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We study the semiclassical properties of the Riemannian spin foam models with Immirzi parameter that

are constructed via coherent states. We show that, in the semiclassical limit, the quantum spin foam

amplitudes of an arbitrary triangulation are exponentially suppressed if the face spins do not correspond to

a discrete geometry. When they do arise from a geometry, the amplitudes reduce to the exponential of i

times the Regge action. Remarkably, the dependence on the Immirzi parameter disappears in this limit.
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I. INTRODUCTION

Loop quantum gravity (LQG) is an approach to canoni-
cal nonperturbative quantum gravity, where the first-order
(or connection) formulation of gravity plays a central role.
Spin foam models arise from the attempt to construct a
corresponding covariant (or path-integral) formulation of
quantum gravity. In both the canonical and covariant ap-
proach, one central open issue is the semiclassical limit—
the question whether these theories reduce to general rela-
tivity in suitable semiclassical and low-energy regimes.
This problem has been explored by many authors and
from various angles: for example, by the use of semiclas-
sical states [1–6], by the extraction of propagators from
spin foam models [7–9], by numerical simulations [10,11],
and by symmetry reduction [12–14]. At this stage, how-
ever, there is no conclusive evidence that LQG or spin
foam models in 4 dimensions do have a satisfactory low-
energy behavior. More tangible results have been obtained
in 3 dimensions, where the classical and quantum theory
are far simpler [15–18]. In this case, spin foams were
coupled to point particles [15,19], and it was found that
the semiclassical limit is related to a field theory on non-
commutative spacetime [18].

Over the last years most investigations in 4 dimensions
were focused on a model that was introduced by Barrett
and Crane in 1997 [20]. It can be constructed by starting
from a 4d BF theory and by imposing suitable constraints
on the B-field [21,22].1 These constraints are called sim-
plicity constraints and should restrict the B-field such that
it becomes a wedge product of two tetrad one-forms. This
procedure for imposing simplicity was subject to various
criticisms: it was argued, in particular, that the Barrett and
Crane model could not have a realistic semiclassical limit,
since its degrees of freedom are constrained too strongly.

More recently, two new techniques for constructing spin
foam models were introduced that open the way to a
resolution of this difficulty: the coherent state method

[23], based on integrals over coherent states on the group,
and a new way of implementing the simplicity constraints
[24]. These techniques led to the definition of several new
spin foam models: first, a model by Engle, Pereira, and
Rovelli (EPR) [24,25], and later models by Freidel and
Krasnov (FK�) [26] that incorporate any value of the
Immirzi parameter � � 1 and reproduce the EPR model
for � ¼ 0 [26,27]. Engle, Pereira, Livine, and Rovelli [28]
also studied the inclusion of the Immirzi parameter and
proposed models (ELPR�) which differ from FK� for � >
1. A detailed comparison of the Riemannian models has
been performed in [29]. Lorentzian versions of these mod-
els have been constructed as well [26,28,30].
In this paper, we focus our study on the set of

Riemannian models FK�. The main reason for this is the
result of [29], where we showed that each of these models
can be written as a path integral with an explicit, discrete,
and local action. We will use this path-integral representa-
tion to analyze the semiclassical properties of the spin
foam models FK�.
As shown in [29], all known 4d spin foam models with

gauge group SO(4) can be written in a unified manner. One
first introduces a vertex amplitude Avðj�f ; le; kefÞ which

depends on a choice of SO(4) representations for each
face f of the spin foam, a choice of SU(2) intertwiners le
for each edge, and a choice of SU(2) representations kef for

each ‘‘wedge’’ [i.e. each pair ðefÞ]. This vertex amplitude
is just the SO(4) 15j symbol with SO(4) representations
expanded onto SU(2) ones (see [29] for more details). If
one sums these vertex amplitudes without any constraint,
one simply obtains a spin foam representation of SO(4) BF
theory.
The spin foam models for gravity arise from two re-

strictions: first, a restriction on the SO(4) spins in terms of
the Immirzi parameter �, namely,

jþ

j�
¼ 1þ �

j1� �j ; (1)

which implements part of the simplicity constraints.2 This

*fconrady@perimeterinstitute.ca
+lfreidel@perimeterinstitute.ca
1BF theory in four dimensions is a topological theory of a two-

form B and a connection one-form A.

2These models are only defined for � � 1. We also assume
that � � 0, since a change of sign � ! �� is equivalent to
swapping jþ and j�.
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implies that there is only one free SU(2) spin per face,
denoted by jf. The second restriction pertains to the set of

SU(2) wedge representations that one should sum over. It is
expressed by the choice of a nontrivial measure D�

j;k. The

cross simplicity constraints require [26,28] that this mea-
sure should be peaked around k ¼ jþ � j� for � > 1. In
the ELPR�models, this constraint is imposed strongly, à la
Barrett-Crane, while in the coherent state construction of
FK� it is implemented weakly.

The partition function of the spin foam models is given
by a sum over spin foams that reside on the dual of a
triangulation � and satisfy the above constraints:

Z�
� ¼ X

jf

Y
f

dj�þ
f
dj��

f
W�

�ðjfÞ; (2)

where

W�
�ðjfÞ �

X
le;kef

Y
e

dle
Y
ef

dkefD
�
jf;kef

Y
v

A�
vðjf; le; kefÞ: (3)

Here, the amplitude W�
�ðjfÞ contains the sum over all

intertwiner and wedge labels le and kef, and can thus be

regarded as an ‘‘effective’’ spin foam amplitude for given
spins jf. dj denotes the dimension of the spin j

representation.
The main focus of our work is to find the semiclassical

asymptotics of this effective spin foam amplitude. As we
will see in the next section, this amounts to determining the
behavior ofW�

�ðjfÞ for large spins. We will find that, in this

limit, the effective amplitude is exponentially suppressed if
the spin labelling cannot be interpreted as areas of a dis-
crete geometry. When the spins do arise from a discrete
geometry, on the other hand, and when � > 0, the effective
amplitudeW�

�ðjfÞ is given by the exponential of i times the

Regge action. It is remarkable that the dependence on the
Immirzi parameter drops out. The corresponding analysis
for the EPR model yields that the exponent vanishes, i.e.
the effective action is zero.

The paper is organized as follows. In Sec. II, we review
the path-integral representation that is used to derive the
semiclassical approximation. In Sec. III, we define the
notion of a semiclassical limit that we apply in this paper,
and present the main result derived in the following sec-
tions. Section IV states the equations which characterize
the dominant contributions to the semiclassical limit. In
Sec. V we rewrite these equations and project them from
SUð2Þ � SUð2Þ to SO(4). In Sec. VI, we introduce defini-
tions of co-tetrad, tetrad, and spin connection on the dis-
crete complex. These are needed in Sec. VI, where we
show that the solutions to the equations are given by
discrete geometries. Finally, in Sec. VIII, we put every-
thing together and state the asymptotic approximation of
the effective spin foam amplitude W�

�ðjfÞ.

II. PATH-INTEGRAL REPRESENTATION OF SPIN
FOAM MODELS

In this section, we review the path-integral representa-
tion for the EPR and FK� models derived in Ref. [29] and
introduce some notations and definitions for simplicial
complexes and their duals.
In the following, � denotes a simplicial complex and ��

stands for the associated dual cell complex. We assume that
� is orientable. We refer to cells of � as vertices p, edges
‘, triangles t, tetrahedra �, and 4-simplices �. The 0-, 1-,
and 2-cells of the dual complex �� are called vertices v,
edges e, and faces f, respectively. We will also need a finer
complex, called S�, which results from the intersection of
the original simplicial complex � with the 2-skeleton of
the dual complex ��. This leads to a subdivision of faces
f � �� into so-called wedges, and each edge e � �� is
split into two half-edges [see Fig. 1(b)]. We refer to ori-
ented half-edges by giving the corresponding pair ðveÞ or
ðevÞ. When an edge in S� runs from the center of a face f
to the edge e � @f, it is denoted by the pair ðfeÞ. Awedge
is either labeled by a pair ev or by the pair ef, where f is
the face that contains the wedge and e is the edge adjacent
to the wedge that comes firstwith respect to the direction of
the face orientation.
Given S� and an orientation of its faces f, we define a

discretized path integral that is equivalent to the spin foam
sum (3). The variables are spins jf on faces, SU(2) varia-

bles ue and nef on edges and wedges, respectively, and

SUð2Þ � SUð2Þ variables gve and hef on half-edges. The

set of ðgve;hefÞ represents a discrete connection on the

complex S�. We distinguish two types of connection var-
iables, since there are two kinds of half-edges in S�: half-
edges ðevÞ along the boundary @f of a face f, and half-
edges ðefÞ that go from an edge e in the boundary @f to the
center of the face f (see Fig. 2 variation interior). Given
such a connection, and for a wedge orientation ½eve0f�, we
can construct the wedge holonomy Gef ¼ ðGþ

ef; G
�
efÞ,

where

G ef ¼ gevgve0he0fhfe: (4)

The other set of variables ðjf; ue; nefÞ represent (pre-)
geometrical data.3 As we will see in more detail later, one

FIG. 1. (a) Face f of dual complex ��. (b) Subdivision of face
f into wedges. The arrows indicate starting point and orientation
for wedge holonomies.
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can think of ue as a unit 4-vector normal to the tetrahedron
dual to e. The spin jf determines the area of the triangle

dual to f and nef represents a vector normal to this triangle

in the subspace orthogonal to ue. We use these variables to

define Lie algebra elements X�
ef ¼ ðX�þ

ef ; X��
ef Þ 2 suð2Þ 	

suð2Þ associated with wedges of S�. They depend on the
value of the Immirzi parameter � and are given by

X�þ
ef � �þjfnef�3n

�1
ef ;

X��
ef � ���jfuenef�3n

�1
ef u

�1
e :

(5)

Here, �i denotes the Pauli matrices. The spins jf are

arbitrary non-negative half-integers. �þ and �� are the
integers with smallest absolute value that satisfy �þ > 0,
and

�þ

�� ¼ �þ 1

�� 1
: (6)

That is, if � > 1, both �þ and �� are positive integers,
while for � < 1, �� is negative.4 In the following, we
sometimes use the notation

j��f � j��jjf: (7)

In the particular cases � ¼ 0 and � ¼ 1 (corresponding to
the EPR and FK models), one recovers the usual simplicity
relations [20,31], i.e. jþ ¼ j� ¼ j.

