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We present the details of a model in general relativity of a small charged black hole moving in an

external gravitational and electromagnetic field. The importance of our model lies in the fact that we can

derive the equations of motion of the black hole from the Einstein-Maxwell vacuum field equations

without encountering infinities. The key assumptions which we base our results upon are that (a) the black

hole is isolated and (b) near the black hole the wave fronts of the radiation generated by its motion are

smoothly deformed spheres. The equations of motion which emerge fit the pattern of the original DeWitt

and Brehme equations of motion (after they ‘‘renormalize’’). Our calculations are carried out in a

coordinate system in which the null hypersurface histories of the wave fronts can be specified in a simple

way, with the result that we obtain a new explicit form, particular to our model, for the well-known ‘‘tail

term’’ in the equations of motion.
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I. INTRODUCTION

The purpose of this paper is to present a model in general
relativity of a small charged black hole moving in an
external gravitational and electromagnetic field. The exter-
nal field is a solution of the Einstein-Maxwell field equa-
tions, and the history of the black hole is a nonsingular
timelike world line in this background space-time. The
presence of the black hole is envisaged as a small pertur-
bation of the background space-time which is singular on
this world line (r ¼ 0). As the world line is approached (by
letting r ! 0) and the mass m and charge e of the black
hole are taken to be small, such that in the limitm ! 0 and
e ! 0 the ratios e=r and m=r remain finite, the perturbed
gravitational field (Weyl tensor) is predominantly that of
the Reissner-Nordstrom black hole and the perturbed elec-
tromagnetic field (Maxwell tensor) is predominantly the
Coulomb field; the calculations described in this paper
confirm that these limits can be achieved. These require-
ments guide us in our choice of expansions, in integer
powers of r, of functions appearing in the metric tensor
of the space-time and the potential 1-form.

We take the view that the assumed expansions restrict
the model that we are constructing of a small charged black
hole moving in external electromagnetic and gravitational
fields. Their generality is a topic of further study. Assuming
that the moving small black hole is isolated (in particular,
that there are no singular null geodesic generators of the
histories of the wave fronts produced by its motion), we
demonstrate how its approximate equations of motion are
derived from the field equations as the requirement that the
wave fronts emerging from the moving black hole are, in
the neighborhood of the black hole, smoothly deformed 2-

spheres. Approximations are based solely on the smallness
of the mass and charge of the black hole (in particular, slow
motion is not assumed). The equations of motion derived
fit the pattern of that of the original DeWitt and Brehme [1]
equations after they have ‘‘renormalized.’’ Among the
significant features of our approach are (a) the use of a
coordinate system attached to the null hypersurface histor-
ies of the wave fronts of the radiation produced by the
black hole motion, (b) the emergence of the approximate
equations of motion from the requirement that the wave
fronts are smoothly deformed 2-spheres near the black
hole, (c) the explicitness of the so-called tail term specific
to our model, and (d) the absence of infinities arising in our
process.
The topic of this paper has been an active area of

research in general relativity beginning with the DeWitt
and Brehme [1] work (motivated by the classic paper by
Dirac [2]). The equations of motion have been derived also
by Beig [3] and by Barut and Villarroel [4]. For important
recent work on the equations of motion with radiation
reaction of small black holes, see [5–8]. Some of the latter
have centered on the problem of identifying tensor fields in
the vicinity of the black hole which are singular or non-
singular, as the case may be, on the world line of the small
black hole in the background space-time, and the associ-
ated ‘‘regularization procedures’’ (see, for example, [9–16]
and the review [8]). Our work is complementary to the
studies listed above. The precise relationship to them is a
topic of future study, however. Nevertheless, recent work
which should particularly be compared with our approach
includes Sec. 4 in [5], Sec. 19 in [17], and [18], although
the latter applies only to vacuum background geometries.
Earlier work that has more in common with our approach,
but is more specialized, can be found in, for example, [19]
(where the external field is considered weak) and in [20–
22] (where the space-time is less general than here).

*tof@astr.tohoku.ac.jp
†peter.hogan@ucd.ie
‡yousuke@astr.tohoku.ac.jp

PHYSICAL REVIEW D 78, 104014 (2008)

1550-7998=2008=78(10)=104014(15) 104014-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.104014


The outline of the paper is as follows: In Sec. II the
Einstein-Maxwell background space-time is described in a
suitable coordinate system for our purposes and some
consequences of the field equations required later are
derived. The charged black hole space-time is introduced
as a perturbation of the background space-time in Sec. III,
and the consequences of imposing, approximately, the
vacuum Einstein-Maxwell field equations are given. In
this section the method of extracting the equations of
motion of the black hole, using the field equations and
the properties of the wave fronts near the black hole, is
described and the equations of motion are derived.
Section IV is a brief discussion highlighting some proper-
ties of the equations of motion derived in Sec. III. To make
the paper as self-contained as possible, calculations re-
quired for Sec. II are listed in Appendix A, while Sec. III
requires both the calculations listed in Appendix A and the
more extensive ones listed in Appendix B.

II. THE BACKGROUND SPACE-TIME

We consider a small charged black hole moving in
external gravitational and electromagnetic fields. We
model the external fields by a potential 1-form and a
space-time manifold on which it is defined which are
solutions of the vacuum Einstein-Maxwell field equations.
This space-time, which is otherwise unspecified in this
work, contains a timelike world line (r ¼ 0) on which
the background Maxwell field (the Maxwell tensor field)
and the background gravitational field (the Weyl tensor
field) are nonsingular. In the next section the small charged
black hole, with mass m and charge e, is introduced as a
perturbation of this space-time which is singular on the
world line r ¼ 0. The perturbed space-time will be an
approximate solution of the vacuum Einstein-Maxwell
field equations having the property that, in the limits e !
0, m ! 0, and r ! 0 such that the ratios e=r and m=r
remain finite, the Maxwell field is dominated by the
Coulomb field of the charge and the gravitational field
(Weyl tensor field) is dominated by the Reissner-
Nordstrom field of a charged black hole. To make all of
these requirements more specific, we begin by writing the
line element of the background in a coordinate system
attached to a family of null hypersurfaces in the space-
time having, in general, shear and expansion [23]. The line
element, in terms of a convenient basis of 1-forms, reads

ds2 ¼ �ð#1Þ2 � ð#2Þ2 þ 2#3#4; (2.1)

where

#1 ¼ rp�1ðe� cosh�dxþ e�� sinh�dyþ aduÞ; (2.2)

#2 ¼ rp�1ðe� sinh�dxþ e�� cosh�dyþ bduÞ; (2.3)

#3 ¼ drþ c

2
du; (2.4)

#4 ¼ du: (2.5)

A derivation of this line element can be found in [24]. It is
completely general, containing six functions p, �, �, a, b,
c of the four coordinates x, y, r, u. It is therefore equivalent
to line elements constructed by Sachs [25] and by Newman
and Unti [26]. The particular form we consider here was
designed to allow the Robinson-Trautman [27,28] line
elements to emerge as a convenient special case (this
case corresponds to putting � ¼ � ¼ 0), and this is also
a reason why the form is useful for the subject of the
present paper. The hypersurfaces u ¼ constant are null
and are generated by the null geodesic integral curves of
the vector field @=@r. The coordinate r is an affine parame-
ter along these curves, and these null geodesics have
(complex) shear

� ¼ @�

@r
cosh2�þ i

@�

@r
(2.6)

and (real) expansion

� ¼ @

@r
logðrp�1Þ: (2.7)

We take this ‘‘background’’ space-time to be a solution
of the vacuum Einstein-Maxwell field equations. We take
the history of the small charged black hole to be a (non-
singular) timelike world line in this space-time, and we
take this world-line to have the equation r ¼ 0. Assuming
the line element to be regular on and in the neighborhood
of r ¼ 0, we expand the six functions introduced above in
powers of r as follows (the choice of initial terms here is
dictated by the classical work of Fermi [29] mentioned
below):

p ¼ P0ð1þ q2r
2 þ q3r

3 þ . . .Þ; (2.8)

� ¼ �2r
2 þ �3r

3 þ . . . ; (2.9)

� ¼ �2r
2 þ �3r

3 þ . . . ; (2.10)

a ¼ a1rþ a2r
2 þ . . . ; (2.11)

b ¼ b1rþ b2r
2 þ . . . ; (2.12)

c ¼ c0 þ c1rþ c2r
2 þ . . . : (2.13)

In the coordinates ðx; y; r; uÞ the potential 1-form of the
background electromagnetic field takes the form

A ¼ LdxþMdyþ Kdu: (2.14)

In the neighborhood of the world line r ¼ 0, we expand the
coefficients of the differentials in (2.14) in positive powers
of r in such a way that the corresponding electromagnetic
field is nonsingular on r ¼ 0 (since this is the external
field). A study of the exterior derivative of the 1-form
(2.14) reveals that the appropriate expansions of the coef-
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ficients of the differentials are

L ¼ r2L2 þ r3L3 þ . . . ; (2.15)

M ¼ r2M2 þ r3M3 þ . . . ; (2.16)

K ¼ rK1 þ r2K2 þ . . . : (2.17)

The functions appearing here and in (2.8)–(2.13) as coef-
ficients of the different powers of r are real-valued func-
tions of x, y, u only. We take the coordinates x, y, u in the
range ð�1;þ1Þ and r in the range ½0;þ1Þ. Had we
included in (2.14) a term Wdr we would have had to take
W ¼ W1rþW2r

2 þ . . . , and this can be removed by add-
ing a gauge term to (2.14) without changing the form of the
expansions (2.15), (2.16), and (2.17).

