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In Einstein’s gravity, the entropy of horizons is proportional to their area. Several arguments given in

the literature suggest that, in this context, both area and entropy should be quantized with an equally-

spaced spectrum for large quantum numbers. But in more general theories (like, for example, in the black

hole solutions of Gauss-Bonnet or Lanczos-Lovelock gravity) the horizon entropy is not proportional to

area and the question arises as to which of the two (if at all) will have this property. We give a general

argument that in all Lanczos-Lovelock theories of gravity, it is the entropy that has an equally-spaced

spectrum. In the case of Gauss-Bonnet gravity, we use the asymptotic form of quasinormal mode

frequencies to explicitly demonstrate this result. Hence, the concept of a quantum of area in Einstein-

Hilbert gravity needs to be replaced by a concept of quantum of entropy in a more general context.
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It was conjectured by Bekenstein [1] long back that, in a
quantum theory, the black hole area would be represented
by a quantum operator with a discrete spectrum of eigen-
values. Bekenstein showed that the area of a classical black
hole behaves like an adiabatic invariant, and so, according
to Ehrenfest’s theorem, the corresponding quantum opera-
tor must have a discrete spectrum. It was also known that,
when a quantum particle is captured by a (nonextremal)
black hole its area increases by a minimum nonzero value
[1–3], which is independent of the black hole parameters.
This argument also suggests an equidistant spacing of area
levels, with a well-defined notion of a quantum of area.
The fundamental constants G, c, and @ combine to give a
quantity with the dimensions of area AP ¼ ðG@=c3Þ ¼
10�66 cm2, which is quite suggestive [4] and sets the scale
in area quantization.

In Einstein’s gravity, entropy of the horizon is propor-
tional to its area. Hence one could equivalently claim that it
is the gravitational entropy which has an equidistant spec-
trum with a well-defined notion of quantum of entropy.
But, when one considers the natural generalization of
Einstein gravity by including higher derivative correction
terms to the original Einstein-Hilbert action, no such trivial
relationship remains valid between horizon area and asso-
ciated entropy. One such higher derivative theory, which
has attracted a fair amount of attention, is Lanczos-
Lovelock (LL) gravity [5], of which the lowest order
correction appears as a Gauss-Bonnet (GB) term in
Dð>4Þ dimensions. These Lagrangians have the unique
feature that the field equations obtained from them are
quasi linear, as a result of which, the initial value problem
remains well-defined. More importantly, several features
related to horizon thermodynamics, which were first dis-

covered in the context of Einstein’s theory [6], continues to
be valid in LL gravity models [7,8].
Black hole solutions in the LL gravity are well studied in

the literature. For these spacetimes, the notion of entropy
can be defined using Wald’s formalism [9], where entropy
is associated with the Noether charge of the diffeomor-
phism invariance symmetry of the theory. The entropy
calculated from this approach turns out to be no longer
proportional to horizon area. The question then arises as to
whether it is the quantum of area or quantum of entropy (if
at all either) which arises in a natural manner in these
models. We attempt to answer this question in this paper.
We will first provide a very general argument which

suggests that it is the entropy which is quantized with
equidistant spectrum in the case of LL gravity and then
provide an explicit proof for the result in the context of GB
gravity.
In any geometrical description of gravity that obeys the

principle of equivalence and is based on a nontrivial met-
ric, the propagation of light rays will be affected by gravity.
This, in turn, leads to regions of space-time which are
causally inaccessible to classes of observers. (These two
features are reasonably independent of the precise field
equations which determine the metric.) The fact that any
observer has a right to formulate physical theories in a
given coordinate system entirely in terms of the variables
that an observer using that coordinate system can access,
imposes strong constraints on the nature of the action
functional Agrav, which can be used to describe gravity

[10]. Suppose we divide the space-time manifold into
two regions separated by a null hypersurface H and
choose a coordinate system such that H acts as a horizon
for the observer on one side (say side 1). The effective
theory for the observer on side 1 (with the degrees of
freedom formally denoted by g1) is obtained by integrating
out the variables on the inaccessible side (side 2): In the
semiclassical limit (the WKB approximation), saddle-
point integration leads to the exponential of the classical
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action AgravðclassÞ evaluated on shell. The effective theory

on side 1 is thus described by the action AWKB
eff ðg1Þ, with

exp½iAWKB
eff ðg1Þ� ’ exp½iðAgravðg1Þ þ AgravðclassÞÞ�: (1)

Since the effects of the unobserved degrees of freedom g2
can only be encoded in the geometry of the (shared)
boundary between regions 1 and 2, we get the constraint
that the on shell value of the action Agravðgclass2 Þ must be

expressible in terms of the boundary geometry which could
be expressible in terms of g1 itself. That is, Agravðgclass2 Þ ¼
Asurðg1Þ, and

exp½iAWKB
eff ðg1Þ� ¼ exp½iðAgravðg1Þ þ Asurðg1ÞÞ�: (2)

This is a nontrivial requirement on any geometrical theory
of gravity. Further, since the boundary term depends on the
choice of the coordinate system (or foliation), in whichH
acts as a one-way membrane, Asurðg1Þ will in general
depend on the coordinate choice for the observer.

