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This paper presents an analytic perturbation approach to the dynamics of a classical spinning particle,

according to the Mathisson-Papapetrou-Dixon (MPD) equations of motion, with a direct application to

circular motion around a Kerr black hole. The formalism is established in terms of a power series

expansion with respect to the particle’s spin magnitude, where the particle’s kinematic and dynamical

degrees are expressed in a completely general form that can be constructed to infinite order in the

expansion parameter. It is further shown that the particle’s squared mass and spin magnitude can shift due

to a classical analogue of radiative corrections that arise from spin-curvature coupling. Explicit expres-

sions are determined for the case of circular motion near the event horizon a Kerr black hole, where the

mass and spin shift contributions are dependent on the initial conditions of the particle’s spin orientation.

A preliminary analysis of the stability properties of the orbital motion in the Kerr background due to spin-

curvature interactions is explored and briefly discussed.
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I. INTRODUCTION

One of the earliest and ongoing research interests in
general relativity concerns the dynamics of extended
bodies in the presence of strong gravitational backgrounds.
Considering that virtually all astrophysical objects in the
Universe, such as black holes, neutron stars, and other
isolated massive bodies, have at least some spin angular
momentum in their formation, it is not difficult to surmise
that an in-depth study of moving relativistic systems with
spin is a useful endeavour. A relevant example concerns the
motion of rapidly rotating neutron stars in circular orbit
around supermassive black holes like ones believed to exist
in the center of galaxies, which serve as candidate sources
for emitting low-frequency gravitational wave radiation
that may be detected by the space-based LISA gravita-
tional wave observatory [1].

A first attempt to understand the dynamics of extended
bodies in curved space-time was put forward by Mathisson
[2], who showed the existence of an interaction term
involving the direct coupling of particle spin to the
Riemann curvature tensor generated by a background
source. Steady progress was made since this first attempt,
with a notable contribution made several years afterwards
by Papapetrou [3], who proposed that the spinning particle
exists within a space-time world tube containing its center-
of-mass worldline, where its associated matter field has
compact support. In addition, multipole moment contribu-
tions, i.e. beyond the mass monopole and spin dipole, to the
extended objects full equations of motion were considered
by Tulczyjew [4] and others, ultimately leading to the
expressions obtained by Dixon [5,6], with a self-consistent
description for all multipole moment contributions to infi-
nite order. While the various theories of extended body

motion in curved space-time differ with respect to the
higher-order multipole moments, all of them recover the
‘‘pole-dipole approximation’’ identified initially by
Mathisson and Papapetrou, which are satisfactory for
most practical calculations, so long as the dimensions of
the spinning body are small when compared to the back-
ground space-time’s local radius of curvature. These trun-
cated expressions of the full equations of motion are
commonly known as the Mathisson-Papapetrou-Dixon
(MPD) equations.
There has been widespread interest in applying the MPD

equations to the dynamics of classical spinning particles in
orbit around rotating black holes, as described by the Kerr
metric [7–11]. In many ways, the Kerr background is an
ideal testing ground for the MPD equations, since both
mass sources are spinning, which introduce interesting
spin-curvature effects that impact upon the orbiting parti-
cle’s overall evolution. Furthermore, it lends itself well to
numerical simulations of deterministic chaos under ex-
treme conditions [11–14], as well as studies of gravita-
tional wave generation [15,16] arising from spin-induced
deviations away from geodesic motion.
A more formal study of the MPD equations have also

occurred in various forms [17–19], including a recent
perturbative approach developed by Chicone, Mashhoon,
and Punsly (CMP) [20], with application to the study of
rotating plasma clumps propagating in astrophysical jets
directed along a Kerr black hole’s axis of symmetry.
Another application of the CMP approximation by
Mashhoon and Singh [21] determined analytic expressions
for leading-order spin-curvature perturbations of a spin-
ning particle’s circular orbit around a Kerr black hole. This
analysis is successful in reproducing the spinning particle’s
kinematic behavior compared to numerical simulations of
the full MPD equations for situations where, for spin
magnitude s and mass m, the Møller radius [21,22] for*dinesh.singh@uregina.ca
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the spinning particle is s=m & 10�3r, and r is the particle’s
radial distance away from the background mass source.
However, this approximation starts to break down when
s=ðmrÞ � 10�2–10�1 for r ¼ 10M, where M is the Kerr
black hole mass, suggesting that higher-order spin-
curvature coupling terms are required to more completely
describe the orbital motion.

It was for this initial purpose that a generalization of the
CMP approximation was very recently introduced by
Singh [23] to incorporate higher-order analytic contribu-
tions to the perturbation approach for the MPD equations.
This generalization has several nice features. For example,
as a power series expansion with respect to the particle’s
spin magnitude, it can be extended to formally infinite
order in the expansion. In addition, it leads to expressions
that are background independent, and is fully applicable to
arbitrary motion of the particle, without recourse to any
space-time symmetries within the metric. As a result, this
generalization is very robust, with applicability for many
distinct scenarios in theoretical astrophysics, such as the
modelling of globular clusters and other many-body dy-
namical systems in curved space-time, and also spinning
particle interactions with gravitational waves, the results of
which can be compared with existing treatments [24–26].
Furthermore, this approach identifies the existence of a
classical analogue for ‘‘radiative corrections’’ that shift
the particle’s overall squared mass and spin magnitude
due to higher-order spin-curvature contributions, a feature
not thought about before. It would, therefore, be very
useful to investigate the computational capacity of this
generalization when applied to circular motion in the
Kerr background. This is especially so in extreme condi-
tions where a transition from stable to chaotic motion may
be analytically identified, for comparison with existing
approaches [11–14] which use primarily numerical
methods.

The purpose of this paper is to present the generalized
form of the CMP approximation for the MPD equations
within the context of circular motion around a Kerr black
hole, and explore the derived physical consequences. It
begins with Sec. II, which displays the full MPD equations,
followed by a presentation of the formalism behind the
generalized CMP approximation in Sec. III. Afterwards,
Sec. IV presents the formal application of the generalized
CMP approximation to the case of circular motion around a
Kerr black hole, up to second order in the perturbation
expansion parameter. This is followed, in Sec. V, by analy-
sis of the predicted kinematic and dynamical properties of
the perturbed system, including the predicted effective
squared mass and spin magnitude of the spinning particle.
A general discussion of the main results obtained in this
paper is found in Sec. VI, with a brief conclusion there-
after. The metric convention adopted is þ2 signature with
Riemann and Ricci tensor definitions following MTW
[27], and geometric units of G ¼ c ¼ 1 are assumed
throughout.

II. MATHISSON-PAPAPETROU-DIXON (MPD)
EQUATIONS

The MPD equations of motion for the spinning particle’s
linear four-momentum P�ð�Þ and spin tensor S��ð�Þ con-
sist of

DP�

d�
¼ � 1

2
R�

���u
�S��; (1a)

DS��

d�
¼ P�u� � P�u�; (1b)

where (1a) describes the force applied due to spin-
curvature coupling via S��ð�Þ, the particle’s four-velocity
vector u�ð�Þ ¼ dx�ð�Þ=d� with affine parametrization �,
and the Riemann curvature tensor R����, while (1b) de-

scribes the corresponding torque generated. As a result of
(1b), the particle’s four-momentum precesses around the
center-of-mass worldline. While it is possible to identify �
with proper time such that u�u� ¼ �1, it is useful to leave

it unspecified at present. The differences between compet-
ing descriptions of extended objects in curved space-time
arise from differing higher-order multipole moment terms
beyond the mass monopole and spin dipole moment, lead-
ing to additive contributions of the form F � and T ��

[17,21] in (1a) and (1b), respectively. Specification of F �

and T �� requires knowledge of the spinning object’s
energy-momentum tensor T�� [5–7,21], satisfying cova-
riant conservation T��

;� ¼ 0. For most practical purposes,

however, the expression for (1) is sufficient.
At present, the MPD equations as expressed in (1) are

underdetermined and require additional equations to com-
pletely specify the system. Following the approach from
Dixon [5,6], the orthogonality spin condition relating the
particle’s linear and spin angular momenta according to

S��P� ¼ 0 (2)

is introduced, while the mass and spin parameters m and s
naturally take the form

m2 ¼ �P�P
�; (3a)

s2 ¼ 1
2S��S

��: (3b)

It is very important to note that, while (3a) and (3b) are
both technically functions of �, the MPD equations and (2)
indicate that m and s are constants of the motion [20]. As
well, the combination of (1) and (2) are known [9] to result
in an expression for the four-velocity u� in terms of P� and
S��, such that

u� ¼ �P � u
m2

�
P� þ 1

2

S��R����P
�S��

m2 þ 1
4R����S

��S��

�
; (4)

where P � u is currently an undetermined scalar product
relating the particle’s internal clock with respect to �. It
becomes a self-evident confirmation from (4) that spin-
curvature coupling displaces the particle’s four-velocity
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away from a geodesic in curved space-time, leading to a
dynamically rich interplay between the particle’s center-
of-mass motion and its dynamical response due to spin-
curvature interaction. The constraint equations (2)–(4) will
prove very useful for ultimately deriving the generalized
CMP approximation [23].

