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We consider the gravitational recoil due to nonreflection-symmetric gravitational wave emission in the

context of axisymmetric Robinson-Trautman spacetimes. We show that regular initial data evolve

generically into a final configuration corresponding to a Schwarzschild black hole moving with constant

speed. For the case of (reflection-)symmetric initial configurations, the mass of the remnant black hole and

the total energy radiated away are completely determined by the initial data, allowing us to obtain

analytical expressions for some recent numerical results that have appeared in the literature. Moreover, by

using the Galerkin spectral method to analyze the nonlinear regime of the Robinson-Trautman equations,

we show that the recoil velocity can be estimated with good accuracy from some asymmetry measures

(namely the first odd moments) of the initial data. The extension for the nonaxisymmetric case and the

implications of our results for realistic situations involving head-on collision of two black holes are also

discussed.
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I. INTRODUCTION

The possibility that a body recoils while emitting gravi-
tational radiation has been known for decades [1]. This
problem has been considered in the literature by means of
many approximated and semianalytical methods as, for
instance, the particle approximation [2], post-Newtonian
methods [3], and the close-limit approximation [4], leading
to typical recoil velocities of few hundreds of km/s for
some realistic cases. Such conclusions, however, have
changed drastically due to some recent advances in nu-
merical relativity [5]. In particular, recent numerical simu-
lations [6] of the merging process of binary black holes
indicate that asymmetrical gravitational wave emission can
indeed induce the merger remnant to recoil with velocities
up to several thousands of km/s. The physical nature and
possible implications of such considerably higher gravita-
tional recoil are now under intense investigation (see, for
instance, [7]). The calculation of the recoil velocity as a
function of the black holes’ initial conditions is a particu-
larly important hard task. Since the full nonlinear regime of
Einstein equations is extremely intricate and costly to
analyze, some approximated or ‘‘empirical’’ formulas re-
lating the recoil velocity and the initial data have been
proposed [8].

The Robinson-Trautman (RT) spacetime [9] is perhaps
the simplest solution of general relativity which can be
interpreted as an isolated gravitational radiating system
and, hence, it is certainly pertinent to the study of the
gravitational recoil effect. However, despite the many

strong mathematical results on the RT solutions available
in the literature, only a few exact examples of RT space-
time are indeed known in explicit form (see, for references,
[10]). It is known, nevertheless, that a regular initial data,
corresponding typically to a compact body surrounded by
gravitational waves, will evolve smoothly according to the
RT equation into a final state corresponding to a remnant
Schwarzschild black hole [11], which can be at rest or
moving with constant speed. Our aim here is to go a step
further in the characterization of such a final evolution state
as a function of the initial conditions. Our results are
motivated and checked by some numerical analysis. The
Robinson-Trautman partial differential equation has been
analyzed numerically in the recent literature [12], being
particularly suitable to be numerically solved by means of
spectral methods [13–15]. We will follow Oliveira and
Damião Soares [14,15] and adopt the Galerkin method
[16] for our analysis. However, as we will show, we will
implement it in a different way that will allow us to get
simpler equations and better accuracy.
The present paper has four sections and one appendix. In

the next section, the main aspects of axisymmetric RT
spacetimes are presented briefly. We show, in particular,
how to read from the final state of the RT evolution the
mass and speed of the remnant black hole. It is also shown
that, as expected, for (reflection-)symmetric initial data
there is no radiation recoil. In such a case, the mass of
the remnant black hole and the total energy radiated away
are completely determined by the initial data, allowing us
to establish analytical expressions for the results about the
total radiated energy obtained numerically in [14,15].
Section III is devoted to the study of generic axisymmetric
initial data. We show that a typical RTevolution can lead to
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a gravitational recoil. AGalerkin projection method is used
to calculate the final black hole speed. We show also how
the final recoil velocity can be estimated with good accu-
racy from some asymmetry measures of the initial con-
figuration, namely, the first odd moments of the initial data.
In the last section, we discuss the physical interpretation of
the typical initial data considered in this work, emphasiz-
ing their relation with the problem of frontal collision of
two black holes. The extension of our results to the non-
axisymmetric case is also commented in the last section.
The appendix presents a direct proof of a mathematical
result used in Sec. II, namely, that, for regular initial data,
the final state of the RT evolution does correspond generi-
cally to a Schwarzschild black hole moving with constant
speed.

