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We analyze fðRÞ modifications of Einstein’s gravity as dark energy models in the light of their

connection with chameleon theories. Formulated as scalar-tensor theories, the fðRÞ theories imply the

existence of a strong coupling of the scalar field to matter. This would violate all experimental

gravitational tests on deviations from Newton’s law. Fortunately, the existence of a matter dependent

mass and a thin-shell effect allows one to alleviate these constraints. The thin-shell condition also implies

strong restrictions on the cosmological dynamics of the fðRÞ theories. As a consequence, we find that the

equation of state of dark energy is constrained to be extremely close to �1 in the recent past. We also

examine the potential effects of fðRÞ theories in the context of the Eöt-wash experiments. We show that

the requirement of a thin shell for the test bodies is not enough to guarantee a null result on deviations

from Newton’s law. As long as dark energy accounts for a sizeable fraction of the total energy density of

the Universe, the constraints that we deduce also forbid any measurable deviation of the dark energy

equation of state from �1. All in all, we find that both cosmological and laboratory tests imply that fðRÞ
models are almost coincident with a �CDM model at the background level.
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I. INTRODUCTION

The acceleration of the Universe expansion was discov-
ered ten years ago and is still a deep mystery (see e.g. [1]
for recent results on observations of dark energy and e.g.
[2,3] for theoretical overviews). Two types of approaches
have been considered. One can either introduce a new kind
of matter whose role is to trigger acceleration or modify the
behavior of gravity at cosmological distances. In the first
approach, dark energy is a new energy form, with all its
well-known puzzles such as the cosmological constant
problem, the coincidence problem and the value of the
equation of state. This approach is subject of intense
experimental investigation and any deviation from �1
would be a smoking gun for new physics beyond the
standard models of particle physics and cosmology. On
the other hand, in the second approach, various attempts to
modify gravity have been presented (see e.g. [4–15]; the
literature is vast, see [16] for a recent overview and further
references). Up to now, they are all plagued with various
theoretical problems such as the existence of ghosts or
instabilities. In this paper, we will consider a modification
of Einstein’s gravity, the so-called fðRÞ theories, which do
not seem to introduce any new type of matter and can lead
to late time acceleration. In fact, these theories can be
reformulated in terms of scalar-tensor theories with a fixed
coupling of the extra scalar degree of freedom to matter. As
theories of dark energy, they suffer from the usual prob-
lems and are also potentially ruled out by gravitational tests
of Newton’s law.

The only way out for these models is to behave as
chameleon theories [17], i.e. develop an environment de-
pendent mass [18–21]. When the density of the ambient
matter in which the scalar field/chameleon propagates is
large enough, its mass becomes large, and the smallness of
the generated fifth force range is below the detectability
level of gravitational experiments. On the other hand, for
planetary orbits or any other situations in which gravity is
at play in a sparse environment, one must impose the
existence of the so-called thin-shell effect. In this case,
the fifth force is attenuated as the chameleon is trapped
inside very massive bodies (the Sun for instance). It has
been argued that the existence of thin shells is usually
enough to salvage fðRÞ models [18,20]. We show that
thin shells do not always guarantee null results in experi-
mental tests of Newton’s law. We exemplify this fact using
the Eöt-wash setting and obtain strong constraints on the
models, which translate into stringent bounds on the
present dark energy equation of state, preventing any de-
tection of a deviation from �1 in the foreseeable future
j1þ wj � 10�4, where w is the equation of state of dark
energy in the recent past. This corroborates a similar bound
obtained from the existence of thin shell for objects em-
bedded in a supercluster. It should be noted that this result
holds at the background level. For higher redshifts, where
the effective dark energy density fraction�de may become
small (or even vanish), larger deviations can be present as
exemplified in the models in [22,23], where the equation of
state can deviate from�1 for redshifts of order z ¼ 2–3. In
all these models, however, j1þ wj�de � 1, and so even if
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w deviates significantly from �1, deviations of the homo-
geneous cosmology from �CDM are still very small.
Detectable deviations from �CDM are envisageable at
the perturbative level as the growth factor is anomalous
at small scales (see e.g. [24] for a discussion of this point
for the original chameleon model). Some consequences of
this fact on the matter power spectrum and the cosmic
microwave background spectrum of fðRÞ models have
been presented in Refs. [25–27].

The paper is organized as follows: In the subsequent
section, we review fðRÞmodels and chameleon theories. In
Sec. III, we derive the cosmological thin-shell bound on
the equation of state. In Sec. IV, we consider tests of the
inverse square law. Finally, we apply these considerations
to particular models in Sec. V. The appendices contain
some technical details.

II. fðRÞ GRAVITIES AND CHAMELEON
THEORIES

A. fðRÞ theories
An fðRÞ theory is a modified gravity theory in which the

usual Einstein-Hilbert Lagrangian for general relativity,
i.e. R, is replaced by some arbitrary function of the scalar
curvature, i.e. fðRÞ. The action for an fðRÞ gravity theory
therefore takes the following form:

SfðRÞ ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p M2
Pl

2
fðRÞ þ Smatter½g��;�i�; (1)

where the �i represent the matter fields.
In this work we are concerned only with metric fðRÞ

theories, in which only the metric g�� is the independent

variable in the gravitational sector. The quantity ��
�� is

taken to be the Levi-Civita connection associated with the
metric g��. In these metric fðRÞ theories the field equa-

tions are

R��f
0ðRÞ � 1

2
fðRÞg�� ¼ �Tmatter

�� þr�r�f
0ðRÞ

� g��hf0ðRÞ; (2)

where � ¼ 1=M2
Pl.

B. Transformation to a scalar-tensor theory

Equation (2) gives a set of equations that are second
order in derivatives of R, which is itself second order in
derivatives of g��, making the field equations fourth order

in g��. Finding solutions to fourth order equations can be

mathematically and physically troublesome, but fortu-
nately metric fðRÞ theories can be recast as a scalar-tensor
theory with only second order equations via a well-known
conformal transformation. We define � by

exp

�
� 2��

MPl

�
¼ f0ðRÞ;

where� ¼ ffiffiffiffiffiffiffiffi
1=6

p
. We also define the Einstein framemetric

�g�� by a conformal transformation

�g�� ¼ e�ð2��=MPlÞg��;

and let �R be the scalar curvature of �g��. When rewritten in

terms of �g�� and �, Eq. (1) becomes

SST ¼
Z

d4x
ffiffiffiffiffiffiffi� �g

p �
M2

Pl

2
�R� 1

2
�g��r��r��� Vð�Þ

�
þ Smatter½eð2��=MPlÞ �g��;�i�; (3)

where the potential Vð�Þ is given by

Vð�Þ ¼ M2
PlðRf0ðRÞ � fðRÞÞ

2f0ðRÞ2 : (4)

When the action is written in the form of Eq. (3), we say
that we are working in the Einstein frame. The field equa-
tions then become

�G�� ¼ �R�� � 1

2
�R �g��

¼ � �r��
�r��� � �g��

�
1

2
ð �r�Þ2 þ Vð�Þ

�
þ �Tmatter

�� ; (5)

�h� ¼ V 0ð�Þ � �

MPl

Tmatter: (6)

In the above and subsequent expressions, the covariant

derivatives �r� obey �r� �g��¼0, and all indices are raised

and lowered with �g�� unless stated otherwise. We note that

in the Einstein frame Tmatter
�� is not conserved but instead

�r �T
matter�

� ¼ �

MPl

Tmatter �r��: (7)

This implies that matter will generally feel a new or ‘‘fifth’’
force due to gradients in �. We note from Eq. (5) that,
when written as a scalar-tensor theory, gravity in an fðRÞ
theory is essentially general relativity, and all the modifi-
cations are essentially due to the effective ‘‘fifth force’’ and
to the energy density of �. Much of our intuition for how
gravity works is based on how it works in general relativity.
When an fðRÞ theory is written as a scalar-tensor theory,
we can readily make use of this intuition in solving the field
equations. This may not be the case, however, in the
original frame in which the equations were fourth order,
and so in those circumstances one would have to be more
careful. Note that all physical observables must be inde-
pendent of the choice of frame, i.e. the choice of metric g��

or �g��.

C. Chameleon theories

Since fðRÞ theories are equivalent to scalar-tensor theo-
ries, one can generally directly apply the plethora of con-
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straints on scalar-tensor models. In particular, since the
extra degree of freedom � couples to matter with gravita-
tional strength, tests of the inverse square law such as the

Eöt-Wash experiment require that � have a mass m� ¼ffiffiffiffiffiffiffiffiffiffi
V;��

p
greater than 1 meV. Cosmologically, � would then

have been fixed at its minimum since very early times, and
physics over astrophysical scales would be indistinguish-
able from predicted by unmodified general relativity with a
cosmological constant. Both the coincidence problem and
the problem of the small size of the cosmological constant
would not be alleviated in this scenario. However, this is
not the whole story. Laboratory constraints on scalar-tensor

theories can be greatly relaxed if m� ¼ ffiffiffiffiffiffiffiffiffiffi
V;��

p
develops a

strong dependence on the ambient density of matter.
Theories in which such a dependence is realized are said
to have a chameleon mechanism and to be chameleon
theories. In such theories, � can be heavy enough in the
environment of the laboratory tests so as to evade them,
while remaining relatively light on cosmological scales. It
must be stressed that even with a chameleon mechanism, it
is still very difficult, if not impossible, to construct such a
theory where the late time cosmology would be observa-
tional distinguishable from the usual�CDMmodel. To the
best of our knowledge all such theories that are also
experimentally viable require a fairly high degree of fine-
tuning to ensure that the effective cosmological constant is
small enough.

