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It is observed that three-dimensional Gödel black holes can be promoted to exact string theory

backgrounds through an orbifold of a hyperbolic asymmetric marginal deformation of the SLð2;RÞ
Wess-Zumino-Witten model. Tachyons are found in the spectrum of long strings. Uplifting these solutions

in type IIB supergravity, extremal black holes are shown to preserve one supersymmetry in accordance

with the Bañados-Teitelboim-Zanelli limit. We also make connections with some recently discussed

warped black hole solutions of topologically massive gravity.
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I. INTRODUCTION

The nontrivial 3d part of the Gödel spacetime can be
recognized as a timelike (or elliptic) deformation of anti–
de Sitter (AdS) spacetime [1]. The minimal setting to
describe the Gödel universe as a solution of an action
consists in 3d Einstein gravity coupled either to matter
fields [2] or to a gravitational Chern-Simons term [3].
Interestingly, the 3d Gödel spacetime can be embedded
in string theory as an exact marginal deformation of the
SLð2;RÞ Wess-Zumino-Witten (WZW) model [4].
Tachyons destabilizing the background are found in the
spectrum of long strings and thus lead to a stringy clue to
the chronology protection conjecture [5]. Various regula-
rizations of the geometry were proposed; see e.g. [4,6,7]
and references therein.

It is intriguing that this instability occurs even though
the 3d Gödel universe enjoys supersymmetry as originally
found in its five-dimensional cousins [8]. More precisely,
Killing spinors can be found in the N ¼ 2 extension of
Einstein-Maxwell-Chern-Simons theory but not in the
N ¼ 1 extension [9]. Also, it was shown that in heterotic
string theory, the 3d Gödel universe breaks all supersym-
metry but preserves one-half of it in type IIB [4].

In this work we would like to understand how these
properties generalize to Gödel black holes. The general-
ization is not completely trivial because, as shown in [2],
black holes are defined via periodic identifications on a
background other than the Gödel universe, namely, what is
called equivalently the tachyonic Gödel background in [2],
the hyperbolic deformation of anti–de Sitter space in [10],
or the spacelike warped anti–de Sitter space in [3]. This
spacetime contains no closed timelike curves as observed

in [10], as opposed to the original Gödel spacetime. In the
latter background, the spectrum of long string states ex-
hibits an infinite number of tachyonic long string states
with an arbitrary number of oscillators whose origin could
be traced back to the presence of closed timelike curves
[4]. For the tachyonic Gödel background, it is not clear if
tachyons will be found, nor are the conclusions of [4]
reached for the elliptic deformation directly applicable to
the Gödel black holes. Also, in the work of [9], the ex-
tremal Gödel black holes were not found as supersymmet-
ric solutions, which is in contrast to the extremal Bañados-
Teitelboim-Zanelli (BTZ) limit where supersymmetric ex-
tensions are known [11].
Because of the discrete identifications, Gödel black

holes contain closed timelike curves in the asymptotic
region. We thus still expect to find an instability in the
string spectrum. Nevertheless, in the causally safe region
close to the horizon, standard thermodynamics holds once
the correct conserved charges have been identified. One
can ask also if, regardless of the causal pathologies, black
hole entropy can be microscopically computed as for the
BTZ [12]. In fact, Gödel geometries admit, in general, an
asymptotic symmetry algebra containing one copy of the
Virasoro algebra [13]. When the spacetime is supported by
Maxwell-Chern-Simons fields, the central charge turns out
to be negative.
We will show in Sec. II how Gödel black holes describe

exact string backgrounds via deformations of the SLð2;RÞ
WZW model. We will make contact between previous
work [2,14] and the recently discussed warped geometries
[3]. The spectrum of strings containing tachyons will be
described. In Sec. III, we will uplift the Gödel black holes
to 10d solutions of type IIB supergravity and discuss
supersymmetry. The extremal Gödel black holes will be
shown to admit one 3d Killing spinor. We conclude with
some remarks on black hole entropy in the last paragraph.
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II. GÖDEL BLACK HOLES AS A MARGINAL
DEFORMATION

