the Christoffel
connection calculated from the metric g~x ~y and

T~x ~y ~z � C~I ~J ~Kh
~I
~xh

~J
~yh

~K
~z : (A11)

Using (A7)–(A9) one can derive

a
o
~I ~J ¼ h~Ih~J þ h~x

~I
h~J ~x; (A12)

h~x
~I
h~J ~x ¼ �2C~I ~J ~Kh

~K þ 2h~Ih~J: (A13)

The indices ~I, ~J, and ~K are raised and lowered by a
o
~I ~J, and

its inverse a
o ~I ~J

. PðTÞ
ð5Þ can now be written in a more compact

form14For the full Lagrangian, see [65,66]
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PðTÞ
ð5Þ ¼

3

8
�MN�PRCMRIhNhPh

I ¼ 3
ffiffiffi
6

p
16

�MN
I hMhNh

I;

(A14)

with �M
IN being the transformation matrices of the tensor

fields under the gauge group Kð5Þ:

�MN
I ¼ �M

IP�
PN ¼ 2ffiffiffi

6
p �MRCIRP�

PN: (A15)

Gauging the R symmetry introduces the potential term

PðRÞ
ð5Þ ¼ �4 ~P � ~Pþ 2 ~P~x � ~P~x, where ~P ¼ hI ~PI and ~P~x ¼

hI~x ~PI are vectors that transform under the R-symmetry
group that is being gauged. For the SUð2ÞR gauging one
can take

~P I ¼ ~eI;

where ~eI satisfy ~ei � ~ej ¼ dij
k ~ek and ~ei � ~ej ¼ �ij when i,

j, and k are the SUð2ÞR adjoint indices [dkij are the SUð2Þ
structure constants], and ~eI ¼ 0 otherwise. With this con-
vention and the use of (A8) and (A9), the potential term
simplifies to

PðRÞ
ð5Þ ¼ �4Cij ~K�ijh ~K: (A16)

If the Uð1ÞR subgroup of SUð2ÞR is being gauged, one can

take

~P I ¼ VI ~e;

where ~e is an arbitrary vector in the SUð2Þ space and VI are
some constants that define the linear combination of the
vector fields AI

�̂ that is used as the Uð1ÞR gauge field:

A�̂½Uð1ÞR� ¼ VIA
I
�̂:

The potential term then can be written as

PðRÞ
ð5Þ ¼ �4CIJ ~KVIVJh ~K: (A17)

If tensors are coupled to the theory, the VI have to be
constrained by

VIf
I
JK ¼ 0;

with fIJK being the structure constants of Kð5Þ. When the

target manifold MVS is associated with a Jordan algebra,
the following equality holds componentwise:

C
~I ~J ~K ¼ C~I ~J ~K ¼ const:

After the dimensional reduction from five to four, the
Lagrangian (A1) becomes [70]

e�1Lð4Þ ¼ � 1

2
R� 3

4
a
�
~I ~JðD�

~h
~IÞðD� ~h

~JÞ � 1

2
e�2�a

�
IJðD�A

IÞðD�AJÞ � 1

2
e�2�gXYðD�q

XÞðD�qYÞ

� e�2�a
�
IMðD�A

IÞB�M � 1

2
e�2�a

�
MNB

M
�B

�N þ e�1

g
������MNB

M
��ð@�BN

� þ gAI
��

N
IPB

P
�Þ

þ e�1

g
������MNW��B

M
� B

N
� þ e�1

2
ffiffiffi
6

p CMNI�
����BM

��B
N
��A

I � 1

4
e�a

�
MNB

M
��B

N�� � 1

2
e�a

�
IMðF I

��

þ 2W��A
IÞBM�� � 1

4
e�a

�
IJðF I

�� þ 2W��A
IÞðF J�� þ 2W��AJÞ � 1

2
e3�W��W

��

þ e�1

2
ffiffiffi
6

p CIJK�
����fF I

��F J
��A

K þ 2F I
��W��A

JAK þ 4

3
W��W��A

IAJAKg � g2Pð4Þ; (A18)

where

~h
~I � e�h

~I; (A19)

D �A
I � @�A

I þ gAJ
�f

I
JKA

K; (A20)

F I
�� � 2@½�AI

�� þ gfIJKA
J
�A

K
� ; (A21)