The action of the path integral is given by

S��ðjf; ue; nef;gve;hefÞ ¼
X

e;f
e

ðSðX�þ
ef ;Gþ

efÞ

þ SðX��
ef ;G�

efÞÞ; (8)

where

SðX;GÞ � 2jXj lntr
�
1

2

�
1þ X

jXj
�
G

�
: (9)

In the last equality, X ¼ Xi�i is a SU(2) Lie algebra
element, G an SU(2) group element, jXj2 � XiXi, and
the trace is in the fundamental representation of SU(2).

Note that by definition jX��
ef j ¼ j��f . This action is invari-

ant under gauge transformation labeled by SUð2Þ � SUð2Þ
group elements �e, �f, �v living at vertices, faces, and

edges of S�:

g ev ! �egev�
�1
v ; hef ! �ehef�

�1
f ;

nef ! �þ
e nef; ue ! ��

e ueð�þ
e Þ�1:

(10)

In order to evaluate this action for a general group element

G ¼ P0
G1þ iPG, where PG ¼ Pi

G�i and P2
0 þ jPGj2 ¼ 1,

it is convenient to decompose G into a part parallel to X̂ �
X=jXj and a part orthogonal to it:

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jPG � X̂j2

q
ðcos�1þ i sin�X̂Þ

þ iðPG � ðPG � X̂ÞX̂Þ; (11)

where ðPG � X̂Þi � �ijkP
j
GX̂

k and cos� ¼
P0
G=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jPG � X̂j2

q
. The action is in general complex,

since

SðX;GÞ ¼ jXj lnð1� jPG � X̂j2Þ þ 2ijXj�: (12)

It is important to note that the real part of this action is

always negative; ReðSðX;GÞÞ � 0. It is zero only if X̂ is
parallel to PG or equivalently if the Lie algebra element X
commutes with the group elementG. In this case the action
is purely imaginary and has the ‘‘Regge’’ form SðX;GÞ ¼
2ijXj�.
As shown in [29], the spin foam models FK� introduced

in [26] and described in (3) can be written as

Z�
�ðjfÞ ¼

X
jf

Y
f

dj�þ
f
dj��

f
W�

�ðjfÞ; (13)

where the effective amplitude W�
� is obtained by integra-

tion over all the variables5 except jf:

W�
�ðjfÞ ¼

Z Y
e

due
Y
e;f
e

d�þjf d��jf dnef

�
Z Y

v;e
v

dgev

Y
e;f
e

dhefe
S�
�
ðjf;ue;nef ;gve;hefÞ: (14)

III. SEMICLASSICAL LIMIT

In this section, we define the notion of semiclassical
limit that we investigate in this paper, and state our main
results. We focus our interest on the effective amplitude
W�

�ðjfÞ, which depends only on the scalars jf associated

with each face. In order to define a semiclassical limit we
need to reinstate the @ dependence and introduce dimen-
sionful quantities. The spins jf are then proportional to the

physical area.
The Immirzi parameter enters in the relationship be-

tween the discrete bivector field X�IJ
ef and the dimensionful

simple area bivector field AIJ
ef associated with the triangle

dual to f: namely,6

3A truly geometrical interpretation is only valid on-shell, when
the closure constraint is imposed.

4In previous papers [26,29], a different convention was used,
where both �þ and �� are positive. This entails minus signs in
various formulas, depending on whether � > 1 or � < 1. With
the present convention, we no longer need to make this distinc-
tion, since the minus signs are absorbed into ��.

5Note that thanks to the gauge symmetry described in (10)
there is no need to integrate over the variables ue. The effective
amplitude obtained after integration over all variables except jf
and ue is independent of ue.

6The map between bivectors XIJ
ef and Lie algebra elements

Xef ¼ ðXþi�i; X
�i�iÞ of suð2Þ 	 suð2Þ is given by X�i

ef ¼
1
2 �

i
jkX

jk
ef � X0i

ef.
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ð16�@GÞX�
ef ¼ ?Aef þ 1

�
Aef; (15)

when � > 0.
The simplicity of the area bivector implies that jAþ

efj ¼
jA�

efj � Af, where Af denotes the physical area of the

triangle dual to f. The relationship (15) can be written

ð16�@GÞ�X��
ef ¼ ð1� �ÞA�

ef, which leads to

Af

8�@G
¼ ð�þ þ ��Þjf: (16)

We implement the semiclassical limit by taking @ to
zero, while keeping the physical dimensionful areas Af

fixed. The previous Eq. (16) tells us that in this limit the
spins jf are uniformly rescaled to infinity. Thus, the semi-

classical regime is reached by taking the limit N ! 1 of
the amplitude W�

�ðNjfÞ in (14).

Since the action is linear in jf, this corresponds to a

global rescaling of the action byN. Hence the limitN ! 1
is controlled by the stationary phase points of the exponent:
the integral localizes as a sum over contributions from
stationary phase points. Moreover, as we have seen, the
action is complex with a negative real part. As a result,
stationary phase points which do not lie at the maximum
ReðS��Þ ¼ 0 are exponentially suppressed. Altogether this

means that the semiclassical limit is controlled by sta-
tionary points of S�� which are also maxima of the real

part ReðS��Þ. A more detailed discussion of the asymptotic

analysis is given in Sec. VIII. Before stating our main
result, we have to recall that in the continuum the equiva-
lence between gravity and the constrained BF formulation
is only established if one imposes a condition of nondege-
neracy on the B field.7 We therefore need to distinguish
between nondegenerate and degenerate configurations in
our analysis. This is achieved by splitting the amplitude
(14) into two parts,8

W�
�ðjfÞ ¼ WND�

� ðjfÞ þWD�
� ðjfÞ; (17)

where WND�
� ðjfÞ is defined by the integral (14) subject to

the constraint that

j�IJKLX
IJ
efðgee0xXe0f0 ÞKLj > 0 (18)

for all pairs of wedges ðefÞ and ðe0f0Þ that share a vertex,
but do not share an edge. Here, gee0xXe0f0 �
gee0xXe0f0g

�1
ee0 and gee0 � gevgve0 . The term WD�

� ðjfÞ de-
notes the complementary integral consisting of degenerate
configurations.

One of the characteristics of 4d spin foam models is the
assignment of spins jf to each face f of the dual complex

�� and of corresponding areasAtðjfÞ to each triangle t of
�. In contrast, Regge calculus is based on an assignment of
a discrete metric to the complex, defined by lengths l‘
associated with each edge ‘ � � and subject to triangle
inequalities. The areasAt of triangles t dual to faces f are
then determined as a function Atðl‘Þ of the edge lengths
l‘. It is well known [33–35] that for an arbitrary assignment
of spins jf, there is, in general, no set of l‘’s such that

�jf ¼ Atðl‘Þ. The set of areasAt determines at least one

flat geometry inside each 4-simplex, but the geometries of
tetrahedra generally differ, when viewed from different 4-
simplices. In the following, we will call an assignment of
spins jf Regge-like if there is a discrete metric l‘, ‘ � �,

such that AtðjfÞ ¼ Atðl‘Þ.
Our principal result is that the set of stationary points of

the integral (14) which are nondegenerate and have a
maximal real part, are Regge-like. Moreover, the on-shell
action is exactly the Regge action. This result relies on the
specific realization of the spin foam model in terms of the
local action (8) which is valid for the FK� version [26] of
the model. It does not apply to the ELPR� construction
[28], which is different from FK� for � > 1 (see [29] for a
comparison).
More precisely, a configuration ðjf; ue; nef;gev;hfeÞ is a

solution of the conditions

@S

@nef
¼ @S

@ue
¼ @S

@gev
¼ @S

@hef
¼ 0; ReS ¼ 0; (19)

and Eq. (18), if and only if the spins jf, f � �� are Regge-
like. In this case, there exist edge lengths l‘, ‘ � �, such
that jf ¼ ð�þ þ ��Þ�1Afðl‘Þ for f ¼ t�. Moreover, for

such a solution we have, as long as � � 0, that

S�� ¼ i
X
f

Afðl‘Þ�fðl‘Þ � iSRðl‘Þ; (20)

where�fðl‘Þ is the deficit angle associated with the face f
and Afðl‘Þ is the area in Planck units. If � ¼ 0, the on-

shell action vanishes, i.e. S0� ¼ 0, in agreement with the

fact that � ¼ 0 corresponds to a topological theory classi-
cally (see [26]).
It is important to note that the dependence on � has

disappeared from the functional form of the action. This
parallels the behavior of the continuum theory, where the �
dependence drops out classically, once we solve the torsion
equation. It also provides a nontrivial check on whether the
chosen spin foam model captures the right semiclassical
dynamics. The dependence on the Immirzi parameter
arises only at the quantum level as a quantization condition
on the area,9 similar as in canonical loop quantum gravity.

7See [21,22] for a more detailed discussion of this point and
the potential problems due to degenerate configurations in the
path integral.

8See [32] for an analysis of stationary points of group integrals
representing the 6j symbol and the 10j symbol using a similar
splitting.

9The dimensionful area has to satisfy the condition that
Atð8�@GÞ�1ð�þ þ ��Þ�1 is a half-integer. This quantization
condition becomes invisible in the semiclassical limit @ ! 1.
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These results are derived in Secs. VII and VIII, and
imply the following statements on the effective amplitude

WND�
� ðjfÞ: as N ! 1, the amplitude WND�

� ðNjfÞ is expo-
nentially suppressed,10 if the spins jf, f � ��, do not arise
from a Regge geometry. On the other hand, if the jf’s are

Regge-like, there is a nonzero function c�ðjfÞ, independent
of N, such that

WND�
� ðNjfÞ 

c�ðjfÞ
Nr�=2

ðexpðiNSRÞ þ c:c:Þ (21)

asN ! 1. Here, c.c stands for the complex conjugate. The
number r� is the rank of the Hessian and given by

r� ¼ 33E� 6V � 4F; (22)

with V, E, and F denoting the number of vertices, edges,
and faces of ��.

This shows that, in the semiclassical limit, the effective

amplitude WND�
� ðjfÞ is described by an effective action,

which is the Regge action. If there are several discrete
geometries l‘, ‘ � �, for a given set jf, f � ��, one
should sum over them in the asymptotic evaluation (21).
In the following sections, we prove the above statements
and study in detail the nondegenerate solutions to
Eqs. (19).