III. THE GENERALIZED CMP APPROXIMATION
FOR THE MPD EQUATIONS

A. CMP approximation

The approach taken by Chicone, Mashhoon, and Punsly
in deriving the CMP approximation [20,21] is to first
assume that P� �mu� ¼ E� is a small quantity, where
E� is the spin-curvature force. As well, the Møller radius �
[20–22] is chosen to be small, such that � ¼ s=m � r,
where r is the distance from the particle to the background
gravitational source. This combination leads to the CMP
approximation for the MPD equations, a series expansion
to first order in s, such that

DP�

d�
� � 1

2
R�

���u
�S��; (5a)

DS��

d�
� 0; (5b)

where the spin tensor in (5b) is parallel transported within
the approximation, and the spin condition (2) takes the
form

S��u� � 0; (6)

coinciding with the Pirani condition [28] relating the or-
thogonality of the spin tensor to the four-velocity.

The CMP approximation is a useful first step in an
analytic perturbation approach to the MPD equations,
with a remarkably accurate description for circular motion
around a Kerr black hole [21] compared to the full MPD
equations for s=ðmrÞ � 10�3 and r ¼ 10M. However, it
becomes clear that the CMP approximation breaks down as
s=ðmrÞ � 10�2–10�1 for the same choice of r, which
follows from the loss of torque information due to (5b),
especially since the spin-induced modulation of the parti-
cle’s �-dependent radial position found in the MPD equa-
tions is not present in the CMP approximation. This
weakness within (5) and (6) is suggestive of a more de-
tailed and systematic approach that has resulted in the
generalization to follow [23].

B. Generalization of the CMP approximation

1. Formalism

The approach taken to generalize the CMP approxima-
tion is to assume a power series expansion of the particle’s
linear momentum and spin angular momentum, such that

P�ð"Þ � X1
j¼0

"jP�
ðjÞ; (7a)

S��ð"Þ � "
X1
j¼0

"jS
��
ðjÞ ¼ X1

j¼1

"jS
��
ðj�1Þ; (7b)

where " is an expansion parameter to be associated with s,
and P

�
ðjÞ and S

��
ðj�1Þ are the respective jth-order contribu-

tions of the linear momentum and spin angular momentum
in ". This implies that the zeroth-order expressions in "
denote the dynamics of a spinless particle in geodesic
motion. As well, the four-velocity is assumed to take the
form

u�ð"Þ � X1
j¼0

"ju�ðjÞ: (8)

When substituting (7) and (8) into the MPD equations
described by

DP�ð"Þ
d�

¼ � 1

2
R�

���u
�ð"ÞS��ð"Þ; (9a)

DS��ð"Þ
d�

¼ 2"P½�ð"Þu��ð"Þ; (9b)

where an extra factor of " is introduced in (9b) for con-
sistency, it follows that the jth-order expressions of the
MPD equations are

DP
�
ðjÞ

d�
¼ � 1

2
R�

���

Xj�1

k¼0

u�ðj�1�kÞS
��
ðkÞ ; (10a)

DS��ðj�1Þ
d�

¼ 2
Xj�1

k¼0

P½�
ðj�1�kÞu

��
ðkÞ: (10b)

Given P�
ð0Þ ¼ m0u

�
ð0Þ, where

m2
0 � �Pð0Þ

� P�
ð0Þ; (11)

it can be shown that the zeroth-order term in " is

DP�
ð0Þ

d�
¼ 0; (12)

while the respective first-order terms following (10) are

DP�
ð1Þ

d�
¼ � 1

2
R�

���u
�
ð0ÞS

��
ð0Þ ; (13a)

DS��ð0Þ
d�

¼ 0; (13b)

which is the CMP approximation.

2. Supplementary equations

A complete specification of (10) requires determining
u�ðjÞ as a function of the linear and spin angular momentum

expansion components. In turn, this requires use of the
supplementary equations (2)–(4), which have important
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consequences within the formalism. It is straightforward to
show that the spin condition (2) in terms of (7a) and (7b) is

Pð0Þ
� S��

ðjÞ ¼ �Xj
k¼1

PðkÞ
� S��

ðj�kÞ; j � 1 (14)

for the ðjþ 1Þth-order contribution in ", where the first-
order perturbation in " is

Pð0Þ
� S

��
ð0Þ ¼ 0: (15)

Given that the mass and spin magnitude parameters m and
s described by (3) are dependent on P� and S��, which are
represented by (7a) and (7b), respectively, it is possible to
identify a classical analogue of a bare mass m0 defined by
(11) and a bare spin s0, according to

s20 � 1
2S

ð0Þ
��S

��
ð0Þ ; (16)

in analogy with the radiative corrections identified with the
bare mass and spin parameters in quantum field theory. In
this way, the MPD equations in perturbative form yield
total mass and spin magnitudes due to the sum of ‘‘radia-
tive corrections’’ to m0 and s0, such that

m2ð"Þ ¼ m2
0

�
1þ X1

j¼1

"j �m2
j

�
; (17)

s2ð"Þ ¼ "2s20

�
1þ X1

j¼1

"j �s2j

�
; (18)

where

�m 2
j ¼ � 1

m2
0

Xj
k¼0

Pðj�kÞ
� P

�
ðkÞ; (19)

�s 2
j ¼

1

s20

Xj
k¼0

Sðj�kÞ
�� S��

ðkÞ ; (20)

are dimensionless jth-order corrections to m2
0 and s20, re-

spectively. Given that m2 and s2 are already shown to be
constant within the exact set of MPD equations, it must
also be true that �m2

j and �s2j are individually constant for

each order of ".
For the remaining supplementary equation (4), the four-

velocity described by

u�ð"Þ ¼ � P � u
m2ð"Þ

�
P�ð"Þ þ 1

2

S��ð"ÞR����P
�ð"ÞS��ð"Þ

m2ð"Þ�ð"Þ
�
;

(21a)

�ð"Þ � 1þ 1

4m2ð"ÞR����S
��ð"ÞS��ð"Þ; (21b)

can be determined as a series expansion in ", upon specify-
ing the yet undetermined scalar product P � u. With the
particularly useful choice of

P � u � �mð"Þ; (22)

it is straightforward to determine that

u�ð"Þu�ð"Þ ¼ �1þ 1

4m6ð"Þ�2ð"Þ
~R�ð"Þ ~R�ð"Þ

¼ �1þOð"4Þ; (23)

where

~R�ð"Þ � S��ð"ÞR����P
�ð"ÞS��ð"Þ: (24)

To at least third order in ", the outcome (23) from (22)
justifies the identification of � as proper time for parame-
trization of the particle’s center-of-mass worldline. It is
also straightforward, though tedious, to show explicitly
from substituting (7) and (17) into (21) that the spinning
particle’s four-velocity in general form is

u�ð"Þ ¼ X1
j¼0

"ju�ðjÞ

¼ P
�
ð0Þ
m0

þ "

�
1

m0

�
P�
ð1Þ �

1

2
�m2
1P

�
ð0Þ

��
þ "2

�
1

m0

�
P�
ð2Þ �

1

2
�m2
1P

�
ð1Þ �

1

2

�
�m2
2 �

3

4
�m4
1

�
P�
ð0Þ

�
þ 1

2m3
0

S��
ð0ÞR����Pð0Þ�S

��
ð0Þ

�

þ "3
�
1

m0

�
P
�
ð3Þ �

1

2
�m2
1P

�
ð2Þ �

1

2

�
�m2
2 �

3

4
�m4
1

�
P
�
ð1Þ �

1

2

�
�m2
3 �

3

2
�m2
1 �m

2
2 þ

5

8
�m6
1

�
P
�
ð0Þ

�

þ 1

2m3
0

R����

�X1
n¼0

S
��
ð1�nÞ

Xn
k¼0

P�
ðn�kÞS

��
ðkÞ �

3

2
�m2
1S

��
ð0ÞP

�
ð0ÞS

��
ð0Þ

��
þOð"4Þ; (25)

which also satisfies (23) to third order in ". Following (25), it can be verified that [23]

D�s2j
d�

¼ D �m2
j

d�
¼ 0 (26)

up to third order in ", with the use of (10).
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3. Perturbations of the Møller radius

A useful consideration within the generalized CMP
approximation is the perturbation expression for the
Møller radius � ¼ s=m, since this quantity is relevant for
identifying the strength of the spin-curvature interaction
for particles in the Kerr background while in circular orbit
[21]. From previous work on chaotic dynamics [11–14],
there is a strong suggestion that perturbations in the Møller
radius may give some insight into determining the precise
conditions for a transition away from stable motion. A
straightforward calculation shows that

sð"Þ
mð"Þ ¼ "

s0
m0

�
1þ "

�
1

2
ð�s21 � �m2

1Þ
�

þ "2
�
1

2
ð�s22 � �m2

2Þ �
1

4
�s21 �m

2
1 �

1

8
ð�s41 � 3 �m4

1Þ
�

þOð"3Þ
�
; (27)

where the second- and third-order contributions in " due to
the ‘‘radiative corrections’’ formally shift the perturbed
terms away from �0 ¼ s0=m0. However, the precise nature
of the shift from �0 to � requires determining (27) in terms
of a specific background.