A. Asymmetric marginal deformations of the SLð2;RÞ
WZW model

Let us start with an SLð2;RÞWZWmodel at level k with
action SWZW and slð2;RÞ-valued currents JðzÞ ¼ JbðzÞTb,
�Jð �zÞ ¼ �JbðzÞTb, describing string theory on a target space
whose fields are the AdS3 metric and a given Neveu-
Schwarz–Neveu-Schwarz two-form. Let us take the con-
ventions of [3] and denote ðJ00 ; J10 ; J20Þ [resp. ð~J00; ~J10; ~J20Þ] the
zero modes of JaðzÞ [resp. �Jað�zÞ] satisfying

½J10 ; J20� ¼ 2J00 ;

½J00 ; J10� ¼ �2J20 ; and ½J00 ; J20� ¼ 2J10 :
(1)

This background is an exact string theory one, since WZW
models represent two-dimensional worldsheet conformal
field theories (CFTs). An interesting feature of WZW
models is that they allow for integrable marginal deforma-
tions, which allows one to reach a wide variety of new
exact backgrounds. The deformation is usually written as

S�� ¼ SWZW þ ��
Z

d2zOðz; zÞ; (2)

where �� is a parameter being switched on continuously. A
necessary condition for the operator Oðz; zÞ to be exactly
marginal is obviously that it is marginal, i.e. of conformal
weights ð1; 1Þ. In WZW models, such operators are natu-
rally present, and appear to be truly marginal under addi-
tional conditions [15]. For our purposes, we will be
interested in a particular type of deformation, named asym-
metric deformation; see e.g. [10,14]. Such deformations
are possible if one considers an N ¼ 1 heterotic super-
symmetric extension of the WZW model (for a short
review, see Appendix C of [14]). In the case of slð2;RÞ,
one adds 3 left-moving free fermions transforming in the
adjoint representation of slð2;RÞ, while leaving the right-
moving sector unchanged. However, a right-moving cur-
rent algebra with total central charge c ¼ 16 has to be
added representing the internal (compactified) bosons. As
a result, we end up with a left-moving N ¼ 1 current
algebra and a right-moving N ¼ 0 one (for details, see
[10,16,17]). We consider the following deformation opera-
tor:

O ðz; zÞ ¼
�
JaðzÞ � i

2
�abcc bðzÞc cðzÞ

�
�IiðzÞ; (3)

where JaðzÞ is a left-moving generator of slð2;RÞ, c a are

the 3 left-moving worldsheet fermions, and �IiðzÞ is an
arbitrary right-moving current belonging to the Cartan
subalgebra of the heterotic gauge group. These are nor-
malized as

�I iðzÞ �IjðwÞ� kGh
ij

2ðz�wÞ2 ; i;j¼1; . . . ;rank ðgauge groupÞ;
(4)

with hij ¼ fiklf
lj
k=g

�, fikl and g� being the structure

constants and dual Coxeter numbers of the heterotic gauge
group. It can be shown that these operators are truly
marginal [15]. The background fields resulting from inte-
grating the infinitesimal asymmetric deformation (2) and
(3) to a finite one with parameter H are written as
[10,16,18–20]

g�� ¼ g
�
�� � 2H2Ja�J

a
� no sum; (5)

B�� ¼ B
�
��; (6)

A� ¼ H

ffiffiffiffiffiffi
2k

kG

s
Ja�; (7)

where g
�
�� and B

�
�� are the initial anti–de Sitter back-

ground fields and Ja ¼ Ja�dx
�, �Ja ¼ �Ja�dx

�. It is worth

noting that these background fields are exact to all orders in
�0, contrarily to what happens e.g. for the symmetric
deformations (see [21] for a pedagogical review). The
deformation preserves a Uð1ÞL � SLð2;RÞR isometry of
the original SLð2;RÞL � SLð2;RÞR isometry of AdS3
space.
We place emphasis on the fact that, although this con-

struction is intrinsically heterotic due to the presence of the
gauge field, the same background can be obtained in type II
superstrings via a Kaluza-Klein reduction. In that case, the
current �IiðzÞ belongs to an internal compact U(1) instead,
and the gauge field is produced in the dimensional reduc-
tion procedure [10]. On the other hand, since the asym-
metric deformations have a constant dilaton, we might
expect them to be mapped by S-duality to type IIA solu-
tions, where in this case the geometries will be supple-
mented by Ramond-Ramond fields (although we will not
consider these possibilities here) [21].