A chameleon theory is essentially just a scalar-tensor
theory in which the potential has certain properties. As
such, Eqs. (3)–(7) also define a chameleon theory for
certain classes of Vð�Þ. In these circumstances, the fðRÞ
theory would be equivalent to a chameleon theory. In a
general chameleon theory, �, which parametrizes the
strength of the coupling of � to matter, could take any
value and potentially even be different for different matter
species. If a chameleon theory is equivalent to a fðRÞ
theory, however, � is fixed to be

ffiffiffiffiffiffiffiffi
1=6

p
and is the same

for all types of matter. If a fðRÞ theory is not equivalent to a
chameleon theory, it would be generally ruled out by
laboratory tests of gravity and/or result in no detectable
deviations from general relativity over astrophysical
scales.

For an fðRÞ theory to have a chameleon mechanism one
must require that, in at least some region of � space,

V 0ð�Þ< 0; V 00ð�Þ> 0; V 000ð�Þ< 0:

It follows from the definition of � that

d�

dR
¼ �MPl

2�

f00

f0
; (8)

and therefore the derivatives follow

V 0ð�Þ ¼ �MPl

f02
½Rf0 � 2f�; (9)

V00ð�Þ ¼ 1

3

�
R

f0
þ 1

f00
� 4f

f02

�
; (10)

V 000ð�Þ ¼ 2�

3MPl

�
3

f00
þ f0f000

f003
þ R

f0
� 8f

f02

�
: (11)

In general, this gives strong constraints in the form of fðRÞ.
In the following, we will study examples where these
conditions are met.
When these conditions are satisfied, the mass of � in a

suitable large region with density �will increase with �. In
order to evade constraints coming from local tests of
gravity, it is not, however, enough that a theory possess a
chameleon mechanism; the mechanism must, in addition
be strong enough for chameleonic behavior to occur for the
test masses used in the laboratory gravity experiments.

D. Thin shells

1. Chameleon theories

Chameleon theories do not behave like linear theories of
massive scalar fields. In situations where massive bodies
are involved, the chameleon field is trapped inside such
bodies, and its influence on other bodies is only due to a
thin shell at the outer edge of a massive body [17]. As a
result, the field outside the massive body for distances less
than the range of the chameleon force in the outer vacuum
is effectively damped leading to a shielded fifth force,
which becomes undetectable. The criterion for a thin shell
is

��

mPl

� 2��N; (12)

where �� ¼ �1 ��0 is the field difference from far
inside the body to very far away. We define the body and
the region outside it to have densities �0 and �1, respec-
tively. It involves Newton’s potential �N at the surface of
the body. In general, the field values at infinity �1 and
deep inside �0 are related to �1 and �0 by

@�V ¼ ��
�

mPl

: (13)

In most current situations involving runaway potentials,
when �0 � �1, this implies that�1 � �0. Hence, �� ¼
�1 implying that cosmological information can be in-
ferred from local tests. Moreover, in a cosmological set-
ting, the chameleon sits at the minimum (13) during the
matter era. As a result, the variation of the equation of state
in the recent past is severely constrained. Another impor-
tant consequence of the chameleon effect is the existence
of an anomalous growth of the density contrast for scales
lower than the inverse mass of the chameleon, i.e. it grows

like a�, where � � �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ24ð1þ2�2Þ

p
2 [24]. In the fðRÞ set-

ting, some of the consequences of this anomalous growth
on the cosmic microwave background and the matter
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power spectrum have been analyzed using the convenient
variable

B ¼ fRR
fR

dR

dH
H; (14)

whose square root represents the compton wavelength, i.e.
the inverse mass of the chameleon, in horizon units H�1

[25–27]. Effects on structure formation could be seen for
values as low as B ¼ 10�4 in future galaxy surveys [26]. In
the following, we will find an explicit example of logarith-
mic fðRÞ model, which could lead to effects on scales as
large as 100h�1 Mpc. All these facts will be crucial in the
following.

2. Thin shells in the language of fðRÞ theories
It is useful to write the function fðRÞ in the form fðRÞ ¼

Rþ hðRÞ, where h measures the deviation to Einstein
gravity. To leading order, as a consequence of Ref. [17],
the thin-shell condition can be formulated as [27]

j�h0ðRÞj � 2
3�N: (15)

As Newton’s potential is small on cosmological scales,
with an upper bound around 10�4, this implies that h0
must have very small variations. The thin-shell condition
is a constraint on local experiments at the present time. It
has nothing to say, a priori, about the evolution of the
Universe since matter equality for instance. Another useful
combination (which is not to be confused with the chame-
leon mass m�) has been used

m ¼ Rh00ðRÞ
1þ h0ðRÞ : (16)

It has been shown that the existence of a matter era
followed by an accelerated period requires m< 0:1. For
models where m is (nearly) a power law, the thin-shell
constraint implies that m is much smaller for reasonable
powers. In the following, we will obtain a bound on the
equation of state at present time, which implies that de-
partures from �CDM are tiny.

III. THIN-SHELL CONSTRAINTS ON
COSMOLOGY

In subsequent sections we will assume that test bodies
used in laboratory based gravity experiments have thin
shells. In the absence of any thin shell, the inverse square
law tests, such as the Eöt-Wash experiment [28] (as well as
other tests of gravity over longer ranges), rule out theories

with � ¼ 1=
ffiffiffi
6

p
as it is in fðRÞ theories. The thin-shell

requirement must therefore be satisfied by any physically
viable fðRÞ theory. Although it is not often appreciated, the
thin-shell condition for laboratory test masses actually
places extremely tight constraints on the recent cosmologi-
cal evolution of �. In this section, we consider those
constraints in the context of a general fðRÞ theory.

In any single field scalar-tensor theory, there is a choice
of frame. In the Jordan frame, the laws of physics in a local
inertial frame are the same everywhere, however Newton’s
constant GN is different at different points in space and
time. In the Einstein frame,GN is chosen to be fixed but, as
a result, local particle physics is position dependent. The
process of converting astronomical observations to cosmo-
logical parameters generally involves making assumptions
about how today’s laws of particle physics are related to
those in the past. This said, if the relative changes inGN (in
the Jordan frame) are small, i.e. � 1, the differences
between cosmological parameters in the two frames are
only very slight. For instance, to calculate a redshift, one
must compare the observed wavelength �obs of a particular
absorption or emission band to the wavelength that band
would have had at emission �e. Since one cannot go to the
astronomical object in question and directly observe the
wavelength at emission, it is generally assumed that parti-
cles physics in the past obeyed the same laws as it does
today and so replace �e with the wavelength of the band as
it is measured in a laboratory today �today. When one is

dealing with scalar-tensor theories, the assumption is that
�e ¼ �today is equivalent to a choice of frame, specifically

the Jordan frame.
To make comparisons with observations straightfor-

ward, one should therefore quote cosmological parameters
for the Jordan frame. This said, it is often more straightfor-
ward to perform calculations in the Einstein frame and then
merely express the results in terms of Jordan frame
quantities.
Cosmologically, in the Jordan frame we have

d s2 ¼ a2ð�Þ½�d�2 þ 	ijdx
idxj�; (17)

and � obeys

� 1

a2
�;�� � 2

a;�

a3
�;� ¼ �

3
½Tmatter þ 2�3V;��; (18)

where � ¼ e�2��=MPl ¼ f0ðRÞ. At late times, when it is
appropriate to ignore the contribution of radiation to the
total energy density of the Universe, we have

3a2;�

a4
¼ ��matter

�
þ ��Vð�Þ � 3a;��;�

a3�
� 3k

a2
: (19)

The Einstein equations also give

2a;��

a3
� a2;�

a4
¼ ��Vð�Þ ��;��

�a2
þ 2k

a2
� a;��;�

a3�
: (20)

We assume that measurements are interpreted in terms of
general relativity, where the energy density of the Universe
is assumed to be due to noninteracting, dark energy and
normal matter. Thus, we write
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H2 ¼ a2;�

a4
¼ �

3�0

�matter þ �

3�0

�eff
de � k

a2

¼ ð�eff
m þ�eff

de ÞH2 � k2

a2
: (21)

The above equation partly defines �eff
de , �

eff
m , and �eff

de ;

today, � ¼ �0. Now, in the Jordan frame: �matter / a�3.
If the effective dark energy equation of state parameterwde

eff

were constant, it would obey �eff
de / a�3ð1þweff

de
Þ. More gen-

erally, however, the effective dark energy equation of state
is then given by

�de
eff;� ¼ �3

a;�
a

ð1þ wde
effÞ�de

eff : (22)

Taking the � derivative of Eq. (21), we get�
2
a;��

a3
� 4

a2;�

a4

�
a;�
a

¼ �

3�0

�matter;� þ �

3�0

�eff
de;� þ 2

k

a2

� a;�
a

;

and so using Eq. (22) and �matter / a�3 we have

2a;��

a3
� 4a2;�

a4
� 2k

a2
¼ � �

�0

�matter � �

�0

ð1þ weff
de Þ�eff

de :

Finally, by adding 3H2 to both sides and using Eq. (21) we
have

2a;��

a3
� a2;�

a4
þ k

a2
¼ � �

�0

weff
de �

eff
de :

So by rearranging the Friedmann equations we have found
that

weff
de ��

eff
de =�0 ¼ � 2a;��

a3
þ a2;�

a4
� k

a2

¼
�
�;��

�a2
þ�;�a;�

�a3
� ��Vð�Þ

�
: (23)

By comparing Eqs. (19) and (21), we see that

�

�0
�eff
de ¼ �

�0

�matter

�
�0

�
� 1

�
þ ��Vð�Þ � 3

a;�

a3
�;�

�
:

Therefore,

ð1þ weff
de Þ��eff

de =�0 ¼
�;��

�a2
� 2�;�a;�

�a3

þ �

�0

�matter

�
�0

�
� 1

�
: (24)