C. Solving for linear momentum and spin angular
momentum expansion components

1. Local Fermi coordinate frame

Having now presented the generalized CMP approxima-
tion, the next step is to determine the linear momentum and
spin angular momentum series expansion components for
(7). This can be accomplished iteratively by solving the
first-order perturbations with respect to zeroth-order quan-
tities, and then computing the higher-order terms in a
systematic fashion. This approach becomes particularly
straightforward upon framing the problem in terms of the
tetrad formalism and Fermi normal coordinates [21], the
latter of which has the property that the corresponding
metric in the neighborhood of a freely falling worldline
is locally flat. The leading-order metric deviations in Fermi
normal coordinates are then proportional to the projected
Riemann curvature tensor in the Fermi frame evaluated on
the worldline.

To begin, consider an orthonormal tetrad frame 	�
�̂

with the orthogonality condition


�̂ �̂ ¼ g��	
�
�̂	

�
�̂

(28)

satisfying parallel transport

D	�
�̂

d�
¼ 0 (29)

with respect to the general space-time coordinates X�,
where �̂ are indices for the Fermi coordinates X�̂ defined
in the neighborhood of the spinning particle on a locally

flat tangent space. Furthermore, the Riemann curvature
tensor in the Fermi frame is described by

FR
�̂ �̂ �̂ �̂

¼ R����	
�
�̂	

�
�̂
	�

�̂	
�
�̂
: (30)

By identifying 	�
0̂
¼ u

�
ð0Þ in the usual fashion and making

use of (28) and the first-order spin condition, it follows
naturally that

P
�
ð0Þ ¼ 	�

�̂P
�̂
ð0Þ ¼ m0	

�
0̂
; (31a)

S��
ð0Þ ¼ 	�

{̂	
�
|̂S

{̂ |̂
ð0Þ; (31b)

where P�̂
ð0Þ ¼ m0�

�̂
0̂
and S{̂ |̂ð0Þ is a constant-valued spatial

antisymmetric tensor whose components are determined
from initial conditions.

2. Leading perturbation of linear momentum and spin
angular momentum

Determining the first-order perturbation in " for the
linear momentum is very straightforward. Given (13a) and
(29), it is shown that DP�

ð1Þ=d� ¼ 	�
�̂ðdP�̂

ð1Þ=d�Þ, leading
to

dP�̂
ð1Þ

d�
¼ � 1

2
FR�̂

0̂ {̂ |̂
S{̂ |̂ð0Þ; (32)

which can be integrated immediately with the final result of

P�
ð1Þ ¼ � 1

2
	�

k̂

Z
ðFRk̂

0̂ {̂ |̂
S{̂ |̂ð0ÞÞd�: (33)

It is interesting to note that, when (33) is contracted with

Pð0Þ
� , the first-order mass shift contribution is identically

�m 2
1 ¼ 0 (34)

for a general space-time background, leading to simplified
expressions for (25) and (27).
The corresponding expression for the spin tensor, in

contrast to the linear momentum, is somewhat more com-
plicated to determine. It is important to first note that, from
(10b) for j ¼ 2,

DS��
ð1Þ

d�
¼ 0: (35)

In terms of the tetrad projection,

S
��
ð1Þ ¼ 	�

�̂	
�
�̂
S�̂ �̂
ð1Þ ¼ 2	½�

0̂
	��

|̂S
0̂ |̂
ð1Þ þ 	�

{̂	
�
|̂S

{̂ |̂
ð1Þ; (36)

where it follows from (14) for j ¼ 1 that

S0̂ |̂ð1Þ ¼ � 1

m0

Pð1Þ
{̂ S{̂ |̂ð0Þ: (37)

As for the components S{̂ |̂ð1Þ in (36), they can be formally

determined from using (20) for j ¼ 1, such that

S{̂ |̂ð1Þ ¼ 1
4
�s21S

{̂ |̂
ð0Þ: (38)
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This, however, leads to a difficulty, in that (36) is still
dependent on a yet undetermined parameter �s21. While it
is tempting to set �s21 ¼ 0 in analogy with �m2

1 ¼ 0, this is not
well justified considering that �s21 only needs to be cova-
riantly constant following (26), and not necessarily zero.

Fortunately, �s21 can be determined separately by directly
solving (35), following a variation of an approach pre-
sented earlier [23]. Making use of the spin condition con-
straint equation with (14) for j ¼ 1, there exist four
equations

A�Sð1Þ�� � B� ¼ 0; (39)

where

A� � P�
ð0Þ; (40a)

B� � �P
�
ð1ÞS

ð0Þ
��: (40b)

With (39), it is possible to algebraically solve for the Sð1Þ0j

components in terms of the purely spatial components Sð1Þij ,

such that

Sð1Þ01 ¼ 1

A0
½A2Sð1Þ12 � A3Sð1Þ31 þ B1�; (41a)

Sð1Þ02 ¼ 1

A0
½A3Sð1Þ23 � A1Sð1Þ12 þ B2�; (41b)

Sð1Þ03 ¼ 1

A0
½A1Sð1Þ31 � A2Sð1Þ23 þ B3�: (41c)

The remaining three components can then be determined
by solving (35) in covariant form for the spatial compo-
nents, leading to

DSð1Þij

d�
¼ dSð1Þij

d�
þ 2u�ð0Þ�

�
�½iS

ð1Þ
j�� ¼ 0: (42)

Upon substituting (41) into (42), there now exists a first-
order inhomogeneous matrix differential equation to solve,
with components

dSð1Þ12 ð�Þ
d�

þ 1

2
�ijSð1Þij ð�Þ ¼ �12ð�Þ; (43a)

dSð1Þ23 ð�Þ
d�

þ 1

2
�ijSð1Þij ð�Þ ¼ �23ð�Þ; (43b)

dSð1Þ31 ð�Þ
d�

þ 1

2
�ijSð1Þij ð�Þ ¼ �31ð�Þ; (43c)

where the antisymmetric spatial tensors �ij, �ij, and �ij

may each be � dependent, depending on the choice of
metric, and the �ijð�Þ are due to (40b).

3. Higher-order perturbation terms

Proceeding beyond the leading-order perturbations of
P� and S�� is very straightforward. For the linear momen-
tum, the second-order expression is

P�
ð2Þ ¼ � 1

2
	�

�̂

Z �
1

m0

FR�̂
�̂ k̂ l̂

P�̂
ð1ÞS

k̂ l̂
ð0Þ þ FR�̂

0̂ �̂ �̂
S�̂ �̂
ð1Þ

�
d�

� � 1

2
	�

�̂

Z �
1

m0

FR�̂
�̂ k̂ l̂

P�̂
ð1Þ þ

1

4
h �s21iFR�̂

0̂ k̂ l̂

� 2

m0

FR�̂
0̂ 0̂ l̂

Pð1Þ
k̂

�
Sk̂ l̂ð0Þd�; (44)

where

h �s2j i ¼
1

T

Z T

0
�s2j ð�Þd� (45)

is the time-averaged jth-order correction to the squared
spin magnitude. To determine the second-order spin tensor,
it is first shown from (10b) for j ¼ 3 that

DS��
ð2Þ

d�
¼ 1

m3
0

P½�
ð0ÞS

���
ð0Þ R����P

�
ð0ÞS

��
ð0Þ : (46)

When expressed in terms of the orthonormal tetrad, it
follows that (46) can be solved easily to obtain

