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We investigate stability of the D-dimensional Reissner-Nordström-anti-de Sitter metrics as solutions of

the Einstein-Maxwell equations. We have shown that asymptotically anti-de Sitter (AdS) black holes are

dynamically stable for all values of charge and anti-de Sitter radius in D ¼ 5; 6 . . . 11 dimensional space-

times. This does not contradict dynamical instability of RNAdS black holes found by Gubser in N ¼ 8

gauged supergravity, because the latter instability comes from the tachyon mode of the scalar field,

coupled to the system. Asymptotically AdS black holes are known to be thermodynamically unstable for

some region of parameters, yet, as we have shown here, they are stable against gravitational perturbations.
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I. INTRODUCTION

Nowadays, brane world theories and string theory imply
existence of extra dimensions in nature [1]. This induced
great interest to higher dimensional black holes, in particu-
lar, to such features as perturbations, dynamical and ther-
modynamical stability, particles and fields behavior, and
Hawking radiation around these black holes. Unlike the
four-dimensional case, higher dimensional space-times
admit plenty of ‘‘black’’ solutions: black holes, black
strings and branes, black rings, and Saturns. Stability of
these solutions may be criteria of their existence. The
stability analysis usually requires one to transform the
perturbed Einstein equation to the wavelike form, what
was done yet in 1957 by Regge and Wheeler for D ¼ 4
black holes, and only in 2003 for a general number of
space-time dimensions [2]. Then, the stability of
D-dimensional Schwarzschild black holes was proved in
[3] and of Schwarzschild-de Sitter black holes in [4].
Recently the stability of Kaluza-Klein black holes with
squashed horizons was shown in [5,6]. Unlike Kaluza-
Klein black holes, black strings and branes become un-
stable for perturbations with wavelength, which is larger
than some threshold value (Gregory-Laflamme instability
[7]). In [8] it was shown that the instability threshold point
corresponds to some dominating static solution of the wave
equation. The neutralD-dimensional black holes in Gauss-
Bonnet theory are unstable only for D ¼ 5; 6 and for small
values of Gauss-Bonnet coupling [9,10]. The instability in
the Gauss-Bonnet theory is qualitatively different from a
black string instability: the black string instability is an
example of instability, developed at the lowest multipoles,
therefore with a static solution dominance at the threshold
point. The instability in the Gauss-Bonnet theory is devel-

oped at large multipoles, so that the growing mode domi-
nates after a long period of damped quasinormal
oscillations [10].
The stability of the higher dimensional black holes is

important also for the growing interest to the quasinormal
modes of the standard model fields in higher dimensional
theories [11]. Indeed, only stable black holes can be con-
sidered as a background on which test fields propagate. In
this context, a gravitational instability of Reissner-
Nordström-de Sitter black holes was found, when both
charge and the Lambda term are large enough [12].
Higher dimensional black holes in asymptotically anti-

de Sitter (AdS) space-times have been in the focus of string
theorists in recent years, because of their role in the AdS/
CFT correspondence. A large asymptotically anti-de Sitter
black hole corresponds to a thermal state in the dual
conformal field theory, where the Hawking temperature
of the black hole is the temperature in the dual field theory
[13]. The perturbations of AdS black holes have been
extensively studied during the recent decade [14].
Nevertheless, it was not known until the present study if
D-dimensional asymptotically AdS black holes are dy-
namically stable as solutions of D-dimensional Einstein-
Maxwell equations. The stability of D ¼ 4 and D ¼ 5
Reissner-Nordström-AdS black holes was studied by
Gubser and Mitra in the N ¼ 8 gauged supergravity
theory [15,16], i.e. a theory with the Maxwell and scalar
matter fields coupled to the electromagnetic field. There it
was shown that the highly charged black holes are unstable
and the parameter region of instability increases for larger
black holes, i.e. for black holes, which radius is much
larger than the anti-de Sitter radius. Yet that instability
evidently came from the tachyonic mode of the scalar field.
Thus the question remains if there is an instability of
Reissner-Nordström-anti-de Sitter black holes within the
ordinary Einstein-Maxwell theory. Our main aim here is to
answer this question, keeping in mind such an important
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feature of black holes as thermodynamic (in)stability.
Thus, according to hypothesis of Gubser and Mitra in
[15,16], there may be a correlation between thermody-
namic and dynamic (gravitational) (in)stabilities of black
holes, because it was found that the parametric region of
thermodynamic and dynamic (in)stabilities, although they
do not coincide, differ from each other only slightly for the
N ¼ 8 gauged supergravity. Another possible correlation
could give the thermodynamic instability of small AdS
black holes, which happens with a phase transition, called
the Hawking-Page transition [17]. One of the thermody-
namically preferred final states, after the transition, might
be a pure AdS space-time [17].