D �
~h
~I � @� ~h

~I þ gAI
�M

~I
I ~K
~h
~K; (A22)

D �q
X � @�q

X þ gHA
I
�K

X
I ; (A23)

and the total scalar potential Pð4Þ is given by

Pð4Þ ¼ PðTÞ
ð4Þ þ

g2H
g2

PðHÞ
ð4Þ ; (A24)

where

PðTÞ
ð4Þ � e��PðTÞ

ð5Þ þ 3
4e

�3�a
�
~I ~JðAIM

~I
ðIÞ ~Kh

~KÞðAJM
~J
ðJÞ ~Lh

~LÞ
(A25)

and

PðHÞ
ð4Þ � e��PðHÞ

ð5Þ þ 1
2e

�3�ðAIKX
I ÞgXYðAJKY

J Þ; (A26)

which would get an additional term of the form

g2R
g2

PðRÞ
ð4Þ �

g2R
g2

e��PðRÞ
ð5Þ ðh~IÞ (A27)
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if the R symmetry is being gauged. The transformation matrices M
~J
ðIÞ ~K that correspond to the gauge group Kð5Þ are

decomposed as follows:

M
~J
ðIÞ ~K ¼ fJIK 0

0 �N
IM

� �
: (A28)

fJIK are always antisymmetric in the lower two indices.

APPENDIX B: KILLING VECTORS OF THE HYPERISOMETRY

The eight Killing vectors kX that generate isometry group SUð2; 1Þ of the hyperscalar manifold are given by [73]

~k1 ¼
0
1
0
0

0
BBB@

1
CCCA; ~k2 ¼

0
2�
0
1

0
BBB@

1
CCCA; ~k3 ¼

0
�2	
1
0

0
BBB@

1
CCCA; ~k4 ¼

0
0
�	
�

0
BBB@

1
CCCA; ~k5 ¼

V
�
�=2
	=2

0
BBB@

1
CCCA;

~k6 ¼
2V�

�2 � ðV þ �2 þ 	2Þ2
��� 	ðV þ �2 þ 	2Þ
�	þ �ðV þ �2 þ 	2Þ

0
BBB@

1
CCCA; ~k7 ¼

�2V�
���þ V	þ 	ð�2 þ 	2Þ

1
2 ðV � �2 þ 3	2Þ
�2�	� �=2

0
BBB@

1
CCCA; ~k8 ¼

�2V	
��	� V�� �ð�2 þ 	2Þ

�2�	þ �=2
1
2 ðV þ 3�2 � 	2Þ

0
BBB@

1
CCCA:

(B1)

The corresponding prepotentials are

~p1 ¼
0
0

� 1
4V

0
B@

1
CA; ~p2 ¼

� 1ffiffiffi
V

p
0
� �

V

0
B@

1
CA; ~p3 ¼

0
1ffiffiffi
V

p
	
V

0
B@

1
CA; ~p4 ¼

� �ffiffiffi
V

p
� 	ffiffiffi

V
p

1
2 � �2þ	2

2V
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B@

1
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� 	
2
ffiffiffi
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p
�

2
ffiffiffi
V
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� �

4V
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B@

1
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~p6 ¼
� 1ffiffiffi

V
p ½�	þ �ð�V þ �2 þ 	2Þ�
1ffiffiffi
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4 � 1
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ffiffiffi
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ffiffiffi
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p �
ffiffiffi
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2

� 3
2 	þ 1

2V ½��þ 	ð�2 þ 	2Þ�

0
BB@

1
CCA;

~p8 ¼
� 3�2�	2

2
ffiffiffi
V

p þ
ffiffiffi
V

p
2

��4�	
2
ffiffiffi
V

p
3
2�þ 1

2V ½�	� �ð�2 þ 	2Þ�

0
BB@

1
CCA:

(B2)

It is easier to see that the Killing vectors close to the
SUð2; 1Þ algebra if they are recast in the following combi-
nations:

SUð2Þ
8><
>:
T1 ¼ 1

4 ðk2 � 2k8Þ;
T2 ¼ 1

4 ðk3 � 2k7Þ;
T3 ¼ 1

4 ðk1 þ k6 � 3k4Þ;

Uð1Þ
�
T8 ¼

ffiffi
3

p
4 ðk4 þ k1 þ k6Þ;