S��
ð2Þ ¼

1

m0

	½�
0̂
	��

{̂

Z
S{̂ |̂ð0Þ

FR
|̂ 0̂ k̂ l̂

Sk̂ l̂ð0Þd�: (47)

IV. CIRCULAR MOTION NEAR THE EVENT
HORIZON OFA KERR BLACK HOLE

With the generalized CMP approximation of the MPD
equations established, it can now be applied to the concrete
example of a spinning particle in circular motion around a
Kerr black hole in the equatorial plane near its event
horizon. It would be interesting to identify the general
interplay between black hole spin and the dynamical re-
sponse from the spinning particle. Since it is known that an
orbiting particle whose spin corotates with the black hole
spin leads to a repulsive force, while one of opposite spin to
the black hole leads to an attractive force [20], it is par-
ticularly useful to determine the black hole’s spin depen-
dence on the kinematics and dynamics of the particle’s
orbit due to contributions beyond the CMP approximation
considered earlier [21].
To begin, consider a Kerr background in standard Boyer-

Lindquist coordinates X� ¼ ðt; r; �;
Þ, described in terms
of a black hole mass M and specific spin angular momen-
tum a ¼ J=M. Then, for constant radius r, the solution to
the geodesic equation for circular motion is [21]

t ¼ 1

N
ð1þ a�KÞ�; (48a)


 ¼ �K�

N sin�
; (48b)

where � ¼ �=2 on the equatorial plane,

�K ¼
ffiffiffiffiffi
M

r3

s
(49)
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is the Keplerian frequency of the orbit and

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3M

r
þ 2a�K

s
(50)

is a normalization constant. At � ¼ 0, the boundary con-
ditions are chosen such that t ¼ 
 ¼ 0. Given that 	�

0̂
¼

dX�=d� is the particle’s four-velocity vector, and that the
orthonormal tetrad frame satisfies D	�

�̂=d� ¼ 0, it is
possible to determine unit gyro axes 	�

{̂ to describe the

particle’s local spatial frame. It is straightforward to show
that [21,29]

	�
0̂
¼

�
1þ a�K

N
; 0; 0;

�K

N sin�

�
; (51a)

	�
1̂
¼

�
� L

rA
sinð�K�Þ; A cosð�K�Þ; 0;

� E

rA sin�
sinð�K�Þ

�
; (51b)

	�
2̂
¼

�
0; 0;

1

r
; 0

�
; (51c)

	�
3̂
¼

�
L

rA
cosð�K�Þ; A sinð�K�Þ; 0; E

rA sin�
cosð�K�Þ

�
;

(51d)

where

E ¼ 1

N

�
1� 2M

r
þ a�K

�
; (52a)

L ¼ r2�K

N

�
1� 2a�K þ a2

r2

�
; (52b)

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

r
þ a2

r2

s
; (52c)

for the circular orbit’s energy E and orbital angular mo-
mentum L. It is useful to describe a by the dimensionless
parameter � ¼ a=r, such that �1=4 	 � 	 1 to incorpo-
rate black hole spin (�M 	 a 	 M) that is both corotat-
ing and counterrotating with respect to the orbital
direction, where r0þ ¼ M for � ¼ 1 and r0� ¼ 4M for
� ¼ �1=4, each corresponding to the innermost (photon)
radius allowed [30]. All dimensional quantities are then
described with respect to M, such that

r ¼ 9M

�
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 3ð1� N2Þ

q ��2
(53)

is the orbital radius near the event horizon and N * 0
denotes the separation away from the innermost circular
orbit. The parameters (52) are now expressible in terms of

E0 ¼ 1� 2ðr2�2
KÞ þ �ðr�KÞ ¼ NE; (54a)

L0 ¼ ðr�KÞ½1� 2�ðr�KÞ þ �2� ¼ N
L

r
; (54b)

where � ¼ r2½1� 2ðr2�2
KÞ þ �2� ¼ r2A2 is the known

function defined in the Kerr metric [30].

The exact expressions for FR
�̂ �̂ �̂ �̂

are listed in

Appendix A. For the special case of N ! 0 and � ¼ �=2
considered in this paper, the dominant nonzero contribu-
tions of the Riemann curvature tensor FR

�̂ �̂ �̂ �̂
in the

Fermi frame are

FR
0̂ 1̂ 0̂ 1̂

� ��2
K

N2
½2A2 þ r2�2

K � �ð2r�K � �Þ�

 cos2ð�K�Þ ¼ �FR

2̂ 3̂ 2̂ 3̂
; (55a)

FR
0̂ 1̂ 0̂ 3̂

� ��2
K

N2
½2A2 þ r2�2

K � �ð2r�K � �Þ�

 sinð�K�Þ cosð�K�Þ ¼ �FR

1̂ 2̂ 2̂ 3̂
; (55b)

FR
0̂ 1̂ 1̂ 3̂

� 3�2
KA

N2
ðr�K � �Þ cosð�K�Þ ¼ �FR

0̂ 2̂ 2̂ 3̂
;

(55c)

FR
0̂ 2̂ 0̂ 2̂

� �2
K

N2
½1� 2�ð2r�K � �Þ� ¼ �FR

1̂ 3̂ 1̂ 3̂
; (55d)

FR
0̂ 2̂ 1̂ 2̂

� � 3�2
KA

N2
ðr�K � �Þ sinð�K�Þ ¼ �FR

0̂ 3̂ 1̂ 3̂
;

(55e)

FR
0̂ 3̂ 0̂ 3̂

� ��2
K

N2
½2A2 þ r2�2

K � �ð2r�K � �Þ�

 sin2ð�K�Þ ¼ �FR

1̂ 2̂ 1̂ 2̂
: (55f)

A. First-order perturbations in "

With all the ground work for the application of the
generalized CMP approximation now complete, it is pos-
sible to begin computing the linear and higher-order per-
turbations of the linear momentum and spin tensor for a
spinning point particle in circular orbit. In this context, the
expansion parameter " is associated with the unperturbed
Møller radius �0 ¼ s0=m0 in unit of r, such that
s0=ðm0rÞ � 1.
To begin, recall from (31a) that (51a) that the unper-

turbed four-momentum components are

P0
ð0Þ ¼

m0

N
ð1þ �r�KÞ; (56a)

P1
ð0Þ ¼ 0; (56b)

P2
ð0Þ ¼ 0; (56c)

P3
ð0Þ ¼

m0

N
�K: (56d)

Obtaining the first-order perturbation (CMP approxima-
tion) is very straightforward. Given (31b) and noting that
the spinning particle is initially located on the x-axis of the

Cartesian frame, the initial spin orientation ð�̂; 
̂Þ for S��
ð0Þ

coincides with the standard definition for the spherical
coordinates ð�;
Þ with respect to the Cartesian frame’s
z-axis. Therefore, it follows that the projected spin tensor
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components are [21]

S2̂ 3̂ð0Þ ¼ s0 sin�̂ cos
̂; (57a)

S3̂ 1̂ð0Þ ¼ �s0 cos�̂; (57b)

S1̂ 2̂ð0Þ ¼ s0 sin�̂ sin
̂; (57c)

leading to

S01ð0Þð�Þ ¼ �m0rL0

N

�
s0
m0r

�
cos�̂; (58a)

S02ð0Þð�Þ ¼ � 1

2

m0L0

NA

�
s0
m0r

�
½sinð�K�þ �̂� 
̂Þ

� sinð�K�� �̂� 
̂Þ�; (58b)

S03ð0Þð�Þ ¼ 0; (58c)

S12ð0Þð�Þ ¼
1

2
m0A

�
s0
m0r

�
½cosð�K�þ �̂� 
̂Þ

� cosð�K�� �̂� 
̂Þ�; (58d)

S23ð0Þð�Þ ¼
1

2

m0E0

rNA

�
s0
m0r

�
½sinð�K�þ �̂� 
̂Þ

� sinð�K�� �̂� 
̂Þ�; (58e)

S31ð0Þð�Þ ¼ �m0E0

N

�
s0
m0r

�
cos�̂: (58f)

It is interesting to note the appearance of a beat structure in
the sinusoidal functions of (58), due to the initial spin
orientation angles. As for the first-order perturbation for
the linear momentum, this follows naturally from (33),
resulting in

P0
ð1Þð�Þ ¼

3

2

m0L0

N3

�
s0
m0r

�
ðr�KÞðr�K � �Þ


 ½cosð�K�þ �̂Þ þ cosð�K�� �̂Þ � 2 cos�̂�;
(59a)