It is easily seen from (2.6) and (2.7) that the complex
shear and expansion of the integral curves of @=@r are now
given, respectively, by

� ¼ 2ð�2 þ i�2Þrþ 3ð�3 þ i�3Þr2 þ . . . ; (2.18)

� ¼ 1

r
� 2q2r� 3q3r

2 þ . . . : (2.19)

Thus near r ¼ 0 (for small values of r) the null hyper-
surfaces u ¼ constant resemble future null cones with
vertices on the world line r ¼ 0. Following the classical
work of Fermi [29] (see also [30,31]) we can, without loss
of generality, take the metric tensor in the neighborhood of
the world line r ¼ 0 to be the Minkowskian metric tensor,
when convenient, in rectangular Cartesian coordinates and
time, up to terms of order r2. This has led us to the starting
terms chosen in (2.8)–(2.13). In addition, in (2.8) and (2.13)
we can write (see, for example, [26] and Appendix A)

P0 ¼ xv1 þ yv2 þ f1� 1
4ðx2 þ y2Þgv3

þ f1þ 1
4ðx2 þ y2Þgv4; (2.20)

and

c0 ¼ 1 ¼ � logP0; � ¼ P2
0

�
@2

@x2
þ @2

@y2

�
;

c1 ¼ �2h0;

(2.21)

with

h0 ¼ �ija
ikj ¼ @

@u
ðlogP0Þ; (2.22)

�P0k
i ¼ x�i

1 þ y�i
2 þ f1� 1

4ðx2 þ y2Þg�i
3

� f1þ 1
4ðx2 þ y2Þg�i

4: (2.23)

In these formulas viðuÞ is the 4-velocity of the particle with
world line r ¼ 0 calculated in rectangular Cartesian coor-
dinates and time ðXiÞ (Latin indices take values 1, 2, 3, 4),
and u is the arc length or proper time along this line. �ij ¼
diagð�1;�1;�1;þ1Þ are the components of the

Minkowskian metric tensor in coordinates ðXiÞ and thus
�ijv

ivj ¼ þ1. Also ai ¼ dvi=du is the 4-acceleration of

the particle with world line r ¼ 0 (hence�ijv
iaj ¼ 0), and

on r ¼ 0 we have ki@=@Xi ¼ @=@r with �ijk
ivj ¼ 1 [this

latter equation applied to (2.23) yields (2.20)]. The operator
� in (2.21) is the Laplacian on the unit 2-sphere.
The relationship between the rectangular Cartesian co-

ordinates and time ðXiÞ and the coordinates ðx; y; r; uÞ near
the world line r ¼ 0 is given by (see, for example, [32])

Xi ¼ xiðuÞ þ rki; (2.24)

neglecting Oðr2Þ-terms. Thus the world line r ¼ 0 has
parametric equations Xi ¼ xiðuÞ and the unit tangent vec-
tor or 4-velocity vector introduced above has components
vi ¼ dxi=du. We list in Appendix A some well-known
useful formulas arising from (2.24) which we will refer
to in the sequel.
The electromagnetic field calculated with the 1-form

(2.14) has the form

F ¼ dA ¼ 1
2Fab#

a ^ #b; (2.25)

with Fab ¼ �Fba and #a given by (2.2)–(2.5). Imposing
Maxwell’s vacuum field equations d�F ¼ 0, where the star
denotes the Hodge dual, we find in leading order (in powers
of the coordinate r) that the following equations are sat-
isfied by the functions L2, M2, K1:

K1 ¼ P2
0

�
@L2

@x
þ @M2

@y

�
;

�K1 þ 2P2
0

�
@L2

@x
þ @M2

@y

�
¼ 0;

(2.26)

and

@K1

@x
þ 2L2 � @

@y

�
P2
0

�
@M2

@x
� @L2

@y

��
¼ 0; (2.27)

@K1

@y
þ 2M2 þ @

@x

�
P2
0

�
@M2

@x
� @L2

@y

��
¼ 0: (2.28)

We see immediately that the second of (2.26) is a conse-
quence of (2.27) and (2.28). Also (2.26) implies that K1 is
an l ¼ 1 spherical harmonic:

�K1 þ 2K1 ¼ 0: (2.29)

For our purposes the only functions of x, y, u appearing in
(2.15), (2.16), and (2.17) that we will require in the sequel
are L2, M2, and K1, and so we need not pursue Maxwell’s
vacuum field equations to higher order in powers of r.
The leading terms in the tetrad components of the

Maxwell field Fab that we will require are given by

F13 ¼ �2P0L2 þOðrÞ; F23 ¼ �2P0M2 þOðrÞ;
F34 ¼ K1 þOðrÞ: (2.30)

On r ¼ 0 we can replace the basis 1-forms (2.2)–(2.5) by
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their Minkowskian counterparts (A11)–(A14) and the co-
ordinates x, y, r, u by the coordinates ðXiÞ. Thus evaluating
(2.30) on r ¼ 0 yields

L2 ¼ 1

2
FijðuÞki @k

j

@x
; M2 ¼ 1

2
FijðuÞki @k

j

@y
;

K1 ¼ Fijk
ivj;

(2.31)

where FijðuÞ ¼ �FjiðuÞ are the components of the (exter-

nal) Maxwell field calculated in the coordinates ðXiÞ on
r ¼ 0. We can now verify directly that these expressions
for L2,M2,K1 satisfy the Maxwell equations (2.26), (2.27),
(2.28), and (2.29) above. For example, substituting L2, M2

from (2.31) into the first of (2.26) yields

K1 ¼ P2
0

�
@L2

@x
þ @M2

@y

�
¼ 1

2
FijðuÞki�kj ¼ FijðuÞkivj;

(2.32)

with the last equality following from (A15) and (A16)
added together.

Taking the electromagnetic field above as a source,
Einstein’s field equations for the background space-time
read

Rab ¼ 2Eab; (2.33)

where Rab are the components of the Ricci tensor calcu-
lated on the tetrad given via the 1-forms (2.2)–(2.5). Eab are
the tetrad components of the electromagnetic energy-
momentum tensor calculated using the Maxwell tensor
(2.25) according to the formula

Eab ¼ FcaF
c
b � 1

4gabFcdF
cd: (2.34)

Here gab are the tetrad components of the metric tensor and
indices on Fab are raised using its inverse. We will give
here only the consequences of the field equations (2.33)
near r ¼ 0 which will be useful later. To satisfy R33 ¼
2E33 þOðrÞ we must have

q2 ¼ 2
3P

2
0ðL2

2 þM2
2Þ; (2.35)

for q2 appearing in (2.8). With L2, M2 given by (2.31) and
using (A8), this can be written

q2 ¼ �1
6F

p
iFpjk

ikj: (2.36)

Here Fpj ¼ FpjðuÞ [and Fp
i ¼ �pqFqiðuÞ] is the Maxwell

tensor, in coordinates ðXiÞ evaluated on r ¼ 0. Now to have

R12 ¼ 2E12 þOðrÞ;
R11 � R22 ¼ 2ðE11 � E22Þ þOðrÞ (2.37)

requires

2ð�2 þ i�2Þ ¼ � @

@ ��

�
a1 þ ib1 þ 4P2

0

@q2
@ ��

�
; (2.38)

where � ¼ xþ iy and a bar denotes complex conjugation.
Next, for A ¼ 1, 2,

RA3 ¼ 2EA3 þOðrÞ; (2.39)

provided

a1 þ ib1 þ 4P2
0

@q2
@ ��

¼ 2P4
0

@

@�
ðP�2

0 ð�2 þ i�2ÞÞ: (2.40)