B. Gödel black holes as orbifolded hyperbolic
deformations

The asymmetric deformations can be classified accord-
ing to the nature of the current considered in the deforma-
tion (3). Deformations driven by a timelike (J3), spacelike
(J2), or lightlike (J1 þ J3) generator will be termed ellip-
tic, hyperbolic, or parabolic, respectively. The metric of a
hyperbolic asymmetric deformation of the SLð2;RÞ WZW
can be written as [10]

ds2 ¼ k

4
½�d�2 þ du2 þ d�2 þ 2 sinh�dud�

� 2H2ðduþ sinh�d�Þ2�: (8)
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For H ¼ 0, this is simplyAdS3 space, where for f�; u; �g 2
R3 these coordinates cover the whole space exactly once.

This geometry has been recently mentioned as a solution
of topologically massive gravity; see Eq. (3.3) of [3]. The

relation with their parameters ðl̂; �̂Þ is

H
2 ¼ 3ð1� �̂2Þ

2ð3þ �̂2Þ ; k ¼ 4l̂2

3þ �̂2
: (9)

Therefore, the deformed anti–de Sitter metric for �̂2 > 1
(stretched AdS3 space in the terminology of [3]), yielding
regular black holes upon identification, can only be re-
garded as an exact string background if the deformation
parameter, and consequently the Uð1Þ field, becomes
imaginary. As we look only for real solutions of the
WZW model, we will discard such solutions. On the other
hand, the metric for real H, corresponding to �̂2 < 1
(squashedAdS3 space), is the tachyonic Gödel background
discussed in [2,13] and leads, after identifications, to the
Gödel black holes [2,13], which we write, for convenience,
as

ds2G€odel BH ¼ dr2

fðrÞ þ ð1� 2H2ÞðdT �mrd	Þ2 � fðrÞd	2

(10)

where fðrÞ ¼ m2r2 þ c1rþ c2. Contact is made with [2],
Eq. (31), via the substitution

m2 ¼ 2

�
1þ �2l2

l2

�
; H

2 ¼ 1� �2l2

2ð1þ �2l2Þ ;

c1 ¼ �8G�; c2 ¼ 4GJ

�

(11)

and T ¼ m
2� t. In order to show that (10) is indeed obtained

by performing discrete identifications on the metric (8), we
first remark that (10) is exactly the metric (4.1) of [3] with
the following substitution (hatted quantities are the ones of
[3]):

�̂ 2 ¼ 3�2l2

2þ �2l2
; l̂2 ¼ 3l2

2þ �2l2
; (12)

� ¼ �3ð1þ �2l2Þ
8�lGð2þ �2l2Þ

�
�lðr̂þ þ r̂�Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ �2l2Þr̂þr̂�

q �
; (13)

J ¼ 9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r̂þr̂�

p ð1þ �2l2Þ
32�Gð2þ �2l2Þ2

�
ð1þ 3�2l2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r̂þr̂�
p

� 2�l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2l2

p
ðr̂þ þ r̂�Þ

�
; (14)

and the change of coordinates t ¼ l̂ t̂ , r̂ ¼ � 2�
�̂ l̂
rþ 1

2�̂ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂þr̂�ð�̂2 þ 3Þp

, 	 ¼ 	̂. The region of parameter space
where closed timelike curves appear, �̂2 < 1, is exactly the
black hole sector of [2] with �2l2 < 1. We can then use the
change of coordinates (5.3)–(5.5) of [3], also valid in the
parameter range �̂2 < 1, to show that the metric (10) (but
with 	 2 R, while for Gödel black holes 	 is periodic)
can be written in a coordinate patch as (8). The Killing
vector used to perform the identifications that make 	
periodic is given by

@	 ¼ �̂2 þ 3

8

��
r̂þ þ r̂� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�̂2 þ 3Þr̂þr̂�
p

�̂

�
L2

� ðr̂þ � r̂�ÞR2

�
(15)

where L2 and R2 are the SLð2;RÞ Killing vectors associ-
ated with the currents J2 and �J2, respectively (given ex-
plicitly e.g. in [3], Appendix A). We note that quotients of
(8) had already appeared in [14], but these were not studied
further because of the absence of a causally safe asymp-
totic region.
For completeness, we provide a list of the real asym-

metric deformations of anti–de Sitter space in Table I in
order to make a larger contact between the works of
[2,3,14].
In conclusion, we have shown that Gödel black holes

supplemented with the appropriate background fields rep-
resent an exact string theory background through an orbi-
fold of a hyperbolic asymmetric deformation of the
slð2;RÞ WZW model in complete continuation of [4]. In
particular, it solves the beta function equations to all orders
in the inverse string tension �0 [4,10].