Thus, using 3�eff
deH

2 ¼ ��eff
de =�0, we have

ð1þ weff
de Þ�eff

de ¼
�

�;��

3�a2H2
� 2�;�

3�aH
þ

�
�0

�
� 1

�
�eff

m

�
:

(25)

ð1þ weff
de Þ�eff

de parametrizes the magnitude of deviations

from �CDM. If � ¼ �ðMPl=2�Þ ln� has changed by ��
in the last Hubble time, Eq. (25) implies that, in the recent
past and in the Jordan frame, to within an order of magni-
tude

jð1þ weff
de Þ�eff

de j 	O
�
�j��j
MPl

�
: (26)

For later use we rewrite Eq. (25) in terms of p ¼ lna

ð1þ weff
de Þ�eff

de ¼
2�pp

� þ ð2�eff
de ��eff

m � 4Þ�p

�

3ð2þ �p

� Þ

þ 2ð�0

� � 1Þ�eff
m

2þ �p

�

: (27)

In both the Einstein and Jordan frames, e�ð�1��0Þ=MPl �
1 gives the relative change in the ratio of any particle mass
mp, and the Planck massMPl between the times when� ¼
�1 and when � ¼ �0. In the Einstein frame, MPl is
constant, but mp varies, whereas in the Jordan frame, the

converse holds; the ratio of the two masses, being a di-
mensionless quantity, is the same in either frame.
Wilkinson Microwave Anisotropy Probe constrains any
such variation in mp=MPl between now and the epoch of

recombination to be & 5% at 2
 ( & 23% at 4
) [29]. It
follows that since recombination

jeð���=MPlÞ � 1j< 0:05: (28)

Light element abundances provide similar constraints on
any variation in Newton’s constantGN between the present
day and the time of nucleosynthesis [30].
Thin-shell constraints, however, provide an even tighter

bound on the allowed change in �. To consider these
constraints, we work in the Einstein frame, however, ��
is the same in either frame.
We assume, as is the case for the real Universe, that the

scales of the inhomogeneous regions are small compared
with the horizon scale, and that the Universe is approxi-
mately homogeneous when coarse grained over scales
larger than some Lhom � H�1. Thus, over scales larger
than Lhom, � � �bðtÞ and since Lhom � H�1, we can
work entirely over subhorizon scales, which simplifies
the analysis greatly. We also assume that the curvature of
spacetime is weak over scales smaller than Lhom. This is
equivalent to assuming that the Newtonian potential U is
small as are the peculiar velocities vi of any matter parti-
cles, i.e they are nonrelativistic.
Exploiting both the assumption that HLhom � 1 and

that gravity is weak inside the inhomogeneous regions
i.e. U � 1 and vivi � 1, we write � ¼ �bðtÞ þ �� and
have to leading order in the small quantities and over
subhorizon scales

r2�� ¼ V 0ð�Þ þ ��

MPl

þ €�b þ 3H _�b:
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Now,

� €�b � 3H _�b ¼ V;�ð�bÞ þ ��b

MPl

;

and so

r2�� ¼ m2
b��þ ���

MPl

þ Að�;�bÞ;

where

Að�;�bÞ 
 ½V 0ð�b þ ��Þ � V 0
b �m2

b���:
Thus,

�� ¼ � 1

4�

Z
d3x0

e�mjx�x0j

jx� x0j
�
���ðx0; tÞ

MPl

þ Að�ðx0; tÞ; �bðtÞÞ
�
: (29)

It is straightforward to show that the condition V 000 < 0,
which must hold for any chameleon theory, implies that
Að�;�bÞ< 0 for all � and �b. Thus,

��>���1 ¼ � 1

4�

Z
d3x0

e�mjx�x0j

jx� x0j
���ðx0; tÞ

MPl

:

Now, if we require that a test mass at r ¼ 0 with central
density �c > �b has a thin shell, we must impose that at
r ¼ 0, � � �c, where

V;�ð�cÞ ¼ ���c

MPl

:

Thus, � must be able to change by at least �c ��b ¼
���bc < 0, i.e. we have the following necessary condi-
tion for thin shell

���bc

MPl

<
���1

MPl

¼ 1

3

Z
d3x0

e�mjx�x0j

jx� x0j G��ðx
0; tÞ: (30)

The right-hand side of this equation is OðU=3Þ or smaller,
and the largest values of the peculiar Newtonian potential
for realistic models of our Universe are roughly <10�4,
and are generally around 10�6 � 10�5 for large clusters
and superclusters [27]. Thus, we have the following con-
servative constraint on the cosmological value of the field
today:

���bc

MPl

< 10�4: (31)

We have defined fðRÞ ¼ Rþ hðRÞ. The thin-shell con-
straint certainly ensures that cosmologically today
j��=MPlj � 1, and since we have 1þ h0ðRÞ ¼
expð�2��=MPlÞ by definition we are therefore justified
in assuming that we have jh0ðRÞj � 1. Then, assuming that
jh0j � 1, we find that the potential Vð�Þ is given by

�Vð�Þ � 1
2ðRh0ðRÞ � hðRÞÞ;

and

� 1

�MPl

V;� � Rð1� 2h0ðRÞÞ þ 2hðRÞ � Rh0ðRÞ:

To leading order then in jh0ðRÞj we have

� 1

�MPl

V;� � R� 4�Vð�Þ:

The chameleon mass squared m2
� ¼ V;�� is then given to

leading order by

m2
� ¼ V;�� � 1

3h00ðRÞ : (32)

Provided m2
�=H

2 � 1, then the chameleon field will re-

main close to the minimum of its effective potential [31]
cosmological, i.e. V;� ¼ ���matter=MPl, and the energy

density of the chameleon field will be dominated by its
potential. Assuming that this is the case we would have

R � 4�Vð�Þ þ ��matter;

and defining �m ¼ ��matter=3H
2 and �de � �Vð�Þ=3H2,

we have

R � 3ð4�de þ�mÞH2;

and so m2
�=H

2 � 1 becomes

4�de þ�m

Rh00ðRÞ � 1:

Therefore, in many theories, an observationally viable
evolution of � requires that it has sat close to the effective
minimum of its potential since recombination [31], i.e.

V;�ð�bðtÞÞ � ���matterðtÞ
MPl

:

Since the background density of matter decreases with
time, V;�� > 0 implies that � increases with time. Thus,

for test mass with density �c 	Oð1Þ g cm�3, we have in
the recent past, i.e. out to z � 1,

�c <�bðtÞ<�bðt0Þ;
where t ¼ t0 is the current time. In this case, Eq. (31) gives
the following conservative constraint:

�

MPl

ð�bðt0Þ ��bðtÞÞ< 10�4;

and so, from Eq. (26) we obtain that

j1þ weff j�eff
de < 10�4: (33)

In the recent past where�eff
de is not negligible, this leads to

a stringent constraint on the deviation of the equation of
state from �1. It should be noted that although j1þ
weffj�eff

de is constructed simply out of the scale factor a
and its derivatives, neither weffðzÞ nor �eff

de ðzÞ are uniquely
defined as functions of redshift in models such as these
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where the scalar field interacts with normal matter. As a
result, it is possible to define �eff

de so that it vanishes and

even becomes negative in the past. If such a definition is
made, then one would (unless the j1þ weffj�eff

de also hap-

pens to vanish) predict that weff diverges, and hence de-
viates significantly from �1. A behavior such as this was
noted in Refs. [22,23]. As a result, an apparent effective
deviation from �CDM can be deduced. However, because
of the freedom to redefine �eff

de and hence weff , one should

not rush to assign any physical meaning to the divergence
of weff , and deduce that it represents a significant deviation
from �CDM, since one could always remove this diver-
gence by choosing to define �eff

de in such a way that it is

positive definite. In all cases, the bound (33) gives an
intrinsic measure of the deviation of the background cos-
mology from �CDM, and in all cases it is small.
Therefore, the predicted late time cosmology is observa-
tionally very close to �CDM. Additionally, the prospects
for being able to detect such small deviations for�CDM at
the background level in the near future are poor. Of course,
as we have already mentioned, detectably at the perturba-
tive level might be within reach.

This said, the thin-shell constraints do not themselves
rule out larger deviations from �CDM. It may be that
��=MPl has undergone relatively large changes in the
past, i.e. much larger than Oð10�4Þ, but that we now just
happen to live at a point in timewhen���bc=MPl < 10�4.
This would, however, be a fairly remarkable coincidence
and would inevitably require a great deal of fine-tuning of
the theory and the initial conditions. To avoid this new
coincidence problem, we would have to require that the
cosmological changes in ��=MPl have been smaller than
Oð10�4Þ in the recent past, which would in turn, as we
illustrated above, constrain any deviations from �CDM to
be unobservably small. We note, however, that deviations
can be expected on very small scales, as in the original
chameleon model [24].

In this section we have sketched how the thin-shell
requirement for laboratory test masses place a very strong
constraint on the recent cosmological evolution of �, and
generally constrains any deviations from �CDM in the
predicted cosmology to be small. This is not, however, a
‘‘water tight’’ constraint as it may be possible to circum-
vent it by requiring a seemingly improbable cosmological
evolution wherein such bodies would only have developed
thin shells in the recent (in the cosmological sense) past.
The laboratory constraints that we will derive in what
follows cannot be avoided in this way.