Putting (2.38) and (2.40) together we arrive at

@

@ ��

�
P4
0

@

@�
ðP�2

0 ð�2 þ i�2ÞÞ
�
¼ �ð�2 þ i�2Þ: (2.41)

The approximate field equations RAA ¼ 2EAA þOðrÞ and
R34 ¼ 2E34 þOðrÞ both yield the same equation for the
function c2 appearing in (2.13) which will not be used in
the sequel. The remaining field equations in the approxi-
mate form

R14 þ iR24 ¼ 2ðE14 þ iE24Þ þOðrÞ;
R44 ¼ 2E44 þOðrÞ (2.42)

are automatically satisfied. To check this requires some
lengthy calculations. With the Einstein-Maxwell vacuum
field equations satisfied in the neighborhood of the world
line r ¼ 0, we find the following tetrad components Cabcd

of the Weyl conformal curvature tensor in the neighbor-
hood of r ¼ 0:

C1313 þ iC1323 ¼ 6ð�2 þ i�2Þ þOðrÞ; (2.43)

C3431 þ iC3432 ¼ 3

2
P�1
0

�
a1 þ ib1 þ 4P2

0

@q2
@ ��

�
þOðrÞ:

(2.44)

Using the 1-forms defined in (A11)–(A14) and q2 given by
(2.36), we deduce from these that

�2 ¼ 1

6
P2
0Cijklk

i @k
j

@x
kk

@kl

@x
; (2.45)

�2 ¼ 1

6
P2
0Cijklk

i @k
j

@x
kk

@kl

@y
; (2.46)

a1 ¼ 2

3
P2
0

�
Cijklk

ivjkk
@kl

@x
þ Fp

i Fpjk
i @k

j

@x

�
; (2.47)

b1 ¼ 2

3
P2
0

�
Cijklk

ivjkk
@kl

@y
þ Fp

iFpjk
i @k

j

@y

�
: (2.48)

Here CijklðuÞ are the components of the Weyl tensor of this

background space-time calculated on r ¼ 0 in the coordi-
nates ðXiÞ. Hence they satisfy Cijkl ¼ �Cjikl ¼ �Cijlk ¼
Cklij and �ilCijkl ¼ 0. Among the coefficients of the

powers of r in (2.8)–(2.13), we shall only require here the
functions q2, �2, �2, a1, b1 given by (2.36), (2.45), (2.46),
(2.47), and (2.48), along with P0, c0, and c1 given in (2.20)
and (2.21). Using the derivatives of ki listed in (A15)–
(A17), one can directly verify that the field equations
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(2.38) and (2.40) [and thus (2.41)] are satisfied by (2.36),
(2.45), (2.46), (2.47), and (2.48).

III. BLACK HOLE PERTURBATION OF
BACKGROUND

We introduce the small charged black hole as a pertur-
bation of the background Einstein-Maxwell space-time
described above. With the massm and charge e considered
small in first order we write m ¼ O1 and e ¼ O1. The
perturbation is introduced by modifying the expansions
(2.8)–(2.13) as follows:

p ¼ P̂0ð1þ q̂2r
2 þ q̂3r

3 . . .Þ; (3.1)

� ¼ �̂2r
2 þ �̂3r

3 þ . . . (3.2)

� ¼ �̂2r
2 þ �̂3r

3 þ . . . (3.3)

a ¼ â�1

r
þ â0 þ â1rþ â2r

2 þ . . . ; (3.4)

b ¼ b̂�1

r
þ b̂0 þ b̂1rþ b̂2r

2 þ . . . ; (3.5)

c ¼ e2

r2
� 2ðmþ 2f̂�1Þ

r
þ ĉ0 þ ĉ1rþ ĉ2r

2 . . . : (3.6)

The coefficients of the powers of r are functions of x, y, u.
The hats are introduced to distinguish these coefficients
from the background coefficients. Functions here that have
nonzero background values are assumed to differ from
their background values by O1-terms. Functions which
vanish in the background are assumed to have orders of

magnitude â�1 ¼ O1, â0 ¼ O1, b̂�1 ¼ O1, b̂0 ¼ O1,

f̂�1 ¼ O2. The perturbed potential 1-form is taken to
have the form (2.14) with the expansions (2.15), (2.16), and
(2.17) modified to read

L ¼ L̂0 þ r2L̂2 þ r3L̂3 þ . . . ; (3.7)

M ¼ M̂0 þ r2M̂2 þ r3M̂3 þ . . . ; (3.8)

K ¼ ðeþ K̂�1Þ
r

þ K̂0 þ rK̂1 þ r2K̂2 þ . . . : (3.9)

Again, functions here which are nonzero in the background
are assumed to differ from their background values by
O1-terms and those functions which vanish in the back-

ground are taken to have the orders of magnitude L̂0 ¼ O1,

M̂0 ¼ O1, K̂�1 ¼ O2, K̂0 ¼ O1. All of these expansions
have been chosen in order to satisfy the Reissner-
Nordstrom black hole limit described in the Introduction.
A careful study suggests that they are the minimal choice
of expansions necessary to satisfy the black hole limit. We
consider, however, that these assumptions restrict the
model that we are constructing of a small black hole

moving in external electromagnetic and gravitational fields
and that their generalization or otherwise is a topic for
further study. In order to simplify the presentation we make
the further assumption that near r ¼ 0 the potential 1-form
is predominantly the Liénard-Wiechert 1-form [given by
A ¼ eðr�1 � h0Þdu up to a gauge term]. This is achieved

with the further specialization of the functions L̂0, M̂0, K̂0

to satisfy

L̂ 0 ¼ O2; M̂0 ¼ O2; K̂0 ¼ �eh0 þO2;

(3.10)

with h0 given by (2.22).
We emphasize that our approach is not one of ‘‘matched

asymptotic expansions’’ in which so-called ‘‘near zone’’
and ‘‘far zone’’ expansions of field variables are matched
in an intermediate ‘‘buffer zone.’’ In our perturbed space-
time each function appearing in the metric tensor and the
potential 1-form has only one expansion in powers of r
given by (3.1)–(3.9) and all of our deductions, including the
equations of motion, are made using these expansions and
the vacuum Einstein-Maxwell field equations.
The expansions we have chosen here ensure that the null

hypersurfaces u ¼ constant in the perturbed space-time,
which will play the role of the histories of the wave fronts
of the radiation produced by the black hole motion, are
approximately future null cones for small r. Thus the wave
fronts can be approximately 2-spheres near the black hole.
NeglectingOðr4Þ-terms, the line elements induced on these
null hypersurfaces are given by

ds20 ¼ �r2P̂�2
0 ðdx2 þ dy2Þ with

P̂0 ¼ P0ð1þQ1 þQ2 þO3Þ; (3.11)

with P0 given by (2.20) and Q1 ¼ O1, Q2 ¼ O2. We shall
require the perturbations of these 2-spheres, described by
the functions Q1 and Q2 here, to be smooth so that as
functions of x, y they are nonsingular (in particular, at x ¼
�1 and/or y ¼ �1) so that no ‘‘directional singularities’’
occur violating the notion of an isolated black hole. We
will insist that, in general, in solving the Einstein-Maxwell
vacuum field equations for the perturbed space-time and
the perturbed electromagnetic field, such directional sin-
gularities are unacceptable. Then it will follow from the
Einstein-Maxwell field equations that necessary conditions
for the 2-surfaces with line elements (3.11) to be smooth,
nontrivial deformations of 2-spheres will be the equations
of motion of the black hole. Such an origin of equations of
motion can be found, for example, in [20–22] (where the
space-time is less general than here) and in [19] (where the
external field is weak).
The left-hand sides of the vacuum Einstein-Maxwell

field equations for the perturbed space-time are now a
power series in r, each with a finite number of terms
involving inverse powers of r and an infinite number of
terms involving positive powers of r. The coefficients of
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the leading terms in each case are listed in Appendix B.
They are functions of x, y, u and we require them to be
small (in terms of e and m) with just sufficient accuracy to
enable us to derive the functions in the expansions (3.1)–
(3.9) required for the equations of motion of the black hole
with an O3 error (to include electromagnetic radiation
reaction, etc.). The errors that we tolerate to achieve this
are indicated in Appendix B. Some of these errors could be
reduced but with no influence on the equations of motion to
the accuracy that we calculate here. We begin by calculat-
ing the equations of motion with an O2 error. In this case
we require from Einstein‘s equations [for the moment
requiring (B33) and (B39) only to be small in second order]

