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We consider an unstable bound system of two supersymmetric Dirichlet branes of different dimension-

ality (p, p0 with p0 < p) embedded in a flat noncompactified IIA or IIB type background. We study the

decay, via tachyonic condensation, of such unstable bound states leading to a pair of bound Dðp� 1Þ,
Dp0-branes. We show that only when the gauge fields carried by the Dp-brane are localized perpendicular

to the tachyon direction, then tachyon condensation will indeed take place. We perform our analysis by

combining both the Hamiltonian and the Lagrangian approaches.
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I. INTRODUCTION

In the context of type II string theories, BPS Dirichlet
branes with even (within type IIA string theory) or odd
(within type IIB) number of tangential spatial directions
can arise. Such objects, called Dp-branes, are invariant
under half of the space-time supersymmetry transforma-
tions of the theory and are charged under a ðpþ 1Þ-form
gauge field, having its origin in the Ramond-Ramond
sector. Antibranes ( �D) carry opposite Ramond-Ramond
charge and have opposite orientation than D-branes.
Starting with a Dp- �Dp-brane (with p even) in type IIA
string theory, and modding it out by the exact symmetry of
the theory ð�1ÞFL (where FL denotes the contribution to
the space-time fermion number from the left-moving sec-
tor of the string world sheet), one can define [1] a single
non-BPS Dirichlet brane of type IIB. Similarly, one can
construct non-BPS Dirichlet branes of type IIA. Thus,
type IIB string theory contains BPS D-branes of odd
dimension and non-BPS D-branes of even dimension; the
vice versa holds for type IIA string theory. Alternatively,
non-BPS Dirichlet branes can be constructed as tachyonic
kink solutions on the brane-anti-brane system, with the
energy density concentrated around a ðp� 1Þ-dimensional
space. One can thus claim an equivalence between ta-
chyonic kink solution and non-BPS Dirichlet branes.

In either type IIA or type IIB string theory, non-BPS
Dirichlet branes are unstable due to the appearance of a
tachyonic mode. More precisely, when the tachyon con-
denses to its minimum, the tachyonic ground state cannot
be distinguished from the vacuum, in the sense that it
carries neither charge nor energy density. Even though
these branes are unstable, one may obtain stable non-
BPS Dirichlet branes by projecting out the tachyonic
mode.

In what follows, we study the decay, via tachyonic
condensation, of unstable bound states of Dirichlet (D)
branes of different dimensionality, embedded in a flat non-

compactified d-dimensional space-time. The choice of the
background as a flat IIA, or IIB, type will specify whether
p is even, or odd, respectively. Our starting point is Sen’s
effective action for unstable Dirichlet branes [2], which is
presented in Sec. II. The decay of the branes becomes
apparent from the presence of a tachyonic mode on the
brane world volume. To make our analysis more transpar-
ent we first discuss the bosonic sector of the theory in
Sec. III, and then the fermionic sector in Sec. IV. We
consider two complementary approaches, the Hamil-
tonian approach and the Lagrangian one, following
Refs. [3,4], respectively. In the first approach [3], discussed
in Sec. III A, we express the Hamiltonian of the system in
terms of the canonical variables. Despite the fact that in the
tachyon condensation limit the Lagrangian vanishes, the
canonical momenta, and thus the Hamiltonian, remain well
defined. In the second approach [4], discussed in Sec. III B,
the action remaining after condensation is directly calcu-
lated. These two approaches have been so far considered
independently in the literature. However, they can work
together allowing us to understand the geometric restric-
tions that are required for the system to fully condense.
This is indeed the novelty of our work. We discuss our
findings in Sec. V.
We note that throughout this work we are using units in

which the fundamental string tension gs is equal to 1=ð2�Þ.
The world-volume signature is taken to be � ¼
ð�þ � � �þÞ.

II. TACHYON EFFECTIVE ACTION

The classical tachyon effective Lagrangian describing
the dynamics of the tachyon field of a Dp-brane (i.e.,
unstable Dirichlet brane) of type IIA or IIB superstring
theory is given by the sum of Dirac-Born-Infeld (LDBI) and
Wess-Zumino (LWZ) type terms, as

L eff ¼ LDBI þLWZ: (2.1)

To write down the effective Lagrangian for Dp-branes, one
considers the local symmetries of such theories, which
consist of a general coordinate invariance of the world
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volume, a local fermionic symmetry, and a U(1) gauge
invariance. The local symmetries are then used to make a
gauge choice in which the unphysical degrees of freedom
can vanish.