P1
ð1Þð�Þ ¼

3

2

m0A
2

N2

�
s0
m0r

�
ðr�KÞðr�K � �Þ


 ½sinð�K�þ �̂Þ þ sinð�K�� �̂Þ�; (59b)

P2
ð1Þð�Þ ¼

3

2

m0A

rN2

�
s0
m0r

�
ðr�KÞðr�K � �Þ


 ½cosð�K�þ �̂� 
̂Þ � cosð�K�� �̂� 
̂Þ
þ cosð�̂þ 
̂Þ � cosð�̂� 
̂Þ�; (59c)

P3
ð1Þð�Þ ¼

3

2

m0E0

rN3

�
s0
m0r

�
ðr�KÞðr�K � �Þ


 ½cosð�K�þ �̂Þ þ cosð�K�� �̂Þ � 2 cos�̂�;
(59d)

which also exhibits a beat structure similar to what is found
in (58). It is also interesting to note the relationship be-

tween the azimuthal and time component of P
�
ð1Þ in the

form

P3
ð1Þð�Þ

P0
ð1Þð�Þ

¼ E

L
; (60)

in agreement with the same computation performed earlier
[21]. At this point, it is important to understand the con-
ditions for the collapse of (59) when ðr�K � �Þ ¼ 0. This
condition can appear when

rc ¼
�
a

M

�
2
M; (61)

which is theoretically possible to reach when a ¼ M [30].
However, it seems unlikely that such a possibility would
arise in a realistic astrophysical context.

B. Higher-order perturbations in "

Evaluation of the second-order perturbation quantities is
also straightforward, though rather involved. There are,
however, relatively compact expressions for higher-order
perturbation quantities in " that are required to evaluate the
perturbed Møller radius (27), namely, the ‘‘radiative cor-
rections’’ to the squared mass and spin magnitudes (19)
and (20). The first computation of interest is �s21, which is
third order in " according to (18). This is achieved by
solving the first-order inhomogeneous matrix differential

equation (43) for Sð1Þij ð�Þ, followed by the algebraic equa-

tion (41) for the remaining components Sð1Þ0j ð�Þ, which

yields �s21 via (20). Before proceeding, it is useful to first
introduce a convenient notation for beat functions taking
the form

Q�
c ðn1�K�; n2�̂; n3
̂Þ � cosðn1�K�þ n2�̂� n3
̂Þ

� cosðn1�K�� n2�̂� n3
̂Þ;
(62a)

Q�
s ðn1�K�; n2�̂; n3
̂Þ � sinðn1�K�þ n2�̂� n3
̂Þ

� sinðn1�K�� n2�̂� n3
̂Þ;
(62b)

which appear frequently in subsequent expressions
throughout this paper. For the Kerr metric, it is shown
that the nonzero �ij, �ij, and �ij for (43) are

�23 ¼ N

rA2

�K

ð1þ �r�KÞ ; (63a)

�12 ¼ �A2

N
ðr�KÞð1þ �r�KÞ; (63b)

while
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�12ð�Þ ¼ � 3

4

m0rL0

N2A

�
s0
m0r

�
2 ðr2�2

KÞðr�K � �Þ
ð1þ �r�KÞ Q�

s ð�K�; 2�̂; 
̂Þ; (64a)

�23ð�Þ ¼ 0; (64b)

�31ð�Þ ¼ 3

8

m0rL0

N3

�
s0
m0r

�
2ðr2�2

KÞðr�K � �Þ½Qþ
s ð2�K�; 2�̂; 2
̂Þ � sinð2�K�� 2
̂Þ�: (64c)

Then the solutions to (41) and (43) are

Sð1Þ01 ð�Þ ¼
3

16
m0r

�
s0
m0r

�
2 L0

N3

ðr2�2
KÞðr�K ��Þ

ð1þ�r�KÞ fQþ
c ð2�K�; 2�̂; 2
̂Þ �Qþ

c ð0; 2�̂;2
̂Þ � 2½cosð2�K�� 2
̂Þ � cosð2
̂Þ�g;
(65a)

Sð1Þ02 ð�Þ ¼
3

16
m0r

2

�
s0
m0r

�
2 L0A

N3

ðr2�2
KÞðr�K ��Þ

ð1þ�r�KÞ fð2�K�ÞQ�
c ð�K�; 2�̂; 
̂Þ � ½Q�

s ð�K�; 2�̂; 
̂Þ �Q�
s ð0; 2�̂; 
̂Þ�g; (65b)

Sð1Þ03 ð�Þ ¼ �3

8
m0r

2

�
s0
m0r

�
2 A2

N2
ðr�KÞðr�K ��ÞfQþ

s ð2�K�; 2�̂; 2
̂Þ �Qþ
s ð0;2�̂; 2
̂Þ � 2½sinð2�K�� 2
̂Þ þ sinð2
̂Þ�g;

(65c)

Sð1Þ12 ð�Þ ¼ � 3

16
m0r

2

�
s0
m0r

�
2 L0

N2A

ðr�KÞðr�K ��Þ
ð1þ�r�KÞ fð2�K�ÞQ�

s ð�K�;2�̂; 
̂Þ � ½Q�
c ð�K�; 2�̂; 
̂Þ �Q�

c ð0; 2�̂; 
̂Þ�g;
(65d)

Sð1Þ23 ð�Þ ¼
3

16
m0r

3

�
s0
m0r

�
2 L0A

N3
ðr�KÞðr�K ��Þfð2�K�ÞQ�

c ð�K�; 2�̂; 
̂Þ � ½Q�
s ð�K�; 2�̂; 
̂Þ �Q�

s ð0;2�̂; 
̂Þ�g; (65e)

Sð1Þ31 ð�Þ ¼ � 3

16
m0r

2

�
s0
m0r

�
2 L0

N3
ðr�KÞðr�K ��ÞfQþ

c ð2�K�; 2�̂; 2
̂Þ �Qþ
c ð0;2�̂;2
̂Þ � 2½cosð2�K�� 2
̂Þ � cosð2
̂Þ�g:

(65f)

When combined with (58), it follows that the first-order shift in the squared spin magnitude is

�s 2
1ð�Þ ¼

1

N2

�
s0
m0r

�
~s21ð�Þ; (66)

where

~s21ð�Þ ¼
3

16

L0ðr�KÞðr�K � �Þ
ð1þ �r�KÞ fð2�K�Þ½Qþ

s ð2�K�; 3�̂; 2
̂Þ �Qþ
s ð2�K�; �̂; 2
̂Þ�

þ 3½Qþ
c ð2�K�; 3�̂; 2
̂Þ �Qþ

c ð2�K�; �̂; 2
̂Þ� �Qþ
c ð�K�; 3�̂; 2
̂Þ þQþ

c ð�K�; �̂; 2
̂Þ �Qþ
c ð�K�; 3�̂; 0Þ

þQþ
c ð�K�; �̂; 0Þ � 2½Qþ

c ð0; 3�̂; 2
̂Þ �Qþ
c ð0; �̂; 2
̂Þ� þ 2½cosð3�̂Þ � cos�̂�g: (67)

The time-averaged expression for (66) over a cycle defined
by the Keplerian frequency is

h �s21i ¼
1

N2

�
s0
m0r

�
h~s21i; (68)

where

h~s21i �
�K

2�

Z 2�=�K

0
~s21ð�Þd�

¼ 3

2

L0ðr�KÞðr�K � �Þ
ð1þ �r�KÞ sin2�̂ cos�̂½3 cosð2�̂Þ � 1�:

(69)

It is important to note that both (67) and (69) are well

behaved for the full range of �̂ and 
̂. However, there

exists the possibility for singularities to appear in the limit
as ð1þ �r�KÞ ! 0. This occurs when

rc !
�jaj
M

�
2=3

M; a < 0: (70)

For the allowed radii permitted in the Kerr metric for
photon orbits [30], it is clear that r > rc for a < 0, so the
relevant expressions considered here can never become
singular.
It is more straightforward to solve for the remaining

contributions to the perturbed Møller radius, �m2
2 and �s22,

which are fourth-order perturbations in " according to (17)
and (18). The first nonzero ‘‘radiative correction’’ to the
squared mass magnitude (17) is
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�m 2
2ð�Þ ¼

9

8

A2

N4

�
s0
m0r

�
2ðr2�2

KÞðr�K � �Þ2


fQþ
c ð2�K�; 2�̂; 2
̂Þ �Qþ

c ð0; 2�̂; 2
̂Þ
� 2½cosð2�K�� 2
̂Þ � cosð2
̂Þ�g; (71)

according to (19), where its time-averaged expression
following the definition given in (69) is

h �m2
2i ¼

9

2

A2

N4

�
s0
m0r

�
2ðr2�2

KÞðr�K � �Þ2sin2�̂ð2cos2�̂� 1Þ:
(72)