IV. CLASSICAL EQUATIONS

We will now derive the explicit form of the equations
that follow from the conditions �S ¼ 0 and <S ¼ 0.

A. Variation on interior and exterior edges

We first consider the variation of the variable h�e0f. Since
the edge e0f belongs to two wedges, denoted ef and e0f,
the variation of the action involves only two terms. If e is
the edge preceding e0 along the orientation of the face f,
one has Gef ¼ gevgve0he0fhfe and Ge0f ¼
ge0v0gv0e00he00fhfe0 . We can write the variation of the action

as (see Fig. 2)

�S ¼ 2j��f tr

��h�e0eð1þ X̂�
efÞG�

efðh�e0eÞ�1

trðð1þ X̂�
efÞG�

efÞ

� ð1þ X̂�
e0fÞG�

e0f

trðð1þ X̂�
e0fÞG�

e0fÞ
�
�h�e0fh

�
fe0

�
¼ 0; (23)

where we use the abbreviations

g�ee0 � g�evg�ve0 ; h�ee0 � h�efh
�
fe0 ;

ðh�efÞ�1 ¼ h�fe; ðg�evÞ�1 ¼ g�ve;
(24)

and X̂�
ef � X��

ef =j��, which is independent of �.

To write these equations in a more compact manner, let
us define the matrix element

Ŷ �
ef � 2ð1þ X̂�

efÞ
trðð1þ X̂�

efÞG�
efÞ

: (25)

Since �hh�1 is in the Lie algebra, we conclude from
(23) that the traceless part of the expression in round
brackets has to be zero. Moreover, since trðY�

efG
�
efÞ ¼ 2,

one simply gets

h�feðŶ�
efG

�
efÞh�ef ¼ h�fe0 ðŶ�

e0fG
�
e0fÞh�e0f: (26)

We refer to this equation as the interior closure con-
straint, since it encodes a relation between wedges in the
interior of the face f.
Next, we vary a group variable gev on a half-edge ev

(see Fig. 3). This calculation is slightly more involved,
since the orientation of different faces has to be taken into
account. At the edge e, 4 faces fi, i ¼ 1; . . . ; 4, intersect.
Let Iþe be the set of indices i for which the orientation of fi
is ‘‘ingoing’’ at the vertex v, i.e. parallel to the orientation
of the half-edge ðevÞ. In these cases, the wedge holonomy
has the form Gefi ¼ gevgveiheifihfie. Denote by I�e the

complementary set for which the holonomy is Geifi ¼
geivgvehefihfiei . Then, variation of g�ev gives

FIG. 3. Variation of the group variable gev on the segment ev
between faces.

FIG. 2. Variation of the group variable hfe on the edge fe in
the interior of the face f.

10That is, the limit N ! 1 of NnWND�
� ðNjfÞ is equal to zero for

all n 2 N.
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�S ¼ tr

��X
i2Iþe

j�fiG
�
efi
Ŷ�
efi

� X
j2I�e

j�fjg
�
eejG

�
ejfj

Ŷ�
ejfj

ðg�eejÞ�1

�

� �g�evg�ve
�
¼ 0: (27)

Again, the traceless part of the quantity in round brack-
ets has to be zero. Therefore,

X
i2Iþe

j�fiðG�
efi
Ŷ�
efi

� 1Þ

� X
j2I�e

j�fjg
�
eejðG�

ejfj
Ŷ�
ejfj

� 1Þðg�eejÞ�1 ¼ 0: (28)

This equation relates wedges from different faces, so we
call it the exterior closure constraint.

B. Variation of ue and nef and maximality

For the variation with respect to nef, we use the defini-

tion (5) of X�
ef and get

�Xþ
ef ¼ ½�nefn�1

ef ; X
þ
ef�;

�X�
ef ¼ ½ue�nefn�1

ef u
�1
e ; X�

ef�:
(29)

The variational equation for nef is therefore given by

½Ŷþ
ef; G

þ
ef� þ u�1

e ½Ŷ�
ef; G

�
ef�ue ¼ 0: (30)

Similarly, by varying ue one obtainsX
f
e

½Ŷ�
ef; G

�
ef� ¼ 0: (31)

The action being complex, its stationarity is not enough
to determine the dominant contribution to the semiclassical
limit. One also has to demand that the stationary points are
a maximum of the real part of the action. Since

ReðS��Þ ¼
X
ðefÞ

�
j�þf ln

�
1� 1

4
j½X̂þ

ef; G
þ
ef�j2

�

þ j��f ln

�
1� 1

4
j½X̂�

ef; G
�
ef�j2

��
; (32)

and j½X;G�j2 � 0, this is maximal when

½Gþ
ef; X̂

þ
ef� ¼ 0 ¼ ½G�

ef; X̂
�
ef�: (33)

Note that the maximum condition implies that the sta-
tionarity Eqs. (30) and (31) for nef and ue are automati-

cally fulfilled. Moreover it is important to notice that this
relation leads to a drastic simplification of the closure
constraints, since it leads to the identity:

Ŷ �
efG

�
ef ¼ G�

efŶ
�
ef ¼ 1þ X̂�

ef: (34)

V. REWRITING THE EQUATIONS

A. Parallel transport to vertices

To analyze the variational equations, it is convenient to
make a change of variables. The original variables X�

ef,

Gef are based at the edge e, which means that under gauge

transformation they transform as ðXef;GefÞ !
ð�eX

�
ef �

�1
e ;�eGef�

�1
e Þ. The new variables are based at

v and defined by parallel transporting the original variables
to the nearest vertices of the dual complex ��:

X �
efðvÞ � gveX

�
efg

�1
ve ; GefðvÞ � gveGefg

�1
ve ;

ueðvÞ � g�veueðgþveÞ�1:
(35)

Since every edge e intersects with two vertices v and v0,
this leads to a doubling of the number of variables. This is
compensated by equations that relate variables at neigh-
boring vertices v and v0: i.e.,

X �
efðv0Þ ¼ gv0vX

�
efðvÞðgv0vÞ�1;

ueðv0Þ ¼ g�v0vueðvÞðgþv0vÞ�1:
(36)

In terms of the new variables, the interior closure constraint
(26) becomes

h�feg
�
evðŶ�

efðvÞG�
efðvÞÞðh�feg�evÞ�1

¼ h�fe0g
�
e0vðŶ�

e0fðvÞG�
e0fðvÞÞðh�fe0g�e0vÞ�1: (37)

Thus,

G�
efðvÞŶ�

efðvÞ ¼ Ŷ�
e0fðvÞG�

e0fðvÞ; (38)

where the edge e0 follows the edge e in the orientation of f.
Likewise, after conjugation by g�ve, the exterior closure
constraint takes the formX

i2Iþe

j�fiðG�
efi
ðvÞŶ�

efi
ðvÞ � 1Þ

� X
j2I�e

j�fjðG�
ejfj

ðvÞŶ�
ejfj

ðvÞ � 1Þ ¼ 0: (39)

If we impose, in addition, the maximality constraint (34),
the closure constraints simplify and we remain with the
following set of equations:

½GefðvÞ;X�
efðvÞ� ¼ 0;

X�
efðv0Þ ¼ gv0vX

�
efðvÞðgv0vÞ�1;

ueðv0Þ ¼ g�v0vueðvÞðgþv0vÞ�1;

X�
efðvÞ ¼ X�

e0fðvÞ;X
f
e

�efðvÞX�
efðvÞ ¼ 0:

(40)

�efðvÞ is a sign factor which is 1 when f is ingoing at v, i.e.

oriented consistently with the half-edge ðevÞ, and �1
otherwise. These equations are supplemented by the sim-
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plicity constraints

X �
efðvÞ¼ ð�þjfAdðnefðvÞÞ�3;���jfAdðueðvÞnefðvÞÞ�3Þ;

(41)

where

nefðvÞ � gþvenefðgþveÞ�1: (42)

B. Projection to SO(4)

In order to solve these equations explicitly it is conve-
nient to project them from SUð2Þ � SUð2Þ to SO(4) and
work purely in terms of vectorial and SO(4) variables.

The action has the property that

S��ðjf; ue; nef;�GefÞ ¼ S��ðjf; ue; nef;GefÞ
þ 2i�ð�þ þ ��Þjf; (43)

so the weight expðS��Þ projects down to a function of SO(4)
if one restricts to configurations for which ð�þ þ ��Þjf is
an integer. We assume from now on that this is the case.

The projection to SO(4) means that we work with bi-
vectors XIJ instead of pairs ðXþ; X�Þ, the relation between
the two being

X�
i ¼ 1

2�
jk
i Xjk � X0i: (44)

We also associate a unit vector Ûe in R4 to each SU(2)
element ue, defined by the relation

ue ¼ Û0
e1þ iÛi

e�i; Û2
e ¼ 1; (45)

where �i are the Pauli matrices. To translate the simplicity
constraints (41) to so(4), it is convenient to introduce a
fiducial bivector field which is independent of � and which
is simple unlike X�. We denote this bivector field by Xef

without any subscript � and it is defined by

X�þ
ef ¼ �þXþ

ef; X��
ef ¼ ���X�

ef: (46)

Because of the simplicity constraint (41), ueX
þ
ef þ

X�
efue ¼ 0 and jX�

efj ¼ jf. By using the identity

1
2 ðuXþ þ X�uÞ ¼ ð?X � ÛÞ0 þ ð?X � ÛÞi�i;

ðX �UÞI � XIJU
J; ð?XÞIJ � 1

2�IJKLX
KL:

(47)

we then find that

X�
ef ¼ 1

2ð�þþ��ÞXef þ 1
2ð�þ���Þð?XefÞ;

ð?XefðvÞ � ÛeðvÞÞI ¼ 0 (48)

with XefðvÞ � XefðvÞ ¼ 2j2f. This equation is the discrete

version of the simplicity constraints in the continuum.
Recalling the definition of � in terms of ��, we can write
the relation between X� and X also as

X�
ef ¼

1

2
ð�þ þ ��Þ

�
?Xef þ 1

�
Xef

�
; (49)

which shows that for � > 0 X plays the role of the dual of
the area bivector:

Xef ¼ 1

�þ þ ��
?Aef

8�@G
: (50)

Together with these simplicity conditions, we want to
solve the Eqs. (40). When written in terms of the
�-independent, simple bivector Xef, they take the form

GefðvÞxXefðvÞ ¼ XefðvÞ; Xefðv0Þ ¼ gv0vxXefðvÞ;
Ûeðv0Þ ¼ gv0vÛeðvÞ; XefðvÞ ¼ Xe0fðvÞ;X

f
e

�efðvÞXefðvÞ ¼ 0: (51)

x denotes the action of SO(4) generators on bivectors.
This and Eq. (48) are the final form of the equations that we
will study now.