The Dirac-Born-Infeld type term of the effective
Lagrangian, which provides a good description of our
system under the assumption that T is large while its
second and higher derivatives are small, can be written as1

LDBI¼�VðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detð�I

���IþF ��þ@�T@�TÞ
q

; (2.2)

where �; � . . . ¼ 0; 1; . . . ; p are the world-volume indices
and I; J; . . . ¼ 0; 1; . . . ; d� 1 are the target-space indices;
T denotes the tachyon field; VðTÞ is the tachyon potential,
identified with the vanishing tension of the decaying
branes. Note that we have explicitly included the kinetic
term as it plays a crucial role in what follows.

The supersymmetric quantity �I
� is related to another

supersymmetric quantity @�� through

�I
� ¼ @�X

I � ���I@��; (2.3)

while the supersymmetric expression of the world-volume
gauge field is

F �� ¼ F�� � ����I@��

�
@�X

I � 1

2
���I@��

�

þ ����I@��

�
@�X

I � 1

2
���I@��

�
; (2.4)

where F�� ¼ @�A� � @�A� is the world-volume electro-

magnetic field, and XI are world-volume scalars that give
the transverse motion of the brane. For a 10-dimensional
space-time, � are 32 component fermionic spinors and �I

are the 32� 32 Dirac matrices. Finally,� stands for either
�11 ¼ �0�1 � � ��9, if p is even (flat type IIA background),
or for the Pauli matrix �3, if p is odd (flat type IIB
background).
We impose the static gauge condition on the transverse

scalars [5],

XI ¼
�
�� for I < pþ 1
Xm for I � pþ 1;

(2.5)

where m; n . . . ¼ pþ 1; pþ 2; . . . ; d� 1 and �� are the
world-volume coordinates. In the static gauge condition,
the ðpþ 1Þ target-space coordinates are identified with the
world-volume coordinates. The remaining spatial coordi-
nates can be seen as transverse excitations on the
Dp-brane. Half of the 32 components of the� coordinates
can be eliminated by gauge fixing the fermionic sector, so
that one of the Majorana-Weyl spinors �� equals zero,
namely [5],

� ¼ �þ
��

� �
¼ �þ

0

� �
: (2.6)

We note that ðI� �11Þ� ¼ 2��. Thus, Eq. (2.2) becomes
[5]

L DBI ¼ �VðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detð��� þ @�X

m@�Xm þ F�� þ B�� þ @�T@�TÞ
q

; (2.7)

where

B�� � �2 ��þð�� þ �m@�X
mÞ@��þ þ ð ��þ�I@��þÞð ��þ�I@��þÞ: (2.8)

The Wess-Zumino type term in the effective Lagrangian is a ðpþ 1Þ-form, describing the coupling of the Ramond-
Ramond background field strengths to the Dirichlet brane. Under a local fermionic symmetry, LWZ vanishes under
contraction with ��. Thus, the total effective Lagrangian is given by Eq. (2.7), namely,

L eff ¼ �VðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detð��� þ @�X

m@�Xm þ F�� þ B�� þ @�T@�TÞ
q

; (2.9)

with B�� as defined in Eq. (2.8).

III. BOSONIC SECTOR

Let us first focus on the bosonic sector of the theory, i.e.
B�� ¼ 0; we include �þ in Sec. IV. The form of the

tachyonic potential can contain topological obstructions
that prevent the system from fully decaying. In particular,

for non-BPS branes the potential is such that VðT !
�1Þ ¼ 0, with Vð0Þ a maximum [4]. In this situation, a
ðp� 1Þ-dimensional kink defect forms, preventing the
tachyon reaching its true vacuum at all space-time coor-
dinates. It is well known that such a kink precisely repro-
duces the dynamics of a Dðp� 1Þ-brane in the absence of
world-volume gauge fields. Here we show that this result is
also true when the gauge fields are turned on, with some
intuitive restrictions on the geometry of the gauge fields
and the tachyon.
A Dp-brane can contain a Dp0-brane (with p0 smaller

than p), forming a bound state. This bound state is just a

1This action has been basically taken from Ref. [5]; however,
we have treated the tachyon similarly to the XI. Thus, we have
included the tachyon kinetic term inside the determinant, as
discussed in Refs. [6,7].
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Dp-brane with the electromagnetic charge of the
Dp0-brane dissolved onto its world volume. Such a bound
system turns out to be particularly relevant here, as it is
precisely the system we are dealing with. We will first
investigate this system using the Hamiltonian approach
and we will then proceed with the Lagrangian one.