IV. INVERSE SQUARE LAW CONSTRAINTS

In the weak field limit, the gravitational force due to a
small body drops off as 1=r2, where r is the distance to the
body’s center of mass. If there is an additional scalar
degree of freedom to gravity with constant mass m�, the

force instead drops off as

ð1þ ð1þm�rÞe�m�rÞÞ
r2

;

where  parametrizes the strength with which the scalar
degree of freedom couples to matter. In fðRÞ theories  ¼
2�2 ¼ 1=3. When m�r � 1 or m�r � 1, the force still

drops off, approximately, as 1=r2; however, there would be
a noticeable deviation from this behavior over scales r	
1=m�. If, as in chameleon theories,m� is not a constant but

instead undergoes Oð1Þ or greater variations, the behavior
of the force is more complicated but generally not of
inverse square law form.
It is often assumed that what is needed for an fðRÞ

theory to avoid the constraints of inverse square law tests,
is that the test bodies develop thin shells. Generally, how-
ever, this is not the case. The presence of a thin shell causes
the chameleonic force due to a body to drop-off much
faster than 1=r2 near the surface of the body. Far from
the body, the force has a Yukawa form, although as a result
of the fast drop-off near the surface, it is much smaller than
one would normally expect it to be. If two thin-shelled
bodies are sufficiently close however then they would be
inside the region where the faster drop-off is occurring. In
these cases, the detectable violation of the inverse square
law can be much larger than 1 might expect.
A number of different experiments have searched for

violations of the inverse square law. For gravitational
strength forces, i.e. 	Oð1Þ, the best constraints are
currently provided by the Eöt-Wash experiment [28].
The Eöt-Wash experiment [28] consists of two plates:

the attractor and the detector. The detector is 0.997 mm
thick and made out of molybdenum. The detector has 42
4.767 mm diameter holes bored into it in a pattern with 21-
fold azimuthal symmetry. The attractor is similar and con-
sists of a 0.997 mm thick molybdenum plate with 42
3.178 mm diameter, arranged in a pattern with 21-fold
azimuthal symmetry, mounted on a thicker tantalum disc
with 42 holes, each with diameter 6.352 mm. The holes in
the lower tantalum ring are displaced so that the torque on
the detector due to the attractor from forces, such as
Newtonian gravity, that have a 1=r2 behavior vanishes.
The detection of a nonzero torque would therefore indicate
the presence of either a correction to gravity with a behav-
ior different from 1=r2 or the presence of a new force that
also did not behave as 1=r2.

A. Chameleonic force and torque

We now calculate the force, due to a chameleonic scalar
field � on one plate due to the other lying parallel to it.
From this we calculate the chameleonic contribution to the
torque.
In a background, where � ¼ �b far from the plates, the

chameleonic force per unit area between two parallel
plates, of the same or similar compositions, both with
thin shells and with a distance of separation d between
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their two facing surfaces was found, under certain condi-
tions, in Refs. [32,33]. In Appendix A, we generalize those
formulae. We find that the chameleonic force between two
parallel circular plates, with radius rp and thickness D �
rp, and separation d � rp is given by

F�

A
¼ Vð�0Þ � Vð�bÞ � V 0

bð�0 ��bÞ

þ ðV 0
b � V 0

cÞ2
2m2

bCðmbrpÞ
Eð�c;�b;mbrpÞ; (34)

where �0ðdÞ is defined to the values of�midway between
the two plates, and formulae for it are provided in Ref. [33].
We have also defined

E ¼ 1þ 2CðmbrpÞDð�c;�bÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4CD

p
; (35)

C ¼ ðembrp � 1=2Þ
ðembrp � 1Þ2 ; (36)

D ¼ m2
b½Vð�bÞ � Vð�cÞ � V;�ð�cÞð�b ��cÞ�

ðV;�ð�bÞ � V;�ð�cÞÞ2
: (37)

The last term in Eq. (34) represents the only difference
between the generalized force formula and the one pre-
sented in Refs. [32,33], and we note that the extra term is
independent of the separation d. When
CðmbrpÞDð�c;�bÞ � 1, the last term in Eq. (34) is neg-

ligible. We note that CðmbrpÞ � 1 when mbrp � 1, and

so whenever mbrp � 1, the last term is always negligible.

The details of how F�ðdÞ=A drops off with dwill depend

on the form of Vð�Þ. For many choices of Vð�Þ, e.g.
Vð�Þ / �n for n <�2 or n > 2, one finds that F�ðdÞ=A
drops off faster than 1=d, for all d > d2 is small compared
with both rp and the radius, rh, of holes in the plates.

Indeed, this will certainly be the case, no matter what
form Vð�Þ takes, if mbrh � 1, where mb ¼ m�ð�bÞ.
Provided this is the case, we can define the potential energy
V�ðdÞ due to the chameleonic force for two plates with

separation d � Rh; thus,

V �ðdÞ � A
Z 1

d

�
F�ðsÞ
A

�
ds: (38)

The faster 1=d drop-off has been used to set the upper limit
of the above integral to 1.

In the Eöt-Wash experiment the plates have a number of
holes in them. This means that as one plate is rotated, by an
angle � say, relative to another, the surface area, Að�Þ, of
one plate that faces the other changes. Note that F�=A does

not depend on A. The torque due to the chameleonic force
is given by the rate of change of the potentialV�ðdÞwith �

T�ðdÞ ¼ dA

d�

Z 1

d

�
F�ðsÞ
A

�
ds: (39)

We therefore have

T�ðdÞ ¼ aT
Z 1

d

�
F�ðsÞ
A

�
ds; (40)

where aT ¼ dA=d� is a constant that depends only on the
details of the experimental setup rather than the theory
being tested. For the 2006 Eöt-Wash experiment [28], we
find

aT ¼ 3:0� 10�3 m2:

If F�=A drops off too slowly over scales of the order of

rh, then a more complicated analysis must be performed,
and knowing the force between two infinite parallel plates
is no longer enough to find a good approximation to the
torque. Instead, a full numerical analysis would have to be
undertaken to get accurate results. That said, for d * rh,
we do not expect F�ðdÞ to depend strongly on � because

the effect of the holes will be largely smeared out over
separation distances much larger than rh. On scales � rh,
we found that F� / Að�Þ. Since T� ¼ dV�=d�,

dV�=dd ¼ F�, and we expect F� to be largely � indepen-

dent for d � rh and / Að�Þ on smaller scales, we expect,
to within an order of magnitude, that

T�ðdÞ � aT
Z rh

d

�
F�ðsÞ
A

�
ds;

in these cases, where once again aT ¼ dA=d�. By picking
rh as an upper bound for the integral, we are probably
under estimating the torque as we are dropping the con-
tributions from larger separations.

B. The effect of an electrostatic shield

Up to now, we have not considered the role played by the
electrostatic shield. Because the shield is so thin (ds ¼
10 �m) compared with the plates but has similar density to
the plates, it is safe to say that the shield will only have a
thin shell when the plates have thin shells. Assuming the
plates do have thin shells, we define ms to be the mass the
chameleon we would have deep inside the shield if the
shield has a thin shell, i.e. ms ¼ m�ð�sÞ, where V 0ð�sÞ ¼
���s=MPl. Since the shield is sandwiched between the
two plates, the thin-shell condition for the shield is simply
msds * 1. When the shield has a thin shell, its presence
attenuates the chameleonic force and torque on the detector
due to the attractor by a factor of expð�msdsÞ. Since
expð�msdsÞ � 1 in the absence of a thin-shelled shield,
we can take account of the shield, thin shell or not, by
changing the definition of T�; thus,

T�ðdÞ � aTe
�msds

Z Rh

d

�
F�ðsÞ
A

�
ds: (41)

This expression provides a very good approximation for
theories in which the precise value of rh is unimportant
(e.g. ones with mbrh � 1) and an order of magnitude
estimate otherwise.
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C. Inverse square law constraints

The 2006 Eöt-Wash experiments requires that

jT�ðd ¼ 55 �mÞj< 0:87� 10�17 Nm;

with 95% confidence. We define T�ðd ¼ 55 �mÞ ¼ aT�
3
T

and find that the above bounds correspond to

�T < 0:89� 10�12 GeV: (42)

Importantly, this is smaller than the energy scale associated
with dark energy: �de ¼ 2:4� 10�12 GeV; �de ¼ �4

de.

Using our expression Eq. (41) for the chameleonic
torque, we find that the constraints we must apply are as
follows:

e�msds
Z Rh

55 �m

�
F�ðsÞ
A

�
ds < 7:0� 10�37 GeV3: (43)

V. APPLICATION OF CONSTRAINTS TO fðRÞ
THEORIES

A. Chameleonic force

The chameleonic force per unit area between two par-
allel plates is given by Eq. (34). To prevent large deviations
from general relativity occurring over the Solar System,
and smaller scales, one must require that fðRÞ �
Rþ hðRÞ, where jh0ðRÞj � 1 and jhðRÞ=Rj � 1. In this
case, the expression for F�=A becomes

F�

A
� M2

Pl

2
½ðR0 � RbÞh0ðR0Þ þ ðhðRbÞ � hðR0ÞÞ þF 0�;

where for Rc � Rb

F 0 ¼ R2
ch

00ðRbÞ
4CðmbrpÞ E0; (44)

E 0 ¼ 1þ 2CðmbrpÞD0ðRc; RbÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4CD0

p
; (45)

D 0 ¼ hðRcÞ � hðRbÞ � ðRc � RbÞh0ðRbÞ
h00ðRbÞR2

c

; (46)

where rp is the radius of the parallel plate(s). We shall now

consider several potential forms for hðRÞ.

B. Logarithmic potentials

We begin by considering a simple chameleon gravity
model that was recently suggested in Ref. [34] for a general
�. The theory, when written as a chameleon theory, would
have a potential Vð�Þ ¼ V0 ��4

0 lnð�=MPlÞ; it was sug-
gested that this would result in an experimentally viable
and cosmologically interesting dark energy model, where

�4
0=M

2
Pl 	OðH2

0Þ [34] for � � 1=4
ffiffiffi
3

p
. We will analyze

the same model in the fðRÞ setting, where � ¼ 1=
ffiffiffi
6

p
>

1=4
ffiffiffi
3

p
and show that local tests already lead to difficulties,

see also [35].