â�1 ¼ �4eP2
0L2 þO2 ¼ O1;

b̂�1 ¼ �4eP2
0M2 þO2 ¼ O1;

(3.12)

and thus fromMaxwell‘s equations [with (B21) required at
this stage to be small in first order] we have

K̂ 1 ¼ P2
0

�
@L2

@x
þ @M2

@y

�
þO1 ¼ K1 þO1; (3.13)

with K1 given in (2.31). We also need

ĉ 0 ¼ 1þ�Q1 þ 2Q1 þ 8eFijk
ivj þO2; (3.14)

which emerges from the requirement that (B25) be small in
second order. When these are substituted into the final
Einstein field equation [given by requiring (B52) for the
moment to be small in second order] the differential equa-
tion that emerges for Q1 is

� 1
2�ð�Q1 þ 2Q1Þ ¼ 6maip

i � 6eFijp
ivj þO2:

(3.15)

Here pi ¼ hijk
j with hij ¼ �i

j � vivj is the projection of k
i

orthogonal to vi and satisfies pipi ¼ �1, pivi ¼ 0, and
since pi ¼ ki � vi we see from (A15) and (A16) that
�pi þ 2pi ¼ 0 so that each component of pi is an l ¼ 1
spherical harmonic [a spherical harmonic Q of order l is a
smooth solution of �Qþ lðlþ 1ÞQ ¼ 0]. Integrating
(3.15), discarding the homogeneous solution with direc-
tional singularities, we have

�Q1 þ 2Q1 ¼ 6maip
i � 6eFijp

ivj þ AðuÞ þO2;

(3.16)

where AðuÞ ¼ O1 is arbitrary. The first two terms on the
right-hand side will now lead to directional singularities in
Q1 unless maip

i � eFijp
ivj ¼ O2 for all pi, which im-

plies the equations of motion in the first approximation:

mai ¼ eFijv
j þO2: (3.17)

Hence we see the Lorentz 4-force due to the external
electromagnetic field appearing. With (3.17) satisfied,
Eq. (3.16) simplifies and the directional singularity-free
Q1 is a linear combination of an l ¼ 1 spherical harmonic

(the smooth homogeneous solution) and an l ¼ 0 spherical
harmonic [the particular integral AðuÞ=2]. In general, per-
turbations of (3.11) described byQ1 orQ2, which are l ¼ 0
or l ¼ 1 spherical harmonics, are trivial. When the 2-
surfaces with line element (3.11) are viewed against the
Euclidean 3-space background, such terms in Q1 or Q2

merely infinitesimally change the radius of the sphere (if
l ¼ 0) or infinitesimally displace the origin of the sphere
(if l ¼ 1). We shall consistently discard such ‘‘perturba-
tions,’’ which means that in this case we shall takeQ1 ¼ 0.
From now on we takeQ1 ¼ 0 in (3.11) and our objective

is to solve the Einstein-Maxwell vacuum field equations
for the perturbed space-time and the perturbed Maxwell
field with sufficient accuracy to enable us to derive the
function Q2 in (3.11) and the equations of motion with an
O3 error. The functions of x, y, u appearing in the potential
1-form [as coefficients in the expansions (3.7), (3.8), and

(3.9)] that are involved are L̂0, M̂0, K̂�1, and theO1 part of

K̂1 and K̂0. Two of Maxwell’s equations [(B13) and (B16)
small in third order] read

@K̂�1

@x
þ 6e2L2 þ @

@y

�
P2
0

�
@M̂0

@x
� @L̂0

@y

��
¼ O3 (3.18)

and

@K̂�1

@y
þ 6e2M2 � @

@x

�
P2
0

�
@M̂0

@x
� @L̂0

@y

��
¼ O3: (3.19)

These imply

�K̂�1 þ 6e2Fijk
ivj ¼ O3; (3.20)

which incidentally is (B19), another of the Maxwell equa-
tions. This latter equation can immediately be integrated
without introducing directional singularities to yield

K̂ �1 ¼ 3e2Fijk
ivj þ e2KðuÞ þO3; (3.21)

where KðuÞ ¼ O0 is an arbitrary function. From (3.18) and
(3.19) we obtain

�

�
P2
0

�
@M̂0

@x
� @L̂0

@y

��
� 6e2P2

0Fij

@ki

@x

@kj

@y
¼ O3: (3.22)

Now the second term on the left here is an l ¼ 1 spherical
harmonic. In fact, we can write

P2
0Fij

@ki

@x

@kj

@y
¼ F�

ijk
ivj; (3.23)

where F�
ijðuÞ is the dual of FijðuÞ, on account of the

relationship

�pqklk
p @k

q

@x
¼ kk

@kl
@y

� kl
@kk
@y

; (3.24)

where �ijkl is the Levi-Civita permutation symbol in four

dimensions and ki is given by (2.23). We integrate (3.22) to
obtain
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P2
0

�
@M̂0

@x
� @L̂0

@y

�
¼ �3e2P2

0F
�
ijk

ivj þ e2SðuÞ þO3;

(3.25)

with SðuÞ ¼ O0 arbitrary. This is the extent to which we

shall require a knowledge of L̂0 and M̂0. Substituting (3.21)
and (3.25) into the first order equations (3.18) and (3.19)
verifies that they are now satisfied. We now look for theO1

parts of L̂2 and M̂2. We shall write L̂2 ¼ L2 þ l2 þO2 and

M̂2 ¼ M2 þm2 þO2 with l2 ¼ O1 andm2 ¼ O1. We can
obtain l2 and m2 indirectly as follows: in the light of (3.21)
and (3.25) two of Einstein’s field equations yield algebrai-
cally [(B33) and (B39) required to be O3]

â�1 ¼ �4eP2
0ðL2 þ l2Þ þ 6e2P2

0F
p
i Fpjk

i @k
j

@x

þ 4e2P2
0M2SðuÞ � 4e2P2

0L2KðuÞ þO3; (3.26)

b̂�1 ¼ �4eP2
0ðM2 þm2Þ þ 6e2P2

0F
p
i Fpjk

i @k
j

@y

� 4e2P2
0L2SðuÞ � 4e2P2

0M2KðuÞ þO3: (3.27)

Define two functions Â and B̂ by

â�1 þ 8P2
0L2K̂�1 ¼ �4eP2

0L2 þ Â (3.28)

and

b̂�1 þ 8P2
0M2K̂�1 ¼ �4eP2

0M2 þ B̂: (3.29)

Now two of Einstein’s field equations [(B27) and (B30)

both O3] can be written as equations for Â and B̂ neatly in
the complex form

@

@ ��
ðÂþ iB̂Þ ¼ �8e2P2

0ðL2 þ iM2Þ2

� 2e2ð�2 þ i�2Þ þO3: (3.30)

Here L2,M2, �2,�2 are the background functions given by
(2.31), (2.45), and (2.46). We note that �2 þ i�2 can be
expressed as a derivative with respect to �� given by (2.41).
Similarly one can show that

P2
0ðL2 þ iM2Þ2 ¼ �2

@

@ ��

�
P4
0ðL2 þ iM2Þ @

@�
ðL2 þ iM2Þ

�
:

(3.31)

Hence (3.30) can immediately be integrated giving a solu-
tion which is free of directional singularities:

Âþ iB̂ ¼ 2e2P4
0

@

@�
fP�2

0 ð�2 þ i�2Þg

þ 16e2P4
0ðL2 þ iM2Þ @

@�
ðL2 þ iM2Þ þ e2UðuÞ

þ ie2VðuÞ þO3; (3.32)

where UðuÞ ¼ O0 and VðuÞ ¼ O0 are functions of integra-

tion. Combining (3.26) with (3.28) and (3.27) with (3.29)
and using the solution (3.32) means that we have now
determined the functions l2 and m2 to be

l2 ¼ eFpqk
p @k

q

@x
Fijk

ivj þ 1

2
eFp

iFpjk
i @k

j

@x

� 1

6
eCijklk

ivjkk
@kl

@x
þ 1

2
eSðuÞFijk

i @k
j

@y

þ 1

2
eKðuÞFijk

i @k
j

@x
� 1

4
eP�2

0 UðuÞ þO2; (3.33)

m2 ¼ eFpqk
p @k

q

@y
Fijk

ivj þ 1

2
eFp

iFpjk
i @k

j

@y

� 1

6
eCijklk

ivjkk
@kl

@y
� 1

2
eSðuÞFijk

i @k
j

@x

þ 1

2
eKðuÞFijk

i @k
j

@y
� 1

4
eP�2

0 VðuÞ þO2: (3.34)

One of Maxwell’s equations [(B21) required to beO2] now
gives us directly

K̂ 1 ¼ Fijk
ivj þ P2

0

�
@l2
@x

þ @m2

@y

�
� 14eq2 þO2; (3.35)

and we note that q2 is given by (2.36).
We now turn our attention to the functions describing the

perturbations of the metric tensor. We require â0, b̂0, f̂�1,
and ĉ0. Defining the variables