A. Hamiltonian approach

If we neglect the fermionic components, it was shown in
Ref. [3] that the Hamiltonian obtained from the gauge fixed
Lagrangian, Eq. (2.7), can be written as

H ¼ ½ðPm
X Þ2 þ ðPTÞ2 þ ð@iXmP

m
X þ @iTPT þ FijP

i
AÞ2

þ ðPi
A@iXmÞ2 þ ðPi

A@iTÞ2 þ ðPi
AÞ2

þ V2ðTÞ detðhÞ�1=2; (3.1)

where

hij � �ij þ @iX
m@jXm þ Fij þ @iT@jT;

with i; j; . . . ¼ 1; 2; . . . ; p the spatial world-volume indices
and Pi

A, P
m
X , PT the canonical momenta of Ai, Xm, T,

respectively.2

If we consider the set of variables �N ¼ ðAi; Xm; TÞ
where N ¼ 1 . . . d, and define @M�N ¼ 0 for M> p,
then the above Hamiltonian, Eq. (3.1), can be written
formally as

H ¼ ½ðPN
� Þ2 þ ðFMNP

N
� Þ2 þ V2ðTÞ detðhÞ�1=2; (3.2)

where PN
� are the canonical momenta of �N and FMN ¼

@M�N � @N�M. Equation (3.2) turns out to be a particu-
larly useful way of expressing the Hamiltonian for includ-
ing fermionic degrees of freedom, as one can see from
Sec. IV.

At this point it is worth making the following remark,
comparing our analysis and our subsequently obtained
results with that of Ref. [3]. The kinetic terms of the
tachyon were neglected in Ref. [3]. It was stated that
they could be included at any point, on the same footing
as the transverse scalars. This is of course true, but only
valid until the limit T ! �1 is taken. It is indeed the
nonzero spatial tachyon derivatives that result in the local-
ization of the kink. This is the reason for which a string gas
solution was found in Ref. [3] as the end point of the
tachyon condensation. In the following we show that ac-
counting for the tachyon kinetic term leads to the expected
localization.

The usefulness of the Hamiltonian approach is that it
allows the T ! �1 limit to be taken while explicitly
keeping track of the canonical momenta of the gauge
fields, which must be conserved throughout the tachyon
evolution. In the T ! �1 limit, VðTÞ ! 0 and the

Hamiltonian, Eq. (3.2), becomes

H ¼ ½ðPN
� Þ2 þ ðFMNP

M
� Þ2�1=2; (3.3)

we have taken the T ! �1 limit in the canonical
momenta.
To show how this is derived, let us consider the specific

case of a three-dimensional non-BPS brane.3 In this case,
the tachyon is a function of only one world-volume coor-
dinate, which we will take, without loss of generality, to be
the x-direction. Following the procedure outlined in
Ref. [4], we consider the field configuration

TðxÞ ¼ fðaxÞ; (3.4)

where fðwÞ is some arbitrary function, which however
must satisfy

fð�wÞ ¼ �fðwÞ; f0ðwÞ> 0 8 w; fð�1Þ ¼�1;

(3.5)

a is a constant which we will later take to infinity. Thus,
T ¼ þ1 (T ¼ �1), for x > 0 (x < 0). Expanding Eq.
(3.3) into terms that depend on the tachyon and its deriva-
tives and those that do not, we obtain

H ¼ ½ðH mod TÞ2 þ ðPi
�@iTÞ2 þ ðPT@iTÞ2 þ P2

T�1=2
(3.6)