On laboratory scales, we would have fðRÞ � 1þ hðRÞ,
and so we find

hðRÞ ¼ � 2�4
0

M2
Pl

�
V0

�4
0

þ lnð2�Þ þ ln

�
M2

PlR

2�4
0

�
þ 1

�
:

Assuming thatmb � mc, wheremc is the chameleon mass
inside the plates, it follows that F�=A has the following

form:

F�

A
¼ �4

0

�
ln

�
R0

Rb

�
þ Rb

R0

� 1

�
þ 1

2
�4

0

m2
cE0

m2
bCðmbrpÞ

; (47)

where

E 0 ¼ 1þ 2CðmbrpÞmb

mc

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4CðmbrpÞmb

mc

s
:

When CðmbrpÞmb=mc � 1, we have E0 � 2C2m2
b=m

2
c,

and so the last term in Eq. (47) is

�4
0

m2
c

2m2
bCðmbrpÞ

E0 � �4
0CðmbrpÞ:

Alternatively, if CðmbRÞmb=mc � 1, we would have

�4
0

m2
c

2m2
bCðmbrpÞ

E0 � �4
0

mc

mp

:

If CðmbrpÞ � 1, i.e.mbrp � 1, then it is clear that this last

term is always small compared with the other terms; how-
ever, if mbrp � 1, then the last term will dominate the

expression for the force.
The chameleon mass for a given R in this setup is

m�ðRÞ ¼ MPlRffiffiffi
6

p
�2

0

:

In between the two plates, � satisfies [33]

d2�

dz2
¼ V;�ð�Þ � V;�ð�bÞ;

and �0 is defined to be a value of � midway between the
two plates (i.e. a distance d=2 from either plate), where by
symmetry d�=dz ¼ 0. Integrating the above equation, we
therefore have�

d�

dz

�
2 ¼ 2ðVð�Þ � Vð�0Þ � V;�ð�bÞð���0ÞÞ:

Integrating this again and defining �s 	Oð�cÞ to be the
value of � on the surface of the plates, we have

dffiffiffi
2

p ¼
Z �0

�s

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðxÞ � Vð�0Þ � V;�ð�bÞð���0Þ

q :

Following Ref. [33], when mb � m0 � mc, we have that
�s 	Oð�cÞ � �0 � �b, and so Vð�Þ � Vð�0Þ �
V;�ð�bÞð���0Þ � Vð�Þ � Vð�0Þ ¼ �4

0 lnð�0=�Þ, and

so
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dffiffiffi
2

p � �0

�2
0

Z 1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=xÞp :

Noting that m0 ¼ �2
0=�0 and evaluating the integral we

find

m0d ¼ MPlR0dffiffiffi
6

p
�2

0

¼ ffiffiffiffiffiffiffi
2�

p
:

Now,mb � m0 � mc is clearly equivalent to Rc � R0 �
Rb, and in these cases, we therefore have

R0 ¼ 2
ffiffiffiffiffiffiffi
3�

p
�2

0

MPld
: (48)

It follows that, irrespective of the value of E0, F�=A drops

off more slowly than 1=d for all mbd � 1. In the latest
version of the Eöt-Wash experiment [28], the plate radius,
rp, is 3.5 cm, and the smallest hole radius is 1.6 mm. The

pressure of the laboratory vacuum is 10�6 torr, which
corresponds to a background density of �b ¼ 1:6�
10�9 kgm�3 ¼ 6:7� 10�30 GeV4.

Now, if the vacuum region is large enough, then Rb ¼
�b=M

2
Pl, and so mb ¼ �mb 
 �b=

ffiffiffi
6

p
�2

0MPl. However, it

was shown in Refs. [32,33,36] that if the vacuum region
only has length scale Lvac and �mb � 1=Lvac, then generi-
cally mb 	Oð1=LvacÞ. For the moment, we only assume
that rp=Lvac � 1.

We therefore find that for d ¼ 55 �m we have mbd < 1
for all �0 > 5:6� 10�19 GeV, mbrh < 1 for �0 > 3:0�
10�18 GeV andmbrp < 1 for�0 > 1:4� 10�17 GeV. The

suppression factor due to the electrostatic shield is
expð�msdsÞ, where

msds ¼ ��shieldds
MPl�

2
0

¼ 0:30

�
10�12 GeV

�0

�
2
;

where we have used ds ¼ 10 �m and �s ¼ 8:3 g cm�3.
Thus, whenever msds & 1, we are therefore firmly in the
mbrpmbrh � 1 region, and hence CðmbrpÞ � 1. Thus,

CðmbrpÞ � 1=2m2
br

2
p, and

F�

A
� �4

0½� lnðmbd=
ffiffiffiffiffiffiffi
2�

p Þ þmbd=
ffiffiffiffiffiffiffi
2�

p � 1�
þ�4

0m
2
cr

2
pE0:

From Eq. (41), in the absence of the electrostatic shield,
the chameleonic torque for rh � d would be

T� � aT�
4
0rh

�
ln

� ffiffiffiffiffiffiffi
2�

p
mbrh

�
þmbrhffiffiffiffiffiffiffi

2�
p þm2

cr
2
pE0

�
: (49)

Here, mc is the chameleon mass inside the plates, which
have density �c � 10:2 g cm�3.

We note that the requirement that the plates have a thin
shell constrains the value of mb, and it is important
to check that this constraint holds. Conservatively,
the thin-shell constraints for the plate require �ð�b �

�cÞ=MPl <�N=3, where �N is the Newtonian gravita-
tional potential of the whole experiment at the surface of
the plate. Since the geometry of the experiment is compli-
cated, we do not calculate �N . Instead, we estimate
�N=3 & 10�26, and so �b ��c & 7� 10�8 GeV.
Given that �c � �b, we take �c � �b, and then from
mb ¼ �2

0=�b we must have

1=mb < 14 m

�
10�12 GeV

�0

�
2
: (50)

If this condition does not hold, then the plates would not
have thin shells, and the Eöt-Wash data would automati-
cally rule out the theory. The experiment takes place inside
a vacuum chamber with the smallest dimension Lvac ¼
0:2 m [37]. We assume that the walls of the vacuum
chamber have thin shells. Approximating the walls of the
vacuum chamber perpendicular to the shortest dimension
as being parallel plates, we use Eq. (48) above to tell us that
when the background density of matter in the vacuum
chamber is very small, we have in the center of the cham-
ber

Rb ¼ �Rvac ¼ 2
ffiffiffiffiffiffiffi
3�

p
�2

0

MPlLvac

:

This formula holds as long as �Rb ¼ �b=M
2
Pl &

�Rvac. In the

opposite limit, we just have Rb ¼ �Rb. In all cases, we have
Rb � �Rvac, and so

mb � MPl
�Rvacffiffiffi

6
p

�2
0

¼
ffiffiffiffiffiffiffi
2�

p
Lvac

� 12m�1; (51)

and therefore condition (50) is always satisfied for �0 &
1:2� 10�11 GeV.
Given Eq. (51), we find that for the allowed values of�0,

we always have

CðmbrpÞmb

mc

� 1

2mbmcr
2
p

� 1;

where we have used mc ¼ �c=
ffiffiffi
6

p
MPl�

2
0. Thus,

E 0 � 2C2m2
b=m

2
c ¼ ðmcmbrpÞ�4=2:

It follows that, in the absence of the electrostatic shield, the
chameleonic torque for rh � d is

T� � aT�
4
0rh

�
lnð ffiffiffiffiffiffiffi

2�
p

mbrhÞ þmbrhffiffiffiffiffiffiffi
2�

p þ 1

2m2
br

2
p

�
: (52)

Including the suppression factor due to the electrostatic
shield, which is expð�msdsÞ, we therefore find the follow-
ing constraint on y0 ¼ �0=ð10�12 GeVÞ:

e�0:30y�2
0

=4y0 < 0:21;

which gives y0 < 0:37, and so

�0 < 3:7� 10�13 GeV: (53)
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Cosmologically, the mass of the scalar field at the mini-
mum of its potential is given by

mcos ¼
� ffiffiffi

3

2

s
�mMplH

�2
0

�
H;

and the value of � at this minimum is given by

��min
cos

MPl

¼ �4
0

3�mH
2M2

Pl

:

Now, H ¼ 2:1h� 10�42 GeV and from Wilkinson
Microwave Anisotropy Probe [38] �m ¼ 0:127h�2 and
h ¼ 0:73. We find that

mcos=H ¼ 1:1

y20
; (54)

��min
cos

MPl

¼ 0:06y40; (55)

and so the Eöt-Wash constraint on �0 gives

mcos=H > 8:

At its minimum, the � field is still heavy today. This
should be contrasted with the requirement obtained in
[34], which is that the mass of the � field should be small
compared with the Hubble rate in order to drive accelera-
tion. Here, we find that local tests and the thin-shell re-
quirement impose that the mass of the � field at the
cosmological minimum is so large that the field must sit
there on cosmological scales. It is easily checked that
mcos=H is a decreasing function of time, and so in the
past � was heavier still relative to H. Therefore, � will
have remained stuck close to the minimum of its effective
evolution throughout the matter era. Additionally, the Eöt-
Wash constraint on �0 implies that

��min
cos

MPl

< 0:001:

We have considered the potential Vð�Þ ¼ V0 �
�4

0 lnð�=MPlÞ. The constraint on �0 implies that

�4
0=3M

2
PlH

2 < 0:00026, and so if Vð�Þ is to be the source

of dark energy and there is to be a realistic amount of it
today, we would need V0 * Oð1000Þ�4

0. Note that this is

very different from the original scenario envisaged in
Ref. [34], where V0 	�4

0, so that the whole potential could

be written in the form V ¼ ��4
0 lnð�=MÞ, where M	

OðMPlÞ. The Eöt-Wash constraint on �0 therefore rules

out a scenario where V0 	�4
0 for � ¼ 1=

ffiffiffi
6

p
, confirming

the cosmological obstruction noted when �> 1=4
ffiffiffi
3

p
. If

we moved away from fðRÞ theories and allowed for differ-
ent couplings, we would find similar constraints on �0 for
other Oð1Þ values of the coupling �.