It is clear that the expressions (71) and (72) for �m2
2 have no

coordinate singularities due to �̂ and 
̂, nor are there any
physical singularities for reasonable choices for r.
As for �s22, it follows from evaluating (20) for j ¼ 2 that

�s22ð�Þ ¼ � 3A2

8N4

�
s0
m0r

�
ðr2�2

KÞðr�K � �Þð1þ �r�KÞ½Qþ
c ð4�K�; 3�̂; 2
̂Þ �Qþ

c ð4�K�; �̂; 2
̂Þ �Qþ
c ð3�K�; 3�̂; 2
̂Þ

þQþ
c ð3�K�; �̂; 2
̂Þ þ 3Qþ

c ð3�K�; 3�̂; 0Þ þ 5Qþ
c ð3�K�; �̂; 0Þ þQþ

c ð�K�; 3�̂;�2
̂Þ � 3Qþ
c ð�K�; 3�̂; 0Þ

�Qþ
c ð�K�; �̂;�2
̂Þ � 5Qþ

c ð�K�; �̂; 0Þ �Qþ
c ð0; 3�̂; 2
̂Þ þQþ

c ð0; �̂; 2
̂Þ�; (73)

whose time-averaged expression is

h�s22i ¼ � 3A2

N4

�
s0
m0r

�
ðr2�2

KÞðr�K � �Þð1þ �r�KÞ


 sin2�̂ cos�̂ð2cos2
̂� 1Þ: (74)

Again, (73) and (74) for �s22 indicate well-behaved functions
for all choices of �̂ and 
̂, with no possibility of encoun-
tering singularities of any kind. It is interesting to note,
however, that �s22 is linear in s0=ðm0rÞ, the same order as
found in (66) for �s21, which is somewhat unexpected.
Furthermore, for N ! 0, it appears at first glance that �s22
will dominate over �s21. Though it is difficult to identify the
source for these unusual features, this may be indicative of
another classical analogy to nonrenormalizability in quan-
tum field theory, where higher-order perturbation terms in
the generalized CMP approximation may possibly contrib-
ute to all orders of the expansion for certain quantities.
This is a matter which may require further study in the
future.

V. NUMERICAL ANALYSIS

At this point, it is useful to consider some numerical
analysis of the main expressions for this paper, which are
found in Appendix B of this paper. The purpose behind this
procedure is to get a visual sense for how increasing the
order of the perturbation expansion in the generalized CMP
approximation influences the predicted physical behavior
of the spinning particle in the Kerr background. Since a
purely numerical approach to the MPD equations does not
allow for the clear identification of dominant contributions
to the particle’s orbital motion, this treatment provides an

opportunity to glean some insight as to where a correspon-
dence between the two approaches may occur.

For all plots presented, r ¼ 6M and �̂ ¼ 
̂ ¼ �=4.
Particular attention is given to understanding the general
stability of the spinning particle’s motion while in circular
orbit around a Kerr black hole, especially given the ‘‘ra-
diative corrections’’ of the squared mass and spin magni-
tudes denoted by (19) and (20), respectively.
For the purposes of this paper, � � s0=ðm0rÞ ¼ 10�2

and � ¼ 10�1 are considered throughout, where m0 ¼
10�2M. It so happens that, for the given choices of r and
m0, it follows that

s0 ¼
�
102

r�

M

�
m2

0: (75)

This implies that a realistic spin of s0 & m2
0 for solar mass

black holes and neutron stars [13,31] orbiting supermas-
sive black holes requires that

� & 10�2 M

r
: (76)

This upper bound given by (76) indicates that the choices
of � ¼ 10�2 and � ¼ 10�1 correspond to unrealistically
large values [13,14] for s0, and consistent with values
chosen in previous work [11,12] suggesting chaotic behav-
ior for the MPD equations. Therefore, any chaotic phe-
nomena reported in this paper occurs under conditions not
expected to be realized in a realistic astrophysical setting.
To begin, consider the magnitude for the particle’s co-

ordinate speed

vð"Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gijV

ið"ÞVjð"Þ
q

; (77)

where
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Við"Þ � uið"Þ
u0ð"Þ ; (78)

and the u�ð"Þ are given by (25). Since it must be true that
0 	 v < 1, it follows that any violation of this range of
validity reflects a breakdown of the formalism’s applica-
bility. An exploration of (77) is presented in Fig. 1, to first
and second order in ", for the special cases of corotating
(a ¼ M) and counterrotating (a ¼ �M) extreme Kerr
black holes. It is important to note that while r ¼ 6M
corresponds to stable orbital motion for a spinless particle
when a ¼ M, this choice for r only leads to marginally
bounded orbits when a ¼ �M [30].

For Figs. 1(a) and 1(b), the choice of s0=ðm0rÞ ¼ 10�2

shows that the spin-curvature force acting on the particle’s
motion is almost exclusively due to the expression to first
order in ". In particular, the overall motion is stable
throughout the range considered, with a variation on the
order of 10�3 for Fig. 1(a) and 10�2 for Fig. 1(b), where the
Oð"2Þ expression only yields a 2
 10�3 increase at the
end of the plot compared to the first-order contribution
alone. However, when s0=ðm0rÞ ¼ 10�1, the situation
changes dramatically for both cases of a, as illustrated by
Figs. 1(c) and 1(d). This is because the second-order ex-
pression in " introduces a rapid increase in the coordinate
speed that approaches the v ¼ 1 upper bound. It is par-

FIG. 1 (color online). Coordinate speed vð�Þ of the spinning particle while in circular orbit around a Kerr black hole, for r ¼ 6M and
�̂ ¼ 
̂ ¼ �=4. It is clear from (a) that vð�Þ to second-order contribution in " has no significant impact on altering the particle’s orbital
speed for s0=ðm0rÞ ¼ 10�2, though (b) indicates a slight increase over time. In contrast, (c) and (d) show that an instability occurs as
s0=ðm0rÞ ¼ 10�1 when considering the second-order contribution of " in vð�Þ.
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ticularly evident to see this in Fig. 1(d), which formally
exceeds vð�Þ ¼ 1 for � > 2000M. Such an outcome for
Figs. 1(c) and 1(d) is consistent with prior numerical
analysis on orbital stability [11,13] when considering large
initial spin magnitudes s0.

For immediate comparison, it is useful to now consider
the Møller radius �ð�Þ ¼ ðs=mÞð�Þ given by (27) for the
same set of initial conditions. The purpose of this analysis
is to determine whether a correlation exists between the
kinematic effects in vð�Þ with the anticipated dynamical
contributions due to the spin-curvature interaction in �ð�Þ.
Figure 2 is a plot of the Møller radius in units of s0=m0, up
toOð"3Þ, for a ¼ M and a ¼ �M. Comparison with Fig. 1
suggests that such a correlation exists between the two
plots. The expression to third order in ", which includes
the mass shift contribution �m2

2 as well as the second-order

spin shift term �s22, has the effect of shifting the range of

oscillation downwards within the plots as compared to the
second-order expression alone, which oscillates with grow-
ing amplitude about � ¼ 1.

According to Fig. 2(a) for s0=ðm0rÞ ¼ 10�2 and a ¼ M,
the amplitude for Møller radius grows very slowly when
compared to Fig. 2(b) for s0=ðm0rÞ ¼ 10�2 and a ¼ �M.
Both the growth of the amplitude and the downward shift
of the plots become more pronounced when examining
Figs. 2(c) and 2(d) for a ¼ M and a ¼ �M, respectively,
when s0=ðm0rÞ ¼ 10�1. In particular, the amplitude be-
comes many times larger than �0 ¼ s0=m0 ¼ 1 for both
the corotating and counterrotating black hole cases, which
suggests that a certain minimum value for �ð�Þ must occur
before instability of the orbital motion appears. Though the
Møller radius is not apparently a geometric quantity that
must necessarily be positive valued, it is interesting to note
that the rapid increase in vð�Þ roughly coincides with the
condition that �ð�Þ< 0 for each of the plots in Fig. 2. This
may be a useful criterion for helping to determine the
occurrence of instabilities in the spinning particle’s orbital
motion.