The thermodynamic instability of black holes takes
place also for ordinary Einstein-Maxwell-AdS black holes
[18] for some values of black hole parameters. The second
order phase transition occurs at the instability point [18]. If
we expect some correlations between thermodynamic and
dynamic instabilities to these cases, we should expect
gravitational instability of D-dimensional charged black
holes in AdS space-times within the standard Einstein-
Maxwell theory. In this paper, we shall show that this is
not the case of the pure RNAdS black holes, which are
stable against gravitational perturbations for D ¼
5; 6 . . . 11, where D is the number of space-time
dimensions.

The paper is organized as follows: Section II introduces
the basic formula for the background metric and for per-
turbation equations reduced to a wavelike form. Section III
reviews the numerical method, which we used for stability
analysis. Sections IV and V consider the obtained results
for Reissner-Nordström-anti-de Sitter black holes.

II. BASIC FORMULAS

The metric of the D ¼ dþ 2-dimensional Reissner-
Nordström-(anti)-de Sitter black holes is given by the
line element

ds2 ¼ fðrÞdt2 � dr2

fðrÞ � r2d�d; (1)

where d�d is the line element on a unit d sphere, and

fðrÞ ¼ 1� Xþ Z� Y; X ¼ 2M

rd�1
;

Y ¼ 2�r2

dðdþ 1Þ ; Z ¼ Q2

r2d�2
:

(2)

Here M is the mass parameter of the black hole, Q is its
charge, and the � term coincides with a cosmological
constant, when positive, and is related to the anti-de
Sitter radius, when negative, in the following way:

2�

dðdþ 1Þ ¼ � 1

R2
¼ �1:

The general perturbations of the Einstein-Maxwell
equations

g�� ¼ g0�� þ �g��; (3)

�R�� ¼ ��

�
T�� � 1

D� 2
Tg��

�
þ 2�

D� 2
�g��; (4)

after using the gauge freedom, and separating the angular
variables can be reduced to a number of wavelike equa-
tions [2] for three types of gravitational perturbations,
according to the symmetry of the rotation group: scalar,
vector, and tensor. In four dimensions, the scalar type of
gravitational perturbations is called polar, the vector type is
called axial. The tensor type of gravitational perturbations
is usually pure gauge inD ¼ 4 black hole space-times. For
D ¼ 4 Reissner-Nordström-(anti)-de Sitter black holes,
axial and polar types of perturbations are isospectral, so
that for stability analysis it is enough to analyze only one
type of perturbations. For D> 4, the isospectrality is
broken, so that one needs to check all three kinds of
perturbations. The vector and tensor types of gravitational
perturbations were shown to be stable [2] for allD, with the
help of the so-called S-deformation technique. Therefore
we shall consider here only the scalar type of gravitational
perturbations.
The equation of motion for gravitational perturbations of

scalar type can be reduced to the wavelike equation [3],

�
d2

dr2�
þ!2 � V�

�
�ðrÞ ¼ 0; (5)

where the tortoise coordinate r� is defined as

dr� ¼ dr

fðrÞ ; (6)

V�ðrÞ ¼ fðrÞ U�
64r2H2�

: (7)

Here Vþ and V� are potentials for the two kinds of
scalar gravitational perturbations. The potential V� re-
duces to the pure gravitational perturbations when the
black hole charge vanishes, while Vþ reduces to the per-
turbations of the test Maxwell field in the black hole
background in this limit. When the charge Q is nonzero,
the gravitational and electromagnetic perturbations are
coupled.
Note that Vþ is proven to be stable [2] with the help of

the S-deformation. Thus we are left with the V� potential,
which must be tested on stability.
Here we used the values