VI. DISCRETE GEOMETRY

In order to find the general solution, we will assume that
the bivectors XfðvÞ are nondegenerate: that is,

XefðvÞ ^ Xe0f0 ðvÞ � 0 (52)

for any pair of faces f, f0 which do not share an edge. It
turns out that the solutions exist only if the set ðjfÞf is

Regge-like. That is, only if there is a discrete metric on the
triangulation � for which jf is the area of triangles dual to

f. As we will see, the unit vectors ÛI are, on-shell, the
normalized tetrad vectors associated with this metric and
the connection gv0v is the discrete spin connection for this
tetrad. In order to demonstrate these statements, we first
need to define all these notions on the discrete complex.11

Co-tetrads and tetrads on a simplicial complex

Definition VI.1.—A co-tetrad E on the simplicial com-
plex � is an assignment of vectors E‘ðvÞ 2 R4 to each
vertex v � �� and oriented edge ‘ � �, ‘ � � ¼ v�,
where the following properties hold:
(i) E�‘ ¼ �E‘.
(ii) For any triangle t � � ¼ v�, and edges ‘1, ‘2, ‘3 �

t so that @t ¼ ‘1 þ ‘2 þ ‘3, the vectors E‘ðvÞ close,
i.e.

E‘1ðvÞ þ E‘2ðvÞ þ E‘3ðvÞ ¼ 0: (53)

(iii) For every edge e ¼ v0v � �� and for any pair of
edges ‘1 and ‘2 in the tetrahedron � dual to e, we
have

E‘1ðv0Þ � E‘2ðv0Þ ¼ E‘1ðvÞ � E‘2ðvÞ: (54)

In other words, a co-tetrad E is an assignment of a closed

11For previous definitions in the literature, see e.g. [36–38].
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R4-valued 1-chain EðvÞ to each 4-simplex � ¼ v� that
fulfills a compatibility criterion. In each 4-simplex �� ¼
v, the co-tetrad vectors ElðvÞ define a flat Riemannian
metric gv by

g‘1‘2ðvÞ ¼ E‘1ðvÞ � E‘2ðvÞ; ‘1; ‘2 � �: (55)

Condition (iii) requires that, for any pair of 4-simplices
� ¼ v� and �0 ¼ v0� which share a tetrahedron �, the
metric induced on � by EðvÞ and Eðv0Þ are the same.
Thus, the co-tetrad E equips � with the structure of a
piecewise flat Riemannian simplicial complex.

We call a co-tetrad E nondegenerate if at every vertex
v ¼ �� � �� and for every tetrahedron � � �, the span of
the vectors E‘ðvÞ, ‘ � �, is 4-dimensional.

Definition VI.2.—Given any nondegenerate co-tetrad E,
there is a unique SO(4) connection � on �� that satisfies
the condition

E‘ðv0Þ ¼ �v0vE‘ðvÞ 8 v0v ¼ e � ��; ‘ � e�: (56)

We call this connection � the spin connection associated
with E.

Proof.—Let ÛðvÞ and Ûðv0Þ denote unit normal vectors
to E‘iðvÞ, i ¼ 1, 2, 3, and E‘iðv0Þ, i ¼ 1, 2, 3, respectively.

Choose these unit normal vectors such that

sgn detðE‘1ðv0Þ; E‘2ðv0Þ; E‘3ðv0Þ; Ûðv0ÞÞ
¼ sgn detðE‘1ðvÞ; E‘2ðvÞ; E‘3ðvÞ; ÛðvÞÞ: (57)

Since the tetrad is nondegenerate, we can find a matrix
�v0v 2 GLð4Þ for which
�v0vE‘iðvÞ¼E‘iðv0Þ; i¼ 1;2;3; �v0vÛðvÞ¼ Ûðv0Þ:

(58)

By condition (54), this matrix must be orthogonal, i.e.
�v0v 2 Oð4Þ. From Eq. (57), we also know that det� ¼
1, so � 2 SOð4Þ. Suppose now there were two matrices
�1, �2 2 SOð4Þ for which
�1E‘iðvÞ¼E‘iðv0Þ; �2E‘iðvÞ¼E‘iðv0Þ; i¼ 1;2;3:

(59)

This would imply that

��1
2 �1E‘iðvÞ ¼ E‘iðv0Þ; i ¼ 1; 2; 3; (60)

and hence�2 ¼ �1. Therefore, the group element�v0v is
unique. h

Together, the closure condition (53) and Eq. (56) can be
regarded as a discrete analogue of the torsion equation
DE ¼ 0.

In analogy to the continuum, we can define the concept
of a tetrad. This definition makes heavy use of the duality
between � and ��. To describe the relation between tetrad
and co-tetrad, it is, in fact, convenient to formulate every-
thing in terms of the dual complex��. Each 4-simplex � is
dual to a vertex v of��, i.e.� ¼ v�. By deleting a vertex p

in �, we obtain a tetrahedron �. This tetrahedron � is, in
turn, dual to an edge e. Thus, the choice of a 4-simplex �
and a vertex p � � defines an edge e at the dual vertex v.
Conversely, a pair ðv; eÞ can be used to label a vertex p of
the triangulation. Two different pairs ðv; e1Þ and ðv0; e01Þ
correspond to the same vertex provided that (1) ðv; v0Þ ¼ e
is an edge of �� and that (2) ðe1; e; e01Þ are consecutive
edges in the boundary of a face of ��.
Since vertices of the triangulation correspond to pairs

ðv; e1Þ, edges ‘ ¼ ½p1p2� � � of � correspond to triples
ðv; e1; e2Þ. We can use this to translate the notation for the
co-tetrad to the dual complex: instead of denoting the co-
tetrad by E‘ðvÞ, we can write it as Ee1e2ðvÞ.
In this notation, the defining relations for the co-tetrad

appear as follows:

Eee0 ðvÞ ¼ �Ee0eðvÞ;
Ee1e2ðvÞ þ Ee2e3ðvÞ þ Ee3e1ðvÞ ¼ 0:

(61)

Similarly, the equation for the spin connection becomes

�eEe1e2ðvÞ ¼ Ee0
1
e0
2
ðv0Þ; (62)

where e ¼ ðvv0Þ is an edge of �� and ðei; e0iÞi¼1;2 are pairs

of edges such that ðei; e; e0iÞ are consecutive edges in the
boundary of a face. Note that there are always 4 such pairs
for a given edge e.
When stating relations between co-tetrad and tetrad, it is

also convenient to define an orientation for each 4-simplex.
By definition, a local orientation of � is a choice of
Z2-ordering of vertices for each 4-simplex �. Such an
ordering is represented by tuples ½p1; � � � ; p5�. Two
Z2-orderings that differ by an even permutation are by
definition equivalent. Two Z2-orderings that differ by an
odd permutation are said to be opposite and we write
½p1; p2 � � � ; p5� ¼ �½p2; p1 � � � ; p5�. By duality it is clear
that a local orientation is equivalent to a choice of
Z2-ordering ½e1; � � � ; e5� of edges of �� meeting at v.
With this orientation we can also define a correspondence
between edges e1 and oriented tetrahedra ½p2; � � � ; p5�.
Given a choice of local orientation of �, one says that

two neighboring 4-simplices �, �0 that share a tetrahedron
� are consistently oriented, if the orientation of � induced
from � is opposite to the one induced from �0. Namely, if
� ¼ ½p0; p1; � � �p4� and �0 ¼ �½p0

0; p1; � � �p4�, they in-

duce opposite orientations on the common tetrahedron � ¼
½p1; � � �p4� and are therefore consistently oriented. The
triangulation � is said to be orientable when it is possible
to choose the local orientations such that they are consis-
tent for every pair of neighboring 4-simplices. Such a
choice of consistent local orientations is called a global
orientation.
From now on and in the rest of the paper we assume that

we work with an orientable triangulation and with a fixed
global orientation.
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Definition VI.3.—For a given nondegenerate co-tetrad E
on �, the associated tetrad U is an assignment of vectors
UeðvÞ 2 R4 to each vertex v and (unoriented) edge e 
 v
such that

UeIðvÞEI
e00e0 ðvÞ ¼ �e00e � �e0e (63)

for all e0, e00 
 v.
These conditions specify the tetrad U uniquely, as we

show in Appendix A. The orthogonality relation (63) is the
discrete counterpart of the equation E	

IE

I ¼ �	


 in the
continuum.

Based on (63), we can derive a number of useful iden-
tities satisfied by a tetrad:

Proposition VI.4.—At any vertex v � ��, the tetrad
vectors UeðvÞ close, i.e.X

e
v

UeðvÞ ¼ 0: (64)

For a tuple ½e1 . . . e5� of edges at v, we can express the
discrete tetrad explicitly in terms of the discrete co-tetrad
and vice versa:

Ue2ðvÞ ¼
1

V4ðvÞ ? ðEe3e1ðvÞ ^ Ee4e1ðvÞ ^ Ee5e1ðvÞÞ (65)

and

Ee2e1ðvÞ ¼ V4ðvÞ ? ðUe3ðvÞ ^Ue4ðvÞ ^Ue5ðvÞÞ; (66)

where V4ðvÞ=4! is the oriented volume of the 4-simplex
spanned by the co-tetrad vectors:

V4ðvÞ ¼ detðEe2e1ðvÞ; . . . ; Ee5e1ðvÞÞ: (67)

For bivectors, one has the relation

? ðEe1e2ðvÞ ^ Ee2e3ðvÞÞ ¼ V4ðvÞðUe4ðvÞ ^Ue5ðvÞÞ: (68)

The norm of Ue is proportional to the volume V3ðeÞ=3! of
the tetrahedron orthogonal to Ue:

jUeðvÞj ¼ V3ðeÞ
jV4ðvÞj : (69)

The determinant of the tetrad vectors equals the inverse of
V4ðvÞ:

1

V4ðvÞ ¼ detðUe2ðvÞ; . . . ; Ue5ðvÞÞ: (70)

In this proposition we have set ½?ðE1 ^ � � � ^
EnÞ�I1���I4�n

� �I1���I4E
I5�n

1 � � �EI4
n . These statements are

proven in Appendix A.