A further consideration involving the Møller radius is to
examine its time-averaged value h�i ¼ hs=mi as a function
of the initial spin orientation angles �̂ and 
̂. This leads to
three-dimensional plots described by Figs. 3 and 4 for a ¼
M and a ¼ �M, respectively, which display expressions to
both second and third order in " for h�i, and where
s0=ðm0rÞ ¼ 10�1. It is evident that all the plots reflect an

even function symmetry with respect to 
̂ ¼ �. According
to Figs. 3(a) and 4(a), the Oð"2Þ expressions lead to
a nontrivial peak and valley structure in h�i, while
Figs. 3(b) and 4(b) for third order in " effectively removes

some of the structure for the region defined by 0 	 �̂ < �,
leaving two peaks to dominate. While the shapes of the
three-dimensional plots are effectively unchanged when
comparing between Figs. 3 and 4, going from a ¼ M to
a ¼ �M leads to a tenfold increase in magnitude, suggest-
ing as expected that the counterrotating black hole for r ¼

6M leads to a greater likelihood for encountering instabil-
ities within the spinning particle’s orbit.
It is useful to briefly examine the linear momentum

components P�ð�Þ, given (33) and (44). Figures 5–7 dis-
play the radial, polar, and azimuthal components of the
linear momentum, while Fig. 8 displays the ratio
P3ð�Þ=P0ð�Þ, such as that described to first order in "
according to (60). For the radial component corresponding
to s0=ðm0rÞ ¼ 10�2, Fig. 5(a) for a ¼ M shows that the
expression to second order in " introduces a slight con-
traction in the amplitude of P1ð�Þ before expanding out-
wards. This behavior is also present in Fig. 5(b) for
a ¼ �M, though the outward growth is more pronounced,
the beginning of which roughly corresponds with the in-
crease in vð�Þ in Fig. 1(b) starting at � ¼ 3000M. Not
surprisingly, the Oð"2Þ expression becomes dominant in
Figs. 5(c) and 5(d) when s0=ðm0rÞ ¼ 10�1, which also
corresponds with the respective increases in vð�Þ, as found
in Figs. 1(c) and 1(d).
The polar component corresponding to s0=ðm0rÞ ¼

10�2 is described by Fig. 6(a) for a ¼ M and Fig. 6(b)
for a ¼ �M, which indicate a slightly net positive magni-
tude in P2ð�Þ due to the expression to second order in ".
This outcome is somewhat surprising, since this suggests
that the spinning particle will permanently leave the equa-
torial plane under these conditions. However, this may be
more reflective of the choice for r, which hovers around the
minimum value allowable for stable circular orbits. Again,
this outcome is more pronounced for the case of
s0=ðm0rÞ ¼ 10�1, as shown in Figs. 6(c) and 6(d).
For the azimuthal component corresponding to

s0=ðm0rÞ ¼ 10�2, Fig. 7 behaves similarly to that of
Fig. 5, particularly where it concerns Figs. 7(a) and 7(b)
for a ¼ M and a ¼ �M, respectively. That is, the Oð"2Þ
expression indicates a slight contraction in the amplitude
of P3ð�Þ prior to an outward expansion. Consistent with
previous plots, Figs. 7(c) and 7(d) show a dominant growth
of the amplitude of P3ð�Þ for the expression to second order
in " and s0=ðm0rÞ ¼ 10�1.
Concerning the ratio P3ð�Þ=P0ð�Þ, this is presented in

Fig. 8 for the case of s0=ðm0rÞ ¼ 10�2, where Fig. 8(a)
refers to a ¼ M and Fig. 8(b) corresponds to a ¼ �M. As
expected, the first-order contribution in " leads to a con-
stant ratio in �, consistent with (60). When the second-
order contribution in " is added, the ratio exhibits a slight
contraction followed by an outward expansion, consistent
with Figs. 7(a) and 7(b) for P3ð�Þ. Nonetheless, it appears
that the basic ratio remains constant for changing �.
Finally, to explore the numerical properties of the spin

tensor due to the generalized CMP approximation, con-
sider the example of S02ð�Þ, as presented in Fig. 9, which
shows expressions up to third order in ". It seems evident
that the expression to second order in " is dominant, as then
it is clear that the Oð"3Þ expression has no discernible
impact on the amplitude. According to Fig. 9(a) for
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s0=ðm0rÞ ¼ 10�2 and a ¼ M, the amplitude remains con-
stant around S02ð�Þ ¼ 0, while Fig. 9(b) for a ¼ �M
shows a gradual growth in the amplitude. Consistent with
previous plots, this effect becomes more pronounced in
Figs. 9(c) and 9(d) for s0=ðm0rÞ ¼ 10�1.

VI. CONCLUSION

This paper outlines the generalization of an analytic
perturbation approach to the Mathisson-Papapetrou-
Dixon equations for a spinning point particle, first intro-
duced by Chicone, Mashhoon, and Punsly, with an appli-
cation to circular motion around a Kerr black hole. The
formalism shows the existence of ‘‘radiative corrections’’
to the particle’s squared mass and spin magnitudes due to
spin-curvature interactions, represented in power series
expansion form. In performing the analysis, it is possible
to semianalytically identify the emergence of instabilities
during the particle’s orbital motion, which serves as a basis
for a more precise treatment in the future.

One of the underlying goals of the formalism presented
in this paper is to determine the perturbed orbit of the
spinning particle according to the generalized CMP ap-
proximation, following the approach taken earlier [21].
However, to do this properly requires a modification of
the equations of motion to incorporate dissipative effects
due to gravitational radiation, which have not yet been
taken into account. Such a modification would most cer-
tainly require evaluation of the Teukolsky equations for
determining the radiation effects corresponding to an adia-
batic inspiral for the spinning particle’s orbit. This is a
nontrivial exercise with both conceptual and technical
challenges to still overcome. Once this is better under-
stood, a determination of the perturbed orbit due to spin-
curvature interactions will be considered in a future pub-
lication. For now, a second paper on the generalized CMP
approximation in the Vaidya background is forthcoming
[32] as a companion piece to accompany and compare with
this paper.
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APPENDIX A: FERMI-FRAME RIEMANN TENSOR
COMPONENTS

Given that the nonzero Riemann curvature tensor com-
ponents in standard Boyer-Lindquist coordinates are

R0101 ¼ � Mr

�3�
ð�� 4a2cos2�Þð2�þ a2sin2�Þ; (A1)

R0102 ¼ 3Ma2

�3
ð4r2 � �Þ sin� cos�; (A2)

R0113 ¼ �Mar

�3�
ð4r2 � 3�Þðr2 þ a2 þ 2�Þsin2�; (A3)

R0123 ¼ Ma

�3
ð4r2 ��Þð2�þ 3a2sin2�Þ sin� cos�; (A4)

R0202 ¼ Mr

�3
ð4r2 � 3�Þð�þ 2a2sin2�Þ; (A5)

R0213 ¼ Ma

�3
ð4r2 ��Þð�þ 3a2sin2�Þ sin� cos�; (A6)

R0223 ¼ Mar

�3
ð4r2 � 3�Þ½2ðr2 þ a2Þ þ ��sin2�; (A7)

R0303 ¼ Mr�

�3
ð4r2 � 3�Þsin2�; (A8)

R0312 ¼ �Ma

�2
ð4r2 ��Þ sin� cos�; (A9)

R1212 ¼ �Mr

��
ð4r2 � 3�Þ; (A10)

R1313 ¼ � Mr

�3�
ð4r2 � 3�Þ½ðr2 þ a2Þ2 þ 2a2�sin2��sin2�;

(A11)

R1323 ¼ 3Ma2

�3
ð4r2 � �Þðr2 þ a2Þsin3� cos�; (A12)

R2323 ¼ Mr

�3
ð4r2 � 3�Þ½2ðr2 þ a2Þ2 þ a2�sin2��sin2�;

(A13)

where

� ¼ r2 þ a2cos2�; (A14)

� ¼ r2 þ a2 � 2Mr; (A15)

the nonzero components of the Riemann curvature tensor
FR

�̂ �̂ �̂ �̂
in the Fermi frame are listed as follows:

FR
0̂ 1̂ 0̂ 1̂

¼ �

N2r2

�
ð1þ a�KÞ2R0101 � 2�K

sin�
ð1þ a�KÞR0113 þ �2

K

sin2�
R1313

�
cos2ð�K�Þ

þ 1

N2�sin2�
½Eþ�KðaE� LÞ�2R0303sin

2ð�K�Þ; (A16)
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FR
0̂ 1̂ 0̂ 2̂

¼
ffiffiffiffi
�

p
N2r2

�
ð1þ a�KÞ2R0102 � �K

sin�
ð1þ a�KÞðR0213 þ R0123Þ þ �2

K

sin2�
R1323

�
cosð�K�Þ; (A17)