H� ¼ �þ dðdþ 1Þ
2

ð1þ ��ÞX; (8)
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U� ¼ ½�4d3ðdþ 2Þðdþ 1Þ2ð1þ ��Þ2X2 þ 48d2ðdþ 1Þðd� 2Þ�ð1þ ��ÞX� 16ðd� 2Þðd� 4Þ�2�Y
� d3ð3d� 2Þðdþ 1Þ4�ð1þ ��Þ3X4 � 4d2ðdþ 1Þ2ð1þ ��Þ2fðdþ 1Þð3d� 2Þ��� d2gX3

þ 4ðdþ 1Þð1þ ��Þf�ðd� 2Þðd� 4Þðdþ 1Þð�þ d2Þ�þ 4dð2d2 � 3dþ 4Þ�þ d2ðd� 2Þðd� 4Þðdþ 1ÞgX2

� 16�fðdþ 1Þ�ð�4�þ 3d2ðd� 2ÞÞ�þ 3dðd� 4Þ�þ 3d2ðdþ 1Þðd� 2ÞgX þ 64�3 þ 16dðdþ 2Þ�2: (9)

We shall imply that

�� e�i!t; ! ¼ !Re � i!Im;

so that !Im > 0 corresponds to a stable (decayed) mode,
while!Im < 0 corresponds to an unstable (growing) mode.
If the effective potential VðrÞ is positive definite every-
where outside the black hole event horizon, the differential
operator

d2

dr2�
þ!2

is a positive self-adjoint operator in the Hilbert space of the
square integrable functions of r�, and, in that case any
solution of the wave equation with compact support is
bounded, which implies stability. An important feature of
the gravitational perturbations is that the effective potential
V� [Eq. (7)], which governs the scalar type of the pertur-
bations, has negative gap for the higher dimensional black
holes. Therefore the instability is not excluded for this
case, and numerical analysis of perturbations is necessary.

The values

2�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�Q2

ðdþ 1Þ2M2

s
� 1; � ¼ ð‘þ dÞð‘� 1Þ;

‘ ¼ 2; 3; 4 . . .

are constants.
For convenience we shall parametrize the black hole

mass and charge by its event horizon rþ and inner horizon
r� < rþ, respectively. The value r� ¼ 0 corresponds to
the uncharged black hole.

III. NUMERICAL METHOD

For analysis of stability, we need to test a black hole
response to external perturbations, which is dominated by
the so-called quasinormal modes at late time. The quasi-
normal boundary conditions correspond to the pure out-
going waves at infinity and pure incoming waves at the
event (or de Sitter) horizon for asymptotically flat or de
Sitter black holes. For asymptotically AdS black holes, the
Dirichlet boundary conditions are imposed at infinity. If
growing modes exist, the considered system is unstable.
Although usually, damped quasinormal modes have both
real and imaginary parts, i.e. are oscillating, the growing
modes [8] are nonoscillating, that is pure imaginary. This
makes our search of unstable modes much easier.

Below we shall discuss the numerical method, which we
used here for asymptotically anti-de Sitter space-times.
Let us start from the analysis of singularities of the

equation (5). At the event horizon V�ðrÞ / fðrÞ � 0.
Therefore

�ðrÞ � ðr� rþÞ�i!=f0ðrþÞ:

The quasinormal boundary conditions at the event horizon
imply

�ðrÞ ¼ ðr� rþÞ�i!=f0ðrþÞðZ0 þOðr� rþÞÞ:
At the spatial infinity the two linear independent solu-

tions of �ðrÞ are
�1ðrÞ � r�ðD�4Þ=2; �2ðrÞ � rðD�6Þ=2; D � 5;

�1ðrÞ � r�1=2; �2ðrÞ � r�1=2 lnðrÞ; D ¼ 5:

(10)

The quasinormal boundary conditions imply that

�ðr ! 1Þ /
8<
:
r�1; D ¼ 4;
r�1=2; D ¼ 5;
r�ðD�4Þ=2; D � 6:

(11)

Let us consider the new function

yðrÞ ¼
�
r� rþ
r� r�

�
i!=f0ðrþÞ

�ðrÞ: (12)

If �ðrÞ satisfies the quasinormal boundary conditions,
yðrÞ is regular at the event horizon. Since the function yðrÞ
satisfies the linear equation, we fix its scale as

yðrþÞ ¼ 1:

Then y0ðrþÞ can be found from the equation (5),

y0ðrþÞ ¼ i!f00ðrþÞ
2f0ðrþÞ2

� i!