SUð2; 1Þ
Uð2Þ

8>>><
>>>:
T4 ¼ k5;
T5 ¼ � 1

2 ðk1 � k6Þ;
T6 ¼ � 1

4 ðk3 þ 2k7Þ;
T7 ¼ � 1

4 ðk2 þ 2k8Þ:

(B3)

This basis is chosen for convenience such that the gener-
ators T1, T2, T3, and T8 are the isotropy group of the point
ðV;�; �; 	Þ ¼ ð1; 0; 0; 0Þ. The metric hyperscalar manifold

becomes diagonal at this point. In all of the theories that
have hypercoupling, we will take this basis point qC for a
possible candidate of the hypercoordinates of a critical
point. The Killing vectors KX

I are then given by V
I k

X
,

and the corresponding prepotentials ~PI are V
I ~p, where

V
I are constants that determine which isometries are being

gauged and what linear combination of vector fields is
being used. In particular,

KX
I ¼

8><
>:
TX
1 ; T

X
2 ; T

X
3 for SUð2Þ gauging;

VIW
kTX

k ; k ¼ 1; 2; 3; 8 for Uð1Þ gauging;
VIW

kTX
k ; k ¼ 4; 5; 6; 7 for SOð1; 1Þ gauging;

where VI and Wk are constants depending on the model.
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APPENDIX C: TRANSFORMATIONS BETWEEN
TWO PARAMETRIZATIONS

For N ¼ 2 supergravity coupled to n vector multiplets
and no tensors, the symplectic section (3.8) takes the
following form [70]:

�0 ¼

1
z1
z2
za

1
2 z1jjzjj2� 1

2 jjzjj2�z1z2
z1za

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
: (C1)

Here jjzjj2 ¼ ½ðz2Þ2 � ðz3Þ2 � � � � � ðznÞ2� and a ¼
3; . . . ; n. Fre, Trigiante, and Van Proeyen [25] use Calabi-

Vesentini coordinates for which ðX�; F� ¼
���SX

�;X�X���� ¼ 0; ��� ¼ diagðþ;þ;�; . . . ;�ÞÞ
holds. More explicitly [25],

�CV ¼ X�

F�

� �
¼

1
2 ð1þ jjyjj2Þ
1
2 ið1� jjyjj2Þ

y1
ya�1

1
2 Sð1þ jjyjj2Þ
1
2 iSð1� jjyjj2Þ

�Sy1
�Sya�1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; (C2)

where jjyjj2 ¼ y21 þ � � � þ y2n�1. The transformations be-

tween the two notations are given by

1

2
ð1þ jjyjj2Þ ¼ 1

2
ffiffiffi
2

p ð2� jjzjj2Þ; 1

2
ið1� jjyjj2Þ ¼ z2;

ya�2 ¼ za; yn�1 ¼ 1

2
ffiffiffi
2

p ð2þ jjzjj2Þ; S ¼ �z1:

(C3)

The matrix for the symplectic rotation C�CV ¼ �0 is
given by

C ¼

1ffiffi
2

p 0 1ffiffi
2

p 0 0 0

0 0 0 � 1ffiffi
2

p 0 1ffiffi
2

p
0 1n�1 0 0 0 0
0 0 0 1ffiffi

2
p 0 1ffiffi

2
p

1ffiffi
2

p 0 � 1ffiffi
2

p 0 0 0
0 0 0 0 1n�1 0

0
BBBBBBBBB@

1
CCCCCCCCCA
: (C4)

It is easy to see that the symplectic section (C2) together
with the coordinate transformations (C3) is a particular
case of (3.44) and also that C ¼ S�1.

APPENDIX D: VARIOUS POTENTIAL TERMS

The PðTÞ potential terms given here are calculated for a
N ¼ 2, 4D YMESGT coupled to n ¼ 4 vector/tensor
multiplets.
Gauging Kð4Þ ¼ SOð2; 1Þ symmetry results in the fol-

lowing potential:

� i½ð �w2
2 � �w2

3Þw4
2 þ 2 �w2ð� �w2

2 þ �w2
3 þ �w2

4 þ 2Þw3
2 þ ð �w4

2 � 2ðw2
3 � �w3w3 þ w2

4 þ �w2
3 þ �w2

4 þ 4Þ �w2
2 þ 2w2

3 �w
2
3 þ 2w2

4 �w
2
3

þ ð �w2
3 þ �w2

4Þ2 þ 4ð �w2
4 þ 1Þ � 2w3 �w3ð �w2

3 þ �w2
4 þ 2ÞÞw2

2 þ 2 �w2ðð �w2
2 � �w2

3 � �w2
4 � 2Þw2

3 þ 8 �w3w3 þ ðw2
4 þ 2Þð �w2

2 � �w2
3

� �w2
4 � 2ÞÞw2 � w2

3 �w
4
2 � 4w2

3 � ð �w3ðw2
3 � �w3w3 þ w2

4 þ 2Þ � w3 �w
2
4Þð �w3w

2
3 � ð �w2

3 þ �w2
4 þ 4Þw3 þ ðw2

4 þ 2Þ �w3Þ
þ �w2

2ðw4
3 � 2 �w3w

3
3 þ 2ðw2

4 þ �w2
3 þ �w2

4Þw2
3 � 2ðw2

4 þ 2Þ �w3w3 þ ðw2
4 þ 2Þ2Þ�=½2ðw1 � �w1Þððw2 � �w2Þ2 � ðw3 � �w3Þ2

� ðw4 � �w4Þ2Þ2�: (D1)

Gauging Kð4Þ ¼ SOð1; 1Þ2Rð1;1Þ (no central charge) symmetry, on the other hand, results in the following potential:

� i½�2ð�ðw2 � �w2Þ2 � ðw3 � �w3Þ2 þ ðw4 � �w4Þ2Þð� �w2
2 þ �w2

3 þ �w2
4 þ 2Þw2

2 þ 8ðw2 � �w2Þðw3 � �w3Þ �w3w2

þ 4 �w2ð�ðw2 � �w2Þ2 � ðw3 � �w3Þ2 þ ðw4 � �w4Þ2Þw2 � 8w3ðw2 � �w2Þðw3 � �w3Þð� �w2
2 þ �w2

3 þ �w2
4 þ 2Þw2

þ 2ð�w2
2 þ w2

3 þ w2
4 þ 2Þðw2 � �w2Þðw3 � �w3Þ �w3ð� �w2

2 þ �w2
3 þ �w2

4 þ 2Þw2 þ ð�w2
2 þ w2

3 þ w2
4 þ 2Þ �w2ð�ðw2 � �w2Þ2

� ðw3 � �w3Þ2 þ ðw4 � �w4Þ2Þð� �w2
2 þ �w2

3 þ �w2
4 þ 2Þw2 þ 8w3ðw2 � �w2Þ �w2ðw3 � �w3Þ � 8ð�w2

2 þ w2
3 þ w2

4 þ 2Þ
� ðw2 � �w2Þ �w2ðw3 � �w3Þ �w3 � 2ð�w2

2 þ w2
3 þ w2

4 þ 2Þ �w2
3ð�ðw2 � �w2Þ2 � ðw3 � �w3Þ2 � ðw4 � �w4Þ2Þ

þ 4w3 �w3ð�ðw2 � �w2Þ2 � ðw3 � �w3Þ2 � ðw4 � �w4Þ2Þ � 2ð�w2
2 þ w2

3 þ w2
4 þ 2Þ �w2

2ð�ðw2 � �w2Þ2 � ðw3 � �w3Þ2
þ ðw4 � �w4Þ2Þ þ 2w3ð�w2

2 þ w2
3 þ w2

4 þ 2Þðw2 � �w2Þ �w2ðw3 � �w3Þð� �w2
2 þ �w2

3 þ �w2
4 þ 2Þ � 2w2

3ð�ðw2 � �w2Þ2
� ðw3 � �w3Þ2 � ðw4 � �w4Þ2Þð� �w2

2 þ �w2
3 þ �w2

4 þ 2Þ þ w3ð�w2
2 þ w2

3 þ w2
4 þ 2Þ �w3ð�ðw2 � �w2Þ2 � ðw3 � �w3Þ2

� ðw4 � �w4Þ2Þð� �w2
2 þ �w2

3 þ �w2
4 þ 2Þ�=½2ðw1 � �w1Þððw2 � �w2Þ2 � ðw3 � �w3Þ2 � ðw4 � �w4Þ2Þ3�: (D2)
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