II. AXISYMMETRIC RT SPACETIME

The standard form of the RT metric in the usual spheri-
cal radiation coordinates ðu; r; �;�Þ reads [10]

ds2 ¼ �
�
K � 2

m0

r
� rðlnQ2Þu

�
du2 � 2dudrþ r2

Q2
d�2;

(1)

where Q ¼ Qðu; �;�Þ and m0 is a constant mass parame-
ter. d�2 andK stand for, respectively, the metric of the unit
sphere and the Gaussian curvature of the surface corre-
sponding to r ¼ 1 and u ¼ u0 constant, which is given by

K ¼ Q2

�
1þ 1

2
r2

� lnQ2

�
; (2)

withr2
� corresponding to the Laplacian on the unit sphere.

Vacuum Einstein’s equations for the metric (1) implies the
Robinson-Trautman nonlinear partial differential equation
[10]

6m0

@

@u

�
1

Q2

�
¼ r2

�K: (3)

In this paper, we will focus on axisymmetric spacetimes
and hence we will assume hereafter that Q ¼ Qðu; �Þ. By
introducing x ¼ cos�, one has

K ¼ Q2 þQ
@

@x
½ð1� x2ÞQx� � ð1� x2ÞQ2

x (4)

and

6m0

@

@u

�
1

Q2

�
¼ ½ð1� x2ÞKx�x; (5)

where

½ð1� x2ÞKx�x ¼ ð1� x2Þ2ðQQxxxx �Q2
xxÞ

� 8ðx� x3ÞQQxxx � 4ð1� 3x2ÞQQxx:

(6)

Integrating (5) and assuming a regular Gaussian curvature

K, one has

d

du

Z 1

�1

dx

Q2ðu; xÞ ¼ 0; (7)

implying that the quantity q0 ¼
R
1
�1 Q

�2dx is constant
along the solutions of (5). Notice that, from (1), the regu-
larity of the surface u and r constants precludes us of
having Q ¼ 0. The regularity of the Gaussian curvature
K, on the other hand, requires 0<Q<1. We normalize
our data in order to have q0 ¼ 2, implying that the area of
the surface corresponding to r and u constants is always
4�r2 along the u evolution governed by (5).
Several classical results assure that, given a geometri-

cally regular initial data Qð0; xÞ, the solution of (5) ap-
proaches asymptotically a stationary (Qu ¼ 0) regime. The
stationary solutions of (5) are such that

ð1� x2ÞKx ¼ A ¼ constant; (8)

leading to

K ¼ Aarctanhxþ B; (9)

whereB is another constant. Regularity ofK on the interval
½�1; 1� requires necessarily A ¼ 0. On the other hand, Eq.
(4) implies that the regular Q solutions for which K is
constant are such that Qxx ¼ 0 (see the appendix for a
direct proof). Therefore, the stationary solutions of (5)
are always of the formQ ¼ aþ bxwith a and b constants.
Nevertheless, our choice of q0 ¼ 2 yields a2 � b2 ¼ 1. We
choose in this work a parametrization such that a ¼ cosh�
and b ¼ sinh�.
Given a normalized regular initial data Qð0; xÞ, the

asymptotic solution of (5) will be always of the form
Qð1; xÞ ¼ cosh�þ x sinh�. The final configuration is,
hence, completely characterized by the sole parameter �.
In order to unveil its physical role, let us consider the
Bondi’s mass function [17]

MðuÞ ¼ m0

2

Z 1

�1

dx

Q3ðu; xÞ (10)

which has several desirable properties to define an ‘‘instan-
taneous’’ mass for the solutions of (5); see, for instance,
[14]. In particular, we have thatMðuÞ � m0 for normalized
initial data and, for u ! 1, it reduces to

Mð1Þ ¼ m0

2

Z 1

�1

dx

ðcosh�þ x sinh�Þ3 ¼ m0 cosh�

¼ m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p ; (11)

where v ¼ tanh� can be interpreted as the final velocity
along the z axis of the remnant black hole [17].
The Bondi’s mass (10) corresponds to the temporal

component of the Bondi’s four-momentum, which for
generic (nonaxisymmetric) RT solutions is given by [17]
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PaðuÞ ¼ m0