ðrþ � r�Þf0ðrþÞ þ
V0

f0ðrþÞ � 2i!
;

where

V0 ¼ lim
r!rþ

V�ðrÞ
fðrÞ ¼ U�ðrþÞ

64r2þH2�ðrþÞ
:

Imposing the above discussed boundary conditions at
the event horizon, we solve the equation (5) numerically
for each ! using the NDSolve built-in function in
MATHEMATICA for r � rf, where rf � rþ.
In the general case the behavior of �ðrÞ at infinity is a

superposition of the two solutions (10)
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�fðrÞ ¼ Zi�iðrÞ þ Zd�dðrÞ; (13)

where �dðrÞ satisfies the quasinormal boundary condition
(11). If ! is the quasinormal frequency, the corresponding
solution must satisfy the boundary conditions (11) at the
spatial infinity and, thereby, Zi ¼ 0.

Thus, our numerical procedure is the following. We
integrate the equation (5) numerically imposing a quasi-
normal boundary condition at the event horizon. At large
distances we compare the obtained function �ðrfÞ with

(13) and find, thereby, the coefficients Zi and Zd for any
given value of !. The quasinormal modes correspond to
the roots of the equation

Zið!Þ ¼ 0: (14)

In order to find Zi and Zd, one has to find analytically
expansions of �iðrÞ and �dðrÞ at large distances. The
expansion

�d ¼
�

r�1; D ¼ 4
r�ðD�4=2Þ; D � 5

��
1þ CðdÞ

1

r
þ CðdÞ

2

r2
þ CðdÞ

3

r3
� � �

�
(15)

contains only inverse powers of r, while the expansion

�i ¼
8<
:

1; D ¼ 4
r�1=2 lnðrÞ; D ¼ 5
rðD�6=2Þ; D � 6

9=
;
�
1þ CðiÞ

1

r
þ o

�
1

r

��
(16)

contains also subdominant terms of the form of order lnðrÞ
r .

Since the series in (16) are convergent we have used only
the first term of the expansion, which does not contain a
logarithm. The expansion of (15) was done up to the order
�r�3.

The analytical expansion allows one to find �iðrÞ and
�dðrÞ within the desired precision for r � rþ. If �ðrfÞ
were known exactly, one would had found the coefficients
Zi and Zd from the system of the linear equations,

�ðrfÞ ¼ �fðrfÞ; (17)

�0ðrfÞ ¼ �0
fðrfÞ: (18)

In practice, being the result of the numerical integration,
the values �ðrfÞ and �0ðrfÞ contain a numerical error,

which causes low precision of the coefficients Zi and Zd,
found in this way. In order to minimize the numerical error,
we find numerically the values of � at some large number
of points near r ¼ rf. Then we fit the obtained numerical

values of � by the function �fðrÞ (13). From the fit data

we find Zi and Zd by solving the least squares problem at
those points.

Since unstable modes are purely imaginary, one can
restrict the searching area for ! by the imaginary axis. In
this case the problem simplifies because the eigenfrequen-
cies and the coefficients Zi, Zd are real. It turns out that the
coefficient Zi changes its sign when crossing the solution.

This can be used as an indicator of the existence of an
unstable mode in the spectrum.
In order to be sure that the above method indeed can find

an instability, we tested it for the two cases when the
instability is determined both analytically and numerically
by an alternative method. Namely, we checked the insta-
bility of the black strings [7,8], and also found the unstable
modes of the Gauss-Bonnet black hole. Their values are in
agreement with those obtained within time-domain inte-
gration. Thus, as an example, on Fig. 2 one can see that the
unstable mode is ! ¼ 0:18i, which perfectly agrees with
the value of unstable mode, obtained by the time-domain
integration method in [10].
Another restriction upon the possible values of unstable

modes comes from the depth of the negative potential gap
(V �!2 > 0 guarantees stability),

Im ð!Þ< ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Vmin

p
;

where Vmin is the minimal value of the effective potential at
rþ 	 r <1.
For complex quasinormal frequencies Zi is complex. For

this case the solution of (14) can be found by minimizing
jZið!Þj. Unfortunately, due to oscillation of the solution in
the asymptotically flat and asymptotically de Sitter back-
grounds, we were unable to fit the solution at very large
distances. However, for asymptotically AdS background
the solution does not oscillate at large distances, and the
described approach can be used to find quasinormal modes
of stable solutions.