C. String spectrum

The power of marginal deformations of WZW models
lies in the fact that, besides being able to read off the
deformed background fields, it is in theory also possible
to determine the deformed partition function from the
original one (see [21] Chap. 3 for an overview and an

TABLE I. List of SLð2;RÞ �Uð1Þ deformations of 3d anti–de Sitter space. In each case, the Einstein tensor is equal to a
cosmological constant term plus a direct product of the Uð1Þ Killing vector K. Identifications in the Gödel universe lead to conical
singularities (Gödel particles), and identifications in the tachyonic Gödel universe lead to Gödel black holes.

Name Deformation type G�� þ�g�� � K�K� Real deformations

Timelike warped AdS Elliptic K2 ¼ �1 Gödel universe (stretched)

Spacelike warped AdS Hyperbolic K2 ¼ þ1 Tachyonic Gödel universe (squashed)

Null warped AdS Parabolic K2 ¼ 0 � � �
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extensive list of references). In the case at hand, however,
determining the deformed partition function in a straight-
forward way would require one to decompose the
SLð2;RÞk partition function in a hyperbolic basis of char-
acters, which is to date an unsolved problem. Also, having

to deal with the dSLð2;RÞk current algebra in a basis diago-
nalizing a noncompact operator leads to additional techni-
cal complications (see [22–27] for related discussions in
the context of the BTZ black hole). Nevertheless, the
spectrum of heterotic string states in orbifolds of the asym-
metric hyperbolic deformations including the twisted sec-
tors originating from the orbifold procedure [25] has been
obtained in [14]. It reads as [28]

L0 ¼ � jðj� 1Þ
k

� �2

kþ 2
� kþ 2

2k

�
2�

kþ 2
þ �

�
2

þ Ltw
0 þ N þ hint;

�L0 ¼ � jðj� 1Þ
k

�
��2

kþ 2
þ �Ltw

0 þ �N þ �hint (16)

where Ltw
0 and �Ltw

0 are the contributions to the weights of

the heterotic super WZW primaries touched by the defor-
mation and the orbifold:

Ltw
0 ¼

�
k

2
ffiffiffi
2

p w�� þ 1ffiffiffi
k

p ð�þ �Þ coshxþ ��

ffiffiffiffiffi
2

kg

s
sinhx

�
2
;

�Ltw
0 ¼

�
��

ffiffiffiffiffi
2

kg

s
coshxþ 1ffiffiffi

k
p ð�þ �Þ sinhx

�
2

þ
�
kþ 2

2
ffiffiffi
2

p w�þ þ ��

ffiffiffiffiffiffiffiffiffiffiffiffi
2

kþ 2

s �
2
:

In these expressions, the deformation parameter H is re-
lated to x through coshx ¼ 1

1�2H2 , with x > 0 so as to have

H
2 � 1=2 (see [10]). The SLð2;RÞ representations are pa-

rametrized by j, which is related to the second Casimir c2
as c2 ¼ �jðj� 1Þ. The spectrum contains continuous rep-
resentations with j ¼ 1

2 þ is, s 2 Rþ, as well as discrete
representations with j 2 Rþ lying within the unitarity
range 1=2< j < ðkþ 1Þ=2, which are related to long and
short string states in the WZW spectrum, respectively [29].
The parameters ð�; ��Þ 2 R2 are the (continuous) eigenval-
ues of the operators J2 and �J2, while � and �� are the
corresponding eigenvalues with respect to ic 1c 3 and the
internal fermions on the gauge sector considered in the
deformation operator (3) (� ¼ nþ a=2, �� ¼ �nþ �a=2,
n; �n 2 N, a; �a ¼ 0 for the NS sector and a; �a ¼ 1 for the
Ramond one). The oscillator numbers and contributions
from the internal CFT in the left- and right-moving sectors
are given by ðN; hintÞ and ð �N; �hintÞ, respectively. The wind-
ing sectors with winding numberw 2 Z originate from the
orbifold along the Killing vector ��L2 þ �þR2 [14,25].