Relaxing the constraint V0 	�4
0 and allowing much

smaller values of �0, it should also be noted that the

conservative thin-shell constraint for a test mass with
density � �4

0 on the cosmological value of � (as derived

in Sec. III) actually provides a stronger constraint on the
cosmological value of the field today and as such gives a
tighter bound on �0. Specifically, Eq. (31) implies

��cos

MPl

< 10�4 , �0 < 1:8� 10�13 GeV: (56)

This leads to the following constraint on the mass of � at
its minimum cosmologically:

mcos=H > 35: (57)

Since mcos=H � 1, � lies close to its cosmological mini-
mum and so, in the Jordan frame, by Eq. (18)

� 2�3V;� ¼ MPl

�
�2V;� ¼ ��matter;

where � ¼ e�2��=MPl , and so � � 1. To leading order
with p ¼ lna we have �p � 3�. Therefore,

�p

�
¼ �2

��p

MPl

� �6��

MPl

¼ � 6�4
0

�matter

;

and to the same order

�pp

�
� � 18��

MPl

¼ � 18�4
0

�matter

:

We define � ¼ �4
0=�matter, and then using Eq. (27) we

arrive at

ð1þ weffÞ�eff
de � ð2�eff

de ��eff
m þ 2Þ�

3�� 1
þ ð�� �0Þ�eff

m

1� 3�
;

(58)

where �0 is the value of � at the present time. Assuming
that the Universe is flat (k ¼ 0) and taking�eff

de ¼ 0:76, we
find today when t ¼ t0,

1þ weffðt0Þ � �4:32�0:

Notice that the effective equation of state is below�1; this
is a consequence of the scalar-tensor character of the
chameleon model.
The Eöt-Wash constraint on �0 gives

j1þ weffj< 0:0085;

while the thin-shell constraint on �0 gives

j1þ weffj< 10�4;

which is in line with our expectations from Sec. III. While
the thin-shell constraint on the cosmology is much stronger
than the Eöt-Wash bound, the cosmological constraint
makes a number assumptions above the nature of inhomo-
geneities in the Universe, in particular, about their scale at
the present time. One could presumably argue that the
cosmological constraint could be relaxed. The same line
of argument cannot be used for the Eöt-Wash constraint,
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and as such represents a strong constraint on the magnitude
of deviations from �CDM in this model. As such, the
model cannot be distinguished from a �CDM model at
the background level. At the perturbative level, the situ-
ation is very different, as the bound (57) implies that
density contrast would have an anomalous growth on
scales lower than 100h�1 Mpc. This may be testable in
the near future with next-generation redshift surveys [26].

The version of the logarithmic potential fðRÞ theory
suggested in Ref. [34] required �4

0 � �matter today, i.e.

�0 > 1:7� 10�12 GeV. Even from a conservative point
of view (and indeed for any � where 2�2 	Oð1Þ), such a
value of �0 would produce a torque in the Eöt-Wash
experiment that is almost 100 times larger than the 95%-
confidence level upper bound. The scenario suggested in
Ref. [34] is therefore strongly ruled out by local tests of
gravity.

C. Power-law form

In many cases [25,27,39], one finds that for R � H2
0 ,

where H2
0 is the Hubble constant today, hðRÞ has a power-

law form, i.e.:

hðRÞ � p

pþ 1
�R

�
R
�R

�
pþ1

(59)

for some p � 0 and some constant �R> 0. For a chameleon
mechanism to exist, we need V 0 < 0, V 00 > 0, and V 000 < 0,
and so must require p < 1. Relative divergences from
general realtivity such as those parametrized in the pa-
rametrized post-Newtonian formalism or measured by ob-
serving the motions of planets would scale as hðRÞ=R and
h0ðRÞ or by the ratio of any variable component of the
effective cosmological constant to the local matter density.
However, the Eöt-Wash test probes changes in Vð�Þ,
which scales as hðRÞ and Rh0ðRÞ, although they are only
sensitive to this when the chameleon mass in the back-
ground, which scales as 1=h00ðRÞ, is not too large.

In theories with 0< p< 1, both hðRÞ=R and Vð�Þ
would be largest for large values of R. These theories
would therefore diverge most markedly from general rela-
tivity in the UV (i.e. large R) regime. Increasing �R would
make both hðRÞ=R and h00ðRÞ smaller, and so ultimately
one could ensure compatibility with all laboratory tests by
making �R very large. Provided h00 is not small, however,
the changes in Vð�Þ that could be detected by the Eöt-
Wash experiment would increase.

If �1< p< 0, then hðRÞ=R and h0ðRÞ are largest in the
IR regime, where R is small. However, Vð�Þ still increases
with R, and since R increases as the separation of the plates
in the Eöt-Wash experiment is decreased, the smaller the
separations the stronger the potentially detectable signal
would be. Ultimately, compatibility with all local tests
could be ensured by making �R small enough.
Additionally, in all theories where p >�1, F�=A would

be dominated by the d-dependent (i.e. R0 dependent) terms
and only weakly depend on Rb when mbd � 1.
Finally, in theories with p <�1 both Vð�Þ and hðRÞ=R

would decrease with R. This would mean that F�=A would

only very weakly depend on d and generally be much
smaller in a given setup than for the other classes of
theories. Again, compatibility with all local tests could
be ensured by making �R small enough.
The �1< p< 0 theories are the most testable type of

theory as they would result in deviations from general
relativity in both the UVand IR regimes. In the UV regime,
there would be potentially detectable fifth forces between
parallel plates, and in the IR regime, the ratio of the density
dependent part of the effective cosmological constant to
the ambient matter density would increase cosmologically
at late times as the ambient density decreased.
In all of these theories

F�

A
¼ M2

PlR0p
2

2ðpþ 1Þ
�
R0

�R

�
p þ M2

PlRbp

2ðpþ 1Þ
�
Rb

�R

�
p

�M2
PlRbp

2

�
R0

�R

�
p þ M2

Plp
2R2

c

8CðmbrpÞRb

�
Rb

�R

�
p
; (60)

where E0 is given in terms of C and D0 by Eq. (45) and

D 0 ¼ 1

pðpþ 1Þ
��

Rb

Rc

�
1�p þ p

�
Rb

Rc

�
2 � ðpþ 1Þ

�
Rb

Rc

��
:

Note that the last term in Eq. (60) is independent of the
plate separation d and vanishes in the limit mbrp ! 1.

1. Relationship to chameleon theories

Converting these theories to chameleon theories we have
for h0 � 1

� 2
��

MPl

¼ h0ðRÞ ¼ p

�
R
�R

�
p
;

and so R / �1=p and hðRÞ; Rh0ðRÞ / �ðpþ1Þ=p. It follows
that

Vð�Þ ¼ constþ p2M2
Pl
�R

2ðpþ 1Þ
��2��

MPlp

�
pþ1=p

;

and so defining n ¼ �ðpþ 1Þ=p, we see that, neglecting
the constant term in the potential, jVð�Þj / j�j�n. In the
context of chameleon theories these potentials have been
studied in great detail [17,31–33,36], and so we are able to
apply a raft of results to the analysis of these theories.
In Appendix B, we show the mass of the chameleon field

for mc � m0 � mb (mc is the chameleon mass deep in-
side the plates, and mb is the chameleon mass in the
background) is given by m0d ¼ ap, where
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ap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ p

s
p2B

�
1

2
;

p

ð1þ pÞ
�

p � �1;

ap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ p

s
B

�
1

2
;
ð1� pÞ
2ð1þ pÞ

�
� 1 � p � 1:

Using m0 � 1=3h00ðR0Þ, therefore, when Rb � R0 � Rc

we have

R0

�R
¼

�
3p2a2p
�Rd2

�
1=1�p

: (61)

For what follows we also define

Kp ¼ ð3p2a2pÞ1þp=1�p: (62)

Using the relationship between R0 and d derived above,
when Rc � R0 � Rb Eq. (60) becomes

F�

A
� M2

PlKpp
2 �R

2ðpþ 1Þ
�

1
�Rd2

�
1þp=1�p

Gp

�
mbd

ap

�

þ M2
Plp

2R2
c

8CðmbrpÞRb

�
Rb

�R

�
p
E0; (63)

where

Gp

�
mbd

ap

�
¼ 1þ 1

p

�
mbd

ap

�
2ð1þpÞ=1�p � pþ 1

p

�
�
mbd

ap

�
2=1�p

: (64)

We note that Gp ¼ 0, when mbd=ap ¼ 1, which corre-

sponds to R0 ¼ Rb. We now consider the integral

Iðd; rhÞ ¼
Z rh

d

F�ðsÞ
A

ds:

The approximation used to calculate R0ðdÞ breaks down
when R0 � Rb, which corresponds to mbd=ap � 1. In the

case mbrh=ap > 1, we cannot simply use Eq. (63) to

calculate Iðd; rhÞ as we must integrate over values of d
for which Eq. (63) is not valid. However, we should be able
to trust Eq. (63) for smaller values of d. For mbd=ap � 1,

we expect an exponential drop-off in the force, just as one
would find in a Yukawa theory at distances larger than the
inverse mass of the scalar field. We therefore do not expect
the dominant contribution to Iðd; rhÞ to come from values
of d < ap=mb. We also note that if mbrh=ap � 1, then

mbrp � 1, as rh < rp, and as such the second term in

Eq. (63) is negligible. The first term in Eq. (63) vanishes
when mbd=ap ¼ 1, and since we do not expect a signifi-

cant contribution to the integral to come from larger sep-
arations, we evaluate Iðd; rhÞ by using Eq. (63) for
F�ðsÞ=A, but if mbrh=ap, we cut the integral off at a

separation ap=mh.