IV. STABILITYANALYSIS

For testing the stability, we have to perform two tasks: to
check that the there is no unstable modes by the method
described in the previous section for the full range of the
black hole parameters and, as a confirmation, to find the
fundamental (damped, when the system is stable) quasi-
normal modes.

FIG. 1 (color online). Effective potential for the scalar type of
gravitational perturbations of the RNAdS black holes for D ¼ 5,
rþ ¼ 10R.
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We shall distinguish here three regimes: large black
holes rþ � R, intermediate black holes rþ � R, and small
black holes rþ 
 R, where R is the anti-de Sitter radius.
From Figs. 1–16, we can see that, for the D ¼ 5; 6 . . . 11
black holes, Zi does not equal zero for any values of !
limited by Imð!Þ< ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Vmin

p
. We have shown this here

mainly for the two values of rþ: rþ ¼ 1R and rþ ¼ 6R.
These are representative cases of large and intermediate
AdS black holes. For small black holes, an example of Zi

behavior can be seen in Fig. 17 for D ¼ 5. There one can
see that the smaller the size of the black hole, the larger Zi,
which guarantees no instability at a sufficiently small black

FIG. 2. Sample of instability for the Gauss-Bonnet black holes,
D ¼ 5, ‘ ¼ 2, � ¼ 0:5. Instability corresponds to zero of Zi.

FIG. 3 (color online). Zi as a function of r�=rþ and Imð!ÞR
for D ¼ 5, rþ ¼ R.

FIG. 4 (color online). Zi as a function of r�=rþ and Imð!ÞR
for D ¼ 5, rþ ¼ 10R.

FIG. 5 (color online). Zi as a function of r�=rþ and Imð!ÞR
for D ¼ 6, rþ ¼ R.

FIG. 6 (color online). Zi as a function of r�=rþ and Imð!ÞR
for D ¼ 6, rþ ¼ 10R.

FIG. 7 (color online). Zi as a function of r�=rþ and Imð!ÞR
for D ¼ 7, rþ ¼ R.
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hole size. Looking carefully at all range of parameters of
rþ, r�, and ‘, we have not found any zeros of Zi. Therefore
we conclude thatD ¼ 5; 6 . . . 11 Reissner-Nordström-anti-
de Sitter black holes are stable for any values of the black
hole parameters. Now, we shall check this by the search of
the fundamental quasinormal modes, which, as will be
shown soon, all are damped.

FIG. 10 (color online). Zi as a function of r�=rþ and Imð!ÞR
for D ¼ 8, rþ ¼ 10R.

FIG. 9 (color online). Zi as a function of r�=rþ and Imð!ÞR
for D ¼ 8, rþ ¼ R.

FIG. 8 (color online). Zi as a function of r�=rþ and Imð!ÞR
for D ¼ 7, rþ ¼ 10R.

FIG. 11 (color online). Zi as a function of r�=rþ and Imð!ÞR
for D ¼ 9, rþ ¼ R.

FIG. 12 (color online). Zi as a function of r�=rþ and Imð!ÞR
for D ¼ 9, rþ ¼ 10R.

FIG. 13 (color online). Zi as a function of r�=rþ and Imð!ÞR
for D ¼ 10, rþ ¼ R; logarithmic plot.
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The spectrum of frequencies of neutral asymptotically
AdS black holes is qualitatively different from asymptoti-
cally flat or de Sitter cases: the main striking feature of the
spectrum is that almost all modes are proportional to the
radius of the black holes for large black holes rþ � R. The
exception is the fundamental mode of the scalar type of
gravitational perturbations of Schwarzschild-anti-de Sitter
(SAdS) black holes: its real part approaches constant as rþ
goes to infinity, while the imaginary part is inverse propor-

tional to the radius of the black hole. Let us note that this
property keeps also when AdS black holes are charged.
Quasinormal modes of a particular case of large D ¼ 5