4�

Z
S2

�a

Q3ðu; �;�ÞdS; (12)

where S2 is the unit sphere spanned by the usual coordi-
nates � and� and with area element dS, and a ¼ 0, 1, 2, 3,
with �0 ¼ 1 and �i being the radial three-vector directed
to the point ð�;�Þ on the unit sphere. For axisymmetric
configurations, the nonvanishing components of the
Bondi’s four-momentum are P0ðuÞ ¼ MðuÞ and

P3ðuÞ ¼ m0

2

Z 1

�1

x

Q3ðu; xÞ dx; (13)

which corresponds to the momentum carried by the solu-
tion along the z axis. For normalized initial data one has for
u ! 1

Pað1Þ ¼ m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p ð1; 0; 0;�vÞ; (14)

reinforcing the interpretation of v as the final velocity of
the remnant black hole.

Notice that, for symmetric (even) initial data Qð0; xÞ,
Eq. (6) implies that the solutions Qðu; xÞ of (5) are neces-
sarily even for u � 0, establishing that there is no gravita-
tional recoil (v ¼ 0) in this case. Such a behavior is, of
course, in full agreement with the expectation that gravi-
tation recoil should be due to nonreflection-symmetric
gravitational wave emission. Therefore, for even situ-
ations, the constraint (7) determines completely the final
evolution state.

A. Radiated energy: reflection-symmetric case

The fraction of the initial mass Mð0Þ radiated away
along the u evolution governed by (5) can be calculated
exactly for even configurations. Following [14], we define

� ¼ Mð0Þ �Mð1Þ
Mð0Þ ; (15)

which clearly corresponds to the fraction of the initial mass
lost due to gravitational wave emission. For even configu-
rations, v ¼ 0 and we have simply

� ¼ 1� 2

�Z 1

�1

dx

Q3ð0; xÞ
��1

: (16)

It can be shown that 0 � �< 1. As an explicit example of
this exactly soluble case, let us consider the first even
initial data considered in the papers [14,15], namely, the
prolate spheroid corresponding to

Q2ð0; xÞ ¼ Q2
0ð1� �2x2Þ; (17)

with 0 � � < 1. The constraint q0 ¼ 2 implies that

Q2
0 ¼

1

2�
ln

�
1þ �

1� �

�
; (18)

leading finally to

� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

8�3
ln3

�
1þ �

1� �

�s
: (19)

This is the exact analytical expression for the curves ob-
tained in [14,15] from numerical simulations. For the sake
of comparison with the results of [14,15], Fig. 1 depicts a
semilog plot of � as a function of y ¼ 1� �, following
their conventions. A very good agreement is found. One
can proceed in an analogous way for any other even
(reflection-symmetric) configuration, we will return to
this issue in the last section. The exact expression for �
is certainly valuable to the investigation of statistical prop-
erties of the nonlinear gravitational wave emission as those
ones considered in [14,15]. For instance, it is clear from
(19) that the nonextensive distribution function proposed in
[14,15] is only an approximation valid for small �. In fact,
we have

� ¼ 1

30
ð1� yÞ4 þ 32

945
ð1� yÞ6 þOðð1� yÞ8Þ; (20)

for y � 1 (or � � 0). Notice that � ! 1 for � ! 1.

III. GENERAL SOLUTIONS

The evolution of generic initial data Qð0; xÞ is a greater
challenge. Since the gravitational recoil is clearly related to
the odd part of the function Qðu; xÞ, one might consider in
the first place some asymmetry measures of the initial data.
The simplest ones correspond to their first odd n moments

qnðuÞ ¼
Z 1

�1

xn

Q2ðu; xÞdx; (21)

which obey �q0 � qn � q0. For the generic final evolu-
tion state Qð1; xÞ ¼ cosh�þ x sinh�, we have
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y
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FIG. 1. The fraction � of the initial Bondi’s mass lost due to
gravitational wave emission for the initial configuration (17), as
a function of y ¼ 1� �. The curve is in very good agreement
with the one inferred from numerical results in [14,15]. Notice,
however, that the nonextensive distribution function proposed in
[14,15] is merely an approximation for y � 1; see (20).
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qnð1Þ ¼ ð1� v2Þ
Z 1