Thus, we define xðdÞ ¼ mbd=ap and xmax ¼
minðmbrh=ap; 1Þ and find

Iðd; rhÞ �
p2M2

PlKp
�R1=2

2

�
mb

�R1=2ap

�
1þ3p=1�p �

�
½HpðxðdÞÞ

�HpðxmaxÞ� þ R2
cðxmax � xÞ

4R2
bCðmbrpÞ

E0

�
; (65)

where

HpðxÞ ¼ 1

ð1þ pÞ
�
1� p

1þ 3p
x�ð1þ3p=1�pÞ � x

p

þ 1� p2

pð1� 3pÞ x
1�3p=1�p

�
:

With this formula we are able to evaluate the Eöt-Wash
constraint for all theories with hðRÞ / Rpþ1. We do this
further below. However, we discuss first the cosmological
thin-shell constraint on these theories.

2. Cosmological constraints

On cosmological scales, the field � is stuck at the
minimum of the effective potential provided m2

�=H
2 �

1, which becomes

4�de þ�m

Rh00ðRÞ � 1:

If hðRÞ / Rpþ1, this becomes

4�de þ�m

jph0ðRÞj � 1: (66)

The cosmological thin-shell constraint requires that

�j��j
MPl

& 10�4;

where �� is the difference between the value of the �
cosmological and the value of � at the minimum of the
effective potential in a region with density Oð1Þ g cm�3.
This generally implies that cosmologically �j�j=MPl &
10�4 and 1

2 jh0ðRÞj & 10�4. It is clear then that Eq. (66)

holds provided p� 10�4 � 1, and so forOð1Þ values of p,
we are always in the region where m2

�=H
2 � 1 and � lies

close to the minimum of its effective potential.
To leading order we take V;� � ���matter=MPl and,

defining p ¼ lna, where a is the Friedmann-Robertson-

Walker scale factor in the Jordan frame and � ¼
e�2��=MPl , we find that

�p

�
� � 3�mH

2

m2
�

¼ �3f0Rh
00ðRÞ � 1; (67)

where f0 ¼ �m=ð�m þ 4�deÞ
�pp

�
� 9f0Rh

00
�
1þ f0Rh

000ðRÞ
h00ðRÞ

�
: (68)

Today, from Eq. (27), with�eff
m ¼ �m,�

eff
de ¼ �de � 1�

�m, we have f0 � �m=ð4� 3�mÞ

fðRÞ GRAVITY AND CHAMELEON THEORIES PHYSICAL REVIEW D 78, 104021 (2008)

104021-13



ð1þ weff
de Þ�de � 3f0Rh

00ðRÞ
�
4

3
þ f0Rh

000ðRÞ
h00ðRÞ þ�m

2

�
;

(69)

and so for �m ¼ 0:24 and hðRÞ / Rpþ1, we have

j1þ weff
de j�eff

de � 0:32jph0ðRÞjj1þ 0:050ðp� 1Þj:
The cosmological thin-shell constraint ensures that cosmo-
logically jh0ðRÞj & 10�4 today, and so

j1þ weff
de j�eff

de & 3:2jpjj1þ 0:050ðp� 1Þj � 10�5:

3. Collected constraints

Wewill consider now how the Eöt-Wash data, when thin
shells are assumed, constrains the properties of power-law
fðRÞ theories. It should be stressed that in the absence of
thin shells, the Eöt-Wash would automatically rule out
these theories.
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FIG. 1 (color online). Eöt-Wash constraints (thick solid blue line) on fðRÞ gravity theories with fðRÞ ¼ Rþ hðRÞ, where hðRÞ ¼
�RðR= �RÞpþ1; �R ¼ �4

0=M
2
Pl and �5< p<�1, �1< p< 0 and 0< p< 1. For this constraint we have assumed that the test bodies

have thin shells (which is necessary to avoid local tests). We have also shown (1) the cosmological thin-shell constraint (thick red
dashed line) for test bodies in the laboratory derived in Sec. III, (2) the naive constraint (thick black dotted line) one could derive by
simply requiring that, inside the test bodies, the mass of the chameleon at the minimum of its effective potential mc is large compared
with the length scale of the body Dp. This was the constraint considered in Ref. [39]. For all such theories, we see that the correctly

evaluated constraint provided by the Eöt-Wash experiment [28] is stronger than both this naı̈ve constraint and the cosmological thin-
shell bound for all for p * �1. The mcDp � 1 constraint never provides the strongest constraint.
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Defining �R ¼ �4
0=M

2
Pl, we have plotted the Eöt-Wash

constraints on�0 for�5< p< 1 in Fig. 1 as a thick (blue)
solid line. The cosmological thin-shell constraint is shown
as a thick (red) dashed line. For theories with 0< p< 1,
we find a lower bound on �0, and for theories with p < 0,
we recover an upper bound. We also show, as a thick
(black) dotted line, the naı̈ve constraint on the parameters
that one would find by simply requiring that the chameleon
mass at the minimum of the effective inside the plate, mc,
is large compared with the plate thickness Dp ¼
0:997 mm. It is a commonplace assumption in the litera-

ture (see e.g. [34,39]) that assuming mcDp � 1 (where

more generally Dp would be the length scale of the test

body) is enough to satisfy local tests of gravity. It is clear
from the plots that this naı̈ve bound never provides the
tightest constraint on the parameters of the theory.
The constraints on �R constrain the equation of state

parameter of the dark energy described by the fðRÞ theory.
Taking�m ¼ 0:23 today, we plot the collected constraints
on the effective Jordan frame equation of state parameter
(as defined in Sec. III) in Fig. 2. We see that at the current
epoch j1þ wdej< 10�4 for all Oð1Þ values of p with the
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FIG. 2 (color online). Combined Eöt-Wash constraints on the effective dark energy equation of state parameter produced by fðRÞ
gravity theories with fðRÞ ¼ Rþ hðRÞ, where hðRÞ ¼ �RðR= �RÞpþ1. �R ¼ �4

0=M
2
Pl and �5< p<�1, �1< p< 0 and 0< p< 1.

These constraints have been derived by requiring both that the Eöt-Wash test masses have thin shells and by requiring that the
chameleonic torque produced between the two thin-shelled test masses is small enough to have avoided detection to date. We see that
in all cases we have j1þ weff

de j< 10�4 today. As a result, the late time cosmology of any viable theory would be virtually

indistinguishable from that described by the �CDM model.
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largest values occurring for p <�1, and hence the late
time cosmology produced by any viable theory would be
observationally indistinguishable from that described by
the standard �CDM model.

VI. CONCLUSIONS

In recent years, modifications of general relativity have
been suggested as a possible explanation for the observed
accelerated expansion of the Universe. A popular class of
models are the so-called fðRÞ theories. While cosmologi-
cally viable theories can be found, local constraints on such
theories have to be worked out, since the gravitational
sector is modified, which could result in unacceptable
deviations from Newton’s law of gravity.

In this paper, we have constrained fðRÞ theories, using
the well-known equivalence between these and scalar-
tensor theories. For an fðRÞ theory to be consistent with
both cosmology and local gravity experiments, the equiva-
lent scalar-tensor theory must be a chameleon field theory.
We have shown that the requirement of the thin-shell
mechanism at work in Eöt-Wash experiments results in
an equation of state for dark energy very near to that of a
cosmological constant. Thus, viable fðRÞ models (those
which are compatible with local experiments) behave on
cosmological scales similarly to the standard �CDM
model and deviations are expected only on very small
(subgalactic) scales. The expected deviations from the
cosmological constant equation of state w ¼ �1 now in
viable fðRÞ theories are immeasurably small (at least with
current technologies). As examples, we have studied fðRÞ
theories with logarithmic potentials (based on [34] for a

fixed coupling � ¼ 1=
ffiffiffi
6

p
) as well as power-law potentials

(such as those presented in [27,39]). The former are ruled
out by local gravitational tests, while there is still room for
the latter models.

To conclude, while on cosmological scales viable fðRÞ
theories behave like �CDM, deviations are expected on
scales that could be large enough to be within the reach of
next-generation galaxy surveys [26]. Hopefully, future
measurements of the dark matter distribution on those
scales can be used to find such deviations from the standard
�CDMmodel. For this, a detailed understanding of galaxy
formation is necessary, including an understanding of both
the dynamics of baryons as well as that of dark matter in
�CDM and fðRÞ/chameleon theories.
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APPENDIX A: THE FORCE BETWEEN TWO
PLATES

In previous works [32,33], the chameleonic force per
unit area between two parallel plates was calculated and
found to be

F�

A
¼ V0ð�0Þ � V 0ð�bÞ þ ��b

MPl

ð�0 ��bÞ;

where �0 depends on d. We assume that both plates have
radius R and thickness D and that D � R. However, as
these calculations treat the plates as being infinite, they
required for consistency that:
(i) either, for an isolated plate, � ! �b at a distance

d � R from the plate so that the infinite plate ap-
proximation was still valid,

(ii) or, the precise value of �b was not important when
the plates were separated by a distance d � R. This
means that provided V 0ð�0Þ=V 0ð��Þ � 1, one could
replace �b in the above expression by �� without
altering the prediction for F�=A greatly. In these

cases, the behavior of � far from the plates, where
the infinite plate approximation is invalid, would be
unimportant.