SAdS were considered in [19]. One can see in Table I that
we accurately reproduce their results. The fundamental
quasinormal modes for large Reissner-Nordstrom-anti-de
Sitter black holes for D ¼ 6; 7 can be seen in Table II.
Indeed, the Q ¼ 0, rþ ¼ 6 mode in Table I coincides with
the fundamental mode of [19] in proper units (see Table III
in [19]).
Another property of asymptotically AdS black holes is

that their quasinormal modes approach the real normal
modes of the pure anti-de Sitter black holes, when the
radius of the black hole goes to zero [20]. This was shown
for the test scalar field perturbations around D ¼ 5 and 6
SAdS black holes in [20]. Here we have shown that, for the
scalar type of gravitational perturbations, quasinormal
modes also reach their D � 6 pure anti-de Sitter values

!nR ¼ 2nþDþ ‘� 3; D � 6 pure AdS: (19)

The above formula for AdS space-time normal modes !n

FIG. 14 (color online). Zi as a function of r�=rþ and Imð!ÞR
for D ¼ 10, rþ ¼ 10R; logarithmic plot.

FIG. 15 (color online). Zi as a function of r�=rþ and Imð!ÞR
for D ¼ 11, rþ ¼ R.

FIG. 16 (color online). Zi as a function of r�=rþ and Imð!ÞR
for D ¼ 11, rþ ¼ 10R

FIG. 17 (color online). Zi for small Schwarzschild-AdS black
holes D ¼ 5; blue (top) for rþ ¼ R, red for rþ ¼ R=2, yellow
for rþ ¼ R=4, green (bottom) for rþ ¼ R=8.

TABLE I. Fundamental (n ¼ 0) quasinormal modes of D ¼ 5
Reissner-Nordström-AdS black holes.

r�=rþ D ¼ 5, rþ ¼ 1 D ¼ 5, rþ ¼ 6

0 2:204 77� 0:581 37 i 1:651 71� 0:137 59 i
0.1 2:196 46� 0:577 76 i 1:651 43� 0:136 23 i
0.2 2:172 55� 0:567 54 i 1:650 58� 0:132 14 i
0.3 2:135 71� 0:552 36 i 1:649 14� 0:125 44 i
0.4 2:089 34� 0:534 45 i 1:647 13� 0:116 39 i
0.5 2:036 98� 0:516 37 i 1:644 55� 0:105 49 i
0.6 1:982 48� 0:500 74 i 1:641 50� 0:093 50 i
0.7 1:930 93� 0:489 56 i 1:638 00� 0:081 31 i
0.8 1:888 85� 0:480 91 i 1:634 04� 0:069 89 i
0.9 1:856 19� 0:468 02 i 1:629 44� 0:060 59 i
0.99 1:899 19� 0:246 19 i 1:626 48� 0:056 44 i
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[21] is valid only for D> 5, while for D ¼ 5 the pure AdS
spectrum is continuous, i.e. all modes are normal modes of
D ¼ 5 AdS space-time. This happens because of the pecu-
liar behavior of the effective potential at spatial infinity
(which is zero in the tortoise coordinate): the effective
potential has infinite negative pitch near r� ¼ 0 (see
Fig. 1), so that � ! 0 for all ! [21]. Notice that, in spite
of the infinite negative pitch, the area covered by the pitch
is finite, so that the instability is not guaranteed a priori
even for this case. The natural question arises: does the
limit of small black holes have the same meaning for D ¼
5 as it has for D � 6? In Fig. 18 one can see that, in the
limit of small black holes, the D ¼ 5 quasinormal modes
(QNMs) approach the same limit as D � 6 modes. The
latter can be easily understood if we remember that we
used the QNMs boundary conditions motivated by the
AdS/CFT interpretation, i.e. we chose the specific falloff
of the field at infinity, according to the formula (11), while
the continuous spectrum of pure AdS space-time is ob-
tained with the Dirichlet boundary conditions [21]. When
choosing the AdS/CFT inspired falloff (11), the same dis-
crete spectrum (19) is obtained for the D ¼ 5 pure AdS
space-time, so that QNMs of small AdS black holes ap-
proach their pure AdS values for all D.