Classically, with the boundary variables held fixed, the
equations of motion remain unaffected by the existence of
a (total divergence) boundary term; hence the fact that the
boundary term is not generally covariant is unimportant for
classical theory. This is, of course, not true in semiclassi-
cal/quantum theory. But since the quantum theory is gov-
erned by exp½iAeff� rather than by Aeff , the boundary term
will have no effect in the quantum theory, if the quantum
processes keep exp½iAsur� single valued. This is equivalent
to demanding that the boundary term satisfies the quanti-
zation condition Asur ¼ 2�n. (More precisely, the change
in the surface term �Asur ¼ 2�; this is irrelevant for our
purpose when we work in the semiclassical limit of large
n.)

It is now worth noting that the Lagrangian in all the LL
models (of which the Einstein-Hilbert action is just a
special case) can be expressed [8] as a sum of a bulk and
total divergence terms, L ¼ Lbulk þ Lsur with Lsur integrat-
ing to give a surface term in the action. There is a peculiar
‘‘holographic’’ relationship between Lbulk and Lsur in all
these models with the same information being coded in
both the bulk and surface terms [see Eq. (41) of Ref. [8]].
The on shell value of the surface term in all these action
functionals is proportional to the Wald entropy of the
horizon [8,11]. We can now see how a condition like
Asur ¼ 2�n can lead to quantization of Wald entropy.

In the case of the Einstein-Hilbert action, Asur is well-
defined and is given by the standard Gibbons-Hawking-
York term. As pointed out in Ref. [10] the surface term will
give the entropy—equal to one quarter of horizon area—
and both will have an equally-spaced spectrum. When we
proceed to general LL gravity, the correct (surface) coun-
terterm which should be added to the higher derivative
action is unknown and the action principle, using metric
as dynamical variable, is actually ill-defined. There is,
however, an alternative approach we can follow to obtain
meaningful results for the LL gravity.

So far we did not have to specify the exact nature of the
degrees of freedom g1, g2 in the above discussion.
Interestingly enough these arguments go through unhin-
dered, when one formulates gravity as an emergent phe-
nomenon without treating the metric as dynamical
variables in the theory [12]. In this approach, one proceeds
along the following lines.
Around any event in space-time one can introduce a

local inertial frame and—by boosting with a uniform ac-
celeration—a local Rindler frame. The effective long range
variables in emergent gravity approach are the normals na
to the null surfaces which act as local Rindler horizons.
(One can think of na as the ‘‘fluid velocity’’ of a virtual null
fluid in the space-time.) The total action is now [11,12]
taken to be Atot ¼ Agrav þ Amatt where

Agrav ¼ �4
Z
V
dDx

ffiffiffiffiffiffiffi�g
p

Pab
cdrcn

ardn
b (3)

is determined by a fourth rank tensor Pabcd which can be
expressed as a derivative of the LL Lagrangian and

Amatt ¼
Z
V
dDx

ffiffiffiffiffiffiffi�g
p

Tabn
anb: (4)

Maximizing Atot with respect to all na leads to the field
equations of the LL theory. (All these aspects are described
in detail in Ref. [11] and hence are not repeated here.) The
key result we need here is that the on shell value of the total
action is given by

Atotjon shell ¼ 4
Z
@V

dD�1�aðPabcdncrbndÞ (5)

which can be shown to be identically equal to the Wald
entropy of the horizon in the LL theory [8,11]. (In the case
of lowest order LL theory—which is just Einstein grav-
ity—the expression for Ajon shell will be one quarter of the
transverse area of the horizon.) The emergent gravity
approach is strongly motivated by thermodynamic consid-
erations and—classically—the maximization of the action
can be thought of as maximization of the entropy. In this
context, Eq. (5) will also give the entropy of the local
Rindler horizon for each Rindler observer, which can be
interpreted as due to integrating out the inaccessible de-
grees of freedom behind the local Rindler horizon. In the
semiclassical limit, the on shell value of the action will be
related to the phase of the semiclassical wave function� /
expðiAjon shellÞ. This expression, of course, should be gen-
erally covariant, but as it stands it explicitly depends on the
Rindler observer chosen to define the horizon. Hence, we
can ensure observer independence of semiclassical gravity
only if we assume