These approximations held for all of the chameleon theo-
ries considered in Refs. [32,33]; however, in this work we
consider a wider range of theories, and it is often the case
that both of these assumptions fail to hold. In this appen-
dix, we therefore derive an improved version of the force
formula.
Outside of a body in a region where the background

density is �b, the chameleon field obeys

r2� ¼ V;�ð�Þ þ ��b

MPl

:

Consider this equation near one of the circular surfaces of a
cylindrical plate, of uniform density, and with radius R and
thicknessD � R. Defining z to be the distance from one of
the circular surfaces of the plate we have

@2�

@z2
¼ V;�ð�Þ � V;�ð�bÞ � 1

r

@

@r

�
r
@�

@r

�
: (A1)

We begin by considering the case where only one plate is
present. Here, � ! �b, @�=@z ! 0, as z ! 1.
Integrating Eq. (A1) with these boundary conditions give

1

2

�
@�

@z

�
2 ¼ Vð�Þ � Vð�bÞ � V;�ð�bÞð���bÞ

þ
Z 1

z

1

r

@

@r

�
r
@�

@r

�
@�

@z
dz: (A2)

We solve this approximately by assuming that for z < z�
the z dependence of the r-derivative terms is weak com-
pared with that of the potential terms, and that for z > z�,
the nonlinear terms in the potential, i.e. terms that depend
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on 3rd or higher derivatives of V, are subdominant. In z >

z�, we have � � ~�, where

1

2

�
@ ~�

@z

�
2 ¼ 1

2
m2

bð ~���bÞ2 þ
Z 1

z

1

r

@

@r

�
r
@ ~�

@r

�
@ ~�

@z
dz;

(A3)

or equivalently,

@2 ~�

@z2
� m2

bð ~���bÞ � 1

r

@

@r

�
r
@ ~�

@r

�
:

Assuming that the plate is thin (D � R), and solving
Eq. (A3), we find that for the z > z� and along r ¼ 0

~���b / ðe�mbz � e�mbrÞ;

and here z is the distance from the plate surface. It follows
that for z � R we have

Z 1

z

1

r

@

@r

�
r
@ ~�

@r

�
@ ~�

@z
dz ¼ m2

bð ~���bÞ2 ðe
mbR � 1=2Þ

ðembR � 1Þ2 :

(A4)

In z < z�, we have assumed that the z dependence of the
r-gradient terms is relativity weak. We therefore approxi-
mate the r gradient terms in Eq. (A2) using the z > z�
solution, i.e. we approximate them using Eq. (A4) with
~� ! �. For z � R, we then have

1

2

�
@�

@z

�
2 � Vð�Þ � Vð�bÞ þ V;�ð�bÞð���bÞ

þm2
bð���bÞ2 ðe

mbR � 1=2Þ
ðembR � 1Þ2 : (A5)

The above equation also holds approximately in the z > z�
region, provided z � R, and so provides an approximation
to the evolution of � everywhere when z � R. In particu-
lar, we see that on the surface of the plate, at z ¼ 0, where
say � ¼ ��s

1

2

�
@�

@z

�
2 � Vð ��sÞ � Vð�bÞ þ V;�ð�bÞð ��s ��bÞ

þm2
bð ��s ��bÞ2 ðe

mbR � 1=2Þ
ðembR � 1Þ2 : (A6)

We assume that the plate has a thin shell, so that deep
inside it � ! �c, where

V;�ð�cÞ ¼ ���c

MPl

:

Provided the shell is thin, we can treat the system as being
essentially 1 dimensional [32,33], and so

1

2

�
@�

@z

�
2 ¼ Vð�Þ � Vð�cÞ � V;�ð�cÞð���cÞ: (A7)

Thus, by evaluating and equating the left-hand sides of
Eqs. (A6) and (A7) at the surface, we find

Vð�cÞ � Vð�bÞ � V;�ð�cÞð�c ��bÞ þ ðV;�ð�cÞ
� V;�ð�bÞÞð ��s ��bÞ þm2

bCðmbRÞð ��s ��bÞ2 ¼ 0;

where

CðmbRÞ ¼ ðembR � 1=2Þ
ðembR � 1Þ2 :

Thus,

�� s ��b ¼ ðV;�ð�bÞ � V;�ð�cÞÞ
2m2

bCðmbRÞ
½1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4CðmbRÞDð�c;�bÞ

q
�; (A8)

where

Dð�c;�b;mbRÞ¼
m2

b½Vð�bÞ�Vð�cÞ�V;�ð�cÞð�b��cÞ�
ðV;�ð�bÞ�V;�ð�cÞÞ2

:

We now consider the force between two parallel plates.
This derivations make uses of results found in
Refs. [32,33], and proceeds along roughly similar lines.
In between two parallel plates with radius R and with

separation d � R in the z direction, the chameleon field
obeys

@2�

@z2
¼ V;�ð�Þ � V;�ð�bÞ: (A9)

For simplicity, we treat the plates as having the same
composition. This assumption was dropped in Ref. [32];
however, it was also shown there that for most purposes the
assumption provides an excellent approximation. This is
because the chameleonic force generally exhibits very little
composition dependence [32]. We define z ¼ 0 to be the
surface of one of the plates, and z ¼ d to be the facing
surface of the second plate. The system is symmetric, and
so d�=dz ¼ 0 at z ¼ d=2. We define �ðz ¼ d=2Þ ¼
�0ðdÞ. Formulae for �0ðdÞ have been provided in
Ref. [33]. Integrating Eq. (A9), we have

1

2

�
@�

@z

�
2 ¼ Vð�Þ � Vð�0Þ � V;�ð�bÞð���0Þ: (A10)

Following Ref. [33], inside either plate, Eq. (A7) holds. By
equating both Eqs. (A7) and (A10) at the surface of one of
the plates, where � ¼ �s say, we find

�s ¼
½Vð�cÞ � Vð�0Þ þ V;�ð�bÞ�0 � V;�ð�cÞ�c�

V;�ð�bÞ � V;�ð�cÞ :

In Ref. [33], it was shown that the attractive chameleonic
force unit area between two thin-shelled plates is given by
�V;�ð�cÞð�s � ��sÞ, and if, as is usually the case, the
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plates are much denser than their environment, so that
V;�ð�cÞ=V;�ð�bÞ ¼ �c=�b � 1, we have

F�

A
¼ Vð�0Þ � Vð�bÞ � V 0

bð�0 ��bÞ
þm2

bCðmbRÞð ��s ��bÞ2: (A11)

This coincides with the formulae found in Refs. [32,33],
whenmbR � 1 ) CðmbRÞ � 0, or more generally, when-
ever the final term is small compared with the other terms,
which is when CðmbRÞDð�c;�bÞ � 1. ��s ��b is given
by Eq. (A8).

When mbR � 1, we have CðmbRÞ � 1=2m2
bR

2 � 1. If
this is the case, we also have CðmbRÞDð�c;�bÞ � 1

m2
bCðmbRÞð ��s ��bÞ2 � Vð�bÞ � Vð�cÞ

� V;�ð�cÞð�b ��cÞ;
and then in this limit Eq. (A11) becomes

F�

A
¼ Vð�0Þ � Vð�cÞ � V 0

cð�b ��cÞ � V0
bð�0 ��bÞ:

APPENDIX B: CHAMELEON MASS BETWEEN
TWO PLATES

In this appendix, we generalize the calculation of the
chameleon mass between two parallel plates, as performed
in Refs. [32,33], to include the wider range of chameleon
theories considered here.

In between two parallel plates with, say, a circular cross
section, in the x� y plane, with radius rp, and a separation,

d, in the z direction, where d � rp, Eq. (6) for� simplifies

to be essentially one-dimensional h ! d2

dz2

d2�

dz2
¼ V;�ð�Þ � V;�ð�bÞ; (B1)

where�b is the background value of�. We define�0 to be
the value of �, when d�=dz ¼ 0, which will occur mid-
way between the two plates, when z ¼ d=2.

Thus, integrating the � equation we find

1

2

�
d�

dz

�
2 ¼ Vð�Þ � Vð�0Þ � V;�ð�bÞð���bÞ:

In this work, we have considered power-law potentials,

where V / �pð���=ðpþ 1ÞÞpþ1=p, and where � ¼
sgnðpðpþ 1ÞÞ and p < 1. For these potentials, we have
m2

� ¼ V;�� ¼ ðpþ 1Þ=p2Vð�Þ=�2. Thus, defining Y ¼
�=�0 and m0 ¼ m�ð�0Þ, we have
1

2

�
dY

dz

�
2 ¼ p2m2

0

ðpþ 1Þ
�
Ypþ1=p � 1� pþ 1

p

�
�b

�0

�
1=p

� ðY � 1ÞVð�0Þ
�0

�
: (B2)

Now,

R / �1=p;

and so defining R0 ¼ Rð�0Þ, we have ð�b=�0Þ1=p ¼
Rb=R0. Thus, when Rb=R0 � 1, the last term in Eq. (B2)
is very small and can be dropped. Working in this limit, we
have

1

2

�
dY

dz

�
2 � p2m2

0

ðpþ 1Þ ½Y
pþ1=p � 1�:

Now, on the surface of the plates �	Oð�cÞ, where �c is
the value of� inside the body, and assuming Rc � R0, i.e.
mc � m0, we can treat ð�=�0Þp as becoming very large,
as z ! 0 (i.e. as we approach the surface of the plate). We
define X ¼ Y�p ¼ ð�=�0Þ�p, and then in the limit mb �
m0 � mc, we have�

dX

dz

�
2 � 2m2

0X
2þ2=p

ðpþ 1Þ ½X�ðpþ1=p2Þ � 1�:

Integrating this equation and using X ¼ 0 at z ¼ 0, X ¼ 1
at z ¼ d=2, we have for p � �1

m0dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jpþ 1jp ¼ p2

jpþ 1jB
�
1

2
;

p

ð1þ pÞ
�
;

which simplifies to ,

m0d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

j1þ pj

s
p2B

�
1

2
;

p

ð1þ pÞ
�
: (B3)

If �1 � p � 1, then we find

m0d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

j1þ pj

s
B

�
1

2
;

1� p

2ð1þ pÞ
�
: (B4)
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