One may now use these expressions to demonstrate that
the spectrum of the orbifolded hyperbolic asymmetric
deformation contains tachyonic long strings, along the

lines of [4,24,29]. The analysis presented here is very
rough and only aims at pointing out the presence of at least
one tachyonic state, as has been done in [4] for the asym-
metric elliptic deformation. First, we note that the inclu-
sion of winding or spectral flowed sectors should, in
principle, be extended to the fermions of the left-moving
super WZW model [30], as well as to those in the gauge
sector [4]. Then, the contributions of the internal CFTs and
the oscillator numbers have to be such that the level
matching condition is satisfied. From this, the energy
spectrum E ¼ �����þ �� [22,24] can be determined
from the mass-shell condition. Considering a state with
N ¼ 1=2, n ¼ �n ¼ a ¼ �a ¼ 0, and � ¼ ��, the condition
L0 � 1=2 ¼ 0 for a state in a continuous representation
leads to

E ¼ ð�� � �þÞ
2

ffiffiffi
2

p
sinh2x

�
k3=2w�� coshx

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2k3�2� � 2ð1þ 4hkþ 4s2Þsinh2x

q �
: (17)

Therefore, we conclude that for a state sufficiently excited
in the internal CFTor with s large enough, the energy could
become imaginary, pointing at an instability of the back-
ground. One could conjecture that the endpoint of the
tachyon decay could correspond to the double deformation
of [14], free of closed timelike curves, obtained by super-
posing a symmetric deformation to the asymmetric one,
but we will not expand further in that direction.

III. SUPERSYMMETRY PROPERTIES

A. Embedding in type II supergravity

Let us consider the consistent truncation of both type II
supergravities to fields in the Neveu-Schwarz sector. The
action reads as (see e.g. [31], p. 29)

S ¼ 1

16
G10

Z
d10x

ffiffiffiffiffiffiffi�ĝ
p �

R̂� 1

2
@�	̂@�	̂

� 1

12
e�	Ĥ2

3

�
: (18)

It turns out that the Gödel black holes can be uplifted to
solutions of this action. In that case, the dilaton vanishes
and the three-form and metric are given by

Ĥ3 ¼ mðvolS3 þ dr ^ dT ^ d	þ ffiffiffi
2

p
Hdr ^ dz ^ d	Þ;

d̂s2 ¼ ds2
S3
þ ds2

R3 þ ds2G€odel BH

þ ðdzþ ffiffiffi
2

p
H ðdT �mrd	ÞÞ2; (19)

where the metric (10) is used.
It is known that in (1,1) 3d supergravity, the nonzero-

mass extremal BTZ black holes have only one periodic
Killing spinor in the (1,0) or (0,1) representations of the
gamma matrices, depending on the sign of the angular
momentum [11]. In the zero-mass vacuum, these spinors
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add up, and therefore the so-called Ramond vacuum pre-
serves two supersymmetries.

Let us develop a quick and informal argument in favor of
supersymmetry for Gödel black holes. First, it seems that
the analysis of [11] is left unchanged if one analytically
continues to t ! it and 	 ! i	, which indicates that the
analytically continued BTZ admits the same Killing spin-
ors. Now, uplifting to 10 dimensions, one obtains the
solution BTZan:cont: � S3 � T4 of type II supergravity
where the supersymmetries are also uplifted and enhanced
by the S3 � T4 factors. It turns out that the solution (19)
can be obtained from a change of variables twisting one of
the flat directions z with time T. Equivalently, the Gödel
metric can be ‘‘untwisted’’ by adding an extra dimension z
with the appropriate metric. It is only when z is periodi-
cally identified that the solution cannot be joined to
BTZan:cont: � S3 � S1 � T3 by a diffeomorphism.

Since the Killing spinors depend only on the radial
coordinate r, they are unaffected by the change of variables
twisting one of the flat directions zwith time and leading to
the solution (19). Compactifying this metric on S3 � T4,
one obtains the Gödel black holes, and since the Killing
spinors do not depend on the variables of S3 � T4, they
should appear as supersymmetries of the Gödel black
holes.