¼ ½ðH mod TÞ2 þ a2½f0ðaxÞ�2ðPx
�Þ2

þ P2
Tfa2½f0ðaxÞ�2 þ 1g�1=2; (3.7)

here � represents the degrees of freedom other than the
tachyon and H mod T is the Hamiltonian of a Dp-brane (in
this case p ¼ 3) without a tachyon.
We are concerned with static solutions after the tachyon

has fully condensed, in which case PT ¼ 0, since _T ¼ 0.
Thus, for the Hamiltonian to be finite in the limit a ! 1,
we require Px

� ¼ 0, i.e. the canonical momenta of all the

world-volume degrees of freedom are constrained to be
perpendicular to the direction of the kink. In this case,
H mod T is just the Hamiltonian of a Dðp� 1Þ-brane (in
the case we consider here, this is a two-dimensional
Dirichlet brane) with no tachyon, as indeed expected. In
particular, we note that the canonical momentum of the
world-volume electromagnetic field is perpendicular to the
kink formed at the end of tachyon condensation and hence
it is conserved.
We extend the above analysis by considering (not nec-

essarily small) fluctuations of bosonic fields around the
kink background. We study the simple case of a translation
along the x direction, which corresponds to fluctuations of
the tachyon T of the form

T ¼ fðaðx� tðy; zÞÞÞ: (3.8)

2In the appendix we describe, this rather tedious derivation,
including the fermionic degrees of freedom.

3One can generalize this argument to other dimensionality, by
applying T-duality.
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In this case we find

H ¼ ½ðH mod TÞ2 þ a2½f0ðaðx� tðy; zÞÞÞ�2fPx
�

þ ðPy
�@2tÞ2 þ ðPz

�@3tÞ2g2 þ a2½f0ðaðx
� tðy; zÞÞÞPT�2f1þ ð@ytÞ2 þ ð@ztÞ2g þ P2

T�1=2:
(3.9)

Looking for static solutions in which PT ¼ 0, we find
again that for the Hamiltonian to be finite in the a ! 1
limit, the canonical momenta of the degrees of freedom,
P�, must be perpendicular to the direction of the kink. We

are thus left again with the Hamiltonian of a two-
dimensional Dirichlet brane.

We have thus shown that the Dirac-Born-Infeld (DBI)
action describing the dynamics of the tachyon field on a
non-BPS Dp-brane has a kink solution described by the
DBI action on a BPS Dðp� 1Þ-brane.

B. Lagrangian approach

Instead of working with the Hamiltonian, one can di-
rectly evaluate the Lagrangian, Eq. (2.7). To do so, we
follow the method described in Ref. [4] and extend it to
explicitly include nonzero world-volume electromagnetic
fields, by using the fact that the canonical momenta are
constrained to lie perpendicular to the tachyon.Without the
previous Hamiltonian analysis this is an assumption; how-
ever, here it is a consistency requirement if the dynamics
are to reach a fully condensed configuration. The action
given by Eq. (2.7) for a D3-brane, in the absence of
fermionic degrees of freedom, is just

S ¼ �
Z

dtdxdydzVðTÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detðMp Þ; (3.10)

where M�� ¼ ��� þ @�X
m@�Xm þ F�� þ @�T@�T.

We consider that the tachyon is given from the field
configuration described in Eq. (3.8) and use that for the
Hamiltonian to be finite, all the degrees of freedom must
evolve perpendicular to the kink (the kink is along the x
direction and y, z coordinates are perpendicular to the x
direction), namely,

A�ðx; tðy; zÞÞ ¼
�
0 for � ¼ x
a	ðtðy; zÞÞ for � ¼ 	

and

XIðx; tðy; zÞÞ ¼ xIðtðy; zÞÞ;
(3.11)

A�, X
I fields are independent of x. Thus, we obtain

M xx ¼ 1þ a2ðf0Þ2; (3.12)

M x	 ¼ M	x ¼ �a2ðf0Þ2@	t; (3.13)

M 	
 ¼ ½a2ðf0Þ2 � 1�@	t@
tþm	
; (3.14)

where

m 	
 � �	
 þ @	x
m@
xm þ F	
 þ @	t@
t (3.15)

is just the equivalent of M with terms depending of the x
direction being removed.
By manipulating the determinant of the metric (as in

Ref. [4]), to first order, we find

detðMÞ � a2ðf0Þ2ðdetðmÞÞ: (3.16)

Thus, the action, in the limit a ! 1, i.e. after the tachyon
condensation, is

lim
a!1S ¼ �

Z
dtdxdydzVðfÞaf0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detðmÞp

(3.17a)

¼ �T 2

Z
dtdydx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðmÞ

p
; (3.17b)

where

T 2 �
Z

Vð~xÞd~x (3.18)

is taken to be the tension of the resulting D2-brane.
Equation (3.17b) is the world-volume action of a D2-brane.
Thus, the classical effective theory describing the dy-

namics of the tachyon field on a non-BPS Dp-brane has a
kink solution of finite tension described by a codimension
one BPS brane.