AWald ¼ Ajon shell ¼ 2�n: (6)

Note that we are again obtaining the quantization con-
dition from the phase of the semiclassical wave function,
which is completely in accord with previous approaches to
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this problem. The holographic relation between surface
and bulk terms underscores how the surface term captures
the dynamical information contained in the bulk. The result
obtained above for the entropy spectrum is distinct from
the result obtained in string theory for the D1–D5 system in
terms of integers representing quantized momentum and
charges (see [13] and references therein). As we shall show
below, the entropy spectrum we have arrived at can be
obtained using the arguments suggested by Hod [14] based
on quasinormal modes (QNM) of black hole oscillations.
The discrepancy with the string theory result is to be
expected, since Hod’s conjecture has no connection with
the way the spectrum is derived in string theory for ex-
tremal black holes, and is known to lead to results different
from the string theoretic results. We believe the issue of
black hole entropy is still very much in a state of debate
and it may be premature to draw any firm conclusions
about either Hod’s conjecture or the string theory results
based on the difference between the two because of widely
different perspectives they take regarding the black hole
entropy.

While this gives a general result that in LL theories it is
the entropy of the horizon that is quantized, it would be
nice if the result could be reinforced by an explicit calcu-
lation within the standard context. Fortunately, this can be
done for GB theory using the arguments suggested by Hod
[14] based on quasinormal modes of black hole
oscillations.

Hod started from Bekenstein’s arguments regarding
quantum area spectrum of a nonextremal Kerr-Newman
black hole, and showed that the spacing of area eigenvalues
can be fixed by associating the classical limit of the qua-
sinormal mode frequencies, !c, with the large n limit of
the quantum area spectrum, in the spirit of Bohr’s corre-
spondence principle (n being the quantum number).
Specifically, for a Schwarzschild black hole of mass M in
(3þ 1) dimensions, the absorption of a quantum of energy
!c, (in units with @ ¼ 1) would lead to change in the black
hole area eigenvalues as, �A � Anþ1 �An ¼
ð@A=@MÞ!c and for entropy �S ¼ ð@S=@MÞ!c. In the
case of a Schwarzschild black hole the level spacing of
both area and entropy eigenvalues were indeed found to be
equidistant, allowing one to associate the notion of a
minimum unit, a quantum, of area and entropy.

We will use these ideas in the context of 5D GB black
holes, using the numerically known form of the quasinor-
mal mode frequencies. We show that, the form of the
highly damped quasinormal modes of these black holes
suggest that it is the entropy which has a equally-spaced
spectrum. The GB Lagrangian L in D dimensions is given
by [15],

ð16�GÞL ¼ ½Rþ �GBðR2 � 4RabR
ab þ RabcdR

abcdÞ�:

Static, spherically symmetric black hole solutions in this
theory is of the form,

ds2 ¼ �fðrÞdt2 þ fðrÞ�1dr2 þ r2d�D�2;

where,

fðrÞ ¼ 1þ r2

2�

�
1�

�
1þ 4�$

rD�1

�
1=2

�
:

Here, � ¼ ðD� 3ÞðD� 4Þ�GB and $ is related to the
ADM mass M by the relationship,

$ ¼ 16�G

ðD� 2Þ�D�2

M

where �D�2 is the volume of unit (D� 2) sphere. The
Hawking temperature T, and entropy S for this space-time
are,

T ¼ D� 3

4�rþ

�
r2þ

r2þ þ 2�
þ �

�
D� 5

D� 3

�
1

r2þ þ 2�

�

S ¼ A
4G

�
1þ 2�

�
D� 2

D� 4

��
A

�D�2

��2=ðD�2Þ�

whereA ¼ �D�2r
D�2þ is the horizon area. The location of

the horizon is found as roots of qðrþÞ ¼ 0, where qðrÞ ¼
rD�3 þ �rD�5 �$, and for the horizon to exist at all, one
must also have r2þ þ 2� � 0.
The highly damped quasinormal modes for the GB black

holes (when !I � !R) has been worked out for D ¼ 5.
These QNM frequencies are given by [16]

!ðnÞ !
n!1T lnQþ ið2�TÞn

(the imaginary part can be understood in terms of a scat-
tering matrix formalism; see, e.g., [17]). We now use the
Hod conjecture to obtain the entropy spacing for this
space-time. Accordingly, we identify as the relevant fre-
quency!c the real part of!, i.e., we take!c ¼ T lnQ. The
entropy spacing is then given by