Â ¼ â0 þ 4P2
0L2K̂0 and B̂ ¼ b̂0 þ 4P2

0M2K̂0;

(3.36)

two of Einstein’s equations [(B28) and (B31) taken to be
O2] can be written as one complex equation,

@

@ ��
ðÂþ iB̂Þ ¼ 4mP2

0ðL2 þ iM2Þ2 þ 4mð�2 þ i�2ÞþO2:

(3.37)

This is integrated in a similar fashion to (3.30). The solu-

tion should have the property that P�1
0 â0 and P�1

0 b̂0 are

free of directional singularities since it is in this way that â0
and b̂0 appear in the metric tensor. Therefore, the solutions
of (3.37) that we require are

â0 ¼ 2eP2
0apk

pFijk
i @k

j

@x
� 2mP2

0F
p
iFpjk

i @k
j

@x

� 4mP2
0Fpqk

pvqFijk
i @k

j

@x
� 4

3
mP2

0Cijklk
ivjkk

@kl

@x

þ XðuÞ þO2; (3.38)
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b̂0 ¼ 2eP2
0apk

pFijk
i @k

j

@y
� 2mP2

0F
p
iFpjk

i @k
j

@y

� 4mP2
0Fpqk

pvqFijk
i @k

j

@y
� 4

3
mP2

0Cijklk
ivjkk

@kl

@y

þ YðuÞ þO2; (3.39)

where XðuÞ ¼ O1 and YðuÞ ¼ O1 are functions of integra-

tion. We note that â0 and b̂0 possess directional singular-

ities but P�1
0 â0 and P�1

0 b̂0 do not, as required. Another of

Einstein’s field equations [(B50) required to be O3] pro-
vides us with the equation

�f̂�1 � 2e2aik
i þmP2

0

�
@

@x
ðP�2

0 â�1Þ þ @

@y
ðP�2

0 b̂�1Þ
�

¼ O3; (3.40)

which, using (3.26) and (3.27), can be rewritten as

�ðf̂�1 � e2aik
i � 2meFijk

ivjÞ ¼ O3; (3.41)

from which we conclude that

f̂ �1 ¼ e2aik
i þ 2meFijk

ivj þGðuÞ þO3; (3.42)

with GðuÞ ¼ O2 a function of integration. Now we obtain
directly from an Einstein equation [(B25) taken to be O3]
the function ĉ0. After some considerable simplification it
can be written

ĉ 0 ¼ 1þ 8eFijk
ivj þ �Q2 þ 2Q2 � 4e2Cijklk

ivjkkvl þ 8e2FijFij þ 24e2ðFijk
ivjÞ2 � 24e2Fp

iFpjk
ivj

þ 65

3
e2Fp

iFpjk
ikj þ 16e2KðuÞFijk

ivj þ 4e2UðuÞ @
@x

ðlogP0Þ þ 4e2VðuÞ @
@y

ðlogP0Þ þO3: (3.43)

The perturbation in the function ĉ1 ¼ c1 þO1 is now obtained from (B26) or (B49) required to be O2. We shall not need
this function in the sequel. The remaining quantities in (B13)–(B21) and (B23)–(B51) can now be evaluated and their
orders of magnitude are indicated in Appendix B. The differential equation for Q2 emerges from the remaining quantity
(B52) required to beO3. This expression is lengthy and so we split it into a sum of three terms which we call T1, T2, T3. The
first of these terms involves only â�1 and b̂�1 and is given by

T1 ¼ �
�
@â�1

@x

�
2 �

�
@b̂�1

@y

�
2 � 1

2

�
@â�1

@y

�
2 � 1

2

�
@b̂�1

@x

�
2 � @â�1

@y

@b̂�1

@x
þ 4b̂�1

@b̂�1

@y
P�1
0

@P0

@y

þ 4â�1

@â�1

@x
P�1
0

@P0

@x
þ 2â�1

@b̂�1

@y
P�1
0

@P0

@x
þ 2b̂�1

@â�1

@x
P�1
0

@P0

@y
þ 2â�1

@b̂�1

@x
P�1
0

@P0

@y
þ 2b̂�1

@â�1

@y
P�1
0

@P0

@x

� 2ðâ�1Þ2P0

@2

@x2
ðP�1

0 Þ � 2ðb̂�1Þ2P0

@2

@y2
ðP�1

0 Þ � 8â�1b̂�1P
�2
0

@P0

@x

@P0

@y
� â�1

�
@2â�1

@x2
þ @2b̂�1

@x@y

�

� b̂�1

�
@2b̂�1

@y2
þ @2â�1

@x@y

�
: (3.44)

To evaluate this we only require the leading terms in â�1 and b̂�1 given in (3.26) and (3.27). By (2.30) these can be written

â�1 ¼ 2eP0F13 þO2 and b̂�1 ¼ 2eP0F23 þO2: (3.45)

Direct calculation reveals

@â�1

@y
¼ � @b̂�1

@x
þO2 ¼ 2e

�
@P0

@y
F13 � @P0

@x
F23 þ F12

�
þO2; (3.46)

@â�1

@x
¼ @b̂�1

@y
þO2 ¼ 2e

�
@P0

@x
F13 þ @P0

@y
F23 � F34

�
þO2; (3.47)

@2â�1

@x@y
¼ e

�
�P�1

0 þ 2
@2P0

@y2
� 2P�1

0

�
@P0

@x

�
2
�
F23 � 2eP�1

0 F24 þ 2eP�1
0

@P0

@x

@P0

@y
F13 þ 2eP�1

0

@P0

@x
F12 � 2eP�1

0

@P0

@y
F34;

(3.48)
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@2b̂�1

@x@y
¼ e

�
�P�1

0 þ 2
@2P0

@x2
� 2P�1

0

�
@P0

@y

�
2
�
F13 � 2eP�1

0 F14 þ 2eP�1
0

@P0

@x

@P0

@y
F23 � 2eP�1

0

@P0

@y
F12 � 2eP�1

0

@P0

@x
F34;

(3.49)

where Fab are the components of the external electromag-
netic field evaluated on r ¼ 0 and referred to as the tetrad
given by (A11)–(A14). Substitution in (3.44) leads to the
simplification

T1 ¼ 4e2fðF13Þ2 þ ðF23Þ2g þ 8e2fF13F14 þ F23F24g
� 8e2ðF34Þ2 þO3: (3.50)

This is further reduced by noting that

ðF13Þ2 þ ðF23Þ2 ¼ �Fp
iFpjk

ikj; (3.51)

F13F14 þ F23F24 ¼ �Fp
iFpjk

ivj þ 1
2F

p
iFpjk

ikj

� ðFijk
ivjÞ2; (3.52)

and

F34 ¼ Fijk
ivj: (3.53)

Hence we can write

T1 ¼ �8e2Fp
iFpjk

ivj � 16e2ðFijk
ivjÞ2: (3.54)

The second term T2 is chosen because it involves the
function ĉ0 explicitly. It is defined by

T2 ¼ 1

2
�̂ĉ0 � 1

2
ĉ0P̂

2
0

�
@

@x
ðP̂�2

0 â�1Þ þ @

@y
ðP̂�2

0 b̂�1Þ
�

� 1

2
â�1

@ĉ0
@x

� 1

2
b̂�1

@ĉ0
@y

: (3.55)

Explicit evaluation yields

T2 ¼ �6Fijk
ivj þ 1

2
�ð�Q2 þ 2Q2Þ � 3e2UðuÞ @

@x
ðlogP0Þ � 3e2VðuÞ @

@y
ðlogP0Þ � 12e2KðuÞFijk

ivj

þ 11e2Cijklk
ivjkkvl � 59

3
e2FijFij � 42e2ðFijk

ivjÞ2 � 48e2Fp
iFpjv

ivj � 59e2Fp
iFpjk

ikj

þ 338

3
e2Fp

iFpjk
ivj þO3: (3.56)