VII. SOLUTIONS

With the help of the previous definitions, we will now
determine the solutions to the Eqs. (51), the simplicity
constraints (48), and the nondegeneracy condition (52).
For the proofs it is practical to denote the oriented wedge
ðefÞ by an ordered pair of edges ðee0Þwhich meet at v. The

order ðee0Þ refers to the fact that e and e0 are consecutive
with respect to the orientation of the face. Note that the
interior closure constraints XefðvÞ ¼ Xe0fðvÞ mean that

there is only one bivector per face f and vertex v. Hence
we can denote the bivectors by Xee0 ðvÞ � XefðvÞ ¼
Xe0fðvÞ.
Proposition VII.1.—Let ðjf; nef; ue; gev; hefÞ be a con-

figuration that solves Eqs. (51), with the bivectors defined
by the simplicity condition (41). Then, there exists a co-
tetrad E such that for any vertex v and tuple ½e1 . . . e5� of
edges at v

Xe4e5ðvÞ ¼ � ? ðEe1e2ðvÞ ^ Ee2e3ðvÞÞ: (71)

The factor � is a global sign, and the 4-volume V4ðvÞ is
given by Eq. (67). This co-tetrad is unique up to inversions
E‘ðvÞ ! �E‘ðvÞ, ‘ � v�.
Equivalently, the bivectors can be expressed by the

associated tetrad U, namely,

Xee0 ðvÞ ¼ �V4ðvÞðUeðvÞ ^Ue0 ðvÞÞ (72)

for any pair of edges e, e0 
 v.
Given this co-tetrad E and tetrad U, the variables

ðjf; nef; ue; gevÞ are determined as follows: the spin jf is

equal to the norm of the bivector ?XefðvÞ, and hence

Regge-like. The group elements gv0v ¼ gv0egev are, up to
signs �e, equal to the spin connection for the co-tetrad E,
i.e.

gv0v ¼ �e�v0v; �e ¼ �1: (73)

For a given choice of the holonomy gev on the half-edge
ev, the group element ue is determined, up to sign, by

ue ¼ �1

jUeðvÞj ððgevUeðvÞÞ01þ iðgevUeðvÞÞi�iÞ: (74)

The group element nef is fixed, up to a U(1) subgroup, by

nef�3n
�1
ef ¼ Ni

ef�i; (75)

where for f ¼ ðee0Þ
jfN

i
ef ¼ V4ðvÞðgevxUeðvÞ ^Ue0 ðvÞÞþi: (76)

Conversely, every nondegenerate co-tetrad E and spin
connection � give rise to a solution via the formulas (71)
and (73)–(75).
Proof.—Let us first consider two consecutive edges e

and e0 such that f ¼ ðee0Þ. The simplicity condition

ð?XefðvÞÞ � ÛeðvÞ ¼ 0 implies that there exists a 4-vector

NefðvÞ such that XefðvÞ ¼ ÛeðvÞ ^ NefðvÞ. Similarly

there exists another vector Ne0f such that Xe0fðvÞ ¼
Ûe0 ðvÞ ^ Ne0fðvÞ. The interior closure constraint XefðvÞ ¼
Xe0fðvÞ � XfðvÞ requires that Ue0 ðvÞ belongs to the plane

spanned by UeðvÞ and NefðvÞ, so there exist coefficients

aef, bef such that
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Û e0 ðvÞ ¼ aefNefðvÞ þ befÛeðvÞ: (77)

If aef ¼ 0, this means that ÛeðvÞ ¼ Ûe0 ðvÞ, since Û are

normalized vectors. This is excluded by our condition of
nondegeneracy, since one would have Xef2ðvÞ ^
Xe0f0

2
ðvÞ ¼ 0 if f2 ¼ ðee2Þ and f02 ¼ ðe0e02Þ. Denoting

�ee0 � a�1
ef one therefore has Nef ¼ �ee0Ûe0 � �ee0befÛe

and hence

Xee0 ðvÞ ¼ �ee0 ðvÞðÛeðvÞ ^ Ûe0 ðvÞÞ: (78)

It follows from this expression and the nondegeneracy

condition (52) that the vectors ÛeðvÞ, e 
 v, span a 4-
dimensional space. As shown in Appendix B 1, the exterior
closure constraints X

f
e

�efðvÞXfðvÞ ¼ 0 (79)

imply the factorization �ee0 ¼ �ðvÞ�eðvÞ�e0 ðvÞ, where
�ðvÞ ¼ �1 and �eðvÞ are real numbers, independent of
the orientation of e, such thatX

e
v

�eðvÞÛeðvÞ ¼ 0 and

j2f ¼ �2
eðvÞ�2

e0 ðvÞsin2�ee0 ðvÞ:
(80)

The angle �ee0 ðvÞ is defined by cos�ee0 ðvÞ ¼ ÛeðvÞ �
Ûe0 ðvÞ. These conditions only admit a solution if there
exists a discrete, geometrical 4-simplex (i.e. a set of edge
lengths ‘ðvÞ) such that jf and �ee0 are the areas and

dihedral angles in this 4-simplex. In this case, j�eðvÞj is
uniquely determined by the spins jf and the unit vectors

ÛeðvÞ. The �eðvÞ themselves are only fixed up to an over-
all sign, i.e. if �e, e 
 v, solves (80), then �v�eðvÞ, �v ¼
�1, is a solution as well.

Given the ordering e1; . . . ; e5 of edges at v, we then
define

V4ðvÞ � detð�e2Ûe2ðvÞ; . . . ; �e5Ûe5ðvÞÞ and

UeðvÞ � �eðvÞffiffiffiffiffiffiffiffiffijV4j
p ÛeðvÞ:

(81)

These vectors have the property thatX
e
v

UeðvÞ ¼ 0 and

Xee0 ðvÞ ¼ �ðvÞV4ðvÞðUeðvÞ ^Ue0 ðvÞÞ;
(82)

where �ðvÞ ¼ �1. Thus, theUeðvÞ define tetrad vectors for
the 4-simplex dual to v, and we can use formula (66) to
specify corresponding co-tetrad vectors E‘ðvÞ.

Next we need to analyze the equations that relate neigh-
boring 4-simplices v and v0, connected by the edge e ¼
ðvv0Þ:

gvv0Ûeðv0Þ ¼ ÛeðvÞ; gvv0xXfðv0Þ ¼ XfðvÞ: (83)

The first condition leads to gvv0Ueðv0Þ=jUeðv0Þj ¼
~�eUeðvÞ=jUeðvÞj, where ~�e � sgn�eðvÞ sgn�eðv0Þ ¼ �1.
By combining this with the second condition we find that
for every edge ‘ of the tetrahedron dual to e ¼ ðvv0Þ (see
Appendix B 2)

gvv0E‘ðv0Þ ¼ �eE‘ðvÞ; (84)

with the sign �e � ~�e sgnðV4ðvÞV4ðv0ÞÞ ¼ �1. We see
therefore that the vectors E‘ðvÞ satisfy the compatibility
condition (iii) in the definition of a co-tetrad, and hence
they specify a co-tetrad on the entire simplicial complex.
Equation (84) shows furthermore that gvv0 is, up to the sign
�e, equal to the spin connection �vv0 associated with the
co-tetrad E:

gvv0 ¼ �e�vv0 : (85)

In Appendix B 2, we also derive that the signs �ðvÞ in Eq.
(82) are constant, i.e. �ðvÞ ¼ �ðv0Þ for neighboring vertices
v and v0.
The aforementioned ambiguity in the factors �eðvÞ is

transported into the co-tetrad and tetrad: for a given solu-
tion ðjf; nef; ue; gev; hefÞ, the tetrad and co-tetrad are fixed

up to a reversal of edges in the geometrical 4-simplices: i.e.
up to recplacing ðE‘ðvÞ; UeðvÞÞ ! ð�E‘ðvÞ;�UeðvÞÞ for
all ‘ � v�, e 
 v.
If we start, conversely, from a co-tetrad E and its tetrad

U, it is clear that Eqs. (82) and (85) define bivectors and
connections which solve the Eqs. (51). The associated
spins jf and group variables ue and nef follow directly

from the definitions (41) and (45). h

Determination of h

So far we have determined ðjf; ue; nef; gevÞ in terms of a

co-tetrad E and signs � and �e � e�ne . In order to complete
the characterization of the solution, we also need to deter-
mine hef. This is done in the following.

Proposition VII.2.—For a nondegenerate co-tetrad E and
a choice of global sign � and edge signs �e, the holonomy
of ge ¼ �e�e around a face f with starting point v has the
form

GfðvÞ ¼ e��fX̂fðvÞe
�ðP

e�f

neÞ?X̂fðvÞ
; (86)

where the bivector XfðvÞ is determined by E as in Eq. (71)

and X̂f ¼ Xf=jXfj. In this equation the bivector is treated

as an antisymmetric map acting on R4 and we take an
exponential of this map.
In the corresponding solution ðjf; ue; nef; gev; hefÞ of

Eqs. (51), the group elements hef are uniquely determined,

up to gauge transformations, by a choice of angles

ð�ef; ~�efÞ for each wedge: these angles are subject to the

conditionsX
e�f

�ef ¼ ��f;
X
e�f

~�ef ¼ �
X
e�f

ne; (87)
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where �f is the deficit angle of the spin connection. The

associated wedge holonomies equal

GefðvÞ ¼ e�efX̂fðvÞe~�ef?X̂fðvÞ: (88)

Proof.—In order to do the analysis it is convenient to
change the frame and base all our quantities at the center of
the face f (see Fig. 4). That is, we define

XefðfÞ � hfexXef;

GefðfÞ � hfeGefhef ¼ hfegevgve0he0f:
(89)

It follows from the Eqs. (51) that XefðfÞ � XfðfÞ is inde-
pendent of the wedge and that GefðfÞxXfðfÞ ¼ XfðfÞ.
The latter implies that

GefðfÞ ¼ e�efX̂fðfÞe~�ef?X̂fðfÞ; (90)

where X̂fðfÞ ¼ XfðfÞ=jXfðfÞj. The angles �ef and ~�ef
have to satisfy constraints, as we will show now.