However, a subtlety arises which invalidates part of this
argument. It turns out that there is only one extremal BTZ
black hole that is related to Gödel black holes in the limit
H ! 0. Indeed, when H ¼ 0, the metric ds2

G€odel BHjH¼0
¼

ds2an:cont: BTZ reduces to the double analytic continuation
of the BTZ metric

ds2BTZ ¼ dr2

fð�rÞ � ðdT þmrd	Þ2 þ fð�rÞd	2 (20)

with the continuation T ! �iT, 	 ! �i	, and r ! �r.
The BTZ metric is written in terms of the standard asymp-
totically anti–de Sitter coordinates ðtBTZ; rBTZ; 	BTZÞ [32]
as

	BTZ ¼ 	þ 2

lAdSc1
T; tBTZ ¼ � 2

c1
T;

r2BTZ ¼ �c1rþ c2;

(21)

and the standard parameters are given by

lAdS ¼ 2

m
; MBTZ ¼ 2c2

l2
� c21

4
; JBTZ ¼ �2

c2
lAdS

:

(22)

Now, the extremal BTZ black hole lAdSMBTZ ¼ JBTZ cor-
responds to c21 ¼ 4c2m

2. However, the counter-rotating
extremal black hole lAdSMBTZ ¼ �JBTZ corresponding to
c1 ¼ 0 is not covered by the ðT; r; 	Þ coordinates because
the metric is not related by a diffeomorphism to the ex-
tremal BTZ metric.

Therefore, we expect to find only one Killing spinor for
the class of extremal Gödel black holes c21 ¼ 4c2m

2. We
will now show directly that Killing spinors exist by explic-
itly solving the Killing spinor equations for the solution
(19) compactified on S3 � T4.

B. Killing spinor equations

We will follow the notations of [33] throughout.
Requiring the variations of the dilatino and gravitino to
vanish and using the simplification trick shown in (7.4) of
[34] leads to the Killing spinor equations

Hð3ÞABC�ABC� ¼ 0; (23)

�
DA þ i

48
Hð3ÞBCD�BCD�AB�1C

�
� ¼ 0: (24)

C is the complex conjugation operator, and the reality
matrix satisfies BB� ¼ 1, ��

A ¼ �B�AB� where � ¼
	1 depends on the representation. We have set the dilaton
to zero. The real parts of the spinor �	 ¼ P	� are ob-
tained from the projectors P	 ¼ 1

2 ð1	 iB�CÞ and obey

Hð3ÞABC�ABC�	 ¼ 0;�
DA 	 1

48
Hð3ÞBCD�BCD�A

�
�	 ¼ 0:

(25)

Let us choose the vielbein as

e0 ¼ �
ffiffiffiffiffiffiffiffiffi
fðrÞ

q
d	;

e1 ¼ 1ffiffiffiffiffiffiffiffiffi
fðrÞp dr; e2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2H2

p
ðdT �mrd	Þ;

e9 ¼ dzþ ffiffiffi
2

p
HðdT �mrd	Þ

(26)

with ei, i ¼ 3; . . . ; 5 parametrizing the three-sphere and e6,
e7, e8 the flat directions. We choose a spinor of the form
�T3 
 �M7


 �0 where �0 is a two-component spinor and

�T3 is a two-component constant spinor which factorizes
from the equations. We will still denote � and �A as the
resulting seven-dimensional spinors and Gamma matrices.
The first Killing equation reads explicitly as

ð�345 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2H2

p
�012 þ ffiffiffi

2
p

H�019Þ�	 ¼ 0: (27)

The ansatz for the spinor � consists in the following direct
product: �	 ¼ �M4	 
 �S3	 where �M4	 ¼ �	 
 �M2

is

a four-component spinor depending only on t, r, 	, and z,
and �S3 is a spinor on the sphere. We are mainly interested
in the part �M2

of the spinor which captures the supersym-

metry properties of the three-dimensional Gödel subspace.
We represent the Clifford algebra as

�0 ¼ i�3 
 �1 
 I; �1 ¼ �3 
 �2 
 I;

�2 ¼ �1 
 I 
 I; �9 ¼ �2 
 I 
 I;
(28)
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�3 ¼ "�3 
 �3 
 �1; �4 ¼ "�3 
 �3 
 �2;

�5 ¼ "�3 
 �3 
 �3;
(29)

where, for completeness, we allowed for two inequivalent
representations: " ¼ 	1. The four first matrices form a
representation for the four-dimensional subspace (0129) of
interest.