The final term T3 consists of the terms remaining in (B52). It is given by

T3 ¼ 3mP2
0

�
@

@x
ðP�2

0 â0Þ þ @

@y
ðP�2

0 b̂0Þ
�
� 4

@f̂�1

@u
þ 12f̂�1h0 þ 6mh0 � 4e2P2

0L2

@K̂1

@x
� 4e2P2

0M2

@K̂1

@y

� 2P2
0

��
@K̂0

@x

�
2 þ

�
@K̂0

@y

�
2
�
þ 8mP2

0L2

@K̂0

@x
þ 8mP2

0M2

@K̂0

@y
� 4P2

0L2

@K̂�1

@x
� 4P2

0M2

@K̂�1

@y
� 4P2

0

@K1

@x

@K̂�1

@x

� 4P2
0

@K1

@y

@K̂�1

@y
� 5

2
e2P2

0

�
@

@x
ðP�2

0 a1Þ þ @

@y
ðP�2

0 b1Þ
�
: (3.57)

When this is evaluated with the functions derived above, it results in (using h0 ¼ aik
i again for convenience)

T3 ¼ 6mh0 þ 2e2aia
i þ 14e2h20 � 4e2 _h0 � 4 _Gþ 12h0G� 8me _Fijk

ivj þ
�
6m2 þ 5

3
e2
�
FijFij

� ð12m2 þ 5e2ÞCijklk
ivjkkvl � 6mXðuÞ @

@x
ðlogP0Þ � 6mYðuÞ @

@y
ðlogP0Þ þ ð50e2 � 36m2ÞðFijk

ivjÞ2

þ 12e2Fp
iFpjv

ivj �
�
36m2 þ 14

3
e2
�
Fp

iFpjk
ivj þ ð18m2 þ 5e2ÞFp

iFpjk
ikj þO3: (3.58)

The approximate field equation giving us a differential
equation for Q2 is obtained from T1 þ T2 þ T3 ¼ O3

with T1, T2, T3 given by (3.54), (3.56), and (3.58).
Making use of the unit spacelike vector field pi introduced
prior to (3.16), we can write the result in the form

� 1
2�ð�Q2 þ 2Q2Þ ¼ A0 þ A1 þ A2 þO3; (3.59)

where

A0 ¼ �4 _G� 16

3
e2Fp

iFpjv
ivj; (3.60)

which is an l ¼ 0 spherical harmonic,
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A1 ¼ 6maip
i � 6eFijp

ivj � 4e2hki _akp
i � 8me _Fijp

ivj

� 8e2hki F
p
kFpjp

ivj þ 12Gaip
i

� 12e2KðuÞFijp
ivj � 3ðe2UðuÞ þ 2mXðuÞÞ @

@x

�ðlogP0Þ � 3ðe2VðuÞ þ 2mYðuÞÞ @
@y

ðlogP0Þ;
(3.61)

which is an l ¼ 1 spherical harmonic, and

A2 ¼ 6ðe2 � 2m2Þ	ð1Þ � 4ð2e2 þ 9m2Þ	ð2Þ
þ 18ðm2 � 3e3Þ	ð3Þ þ 18e2	ð4Þ; (3.62)

which is an l ¼ 2 spherical harmonic. Any l ¼ 2 spherical
harmonic can be written

	 ¼ DijðuÞkikj; (3.63)

with

Dij ¼ Dji; Dijv
j ¼ 0; �ijDij ¼ 0: (3.64)

In (3.62) each 	ð�Þ for � ¼ 1, 2, 3, 4 has the form

	ð�Þ ¼ ð�ÞDijk
ikj; (3.65)

with

ð1ÞDij ¼ Cikjlv
kvl; (3.66)

ð2ÞDij ¼ Fikv
kFjlv

l � 1
3hijF

p
kFplv

kvl; (3.67)

ð3ÞDij ¼ Fp
kFplh

k
i h

l
j � 1

3hijh
klFp

kFpl; (3.68)

ð4ÞDij ¼ aiaj � 1
3hijaka

k: (3.69)

The last two terms in (3.61) can be simplified by noting that
from (2.20) and (2.23) we can write

@

@x
ðlogP0Þ ¼ cik

i ¼ cip
i;

@

@y
ðlogP0Þ ¼ dik

i ¼ dip
i;

(3.70)

with

ci ¼ ð12ðv3 � v4Þ; 0;�1
2v

1; 12v
1Þ and

di ¼ ð0; 12ðv3 � v4Þ;�1
2v

2; 12v
2Þ (3.71)

covariant vectors [in coordinates ðXiÞ] defined along r ¼ 0
and everywhere orthogonal to vi. Provided A0 ¼ O3,
(3.59) can be integrated without the introduction of direc-
tional singularities to read

�Q2 þ 2Q2 ¼ A1 þ 1
3A2 þO3; (3.72)

up to the addition of an arbitrary function of uwhich makes
a trivial contribution toQ2. ForQ2 to be free of directional
singularities we must have A1 ¼ O3 for all pi such that
pivi ¼ 0, and this leads to the equations of motion

mai ¼ eFijv
j þ 2

3e
2hki _ak þ 4

3e
2hki F

p
kFpjv

j þ 4
3me _Fijv

j

� 2Gai þ 2e2KðuÞFijv
j þ ÛðuÞci þ V̂ðuÞdi

þO3; (3.73)

where we have written Û ¼ ðe2UðuÞ þ 2mXðuÞÞ=2 ¼ O2

and V̂ ¼ ðe2VðuÞ þ 2mYðuÞÞ=2 ¼ O2. Putting A1 ¼ O3

and discarding the geometrically trivial homogeneous so-
lution of (3.72), we see that Q2 ¼ �A2=12, and this de-
scribes smooth nontrivial perturbations of the wave fronts
near the black hole as required.GðuÞ is given by (3.60) with
A0 ¼ O3 and thus can be written as a definite integral for
which we would naturally choose ð�1; u� as the range of
integration resulting in �2Gai in (3.73) contributing to a
‘‘tail term.’’ We can write Ûci þ V̂di ¼ �ijv

j with �ij ¼
��ji vanishing except for �13 ¼ �41 ¼ Û=2 and �23 ¼
�42 ¼ V̂=2. Define !ijðuÞ ¼ �!jiðuÞ by _!ij ¼
2e2KðuÞFij þ�ij. If we now make the 1-parameter family
of infinitesimal Lorentz transformations on the unit tangent
vector, vi ! �vi ¼ vi � ð4=3ÞmeFi

jv
j � ð1=mÞ!i

jv
j, we

find that, after dropping the bar on v and its derivatives
with respect to u, the equations of motion take the form

mai ¼ eFijv
j þ 2

3e
2hki _ak þ 4

3e
2hki F

p
kFpjv

j þT i þO3;

(3.74)

where

T i ¼ e

m
f!k

jFji �!i
jFjk � 2GFikgvk ¼ O2: (3.75)

Since !ij can be written as an integral, whose range we
would naturally take to be ð�1; u� as in the case of G
above, we see that (3.75) is a tail term in a set of equations
of motion of the DeWitt/Brehme [1] form. Direct mathe-
matical comparison with the equations of motion in [1] is
highly nontrivial since the equations obtained in [1] have
involved the removal of an infinite term, while (3.74) does
not involve such a procedure. Hence we say that (3.74) fits
the pattern of the equations obtained in [1].

IV. DISCUSSION

Perhaps the most significant aspect of the work pre-
sented in this paper is the fact that the equations of motion
(3.74) of a small charged black hole moving in an external
electromagnetic and gravitational field have been derived
from the vacuum Einstein-Maxwell field equations without
encountering infinities. It is also important to note that the
external fields have been introduced as a solution of the
Einstein-Maxwell vacuum field equations.
The second term on the right-hand side of (3.74) is the

electromagnetic radiation reaction 4-force. The third term

T. FUTAMASE, P. A. HOGAN, AND Y. ITOH PHYSICAL REVIEW D 78, 104014 (2008)

104014-10



on the right-hand side of (3.74) can be written in terms of
the electromagnetic energy tensor EijðuÞ of the background
space-time, calculated on r ¼ 0 in coordinates ðXiÞ. Using
the background field equations on r ¼ 0, Rij ¼ 2Eij, this

term can be written in terms of the background Ricci tensor
components Rij as ð2=3Þe2hki Rkjv

j. This is the 4-force due

to the external field and it differs from that derived by
Hobbs [33] by a factor of 2. The external electromagnetic
field in [33] is not required to satisfy the Einstein-Maxwell
vacuum field equations and so the background Ricci tensor
appearing in [33] does not have the external electromag-
netic field as a source. Thus, in effect, half of the contri-
bution to the external 4-force is neglected.