First we remark that the holonomy around the face f can
be written as a product of wedge holonomies

GfðfÞ � Ge1fðfÞ � � �GenfðfÞ
¼ ðhfe1ge1vÞGfðvÞðhfe1ge1vÞ�1: (91)

On the right-hand sideGfðvÞ is the face holonomy based at

the vertex v. We have seen that the connection of a solution
satisfies ge ¼ �e�e, where� is the spin connection and �e
is an arbitrary sign. The defining property of the spin
connection is that �vv0E‘ðv0Þ ¼ E‘ðvÞ for all edges ‘ in
the tetrahedron dual to e ¼ ðvv0Þ.

As a result, the holonomy around the face f preserves
the co-tetrads associated with the triangle dual to f. More
precisely, let us suppose that @f� ¼ ‘1 þ ‘2 þ ‘3. Then,
the on-shell holonomy fulfills

GfðvÞE‘iðvÞ ¼
�Y
e�f

�e

�
E‘iðvÞ; i ¼ 1; 2; 3: (92)

As we have shown earlier, the bivector XfðvÞ is on-shell
given by

XfðvÞ ¼ � ? ðE‘1ðvÞ ^ E‘2ðvÞÞ: (93)

Hence the condition (92) can be equivalently expressed by

GfðvÞ ¼ e��fX̂fðvÞe
�ðP

e�f

neÞ?X̂fðvÞ
; (94)

where �e � ei�ne and X̂fðvÞ ¼ XfðvÞ=jXfðvÞj. The angle

�f is the deficit angle of the spin connection with regard to

the face f. Combining this result with Eq. (91) one obtains
that X

e�f

�ef ¼ ��f;
X
e�f

~�ef ¼ �
X
e�f

ne: (95)

For a given tetrad U, the associated spin connection �,

and a choice of signs �e, the angles �ef and ~�ef have to

meet the constraint (95). Once such angles ð�ef; ~�efÞ are
selected, we can solve for hef recursively. For this, let us

set hi � heif and define

Gið�eif; ~�eifÞ � e�eifXfðviÞe~�eif?XfðviÞ: (96)

The equations

GeifðviÞ ¼ Gið�eif; ~�eifÞ (97)

can be recursively solved by setting

hiþ1 ¼ geiþ1vi
Gigvieihi; h1 ¼ hf; (98)

where hf is an arbitrary initial value. This solution is

consistent, since

h1 � hnþ1 ¼ ge1vn
Gngvnvn�1

Gn�1 � � � gv2v1
G1gv1e1h1

(99)

¼ ge1vn
Gnðgvnvn�1

Gn�1gvn�1vn
Þ � � � ðgvnvn�1

� � �gv2v1

�G1gv1v2
� � � gvn�1vn

ÞG�1
f ðvnÞgvnv1

gv1e1h1

¼ ge1vn
GfðvnÞG�1

f ðvnÞgvne1h1 ¼ h1: (100)

In the third equality, we used that Xefðv0Þ ¼
gv0vXefðvÞg�1

v0v. Note that the group element hf can be

fixed to the identity by a gauge transformation at the face
center. This shows that, up to gauge, the elements hef are

determined by the choice of the angles �ef, ~�ef. h

VIII. SEMICLASSICAL APPROXIMATION OF
EFFECTIVE AMPLITUDE

A. Evaluation of action

In the previous section, we saw that solutions of the Eqs.
(48), (51), and (52) exist only if the set jf is Regge-like

and, up to gauge transformation, they are uniquely deter-
mined by a choice of a discrete metric (coming from a co-
tetrad E), of a global sign �, of edge signs �e, and a choice

of U(1) wedge angles ð�ef; ~�efÞ subject to (95).

Proposition VIII.1.—Given a solution characterized by

the data ðUe; �; �e; �ef; ~�efÞ, the on-shell action is indepen-
dent of ð�ef; ~�efÞ and given by

FIG. 4. The wedge holonomies GeifðfÞ have their starting and
end points at the center of the face.
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S�ðUe; �; �eÞ ¼

8>>>><
>>>>:
e
i�
P
f

Af�fQ
e
�Jee ; � > 0;

Q
e
�Jee ; � ¼ 0;

(101)

where Af ¼ ð�þ þ ��Þjf is the area of f in Planck units

(8�@G ¼ 1) for � > 0 [see Eq. (16)], �f is the deficit

angle of the spin connection, and Je � ð�þ � ��ÞPf
ejf.

Before giving the proof, a few remarks are in order. First,
in the EPR model the on-shell evaluation is trivial, in
agreement with the claim that the EPR model is a quanti-
zation of the topological sector. Moreover, for general �,
the dependence on the Immirzi parameter drops out from
the on-shell action.

Second, when evaluating the semiclassical asymptotics
of the effective amplitude W�

�ðjfÞ, one has to sum over all

classical configurations and hence over �e. This sum gives
zero unless Je is an even integer. It is interesting to note
that when �� are both odd integers the same condition
arises in the spin foam model.

To see this, note that if �� are both odd, the condition
that the weight projects down to a function of SO(4) [i.e.
ð�þ � ��Þjf 2 Z] is satisfied without any restriction on

jf, since ð�þ � ��Þ is even. Moreover, the amplitudes in

the spin foam model require that the invariant SU(2) sub-
space Invð�f
eVj�

f
Þ is nontrivial. This is the case if and

only if
P

fj
�
f is integer-valued. Therefore,

P
fjf is integer-

valued and Je is even.
Proof.—As shown in the previous section, the wedge

holonomy has the form

GefðvÞ ¼ e�efX̂fðvÞe~�ef?X̂fðvÞ; (102)

where X̂fðvÞ ¼ XfðvÞ=jXfðvÞj. In the SUð2Þ � SUð2Þ no-
tation this condition reads

G�
efðvÞ ¼ eði=2Þð�ef�~�efÞX̂�

f ðvÞ: (103)

Recall also that the bivectors X��
f and X�

f are related by

X��
f ¼ ��X�

f ; jX�
f j ¼ jf: (104)

We insert this into the action, observing that X��
f =jX��

f j ¼
��=j��jX̂�

f , and obtain

S ¼ X
f

�
2j�þjjf

X
e�f

ln

�
tr

�
1

2

�
1þ �þXþ

f

j�þXþ
f j
�
Gþ

ef

��
(105)

þ 2j��jjf
X
e�f

ln

�
tr

�
1

2

�
1þ ��X�

f

j��X�
f j
�
G�

ef

���
(106)

¼ X
f

�
i�þjf

X
e�f

ð�ef þ ~�efÞ þ i��jf
X
e�f

ð�ef � ~�efÞ
�

(107)

¼ i�
X
f

ð�þ þ ��Þjf�f þ i�ð�þ � ��ÞX
e

ne

�X
f
e

jf

�
:

(108)

h

B. Asymptotic approximation

In order to arrive at our final result we need to determine
the asymptotic approximation of the effective amplitude
(14) for large spins. As shown, this partition function can
be expressed as an integral

IN ¼
Z

dxe�NSðxÞ (109)

over a set of compact variables x. In our case the variables
are group elements, so S can be taken to be a periodic
function. It is customary to restrict the study of this type of
integral to the case, where S is pure imaginary and use the
stationary phase approximation. It is less well known, but
nevertheless true, that the stationary phase method is valid
when S is a complex function, provided ReðSÞ � 0 (see
[39] Chapter 7.7). In this reference, it is shown that when S
is C1 and if jS0j2 þ ReðSÞ is always strictly positive (with
jS0j2 ¼ @	 �S@	S), then the integral is exponentially small.

More precisely, if S is Ckþ1 there exists a constant C such
that

IN � C

Nk

1

minðjS0j2 þ ReðSÞÞk : (110)

This shows that the integral is exponentially suppressed as
long as S0 � 0 or ReðSÞ> 0.
Therefore, the dominant contribution comes from con-

figurations that are both stationary points of the action S,
and absolute minima of its real part [39]. One says that xc is
a generalized critical point if jS0j2ðxcÞ þ ReðSÞðxcÞ ¼ 0. In
case there are such points, we have the asymptotic approxi-
mation

IN X
xc

�
2�

N

�
r=2 e�NSðxcÞ

ðdet
r
ðH0ÞÞ1=2 ; (111)

where xc are the stationary points of S, r is the rank of the
Hessian H ¼ @i@jSðxcÞ, H0 is its invertible restriction on

kerðHÞ?, and � is the signature of H0. When the stationary
points are not isolated, one has an integration over a sub-
manifold of stationary points whose dimension equals the
dimension of the kernel kerðHÞ. Note that for a generalized
critical point the action SðxcÞ is purely imaginary.
In our case, we have shown that the effective amplitude

has no generalized critical points if jf is not Regge-like.
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Then, the previous theorem implies that the amplitude is
exponentially suppressed. When jf is Regge-like, there is,

up to gauge transformations, a discrete set of solutions
labeled by ðEðjfÞ; �e; �Þ. This result is only valid if one

restricts the integration to nondegenerate configurations
jX ^ Xj>�, with � an arbitrary small positive number.

When applied to the integral (14), this gives us that

WND��
� ðNjfÞ 

c�ðjfÞffiffiffiffi
N

p
r�

X
�;�e

expðNS��ðEðjfÞ; �; �eÞÞ

¼ c�ðjfÞffiffiffiffi
N

p
r�

ðexpðiNSRÞ þ c:c:Þ; (112)

if the set jf is Regge-like and all Je even. Otherwise the

amplitude is exponentially suppressed. If there are several
tetrad fields EðjfÞ that correspond to a given set ðjfÞf one

should also sum over them.
While we have not computed the Hessian, our analysis

can give us explicit information about its rank r�. In our
case, the space of integration is the space of
ðue; nef;gev;hefÞ which is of dimension D ¼ 3Eþ 2W þ
6� 2Eþ 6W. Here, E,W, F, and V denote the number of
edges, wedges, faces and vertices of ��. As we have seen,
the space of solutions is labeled by gauge transformations

ð�e; �f; �vÞ and two U(1) angles ð�ef; ~�efÞ subject to one

constraint per face. Thus, the dimension of the kernel of H
is d ¼ 6Eþ 6Fþ 6V þ 2W � 2F. We can then compute
the rank to be

r� � D� d ¼ 33E� 6V � 4F; (113)

using the fact that W ¼ 4E ¼ 10V.

C. Degenerate sector

In order to complete our analysis of the effective ampli-
tude and show its asymptotic Regge-like behavior, we have
restricted the summation to nondegenerate configurations.