Snþ1 � Sn ¼ @S
@M

!c ¼ lnQ:

Clearly the spacing �S � Snþ1 � Sn is a constant. This
result depends essentially only on the fact that Re!c / T
leading to ð@S=@MÞ!c / Tð@S=@MÞ which is a constant.
For GB black holes the area is a function of entropy,A ¼
FðSÞ which is not linear. Hence, for the area spectrum for
this class of black holes we get

A nþ1 �An ¼ @A
@M

!c ¼ gðAnÞ lnQ (7)

where, gðAnÞ ¼ dF=dS is given by,

gðAnÞ ¼ 4

�
1� 2�

�
An

�3

��2=3
�

(8)

which is correct toOð�Þ. We therefore find that the entropy
eigenvalues are discrete and equally spaced but the area
spacing is not equidistant. Hence, for GB gravity, the
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notion of quantum of entropy is more natural than the
quantum of area.

We shall now comment on the value of lnQ which
determines the actual value of quantum of entropy.
Originally, in the case of Einstein gravity, the results of
Bekenstein and Hod lead to the picture of a quantum black
hole with the horizon built out of patches of area �AP, the
most natural choice for � being the (constant) spacing of

eigenvalues of the area quantum operator, Â. Hod further
argued that one should take, for !c, the real part of the
quasinormal mode frequencies after the imaginary part has
been sent to infinity. This leads to � ¼ 4 lnk, k being some
integer. The numerical, as well as later analytical results
for the quasinormal mode frequencies of spherically sym-
metric black holes in 3þ 1 dimensions, give k ¼ 3.

It must be mentioned that, the real part of the QNM
frequencies is not universal. This is evident for Kerr-
Newman black hole in 3þ 1 dimensions, where the cor-
responding factor depends on black hole parameters (see
[18] and references therein). Recently, Maggiore [19] has
put forth another argument which leads to identifying the
transition frequency between large n levels with the clas-
sical limit (rather than the real part of QNM frequencies, as
was done by Hod). This gives � ¼ 8�, consistent with
earlier arguments of Bekenstein. While the specific value
of area spacing is important for a statistical definition of
entropy, it does not seem to be absolutely essential since, in
a semiclassical description, the number of microstates
need not exactly come out to be an integer, as was argued
by Maggiore. Recently, all these arguments have been
applied for the case of more general black holes in the
context of Einstein gravity and it has been argued that in all
such cases, when properly analyzed, one finds an equally-
spaced area spectrum [18,20]. The suggestion by Maggiore
[19] to associate this classical limit with transition frequen-
cies ðnþ 1Þ ! n as n ! 1 leads to the replacement:
lnQ ! 2�, which gives �S ¼ 2� (in units of @). Thus,
we obtain, for the quantum of entropy, a value of 2� in
agreement with the general arguments given earlier.

The broader picture, which emerges from this analysis
can be summarized along these lines: (a) In any theory
which obeys the principle of equivalence, the gravitational
field will be described at long wavelengths by a space-time
metric. (b) Around any event in space-time, one can in-
troduce a local inertial frame and—by boosting with an
acceleration—a local Rindler frame. The observers using
this coordinate system will have a local Rindler horizon
with a temperature and entropy associated with the virtual
deformations of the horizon. (c) Classically, we interpret
Atot in Eq. (3) as the total entropy which is maximized for
all the Rindler observers to give the field equations of the
theory (which are the same as the equations of LL gravity).
The on shell value of the action giving the Wald entropy of
the horizon which is interpreted as due to modes which are
inaccessible to the given observer. (d) In the semiclassical
limit the Atot is interpreted as an action and its value will
affect the phase of the semiclassical wave function. (e) The
observer independence of the semiclassical gravity re-
quires this phase—i.e., the Wald entropy of the hori-
zon—to be quantized in units of 2�. (Of course,
mathematically, one could have treated Atot as the action
functional even in classical theory.)
When we take the lowest order LL theory, we reproduce

Einstein gravity and the quantization condition becomes
equivalent to area quantization of the horizon as discussed
several times in the literature. At the next order, we have
the GB theory for which we have explicitly demonstrated
the quantization of entropy. We believe that, once we have
the structure of QNM in the case of LL theory—which, as
far as we know, has not yet been explicitly worked out—
the analysis given above can be repeated to give an explicit
demonstration of this result. Since entropy is directly
related with information content, the quantum of gravita-
tional entropy points out a new and intriguing relationship
between gravity, quantum theory, and thermodynamics.
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