Now, the matrix �345 ¼ �i"�� 
 I is proportional to the
chirality matrix �� ¼ ��3 
 �3 in the space (0129).
Therefore, the first Killing equation reduces to

ð"I þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2H2

p
�2 �

ffiffiffi
2

p
H�1Þ�	 ¼ 0; (30)

which is a chirality condition on �	 for arbitrary H.
Using f�i;�abcg ¼ 0 and f�i;�345g ¼ 2i for a; b; c 2

0; 1; 2; 9, it is straightforward to write the components on
the sphere of the second Killing equation (25) as the usual
Killing spinor equation on the sphere for �S3 . The remain-
ing components can be written as�

Da 	m

8
f�a;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2H2

p
�012 þ ffiffiffi

2
p

H�019g
�
�	 ¼ 0: (31)

Using f�a;�
012g ¼ 2i���a9, f�a;�

019g ¼ �2i���a2, and
���ab ¼ � i

2"
abcd�cd, the equation can be written in the

familiar form�
dþ 1

4
~!ab�ab

�
�M4	 ¼ 0;

~!ab ¼ !ab 	m

2
ecð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2H2

p
"c9ab

� ffiffiffi
2

p
H"c2abÞ (32)

where the removal of the last identity factor of the Gamma
matrices (28) is understood.

Up to now, we have solved the trivial flat and spherical
parts of the Killing spinor equations. The only remaining
four equations involve the four-dimensional spinor �M4	.
Now, we expect that there will be only three nontrivial
equations involving the Gödel metric. Indeed, the combi-

nation of
ffiffiffiffiffiffi
2H

p
times the equation for index 2 minusffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2H2
p

times the equation for index 9 gives

ð ffiffiffi
2

p
HD2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2H2

p
D9Þ�M4	 ¼ 0; (33)

which, expressed in the coordinate basis, gives the follow-

ing dependence on the variables: �M4	 ¼ �M4	ðT þffiffiffi
2

p
Hz;	; rÞ. Solving the remaining equations is the object

of the next section.

C. Gödel Killing spinors

In fact, the Eq. (32) for �M4þ is very simple. We have�
dþ 1

2
�01d ~	

�
�M4þ ¼ 0;

~	 ¼ � c1
2
	�mðT þ ffiffiffi

2
p

HzÞ:
(34)

It admits the solution

�M4þ ¼ exp

�
�

~	

2
�01

�
�ð0Þþ (35)

where �ð0Þþ ¼ �þ 
 �ð0Þ
M2

is a constant spinor with � also

satisfying the chirality condition (30). However, for c1 �
0, since the spinor is not periodic nor antiperiodic in 	, we
have to reject this solution. In any case, the spinor is z
dependent and therefore is not a Killing spinor of the three-
dimensional relevant spacetime.
The equation for �M4� is more involved. Since the

integrability conditions hold, a local solution always exists.
One obtains

�M4� ¼ ðcoshðKðrÞÞ þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2H2

p
�02 þ

ffiffiffi
2

p
H�09Þ

� sinhðKðrÞÞÞ exp
�
� 	

16m
M

�
�ð0Þ� (36)

where

KðrÞ ¼ 1

2
ln

�
c1 þ 2m2r

2m
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2r2 þ c1rþ c2

q �
;

M ¼ ð4m2ðc2 � 1Þ � c21Þ�01 þ ð4m2ðc2 þ 1Þ � c21Þ
� ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2H2

p
�12 þ

ffiffiffi
2

p
H�19Þ:

The chirality condition (30) has broken half of the super-
symmetries. We expect that the tachyonic Gödel geometry
is topologically trivial, similarly to the Gödel geometry. If
it indeed turns out to be the case, the solution (36) is also a
global spinor.
Since Gödel black holes are obtained as identifications

along @=@	 on the tachyonic Gödel geometry, the Killing
spinors exist globally only if they are periodic or antiperi-
odic under this identification. This amounts to imposing
M2 ¼ 0 and M�ð0Þ� ¼ 0. This statement is equivalent to

imposing c21 ¼ 4m2c2 and the following chirality condi-
tion:

ð��01 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2H2

p
�12 þ

ffiffiffi
2

p
H�19Þ�ð0Þ

M4� ¼ 0: (37)

Using the definition of conserved charges [2], the relation
between c1 and c2 is in fact the condition for extremal
black holes. The condition (37) can be simplified by split-

ting �ð0Þ
M4� as �� 
 �ð0Þ

M2
and using the chirality condition

(30) on ��. One then gets a condition on �ð0Þ
M2

only:

�1�
ð0Þ
M2

¼ "�ð0Þ
M2
. Assuming the topological triviality of

the background metric, these spinors exist globally.
Finally, we found that for each representation of the

Clifford algebra, parametrized by ", extremal Gödel space-
times admit a Killing spinor,
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�M4� ¼ ðcoshðKðrÞÞ þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2H2

p
�02 þ

ffiffiffi
2

p
H�09Þ

� sinhðKðrÞÞÞ
ffiffiffi
2

p
H þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2H2

p
"

 !