�1

xn

ð1þ vxÞ2 dx

¼ � 1

vn

�
2� n

1� v2

v
ln
1þ v

1� v

�
� 1� v2

vnþ1

� Xn
k¼2

Xk�1

oddj

ð�1Þk
k� 1

n
k

� �
k� 1
j

� �
vj; (22)

valid for odd n. Figure 2 shows the first final odd moments
qnð1Þ as functions of the recoil velocity v. As we will
show, the relevance of the first odd moments (21) rests on
the fact that one can construct, as a linear combination of
them, a second approximately conserved quantity along
the solutions of the RTequation (5) in the framework of the
Galerkin approximation.

A. The Galerkin method

We introduce now a Galerkin decomposition forQðu; xÞ,

Qðu; xÞ ¼ XN
‘¼0

b‘ðuÞP‘ðxÞ; (23)

where P‘ðxÞ stands for the Legendre polynomials. By using
standard projection techniques [16], Eq. (5) can be written
as the system of ordinary differential equations

_b‘ ¼�2‘þ 1

24m0

hQ3½ð1� x2ÞKx�x;P‘i; ‘¼ 0;1; . . . ;N;

(24)

where the inner product is given by hf; gi ¼ R
1
�1 fgdx.

From (6) and (23), one can see that the functions involved
in the inner product in the right-hand side of (24) are
simple polynomials in x. The integration can be performed
exactly for arbitrary N (with the help of algebraic manipu-
lation software as MAPLE, for instance), yielding 5th order
polynomials on the mode functions b‘. Notice that here, in
contrast to the approach adopted in [14,15], no transcen-

dental function is involved in the Galerkin approximation.
Now, the Cauchy problem for the RT equation corresponds
basically to choose the initial value of the mode functions
b‘ðuÞ according to

b‘ð0Þ ¼ 2‘þ 1

2
hQð0; xÞ; P‘i; (25)

and then to solve the initial value problem (IVP) given by
(24).
Equation (24) has some useful properties that are inde-

pendent ofN. For instance, their stationary solutions ( _b‘ ¼
0) have necessarily b‘ ¼ 0 for ‘ > 1 and arbitrary (con-
stants) b0 and b1. Indeed, for any regular initial data, the
systems evolves into the final state Qð1; xÞ ¼
b0ð1ÞP0ðxÞ þ b1ð1ÞP1ðxÞ, with b0ð1Þ2 � b1ð1Þ2 ¼ 1
for the normalized case, as expected. The recoil velocity
will be given simply by v ¼ b1ð1Þ=b0ð1Þ. Another useful
property is that for an even initial data, one has b‘ðuÞ ¼ 0
for odd ‘ and, consequently, v ¼ 0. The accuracy of the
Galerkin decomposition is determined by the truncation
order N in (23). It can be controlled effectively here by
checking the conserved quantity q0 along the u evolution.
Typically, the expansion with N Legendre polynomials in
(23) is accurate provided thatmaxjbNðuÞj be small enough.
Finally, we are able now to consider the evolution of

generic initial data. The recoil velocity v can be calculated
by solving the IVP corresponding to the system of ordinary
differential equations. (24) with initial conditions (25). The
recoil velocity determines completely the final state for
normalized initial data, allowing the study of any other
relevant quantity as, for instance, the fraction � of the
initial mass radiated away as a function of the
nonreflection-symmetric initial data,

� ¼ 1� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
�Z 1

�1

dx

Q3ð0; xÞ
��1

: (26)

We have performed an exhaustive numerical analysis of the
system (24). The considered initial data include the follow-
ing simple but representative family:

Qð0; xÞ ¼ Q0ð1þ �xþ �x2 þ �x3Þ; (27)

where the constant Q0 is always chosen in order to ensure
the normalization q0 ¼ 2. Some particular elements of this
family are presented in Fig. 3.
Figure 4 depicts a typical evolution for the modes b‘ðuÞ

governed by (24) for a particular case of the family (27).
The recoil velocity v can be read from the final state of the
evolution for any initial data. We notice that, for the family
of initial conditions (27), we always have b‘ð0Þ ¼ 0 for
‘ > 3 and, in this case, N ¼ 8 is sufficient to assure
typically an accuracy (controlled by the constant q0ðuÞ ¼
2) of the Galerkin approximation up to 1%. Initial data with
high qnð0Þ typically require higher N in order to attain a
given accuracy. The radiation content of the initial data can