The tail term in the form (3.75) vanishes if the external
electromagnetic field vanishes. It involves three arbitrary

functions (of u) K, Û, V̂ with the latter two obtained from
U, V, X, Y as indicated following (3.73). The mathematical
origin of these functions as functions of integration arising

in the determination of K̂�1, l2, and m2, required for the

perturbed 4-potential, and of â0 and b̂0 required for the
perturbed metric tensor, is clear from this work. In addition
the tail term indirectly involves the two vector fields ci and
di orthogonal to vi. It is a topic for further study to under-
stand physically the role of these arbitrary functions and of
these unique spacelike vectors. Had the tail term not been
so explicit, we could not identify these arbitrary functions
and spacelike vectors for further consideration. By com-
parison, the tail term obtained in [1] is an integral whose
integrand is expressed in terms of functions appearing in
the Hadamard form of the Green function of the vector
wave equation. Very little is known explicitly about the
form of such functions. The DeWitt-Brehme tail term has
proved quite intractable to analyze due to the fact that the
Green function is not known in closed form. This makes a
comparison with our result extremely difficult. Such a
study would surely merit a paper independently of ours.

The original calculations of Dirac [2] were carried out in
Minkowskian space-time. Our results do not specialize to
those of Dirac since our background space-time is an
Einstein-Maxwell space-time, and if it is flat then the
external electromagnetic field vanishes. In this case
(3.74) gives mai ¼ O2, and when this is substituted into
the surviving radiation reaction 4-force, the latter is ab-
sorbed into the O3 error. Hence we obtain geodesic motion
(and, in particular, no ‘‘runaway’’ motion) at this level of
approximation in this theory.
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APPENDIX A: USEFUL FORMULAS FROM
MINKOWSKIAN GEOMETRY

We record here some useful equations which hold ex-
actly in Minkowskian space-time and are also important in
the neighborhood of the world line r ¼ 0 in the back-
ground space-time in this paper. The transformation
(2.24) can, in principle, be inverted giving ðx; y; r; uÞ as
functions of ðXiÞ which means that we can consider
ðx; y; r; uÞ as scalar fields on Minkowskian space-time.
Their derivatives with respect to ðXiÞ, denoted by a comma,
are obtained by first differentiating (2.24) to arrive at

�i
j ¼ ðvi � rh0k

iÞu;j þ kir;j þ r
@ki

@x
x;j þ r

@ki

@y
y;j: (A1)

Multiplying this by ki gives immediately

kj ¼ u;j: (A2)

Now multiplying (A1) by vj yields

r;j ¼ vj � ð1� rh0Þkj: (A3)

Differentiating (2.24) with respect to Xj and using (A2)
and (A3) results in the alternative form for (A1):

ki;j ¼
1

r
ð�i

j � vikj � kivj þ ð1� rh0ÞkikjÞ; (A4)

with h0 ¼ aik
i. From this it follows that

@ki

@r
¼ ki;jk

j ¼ 0;
@ki

@u
¼ ki;jv

j ¼ �h0k
i: (A5)

Writing h0 ¼ @ðlogP0Þ=@u for some function P0 indepen-
dent of r, we see from the latter two equations that ki ¼
P�1
0 �i with �i null and independent of r and u. Thus �i can

be parametrized by two real parameters. We have chosen
the parameters x, y as given in (2.23), and thenP0 ¼ �iv

i in
(2.20) is a consequence of this choice. A more complete
discussion of this construction can be found in [34,35].
We can now simplify (A1) to read

�i
j ¼ vikj þ kivj � kikj þ r

@ki

@x
x;j þ r

@ki

@y
y;j: (A6)

Multiplying (A6) by @ki=@x and also by @ki=@y provides
the remaining equations needed:

x;j ¼ � 1

r
P2
0

@kj
@x

; y;j ¼ � 1

r
P2
0

@kj
@y

: (A7)

Substituting (A7) into (A6) results in the Minkowskian
metric tensor being written in the form

�ij ¼ �P2
0

�
@ki

@x

@kj

@x
þ @ki

@y

@kj

@y

�
þ kivj þ kjvi � kikj;

(A8)
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and much use is made of this relation in the calculations
behind this paper. Equivalently, the Minkowskian line
element takes the form

ds2 ¼ �ijdX
idXj

¼ �r2P�2
0 ðdx2 þ dy2Þ þ 2dudrþ ð1� 2h0rÞdu2:

(A9)

This suggests we introduce basis 1-forms (defining a half-
null basis)

#1 ¼ rP�1
0 dx; #2 ¼ rP�1

0 dy;

#3 ¼ drþ 1
2ð1� 2h0rÞdu; #4 ¼ du:

(A10)

Using (A2), (A3), and (A7) we can express these in terms
of the rectangular Cartesian coordinates and time as

#1 ¼ �P0

@ki
@x

dXi ¼ �#1; (A11)

#2 ¼ �P0

@ki
@y

dXi ¼ �#2; (A12)

#3 ¼ ðvi � 1
2kiÞdXi ¼ #4; (A13)

#4 ¼ kidX
i ¼ #3: (A14)

It is helpful to have available the second partial deriva-
tives of ki with respect to x and y expressed on the basis
consisting of the vectors vi, ki, @ki=@x, and @ki=@y. These
formulas are

@2ki

@x2
¼ P�2

0 ðvi � kiÞ � @

@x
ðlogP0Þ@k

i

@x
þ @

@y
ðlogP0Þ @k

i

@y
;

(A15)

@2ki

@y2
¼ P�2

0 ðvi � kiÞ þ @

@x
ðlogP0Þ@k

i

@x
� @

@y
ðlogP0Þ @k

i

@y
;

(A16)

@2ki

@x@y
¼ � @

@y
ðlogP0Þ @k

i

@x
� @

@x
ðlogP0Þ@k

i

@y
: (A17)

APPENDIX B: PERTURBED FIELD EQUATIONS

Writing, for the perturbed space-time described in

Sec. III, Ma ¼ F̂ab
jb and Eab ¼ R̂ab � 2Êab, the leading

terms and the errors we tolerate in these expressions (and
thus the extent to which we satisfy the vacuum Einstein-
Maxwell field equations) are given here. If the equations of
motion are required with greater accuracy, then the field
equations have to be solved with greater accuracy, resulting
in smaller errors in the coefficients of these powers of r.

MA ¼O3 � r�2 þO2 � r�1 þO1 þOðrÞ ðA¼ 1;2Þ;
(B1)

M 3 ¼ O3 � r�1 þO1 þOðrÞ; (B2)

M 4 ¼ O2 � rþOðr2Þ; (B3)

and

E AA ¼ O3 � r�4 þO3 � r�2 þO2 � r�1 þOðr0Þ;
(B4)

E 11 � E22 ¼ O3 � r�2 þO2 � r�1 þO1 þOðrÞ; (B5)

E 12 ¼ O3 � r�2 þO2 � r�1 þO1 þOðrÞ; (B6)

E A3 ¼ O3 � r�2 þO1 � r�1 þO1 þOðrÞ; (B7)

E A4 ¼ O2 � r�3 þO2 � r�2 þO2 � r�1 þOðr0Þ;
(B8)

E 33 ¼ O1 þOðrÞ; (B9)

E34 ¼ O4 � r�4 þO3 � r�3 þO2 � r�2 þO2

� r�1 þOðr0Þ; (B10)

E 44 ¼ O3 � r�3 þO3 � r�2 þOðr�1Þ: (B11)

The coefficients of the various powers of r in these ex-
pressions are calculated by substituting into Ma and Eab

the metric tensor, given via the line element (2.1) with the
expansions (3.1)–(3.6), and the potential 1-form (2.14) with
the expansions (3.7), (3.8), and (3.9). Writing (B1)–(B11)
in the form

M a ¼ X
ðnÞM

arn; Eab ¼ X
ðnÞEabr

n; (B12)

the coefficients ðnÞM
a and ðnÞEab required to establish

(B1)–(B11) are

ð�2ÞM
1 ¼ @

@y

�
P̂2
0

�
@M̂0

@x
� @L̂0

@y

��
þ 2e2L̂2 � eâ�1P̂

�2
0

þ @K̂�1

@x
þO3; (B13)

ð�1ÞM
1 ¼ O3; (B14)

ð0ÞM
1 ¼ 6mL3 þO2 ¼ O1; (B15)
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ð�2ÞM
2 ¼ @