FR
0̂ 1̂ 0̂ 3̂

¼ 1

N2 sin�

�
�

r2

�
ð1þ a�KÞ½ð1þ a�KÞ sin�R0101 � 2�KR0113� þ �2

K

sin�
R1313

�
� 1

� sin�
½Eþ�KðaE� LÞ�2R0303

�

 sinð�K�Þ cosð�K�Þ; (A18)

FR
0̂ 1̂ 1̂ 2̂

¼ 1

Nr2

�
ð1þ a�KÞ

�
E

sin�
R0123 � LR0102

�
� �K

sin�

�
E

sin�
R1323 � LR0213

�
� 1

sin�
½Eþ�KðaE� LÞ�R0312

�

 sinð�K�Þ cosð�K�Þ; (A19)

FR
0̂ 1̂ 1̂ 3̂

¼
ffiffiffiffi
�

p
Nr2

�
1

sin�
½Eþ�KðaEþ LÞ�R0113 �

�
�KE

sin2�
R1313 þ ð1þ a�KÞLR0101

��
cosð�K�Þ; (A20)

FR
0̂ 1̂ 2̂ 3̂

¼ 1

Nr2

��
ð1þ a�KÞ

�
E

sin�
R0123 � LR0102

�
� �K

sin�

�
E

sin�
R1323 � LR0213

��
cos2ð�K�Þ

þ 1

sin�
½Eþ�KðaE� LÞ�R0312sin

2ð�K�Þ
�
; (A21)

FR
0̂ 2̂ 0̂ 2̂

¼ 1

N2r2

�
ð1þ a�KÞ2R0202 � 2�K

sin�
ð1þ a�KÞR0223 þ �2

K

sin2�
R2323

�
; (A22)

FR
0̂ 2̂ 0̂ 3̂

¼
ffiffiffiffi
�

p
N2r2

�
ð1þ a�KÞ

�
ð1þ a�KÞR0102 � �K

sin�
ðR0123 þ R0213Þ

�
þ �2

K

sin2�
R1323

�
sinð�K�Þ; (A23)

FR
0̂ 2̂ 1̂ 2̂

¼ 1

N
ffiffiffiffi
�

p
r2

�
1

sin�
½Eþ�KðaEþ LÞ�R0223 �

�
�KE

sin2�
R2323 þ ð1þ a�KÞLR0202

��
sinð�K�Þ; (A24)

FR
0̂ 2̂ 1̂ 3̂

¼ 1

Nr2

�
ð1þ a�KÞ

�
E

sin�
R0213 � LR0102

�
� �K

sin�

�
E

sin�
R1323 � LR0123

��
; (A25)

FR
0̂ 2̂ 2̂ 3̂

¼ 1

N
ffiffiffiffi
�

p
r2

�
1

sin�
½Eþ�KðaEþ LÞ�R0223 �

�
�KE

sin2�
R2323 þ ð1þ a�KÞLR0202

��
cosð�K�Þ; (A26)

FR
0̂ 3̂ 0̂ 3̂

¼ �

N2r2

�
ð1þ a�KÞ2R0101 � 2�K

sin�
ð1þ a�KÞR0113 þ �2

K

sin2�
R1313

�
sin2ð�K�Þ

þ 1

N2�sin2�
½Eþ�KðaE� LÞ�2R0303cos

2ð�K�Þ; (A27)

FR
0̂ 3̂ 1̂ 2̂

¼ 1

Nr2

��
ð1þ a�KÞ

�
E

sin�
R0123 � LR0102

�
� �K

sin�

�
E

sin�
R1323 � LR0213

��
sin2ð�K�Þ

þ 1

sin�
½Eþ�KðaE� LÞ�R0312cos

2ð�K�Þ
�
; (A28)

FR
0̂ 3̂ 1̂ 3̂

¼
ffiffiffiffi
�

p
Nr2

�
1

sin�
½Eþ�KðaEþ LÞ�R0113 �

�
�KE

sin2�
R1313 þ ð1þ a�KÞLR0101

��
sinð�K�Þ; (A29)

FR
0̂ 3̂ 2̂ 3̂

¼ 1

Nr2

�
ð1þ a�KÞ

�
E

sin�
R0123 � LR0102

�
� �K

sin�

�
E

sin�
R1323 � LR0213

�
� 1

sin�
½Eþ�KðaE� LÞ�R0312

�

 sinð�K�Þ cosð�K�Þ; (A30)
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FR
1̂ 2̂ 1̂ 2̂

¼ 1

�r2

�
E

sin�

�
E

sin�
R2323 � 2LR0223

�
þ L2R0202

�
sin2ð�K�Þ þ �

r4
R1212cos

2ð�K�Þ; (A31)

FR
1̂ 2̂ 1̂ 3̂

¼ 1ffiffiffiffi
�

p
r2

�
E

sin�

�
E

sin�
R1323 � LR0123

�
� L

�
E

sin�
R0213 � LR0102

��
sin2ð�K�Þ; (A32)

FR
1̂ 2̂ 2̂ 3̂

¼
�
1

�r2

�
E

sin�

�
E

sin�
R2323 � 2LR0223

�
þ L2R0202

�
� �

r4
R1212

�
sinð�K�Þ cosð�K�Þ; (A33)

FR
1̂ 3̂ 1̂ 3̂

¼ 1

r2

�
E

sin�

�
E

sin�
R1313 � 2LR0113

�
þ L2R0101

�
; (A34)

FR
1̂ 3̂ 2̂ 3̂

¼ 1ffiffiffiffi
�

p
r2

�
E

sin�

�
E

sin�
R1323 � LðR0123 þ R0213Þ

�
þ L2R0102

�
cosð�K�Þ; (A35)

FIG. 2 (color online). Møller radius �ð�Þ ¼ ðs=mÞð�Þ for r ¼ 6M and �̂ ¼ 
̂ ¼ �=4, in units of s0=m0. (a) shows that while the
higher-order contributions in " lead to a slowly increasing amplitude in �, with a moderate increase found in (b). As s0=ðm0rÞ ¼ 10�1,
the amplitude increase becomes more pronounced for (c) and (d), where the second- and third-order contributions in " are noticeable.
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FR
2̂ 3̂ 2̂ 3̂

¼ 1

�r2

�
E

sin�

�
E

sin�
R2323 � 2LR0223

�
þ L2R0202

�
cos2ð�K�Þ þ �

r4
R1212sin

2ð�K�Þ: (A36)

APPENDIX B: SELECTED PLOTS FOR THE GENERALIZED CMP APPROXIMATION
OF THE MPD EQUATIONS

FIG. 3 (color online). Three-dimensional plot of the time-averaged Møller radius h�i ¼ hs=mi in units of s0=m0 as a function of �̂
and 
̂ for r ¼ 6M and a ¼ M. (a) shows a complicated peak and valley structure to h�i that simplifies somewhat in (b), with two peaks
present.

FIG. 4 (color online). Time-averaged Møller radius as a function of �̂ and 
̂ for r ¼ 6M and a ¼ �M. It is clear that while the peak
structure is essentially unchanged when compared to Fig. 3, the magnitude increases tenfold when going from a ¼ M to a ¼ �M.
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FIG. 5 (color online). Radial component P1ð�Þ of the linear momentum for r ¼ 6M and �̂ ¼ 
̂ ¼ �=4. (a) shows a slightly growing
amplitude due to the second-order contribution in " for s0=ðm0rÞ ¼ 10�2, with a more moderate growth in (b). The amplitude grows
much more rapidly for (c) and (d) as s0=ðm0rÞ ¼ 10�1.
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FIG. 6 (color online). Polar component P2ð�Þ of the linear momentum for r ¼ 6M and �̂ ¼ 
̂ ¼ �=4. The second-order
contribution in " introduces a slight nonzero value in the net magnitude for (a) and (b) with s0=ðm0rÞ ¼ 10�2, whose average slope
becomes more pronounced for (c) and (d) as s0=ðm0rÞ ¼ 10�1.
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FIG. 8 (color online). Ratio of P3ð�Þ to P0ð�Þ for r ¼ 6M and �̂ ¼ 
̂ ¼ �=4. When considering the expression to second order in ",
it is evident from (a) and (b) that the higher-order contribution becomes gradually unbounded compared to the constant ratio given by
the first-order contribution in ".

FIG. 7 (color online). Azimuthal component P3ð�Þ of the linear momentum for r ¼ 6M and �̂ ¼ 
̂ ¼ �=4. The second-order
contribution in " introduces a slight nonzero change in the amplitude for (a) with s0=ðm0rÞ ¼ 10�2, while (b) shows a more moderate
growth in amplitude. This growth becomes strongly unbounded for (c) and (d) as s0=ðm0rÞ ¼ 10�1.
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