v

ο

q

ο
q n

( 
  )

q
5

1

q3

−2

−1

−0.5

 0

 0.5

 1

 1.5

 2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1.5

FIG. 2. Final odd moments qnð1Þ, n ¼ 1, 3, 5, as functions of
the recoil velocity v ¼ tanh�, as given by (22). Notice that, for a
given 0< jvj< 1, one has jq1j> jq3j> jq5j> � � � .
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also give some clues about the minimal necessary value of
N; see Sec. IV.

B. Estimation of the recoil velocity

Despite that the IVP associated to the Eq. (24) can be
solved with quite modest computational resources, an ana-
lytical estimation of the recoil velocity v from the initial
data would be certainly valuable. Since the final state of the
RT evolution is completely characterized by the sole pa-
rameter v for normalized initial data, a second conserved
quantity besides q0 would suffice to determine completely
the final state and, consequently, to determine the recoil
velocity v. Unfortunately, the RT equation (5) does not
seem to have any other conserved quantity rather than q0.
On the other hand, its Galerkin approximation (24) does
indeed have a second conserved quantity. Such a new
conserved quantity, however, will be only approximately
constant along the solutions of the full RT equation.
Nevertheless, the approximation will be as good as the
Galerkin approximation is accurate. In order to construct
an explicit expression for the new constant, we remind you
that (5) implies that the moments (21) obey the equation

6m0 _qnðuÞ ¼ hxn; ½ð1� x2ÞKx�xi: (28)

From (6) and (23), we see that

½ð1� x2ÞKx�x ¼
X2N
‘¼0

a‘ðuÞx‘; (29)

where a‘ðuÞ are quadratic functions of the modes b‘ðuÞ.
For odd n, the inner product in (28) will select only the
odd-‘ terms in x in the summation (29), leading to the
following linear relation between _qnðuÞ and a‘ðuÞ:

3m0 _qnðuÞ ¼
X2N
odd‘

a‘ðuÞ
‘þ nþ 1

: (30)

The right-hand side of (30) has exactly N terms, implying,

(a) (b) (c)

−0.5

 0

 0.5
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10 0.5 1 1.5
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−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

 2.5
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FIG. 3. Polar plot of some typical nonreflection-symmetric initial data Qð0; xÞ of the family (27). The initial condition a, b, and c
correspond, respectively, to the parameters � ¼ 1=2, � ¼ 1, � ¼ 0; � ¼ � ¼ 0, � ¼ �2=3; and � ¼ 0, � ¼ 4, � ¼ 3. The dashed
lines correspond to the associated gravitational radiation content (without scale); see Sec. IV.
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FIG. 4. Evolution of the modes b‘ðuÞ governed by (24) for the
case ðaÞ of Fig. 3. N ¼ 8 was used, leading to an accuracy
(controlled by the constant q0 ¼ 2) of 10�4. The final evolution
state has b0 ¼ 1:0197 and b1 ¼ 0:20017 and, consequently, the
recoil velocity is v ¼ 0:19628 and the radiated energy fraction
� ¼ 0:05420, calculated according to (26).
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therefore, that one can have at most N linear independent
equations of the type (28). The linear relation between _qn
and a‘ðuÞ given by (30) involves a Hilbert-type matrix [18]
and, in particular, it is always possible to find N þ 1
rational numbers �‘ such that

d

du

�XNþ1

‘¼1

�‘q2‘�1ðuÞ
�
¼ 0: (31)

The quantity between parenthesis is conserved along the
solutions of (24) and, therefore, it corresponds to our
second conserved quantity. One could also truncate the
summation in (30) in a given ‘, obtaining a partial linear
combination of the odd moments that are constant along
the solutions of (24) up to deviations proportional to max
ja‘þ2ðuÞj. The first of such partial linear combinations are

ð‘ ¼ 0Þ q1; (32)

ð‘ ¼ 1Þ q1 � 5

3
q3; (33)

ð‘ ¼ 3Þ q1 � 14

3
q3 þ 21

5
q5; (34)

..

.