@x

�
P̂2
0

�
@M̂0

@x
� @L̂0

@y

��
� 2e2M̂2 þ eb̂�1P̂

�2
0

� @K̂�1

@y
þO3; (B16)

ð�1ÞM
2 ¼ O3; (B17)

ð0ÞM
2 ¼ �6mM3 þO2 ¼ O1; (B18)

ð�1ÞM
3 ¼ O2; (B19)

ð0ÞM
3 ¼ �4mP�2

0 Fijk
ivj þO2 ¼ O1; (B20)

ð1ÞM
4 ¼ �2P̂�2

0 K̂1 þ 4P̂�2
0 ðâ�1L̂2 þ b̂�1M̂2 � eq̂2Þ

þ 2

�
@L̂2

@x
þ @M̂2

@y

�
þO2: (B21)

Writing

�̂ ¼ P̂2
0

�
@2

@x2
þ @2

@y2

�
; (B22)

we find that

ð�4ÞEAA ¼ O3; (B23)

ð�3ÞEAA ¼ O3; (B24)

ð�2ÞEAA ¼ 2�̂ logP̂0 � 4P̂4
0

�
@M̂0

@x
� @L̂0

@y

��
@M̂2

@x
� @L̂2

@y

�

� 3P̂2
0

�
@

@x
ðP̂�2

0 â�1Þ þ @

@y
ðP̂�2

0 b̂�1Þ
�

þ 4eK̂1 þ 4K̂1K̂�1 � 8eðâ�1L̂2 þ b̂�1M̂2Þ
� 2ĉ0 þ 12e2q̂2 � 1

2
P̂�2
0 ðâ2�1 þ b̂2�1Þ þO3;

(B25)

ð�1ÞEAA ¼ �4ĉ1 � 8
@ logP̂0

@u
þ 8eK̂2 � 32mq̂2

� 4P̂2
0

�
@

@x
ðP̂�2

0 â0Þ þ @

@y
ðP̂�2

0 b̂0Þ
�
þO2;

(B26)

ð�2ÞE11 � ð�2ÞE22 ¼
@b̂�1

@y
� @â�1

@x
� 4e2�̂2

� 1

2
P̂�2
0 ðâ2�1 þ b̂2�1Þ

� 8e2P̂2
0ðL̂2

2 � M̂2
2Þ � 8P̂2

0L̂2

@K̂�1

@x

þ 8P̂2
0M̂2

@K̂�1

@y
þO3; (B27)

ð�1ÞE11 � ð�1ÞE22 ¼ 16mP̂2
0ðL̂2

2 � M̂2
2Þ � 8P̂2

0L̂2

@K̂0

@x

þ 8P̂2
0M̂2

@K̂0

@y
þ 16m�̂2 � 2

@â0
@x

þ 2
@b̂0
@y

þO2; (B28)

ð0ÞE11 � ð0ÞE22 ¼ �8ĉ0P̂
2
0ðL̂2

2 � M̂2
2Þ � 8P̂2

0L̂2

@K̂1

@x

þ 8P̂2
0M̂2

@K̂1

@y
� 12�̂2ĉ0 � 3

@â1
@x

þ 3
@b̂1
@y

þO1 ¼ O1; (B29)

ð�2ÞE12 ¼ � 1

2

@â�1

@y
� 1

2

@b̂�1

@x
� 4e2�̂2 � 1

2
P̂�2
0 â�1b̂�1

� 8e2P̂2
0L̂2M̂2 � 4P̂2

0L̂2

@K̂�1

@y
� 4P̂2

0M̂2

@K̂�1

@x

þO3; (B30)

ð�1ÞE12 ¼ 16mP̂2
0L̂2M̂2 � 4P̂2

0L̂2

@K̂0

@y
� 4P̂2

0M̂2

@K̂0

@x

þ 8m�̂2 � @â0
@y

� @b̂0
@x

þO2; (B31)

ð0ÞE12 ¼ �8ĉ0P̂
2
0L̂2M̂2 � 4P̂2

0M̂2

@K̂1

@x
� 4P̂2

0L̂2

@K̂1

@y

� 6�̂2ĉ0 � 3

2

@â1
@y

� 3

2

@b̂1
@x

þO1 ¼ O1; (B32)

ð�2ÞE13 ¼ 4M̂2P̂
3
0

�
@L̂0

@y
� @M̂0

@x

�
þ 4eL̂2P̂0 þ P̂�1

0 â�1

þ 4K̂�1L̂2P̂0 þO3; (B33)

ð�1ÞE13 ¼ 6eP0L3 þO2 ¼ O1; (B34)
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ð0ÞE13 ¼ �4K̂1L̂2P̂0 þ 2P̂3
0

�
@

@x
ðP̂�2

0 �̂2Þ þ @

@y
ðP̂�2

0 �̂2Þ
�

þ 2P̂0

@q̂2
@x

� 2P̂�1
0 â1 þ 4P̂3

0M̂2

�
@L̂2

@y
� @M̂2

@x

�

þO1 ¼ O1; (B35)

ð�3ÞE14 ¼ 4meP0Fij

@ki

@x
vj þO3 ¼ O2; (B36)

ð�2ÞE14 ¼ 2eĉ0L̂2P̂0 þ 2eP̂0

@K̂1

@x
þ 1

2
P̂�1
0 â�1ĉ0

� 1

2
P̂0

@

@y

�
P̂2
0

�
@

@y
ðP̂�2

0 â�1Þ � @

@x
ðP̂�2

0 b̂�1Þ
��

� P̂�1
0 â�1�̂ logP̂0 þO2 ¼ O2; (B37)

ð�1ÞE14 ¼ O2; (B38)

ð�2ÞE23 ¼ �4L̂2P̂
3
0

�
@L̂0

@y
� @M̂0

@x

�
þ 4eM̂2P̂0 þ P̂�1

0 b̂�1

þ 4K̂�1M̂2P̂0 þO3; (B39)

ð�1ÞE23 ¼ 6eP0M3 þO2 ¼ O1; (B40)

ð0ÞE23 ¼ �4K̂1M̂2P̂0 þ 2P̂3
0

�
� @

@y
ðP̂�2

0 �̂2Þ þ @

@x
ðP̂�2

0 �̂2Þ
�

þ 2P̂0

@q̂2
@y

� 2P̂�1
0 b̂1 � 4P̂3

0L̂2

�
@L̂2

@y
� @M̂2

@x

�

þO1 ¼ O1; (B41)

ð�3ÞE24 ¼ 4meP0Fij

@ki

@y
vj þO3 ¼ O2; (B42)

ð�2ÞE24 ¼ 2eĉ0M̂2P̂0 þ 2eP̂0

@K̂1

@y
þ 1

2
P̂�1
0 b̂�1ĉ0

þ 1

2
P̂0

@

@x

�
P̂2
0

@

@y
ðP̂�2

0 â�1Þ � P̂2
0

@

@x
ðP̂�2

0 b̂�1Þ
�

� P̂�1
0 b̂�1�̂ logP̂0 þO2 ¼ O2; (B43)

ð�1ÞE24 ¼ O2; (B44)

ð0ÞE33 ¼ �8P̂2
0ðL̂2

2 þ M̂2
2Þ þ 12q̂2 þO3; (B45)

ð�4ÞE34 ¼ O4; (B46)

ð�3ÞE34 ¼ O3; (B47)

ð�2ÞE34 ¼ 2eK̂1 þ 1

2
P̂2
0

�
@

@x
ðP̂�2

0 â�1Þ þ @

@y
ðP̂�2

0 b̂�1Þ
�

þO2; (B48)

ð�1ÞE34 ¼ ĉ1 þ 2P̂�1
0

@P̂0

@u
þ 4eK̂2 þ 8mq̂2

þ P̂2
0

�
@

@x
ðP̂�2

0 â0Þ þ @

@y
ðP̂�2

0 b̂0Þ
�
þO2; (B49)

ð�4ÞE44 ¼ O3; (B50)

ð�3ÞE44 ¼ 2mP̂2
0

�
@

@x
ðP̂�2

0 â�1Þ þ @

@y
ðP̂�2

0 b̂�1Þ
�

� 4e2P̂0

@P̂0

@u
� 2�̂f̂�1 þO3; (B51)

ð�2ÞE44 ¼ T1 þ T2 þ T3 þO3: (B52)

In the final equation here, the terms T1, T2, T3 are given in
the text by (3.44), (3.55), and (3.57), respectively.
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