One could wonder wether the degenerate contributions
are dominant or subdominant in this semiclassical limit.12

This amounts to asking which sector has the most degen-

erate Hessian, since the amplitude is suppressed by 1=N1=2

to the power of the rank of the Hessian. Thus, it is the
sector with the higher-dimensional space of solutions
(higher-dimensional phase space) that dominates, or in
other words the one with higher entropy.

In order to get an idea of the dimension of the space of
solutions in both sectors, let us look at the solution of the
simplicity and closure constraints at a single vertex. In the
nondegenerate sector, it is given by

Xij ¼ VUi ^Uj;
X
i

Ui ¼ 0: (114)

This describes 10 rotationally invariant degree of freedom,
counting 5� 4 U’s subject to 4 independent constraints
minus 6 rotations. These 10 degrees of freedom match the
10 area spins.
On the other hand of the spectrum we can look at the

most degenerate contribution, where all the wedge prod-
ucts of X’s are zero. In this case, the most degenerate
solution is given by

Xij ¼U^Nij;
X
i

Nij ¼ 0; U2 ¼ 1; Nij �U¼ 0:

(115)

Because of the last equation, the Nij are, in effect, 3-

dimensional vectors. Now, the counting of rotationally
invariant degrees of freedom gives 15, 5 more degrees of
freedom per vertex than in the nondegenerate case. Indeed,
we have 3 U’s plus 3� 10 N’s minus 4� 3 independent
constraints minus 6 rotations.
For each i we can reconstruct a geometrical tetrahedron

from Nij, j � i, for which Nij are the area normal vectors.

Hence the degenerate solution determines 5 tetrahedra.
These 5 tetrahedra are ‘‘glued together’’ in the sense that
the faces shared by tetrahedra have the same area.
However, they do not form a 4-simplex. In a 4-simplex
the volume of each tetrahedron is fixed by the area of the
faces, while in the degenerate case the 5 3-volumes are
independent variables and thus increase the phase space
dimension.
This argument indicates that the phase space dimension

of the degenerate configurations is higher than the non-
degenerate one by at most 5 times the number of vertices.
This result bears some similarity with the recent canonical
analysis of [41], where it was pointed out that the phase
space dimension associated with spin networks is higher
than the corresponding dimension for discrete geometries.
Our reasoning suggests that this extra phase space corre-
sponds to 4d degenerate solutions.
This analysis is suggestive, but not complete, since one

would need to analyze the gluing equations and the other
degenerate sectors. However, it leads one to suspect that
the degenerate configuration dominate the effective ampli-
tude in the semiclassical limit if they are included. In this
case, the nondegeneracy requirement would be necessary.
One challenge is to be able to formulate this requirement at
the level of the spin foam model and not only in the path-
integral representation. Another possibility is that the de-
generate contributions are suppressed when we couple the
effective amplitude to a semiclassical boundary state. This
is a scenario that has been realized in the case of the
10j-symbol [8].

IX. SUMMARYAND DISCUSSION

In this work, we have studied the semiclassical proper-
ties of the Riemannian spin foam models FK�. We have

12For instance, in the analysis of the 10j-symbol it was shown
that the degenerate configurations were nonoscillatory, but domi-
nant [32,40].
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shown that, in the semiclassical limit, where all the bulk
spins are rescaled, the amplitude converges rapidly towards
the exponential of i times the Regge action, provided the
face’s spins can be understood as coming from a discrete
geometry. When the spins do not arise from a discrete
geometry, the spin foam amplitude is exponentially
suppressed.

There are several remarks to be made about this result:
First, it is shown for an arbitrary triangulation and not only
for the amplitude associated with a 4-simplex. This should
be contrasted with what was achieved in the context of the
Barret-Crane model, where only one or two 4-simplices
were considered [8]. An extension of these results to more
4-simplices seemed increasingly complicated (see [42] for
a very recent discussion of this in the context of Regge
calculus). The second fact to be noticed is that the Immirzi
dependence drops out in the semiclassical limit. This
should indeed be the case, since nothing depends on the
Immirzi parameter at the classical level (except when it is
zero). Nevertheless it was not obvious from the original
definition of the amplitude that this would happen. Also,
the results shown here depend heavily on the details of the
implementation of the simplicity constraints: they rely on
the specific choice of the measure D�

j;k [see Eq. (3)]. For

instance, we cannot extend our results to the ELPR�model
for � > 1 which includes the Barret-Crane model for � ¼
1. A fourth point concerns the fact that in spin foam
models areas are the natural variables, whereas one needs
access to edge lengths in order to have a discrete geometry.
To formulate constraints on areas, so that they correspond
to discrete geometries, has been so far one of the conun-
drums faced in the LQG/spin foam approach. Several
studies have been launched in order to tackle this problem
(see for instance [33–35]), but the results show that per-
forming this explicitly is an incredibly difficult algebraic
task. What we find quite remarkable is that it is not
necessary to answer this question analytically to get the
proper semiclassical limit of a spin foam model. The spin
foam model ‘‘knows’’ which set of areas does or does not
arise from a 4d geometry and it naturally suppresses the
nongeometric phase in the semiclassical limit.

These results provide considerable evidence in favor of
the proposed spin foam amplitude as a valid amplitude for
quantum gravity, in the sense that it reproduces expected
semiclassical behavior. There is, however, more work to be
done to fully confirm this picture.

First of all, in order to obtain this result we have to
restrict the summation to nondegenerate configurations.
We know how to implement this restriction in the path-
integral formulation, but not in terms of the spin foam
model. As we have argued, this restriction may be impor-
tant in order to get the correct semiclassical limit, but a
deeper analysis is clearly required to establish this firmly.

More crucially, we have shown the semiclassical prop-
erty of the bulk amplitude, where the bulk spins are fixed

and uniformly rescaled to large values. That is, we have
demonstrated the proper semiclassicality for certain histor-
ies that one should sum over in computing amplitudes.
What we are ultimately interested in is the semiclassical
property of the sum over amplitudes. Given a boundary
spin network, we would like to sum over all spins in the
interior compatible with the boundary spin network and
show that the resulting amplitude gives an object that can
be interpreted as the exponential of the Hamilton-Jacobi
functional of a gravity action. Our result is a necessary
condition for this to happen, but we have not shown that
this is sufficient.
What would be required is that for given semiclassical

boundary states peaked on large spins, the corresponding
amplitude is peaked around large bulk spins as well; and
that the semiclassical amplitude reduces effectively to a
summation over discrete geometries with the Regge action.
In a sense, one needs that the large spin limit and the
integration over the spins commute with each other.
Whether this happens or not is not obvious: one might be
worried, for instance, that the summation over spins is
much less restricted than a summation over discrete ge-
ometries and that this will lead to stronger equations of
motions. It might be, on the other hand, that the exponen-
tial suppression of non-Regge-like configurations is strong
enough to effectively reduce the summation to a sum over
geometries. This is an important question that deserves to
be studied further.
An obvious open problem is whether our results can be

extended to the Lorentzian case. We expect that this is
possible; however, it has not been shown yet wether the
present Lorentzian models admit a nice action representa-
tion, which is needed for our analysis.
Moreover, our work does not address the question of the

continuum limit of spin foam models. We have considered
the semiclassical limit of discrete configurations on a fixed
triangulation. One might want to take a continuum limit,
where the number of boundary vertices of the spin network
grows. It is not clear if such a limit commutes with the
semiclassical limit taken here.
Despite all these open questions, we feel that the semi-

classicality shown here opens the way towards new, excit-
ing developments in the spin foam approach to quantum
gravity.
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APPENDIX A: RELATION BETWEEN CO-TETRAD
AND TETRAD IN A 4-SIMPLEX

Based on the duality (63) between discrete tetrad and co-
tetrad, we can prove a number of identities that are analo-
gous to equations for the co-tetrad and tetrad in the con-
tinuum. Consider a vertex v in �� and label the vertices
p � v� (and corresponding dual edges e 
 v) by lower-
case letters i; j; k . . . ¼ 1; . . . ; 5. The tetrad and co-tetrad
vectors UeðvÞ and Eee0 ðvÞ are written as Ui and Eij. We

denote R4 indices by capital letters I, J, K, etc.
Proposition A.1.—The equation

Ui
IEmk

I ¼ �i
m � �i

k (A1)

determines a bijection between nondegenerate vectors
Eij 2 R4, i; j ¼ 1; . . . ; 5, satisfying

Eij þ Eji ¼ 0;

Eij þ Ejk þ Eki ¼ 0 8 i; j; k ¼ 1; . . . ; 5;
(A2)

and nondegenerate vectors Ui 2 R4, i ¼ 1; . . . ; 5, for
which

P
5
i¼1 U

i ¼ 0.
The map from Eij to Ui is given by

Ui ¼ 1

3!V4

X
j1;j2;j3

�kij1j2j3 ? ðEj1k ^ Ej2k ^ Ej3kÞ; (A3)

where k is any vertex different from i. Ui is independent of
this choice thanks to the identity (A2). V4 denotes the
oriented volume of the 4-parallelotope spanned by the
co-tetrad vectors,

V4 ¼ detðE21; . . . ; E51Þ; (A4)

and we have set

½?ðE1 ^ � � � ^ EnÞ�I1���I4�n
� �I1���I4E

I5�n

1 � � �EI4
n : (A5)

The norm of Ui is proportional to the volume V3 of the
tetrahedron orthogonal to Ui:

jUij ¼ V3

jV4j : (A6)

The inverse of V4 equals the determinant of the U’s:

1

V4

¼ detðU21; . . . ; U51Þ: (A7)

The inverse map from U to E is specified by

Ejk ¼ 1

3!
V4

X
i1;i2;i3

�kji1i2i3 ? ðUi1 ^Ui2 ^Ui3Þ: (A8)

More generally, the relation between U and E is given by

Ui1 ½I1 � � �Uin
In� ¼

1

ð4� nÞ!V4

X
j1...j4�n

�ki1...inj1...j4�n

? ðEj1k � � �Ej4�nkÞI1...In ;
k � i1; . . . ; in:

(A9)

The special cases n ¼ 1 and n ¼ 3 return Eqs. (A3) and
(A8) respectively. For n ¼ 2 one obtains

V4U
i
½IU

j
J� ¼

X
m;n

�kijmn 1

2
�IJMNEmk

MEnk
N; k � i; j:

(A10)

Proof.—For the first part of the proof, let us assume the
vectors Eik with property (A2) are given and that the Ui’s
satisfy relation (A1). The identity (A3) is proven, like in
the continuum, by contracting the left- and right-hand side
with Ejk. That the Ui’s close follows directly from (A3).