IV. FERMIONIC SECTOR

Including the spinors rapidly leads to rather complicated
equations; however, these can be simplified by considering
a change of (fermionic) coordinates

@�YI ¼ ��þ�I@��þ; (4.1)

with the restriction,

@�Xnð@�YmÞy ¼ @�Xmð@�YnÞy: (4.2)

One can then explicitly check that the equations of motion
derived from

L̂ ¼ �VðTÞ½� detð��� þ @�X
m@�Xm � 2@�Y�

� 2@�Y
m@�Ym þ @�Y

I@�YI þ F�� þ @�T@�TÞ�1=2
(4.3)

coincide with those obtained from Eq. (2.7).
To be explicit, the equations of motion (e.o.m.) obtained

from Eq. (2.7) are

@�X
I � ��þ�I@��þ ¼ 0; e:o:m: for ��þ (4.4)

�
1

2
VðTÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detðMÞ

p
M�1

½���@
�Xm

�
;�¼0; e:o:m: forX

(4.5)
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1

2
VðTÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detðMÞp

M�1
½���@

�Xmð ��þ�mÞ;� ¼ 0;

e:o:m: for �þ;
(4.6)

where M�� ¼ ��� þ @�X
m@�Xm þ F�� þ B�� þ

@�T@�T. Equation (4.6) restricts, @�X
m@� ��þ�m to be

symmetric in � and �.
The relevant equations of motion from Eq. (4.3) are�
1

2
VðTÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detðN Þ

p
N �1

��ð@�Xm�2@�YmÞ
�
;�

þ
�
1

2
VðTÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�detðN Þp

N �1
��@

�Xm

�
;�¼0; e:o:m: forX

(4.7)

�
1

2
VðTÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detðN Þ

p
N �1

��ð@�Ym�2@�XmÞ
�
;�

þ
�
1

2
VðTÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�detðN Þp

N �1
��@

�Ym

�
;
¼0; e:o:m: forYm

(4.8)

�
1

2
VðTÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detðN Þ

p
N �1

��ð@�Y��2�
�
� Þ
�
;�

þ
�
1

2
VðTÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detðN Þ

p
N �1

��@
�Y�

�
;�¼0; e:o:m: forY�;

(4.9)

where

N �� ¼ ��� þ @�X
m@�Xm þ F�� � 2@�Y�

� 2@�Y
m@�Ym þ @�Y

I@�YI þ @�T@�T:

(4.10)

Equations (4.7) and (4.8) imply that @�Xm ¼ @�Ym. Setting

@�Y� ¼ ���, to be compatible with the static gauge (this

can be seen by doing this change of variables before
enforcing the static gauge constraint), one can recover Eq.
(4.4). Thus, Eq. (4.8) reproduces Eq. (4.5). By doing so, we
have lost the equation of motion for �þ, Eq. (4.6); how-
ever, the restriction we place on @�Ym, Eq. (4.2), ensures

that Eq. (4.6) is always satisfied. In this sense, the
Lagrangian given in Eq. (4.3) produces the on shell dy-
namics of the brane. We finally make the remark that the
equations of motion for the tachyon and world-volume
gauge fields are the same.