 1

"

� �
:

We conclude that one class of extremal black holes
(c1 ¼ 0) does not have any Killing spinor, while the other
class (c21 ¼ 4m2c2) has one supersymmetry generator. This
is to be contrasted with the BTZ case, where Killing
spinors were found in each class of extremal black holes.

This result fits nicely with the fact that the Gödel uni-
verse breaks one of the two SLð2;RÞ � SLð2;RÞ exact
symmetries, which at the level of asymptotic symmetries
breaks one of the two Virasoro algebras. It is then natural
that one of the two supersymmetric extensions of the
Virasoro algebras also gets broken, as we just showed.
The existence of a Killing spinor shows that the SLð2;RÞ
algebra gets enhanced to an Ospð1j2Þ algebra. Since the
Killing spinors are periodic, the supersymmetry generators
are taken in the Ramond representation.

IV. DISCUSSION

The identification of supersymmetry for extremal Gödel
black holes in type IIB supergravity can be used to comple-
ment the analysis of [13]. There we derived the central
extensions in the algebra of charges associated with the
asymptotic symmetries of these spaces in the Einstein-
Maxwell-Chern-Simons theory. Even though we have not
repeated the analysis for the present matter fields, we
expect that the right central charge associated with the
unbroken copy of a Virasoro algebra will be the same,

cR ¼ � 3�l2

ð1þ �2l2ÞG ¼ � 6�̂ l̂

ð3þ �̂2ÞG ¼ � 3
ffiffiffi
k

p
2G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2H2

p
:

(38)

Indeed, a close analysis shows that the central charge arises
only from the Einstein part of the Lagrangian in [13]. The
central charge is negative when the Gödel black holes have
positive mass. It is interesting to note that the central
charges vanish in the limit H

2 ¼ 1=2, where the deformed
geometry becomes locally AdS2 � R [10].

The missing step in the argument to be able to match the
macroscopic entropy with the one derived from the Cardy
formula, at least in the left sector, was the knowledge of the
minimal value for the L0 eigenvalue. Given the supersym-
metric energy bound,

L0 � 0; (39)

this minimal value �0 is zero and is reached for the
extremal black hole solutions. This provides a firmer
ground on the use of the Cardy formula to count the
microstates of Gödel black holes in the unbroken sector.
It shows that even though the central charge of the Virasoro
algebra is negative, there is enough structure (a Virasoro
algebra and supersymmetry) to make the counting work.

An alternative approach to compute the entropy has been
used in [3,35]. One can deduce from the vector (15) what
can be interpreted as left- and right-moving temperatures
in the dual CFT,

TR �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2G�ð2þ �2l2Þð�l2�� ð1þ �2l2ÞJÞp ffiffiffi

3
p


�l2
; (40)

TL �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gð2þ �2l2Þ�p ffiffiffi

3
p


l
: (41)

The Bekenstein-Hawking entropy is then equal to

S ¼ A
4G

¼ 
2l

3
ðjcLjTL þ jcRjTRÞ (42)

where jcRj ¼ jcLj. The advantage of this formula is that it
allows one to conjecture the (absolute) value of the left
central charge.
We have mentioned that Gödel black holes can also be

obtained as quotients of spacelike squashed AdS3 geome-
tries in topologically massive gravity [3]. One can then ask
if the N ¼ 1 supersymmetric extension [36,37] of this
theory admits Gödel supersymmetric solutions. It turns out
that it is not the case since all supersymmetric solutions
admit a null Killing vector [38]. They all fall in the class of
null/parabolic deformations of anti–de Sitter space; see
Table I. Therefore, extremal Gödel black holes are not
supersymmetric in N ¼ 1 topologically massive gravity.
We also observed that Gödel black holes represent exact

string theory backgrounds, like AdS3 space and the BTZ
black holes do, though with a tachyonic spectrum. It is,
however, not clear if these backgrounds could be obtained
as the near-horizon geometry of some branes or fundamen-
tal string configurations. If this would be the case, it would
be interesting to identify the corresponding nongravita-
tional theory. This question has been investigated, namely,
for the parabolic symmetric deformation of the SLð2;RÞ
WZW model [39], but to our knowledge no such analysis
exists for asymmetric deformations.
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