The coefficients in the above expressions and the�‘ of (31)
can be calculated in a straightforward way by using, for
instance, Gauss elimination in (30). However, our numeri-
cal calculations show that, for the typical initial data con-
sidered here, the first odd moment q1 dominates over the
other ones, implying that the typical variations ðq1ð0Þ �
q1ð1ÞÞ=q1ð0Þ are rather small. We notice also that the
typical initial data of the family (27) considered here has
jq1ð0Þj> jq3ð0Þj> jq5ð0Þj> � � � , in agreement with the
magnitude of the odd moments for the final state; see
Fig. 2. This situation can fail for some very specific initial
conditions. For instance, if one has jq3ð0Þj> jq1ð0Þj>
jq5ð0Þj> � � � , q1 will vary considerably along the solu-
tions of (24), but the combination given by (34) will be
approximately constant, and so on. Figure 5 presents nu-
merical evidences confirming these results. For practical
purposes, whenever jq1ð0Þj> jq3ð0Þj> jq5ð0Þj> � � � , one
can assume that q1ð1Þ � q1ð0Þ and estimate the final
recoil velocity v as

1

v

�
2� 1� v2

v
ln
1þ v

1� v

�
� �

Z 1

�1

x

Q2ð0; xÞ dx: (35)

In particular, v has the opposite sign of q1ð0Þ; see Fig. 5.
We emphasize, nevertheless, that (35) will be accurate
solely in the cases where q1ðuÞ is actually the dominant
moment.

IV. DISCUSSION

The physical properties of the initial conditions corre-
sponding to the family (27) can be investigated by consid-
ering their radiation content, which is determined by the
ð1=rÞ-decaying part of the Riemann tensor and is propor-
tional to the quantity [10,19]

Dðu; xÞ ¼ �ð1� x2ÞQ2@u

�
Qxx

Q

�
: (36)

With the help of (5) and (6), one can show that for poly-
nomials Qðu; xÞ in x, the function Dðu; xÞ will be also
polynomial in x. Moreover, Dðu; xÞ is an even (reflection-
symmetric) function for even Qðu; xÞ. The dashed lines in
Fig. 3 are polar plots without scale of jDð0; xÞj correspond-
ing to the radiation content of the associated initial data.
The asymmetry in the gravitational radiation emission
responsible for the final recoil is clear. We notice that
initial data with larger max jDð0; xÞj will typically require
a larger value of the truncation order N to attain a given
accuracy in the Galerkin approximation. For instance,
case (c) of Fig. 3 requires a truncation order larger than
cases (b) and (a) to keep the same accuracy.
Some cases of the family (27) are especially interesting

since they are good approximations for the Brill-Lindquist
initial data [20]

Qð0; xÞ ¼ Q0

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� wx
p þ 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ wx
p

��2
; (37)

which can be interpreted as the final stage (after the hori-
zon merging) of a frontal collision of two black holes
[21,22], with the parameters	 � 0 and 0 � w< 1 related,
respectively, to the mass ratio and to the infalling relative
velocity of the two black holes. The constant Q0 must be
chosen in order to assure q0 ¼ 2. We have

q

q 1
(0

)

v

( 
  )

1q
ο ο

(0)1

final
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FIG. 5. Plot of v� q1ð0Þ for some typical regular initial con-
ditions. The dotted line is the curve predicted by (35). The detail
depicts the plot of q1ð0Þ � q1ð1Þ. The assumption of q1ð1Þ ¼
q1ð0Þ is, typically, a good approximation when q1ðuÞ is the
dominant moment.
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Q2
0ð	;wÞ ¼ 1þ	4

1� w2
þ 4	ð1þ	2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� w2
p þ 3

	2

w
ln

�
1þ w

1� w

�
:

(38)

For 	 ¼ 1 (the equal masses case), the function (37) is

reflection-symmetric and, in this case, the final state of the
evolution is completely determined by the constraint q0 ¼
2. For 	 � 1, one can estimate the recoil velocity for this
head-on collision approximation by using (35). For the
initial data (37) we have