It is not remarkable that, for Reissner-Nordström-AdS
black holes, QNMs approach the same pure AdS values in
the limit rþ ! 0 (19), because one cannot assume rþ ¼ 0,
without taking Q ¼ 0. Thus, the fundamental quasinormal
modes of the scalar type of gravitational perturbations of
D-dimensional RNAdS black holes obey

!nR ! 2nþDþ ‘� 3; rþ ! 0; D � 5:

(20)

Let us note that, once we proved here the stability of the
D-dimensional Schwarzschild-AdS black holes, the stabil-
ity of the Reissner-Nordström-AdS black holes can be
intuitively understood from the behavior of the effective
potentials (figures for scalar type in [2,3]) at least for D �
6: the presence of the charge Q increases slightly the
negative depth of the potential gap. Apparently the nega-
tive gap is not deep enough to allow bound states with
negative ‘‘energy.’’ The behavior of the effective potential
for D ¼ 5 is quite different (17), yet, as we have shown,
this does not lead to instability as well.

V. DISCUSSIONS

In this paper, by the numerical search of quasinormal
modes, we have shown that Reissner-Nordström-anti-de
Sitter black holes are gravitationally stable in D ¼
5; 6 . . . 11 space-time dimensions. Before, the stability of
asymptotically anti-de Sitter black holes was established
only for D ¼ 4 Reissner-Nordström-anti-de Sitter black
holes analytically [2]. Stability for D ¼ 5–11 found here
and forD ¼ 4 found by Ishibashi and Kodama [2] does not
contradict the observed instability for D ¼ 4; 5 RNAdS
black holes by Gubser and Mitra in [15,16], because the
latter instability is induced by a tachyonic field coupled to
the system in the N ¼ 8 gauged supergravity. Thus,
although metrics for the black hole in both cases are the
same RNAdS metric, they are an exact solution of different
field equations, and the dynamic of perturbed equations is
certainly different.
The stability of RNAdS black holes observed here is

interesting also, because we know that small AdS black
holes (within the ordinary Einstein-Maxwell theory, con-
sidered here) are thermodynamically unstable and may
exert the Hawking-Page transition. It would be natural to
expect that this thermodynamic transition will be accom-
panied by a gravitational instability. Yet, as we have shown
here, this does not take place, so that if the correlation
between thermodynamic and gravitational instabilities ex-
ists, it is more subtle than one could naively expect for
complex gravitational systems.
An important question, which was beyond the scope of

our work, is the stability of extremally charged RNAdS
black holes. Our closest aim is to give detailed data on
quasinormal modes of other types of gravitational pertur-
bations (vector and tensor), and to find higher overtones of
the spectrum [22]. We believe it would be interesting to

FIG. 18. Re!n¼0 for small D ¼ 5 Schwarzschild-AdS black
holes approaches the limit ! ¼ 4 as rþ ! 0.

TABLE II. Fundamental (n ¼ 0) quasinormal modes of D ¼
6; 7 Reissner-Nordström-AdS black holes.

r�=rþ D ¼ 6, rþ ¼ 6 D ¼ 7, rþ ¼ 6

0 1:597 84� 0:149 33 i 1:564 42� 0:155 17 i
0.1 1:597 81� 0:149 18 i 1:564 42� 0:155 15 i
0.2 1:597 61� 0:148 14 i 1:564 38� 0:154 92 i
0.3 1:597 08� 0:145 33 i 1:564 20� 0:153 92 i
0.4 1:596 03� 0:139 94 i 1:563 72� 0:151 23 i
0.5 1:594 30� 0:131 38 i 1:562 70� 0:145 67 i
0.6 1:591 75� 0:119 54 i 1:560 86� 0:136 07 i
0.7 1:588 32� 0:105 03 i 1:557 90� 0:121 80 i
0.8 1:583 95� 0:089 23 i 1:553 59� 0:103 64 i
0.9 1:578 29� 0:074 27 i 1:547 53� 0:084 09 i
0.99 1:572 67� 0:066 64 i 1:539 68� 0:072 00 i
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investigate stability of charged asymptotically AdS black
holes in the Gauss-Bonnet theory, where already there is
instability, stipulated by Gauss-Bonnet terms, at higher
multipoles.
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