Formula (A6) can be derived by using (A3) and the relation
between volume and Gram’s determinant. Identity (A7)
follows from (A1) and the multiplication rule for determi-
nants. By contraction and use of (A7), we also verify Eq.
(A8).
To demonstrate that the right-hand side is independent of

k � i, it helps to regard the Eik as edge vectors of a 4-
simplex in R4. We can think of this 4-simplex as the image
of the 4-simplex � � � under an affine transformation.
Let P1; . . . ; P5 2 R4 denote the images of the vertices
p1; . . . ; p5 � �. Then, the edge vectors are equal to

Eik ¼ Pi � Pk: (A11)

Without loss of generality, we can assume that

X5
i¼1

Pi ¼ 0: (A12)

Using this, we deduce that

Ui ¼ 1

3!V4

X
k;j1;j2;j3

�kij1j2j3 ? ðPj1 ^ Pj2 ^ Pj3Þ; (A13)

making the independence of k � i in (A3) manifest.
Conversely, suppose we have vectors Ui that close and

that the Ejk’s fulfill relation (A1). We then define vectors

Pj ¼ 1

5 � 3!V4

X
k;i1;i2;i3

�kji1i2i3 ? ðUi1 ^Ui2 ^Ui3Þ (A14)

and verify that

Eik ¼ Pi � Pk: (A15)

Hence the vectors Eik close.
Relation (A9) is demonstrated by contracting with n

E’s. h
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APPENDIX B: RECONSTRUCTION OF 4-
GEOMETRY

In this appendix, we complete the proof of proposition
(VII.1). In the first part, we will derive that the bivectors
XfðvÞ arise from a geometric 4-simplex. A key step for this

is that the factors �ee0 in Eq. (78) factorize. In the second
part, we derive relations among tetrad vectors between
neighboring vertices, showing that the tetrad and co-tetrad
vectors define a consistent discrete geometry on the sim-
plicial complex. We will prove, in particular, that the sign
factors �ðvÞ in Eq. (82) are the same for every vertex.

1. Reconstruction of 4-simplex

Consider a vertex v � �� and the edges e1; . . . ; e5 
 v.
To simplify formulas, we use the abbreviations Xij � Xeiej ,

Ui � Uei and Eij � Eeiej .

Proposition B.1.—Let Xij ¼ �Xji, i, j ¼ 1; . . . ; 5 be

nondegenerate bivectors (i.e. jXij ^ Xklj> 0) which satisfy

the simplicity and closure constraint

XIJ
ij ðÛiÞJ ¼ 0; (B1)

X
j�i

Xij ¼ 0: (B2)

Then, there are, modulo translations, precisely 2 4-
simplices whose area bivectors equal ?Xij and they are

related by a reversal of edge vectors. That is, there are
exactly 2 sets of vectors Eij 2 R4, i, j ¼ 1; . . . ; 5, obeying

the closure condition (A2), such that

Xij ¼ �
X
m;n

1

2
�kijmn ? ðEmk ^ EnkÞ; k � i; j: (B3)

The sign factor � is either 1 or �1 8 i; j ¼ 1; . . . 5. The
two sets fEijg are related by the SO(4) transformation

Eij ! �Eij.

Proof.—The simplicity constraints (B1) imply that

Xij ¼ �ijÛi ^ Ûj; (B4)

where �ij is a symmetric matrix of normalization factors

and the wedge product stands for the bivector

ðÛi ^ ÛjÞIJ ¼ Ûi
½IÛj

J� ¼ Ûi
IÛj

J � Ûj
IÛi

J: (B5)

The closure constraint states thatX
j�i

�ijiÛi ^ Ûj ¼ Ûi ^
X
j�i

�ijÛj ¼ 0 8 i ¼ 1; . . . ; 5:

(B6)

Consequently,

X5
j¼1

�ijÛj ¼ 0 (B7)

for suitable diagonal elements �ii.

Next we eliminate one of the 5 Ûj in the last equation,

say, Ûm. For arbitrary k, l, k � l,X
j

ð�km�lj � �lm�kjÞÛj ¼
X
j�m

ð�km�lj � �lm�kjÞÛj

¼ 0: (B8)

Since the bivectors are nondegenerate, 4 of the 5 normal

vectors Ûi must be linearly independent. Therefore,

�km�lj ¼ �kj�lm: (B9)

In particular, for l ¼ j,

�km�jj ¼ �kj�jm: (B10)

By nondegeneracy, all �ij are nonzero, so

�km ¼ �kj�jm

�jj

¼ �kj�mj

�jj

: (B11)

Let us pick one j ¼ j0 and define

�i �
�ij0ffiffiffiffiffiffiffiffiffiffiffiffiffi
j�j0j0 j

q : (B12)

Then,

�ij ¼ sgnð�j0j0Þ�i�j (B13)

and the bivectors have the form

Xij ¼ ~�ð�iÛiÞ ^ ð�jÛjÞ; (B14)

where ~� ¼ sgnð�j0j0Þ is a sign independent of i and j. From
Eq. (B7) we also know thatX

j

�jÛj ¼ 0: (B15)

By taking the square of Eq. (B14), we get

j2ij ¼ �2
i �

2
jsin

2�ij; cos�ij ¼ Ûi � Ûj; (B16)

which fixes the modulus of �i given jij and Ûi. Equation

(B15) implies furthermore that the signs sgn�i are fixed up
to an overall sign change �i ! ��i, i ¼ 1; . . . ; 5.
At this point, we can reconstruct the tetrad and co-tetrad

vectors. Define

Ui � �iÛiffiffiffiffiffiffiffiffiffijV4j
p with V4 � detð�2Û2; . . . ; �5Û5Þ: (B17)

Then, we obtain that

1

V4

¼ detðU2; . . . ; U5Þ (B18)

and

Xij ¼ ~�jV4jUi ^Uj ¼ �V4Ui ^Uj; (B19)

where � � ~� sgnðV4Þ. By proposition VI.4 and A.1, the
Ui’s define corresponding dual vectors Eij such that
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Xij ¼ �
X
m;n

1

2
�kijmn ? ðEmk ^ EnkÞ; k � i; j: (B20)

h

2. Reconstruction of co-tetrad and tetrad

Next we deal with the Eqs. (83) that relate variables from
neighboring 4-simplices. We consider an edge e ¼ ðvv0Þ
and employ the following shorthand notation:

U0 � UeðvÞ; U0
0 � gvv0Ueðv0Þ; (B21)

Ui � UeiðvÞ; U0
i � gvv0Ue0iðv0Þ; (B22)

Eij � EeiejðvÞ; E0
ij � gvv0Eeiejðv0Þ: (B23)

The labels i are chosen such that ðeiee0iÞ corresponds to one
of the 4 faces adjacent to e (see Fig. 5). One can check that
this ordering is compatible with our requirement that ori-
entations of neighboring 4-simplices are consistent.

As seen in Sec. VII, the exterior closure constraints lead
to X

i

Ui ¼ �U0 and
X
i

U0
i ¼ �U0

0: (B24)

Moreover, due to the Eqs. (83), the U and U0 are related as
follows:

U0
0

jU0
0j

¼ ~�
U0

jU0j ;

X0i ¼ �VðU0 ^UiÞ ¼ �0V 0ðU0
0 ^U0

iÞ;
(B25)

where �, �0, ~� ¼ �1, and

1=V � detðU1; U2; U3; U4Þ;
1=V 0 � detðU0

1; U
0
2; U

0
3; U

0
4Þ:

(B26)

Proposition B.2.—The conditions (B24) and (B25) im-
ply that

� ¼ �0; ~� ¼ sgnðVV 0Þ�;
VU0 ¼ �V0U0

0 and U0
i ¼ �Ui þ aiU0;

(B27)

where � is an arbitrary sign factor and ai are coefficients
such that

P
iai ¼ �ð1� V

V0Þ. Moreover, for the co-tetrad

vectors Eij and E0
ij, one has the identity

E0
ij ¼ �Eij: (B28)

Proof.—The Eqs. (B25) tell us that U0
0 is proportional to

U0 and that U0
i is a linear combination of Ui and U0. More

precisely,

U0
i ¼ ~���0

jU0jV
jU0

0jV 0 Ui þ aiU0; (B29)

where ai are coefficients such that
P

iU
0
i ¼ �U0

0. It follows

that
P

iai � ~���0 jU0jV
jU0

0
jV0 ¼ �~�

jU0
0
j

jU0j . Using the relation (B29),
we obtain

1=V 0 � detðU0
1; U

0
2; U

0
3; U

0
4Þ ¼ detðU0

0; U
0
1; U

0
2; U

0
3Þ
(B30)

¼ ~�
jU0

0j
jU0j

�
~���0

jU0jV
jU0

0jV0

�
3
detðU0; U1; U2; U3Þ

¼ ��0
� jU0jV
jU0

0jV 0

�
2
1=V 0: (B31)

Thus, � ¼ �0 and jU0jV ¼ �jU0
0jV0. By defining the sign

factor

� � ~�
jU0jV
jU0

0jV 0 ; (B32)

we arrive at Eq. (B27).
By using Eq. (A8) of proposition A.1, we can now

compute explicitly the relation between co-tetrad vectors
for edges that are shared by the 4-simplices dual to v and
v0:

E0
jk ¼

1

3!
V 0�jk

i1i2i3 ? ðU0
i1
^U0

i2
^U0

i3
Þ

¼ �3V�jk
i1i2i3 ? ðUi1 ^Ui2 ^Ui3Þ ¼ �Ejk: (B33)

h
The relation E0

ij ¼ �Eij shows that the Eij satisfy the

metricity condition (iii) in the definition of a co-tetrad.
Therefore, the co-tetrad and tetrad vectors determine a
consistent 4-geometry on the simplicial complex.

FIG. 5. Choice of labelling at neighboring vertices v and v0.
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[36] J. Fröhlich, in Non-perturbative Quantum Field Theory

(World Scientific, Singapore, 1992), pp. 523–545.
[37] M. Caselle, A. D’Adda, and L. Magnea, Phys. Lett. B 232,

457 (1989).
[38] G. S. J. Gionti, arXiv:gr-qc/9812080.
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