1

v

�
2� 1� v2

v
ln
1þ v

1� v

�
� �q1ð0Þ ¼

ð	�2 �	2Þð 1
w2 ln

1þw
1�w � 2

w�w3Þ þ 8ð	�1 �	Þðarcsinw
w2 � 1

w
ffiffiffiffiffiffiffiffiffi
1�w2

p Þ
	2þ	�2

1�w2 þ 4ð	þ	�1Þffiffiffiffiffiffiffiffiffi
1�w2

p þ 3
w lnð1þw

1�wÞ
: (39)

For small values of w, the condition (39) reduces to

v ¼ 	� 1

	þ 1
w: (40)

Figure 6 shows the dependence of vwithw for some values
of 	 as predicted by (39) and some numerical results. A
very good agreement is found again. It is interesting to
notice that

lim
w!1

q1ð0Þ ¼ 2
	4 � 1

	4 þ 1
(41)

for the initial data (37), implying from (39) that there exists
a maximum recoil velocity for this configuration

lim
w!1

jvj ¼ vmax < 1: (42)

In fact, Eq. (39) implies that v < w for any	 (see Fig. 6), a
behavior already noticed in the numerical analysis of [22].
One can also calculate the fraction (26) of the initial mass

radiated away for this case

� ¼ 1� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p Q3
0ðu;wÞ
hðu; wÞ ; (43)

where v is given by (39) and

hðu;wÞ ¼ 2ð1þ	6Þ
ð1� w2Þ2 þ

8ð	þ	5Þ
ð1� w2Þ3=2 þ

15ðu2 þ u4Þ
1� w2

þ 4ð	þ	5Þ þ 40	3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2

p þ 15ð	2 þ	4Þ
2w

� ln

�
1þ w

1� w

�
: (44)

The aspect of the curves (43) are similar to that one
depicted in Fig. 1. In particular, for small w, one has

� ¼ 3

5

	ð5	2 � 8	þ 5Þ
ð	þ 1Þ4 w4 þOðw6Þ; (45)

compare with (20). Because of (42), one has � ! 0 irre-
spective of 	 for w ! 1.
We finish by commenting that the nonaxisymmetric case

Q ¼ Qðu; �;�Þ can also be investigated by means of a
Galerkin method. For such a case, the Galerkin decom-
position (23) is based on the spherical harmonics

Qðu; �;�Þ ¼ XN
‘¼0

X‘
m¼�‘

b‘mðuÞYm
‘ ð�;�Þ; (46)

and a system of equations equivalent to (24) can be ob-
tained. In this case, the stationary regime corresponds also
to the case for that b‘m ¼ 0 for ‘ > 1. The constant-K final
state will have the form

Qð1; �; �Þ ¼ b00 þ b10 cos�þ a sin� cos�

þ c sin� sin�; (47)

where b200 � ðb210 þ a2 þ c2Þ ¼ 1 for the normalized case.

The nonvanishing coefficients now can determine the
modulus and the direction of the Bondi’s four-momentum
and, consequently, the recoil velocity of the remnant.
These topics are now under investigation.
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FIG. 6. Dependence of the recoil velocity v with the infalling
velocity w of the two black holes with different masses, as
predicted by (39), and some results from numerical calculations.
Notice that v ! �v if 	 ! 1=	.
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APPENDIX

One can check easily by a direct substitution that
QðxÞ ¼ aþ bx, with a2 � b2 ¼ K, is a regular solution of
(4). Nevertheless, a stronger result holds in this case: all
regular solutions of (4) with constant K are necessarily of
this form. We are interested in the geometrically regular
solutions (0<QðxÞ<1 and jQxðxÞj<1 for �1 � x �
1). The relevant phase space is three-dimensional and
spanned by ðx;Q;QxÞ. Notice that any solution such that
Qxx ¼ 0must be constrained on the surfaceL of the phase

space corresponding to the points such that

Lðx;Q;QxÞ ¼ Q2 � 2xQQx � ð1� x2ÞQ2
x � K ¼ 0:

(A1)

One can show that, along any solution of (4), one has

ð1� x2ÞQdL

dx
¼ 2ðxQþ ð1� x2ÞQxÞL; (A2)

confirming thatL is indeed an invariant surface of (4). The
linear equation (A2) has the solution

Lðx;QðxÞ; QxðxÞÞ ¼ A
Q2ðxÞ
1� x2

; (A3)

where A is a constant, implying that any solution of (4)
such that L � 0 cannot be regular in x ¼ �1.
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