In these coordinates, the Hamiltonian becomes (see
appendix)

H ¼ ½ðPm
X Þ2 þ ðPTÞ2 þ ðPI

YÞ2 þ ðIiÞ2
þ ðPi

A@iX
mÞ2ðPi

A@iTÞ2 þ ðPi
A@iYIÞ2

þ ðPi
AÞ2 þ VðTÞ2 detðhÞ�1=2: (4.11)

This is precisely the Hamiltonian one arrives at by using
the Lagrangian Eq. (4.3), and the result of the equation of
motion, @�Y

I ¼ @�X
I, since in that case the new coordi-

nates, YI, appear on the same footing as the transverse
scalars, XI, which is how they enter Eq. (4.11).
Finally, we note that just as in Ref. [3], this Hamiltonian

can formally be written as

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPN

� Þ2 þ ðPM
� FMNÞ2

q
; (4.12)

where �N is the set of variables, ðAi; Xm; T; YIÞ with
N;M . . . ¼ 1; 2; . . . ; dþ d and PN

� are their canonical mo-

menta, with FMN ¼ @M�N � @N�M, where

@N ¼
�
@M for N 	 p
0 for N > p:

(4.13)

Thus the conclusions of the bosonic case carry over im-
mediately for the explicit inclusion of fermionic degrees of
freedom.

V. CONCLUSIONS

We have shown that a non-BPS Dp-brane carrying non-
zero world-volume electromagnetic fields decays into a
Dðp� 1Þ-brane with the electromagnetic fields conserved
and localized on that brane. The requirement that these
gauge fields be conserved manifests itself as a restriction
on the direction along which the tachyon can decay.
In previous literature, it was assumed that any gauge

fields on the Dp-brane were perpendicular to the tachyon,
enabling the Dðp� 1Þ-brane to form. Here, we have used
the Hamiltonian approach, to demonstrate that it is only
when this condition is met that the tachyon can indeed
condense.
We have considered that the tachyon depends on a

particular direction and shown that only when the gauge
fields are localized perpendicular to this direction, is it
possible for the tachyon condensation to occur. A corollary
of course is that if the gauge fields are nonzero in all the
world-volume directions, then tachyon condensation can-
not occur, or at least the energy produced by coupling
between the tachyon’s spatial derivatives and the gauge
fields would prevent the true tachyon vacuum by being
reached.
In particular, this shows that a bound system composed

by two branes of different dimensionality (Dp, Dp0 bound
brane system with p0 < p), which can be described by just
a Dp-brane with world-volume gauge fields, decays ex-
actly as a standard Dp-brane, namely, by forming a bound
state of a Dðp� 1Þ and a Dp0-brane.
Finally, it would be interesting to investigate whether we

can recover these results by following the gauge theory
approach of brane-antibrane systems discussed in Ref. [8].
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APPENDIX

We start by extracting the time derivatives of the
Lagrangian Eq. (2.7) using the identity [3],

detðM��Þ � detð��� þ @�X
m@�Xm þ F�� þ B��

þ @�T@�TÞ
¼ ð _Xm _Xm þ _T _TþB00 � 1Þ detðhÞ

þ EðþÞ
i DijðhÞEð�Þ

j ; (A1)

where

Eð�Þ
i ¼ F0i � _Xm@iXm � B0i � _T@iT;

hij ¼ �ij þ @iX
m@jXm þ Fij þ Bij þ @iT@jT;

and

DijðhÞ � ð�1Þiþj�ijðhÞ
with�ijðhÞ being the determinant of h with the ith row and

jth column removed. Note that, when the inverse exists, we
have DijðhÞ ¼ detðhÞh�1

ij . Here we have used the fact that

Bij ¼ Bji, by employing the equation of motion for ��þ.
Using this we find that the canonical momenta are

Pm
X ¼ �VðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detðMÞp

�
� _Xm detðhÞ þ 1

2
ðEðþÞ

i DijðhÞ

�DjiR
ð�Þ
i Þ@jXm

�
; (A2)

P�þ ¼ �VðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detðMÞp
�
ð ��þ�I

_�þÞð ��þ�IÞ detðhÞ

þ 1

2
ð ��þ�IÞð ��þ�I@i�þÞDijðhÞEð�Þ

j

� 1

2
EðþÞ
i DijðhÞð ��þ�I@j�þÞð ��þ�IÞ

�
; (A3)

Pi
A ¼ VðTÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detðMÞp ½DijðhÞEð�Þ

j þ EðþÞ
j DjiðhÞ�; (A4)

PT ¼ �VðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detðMÞp
�
� _T detðhÞ þ 1

2
ðEðþÞ

i DijðhÞ

�DijðhÞEð�Þ
j Þ@jT

�
; (A5)

where we have used the equation of motion for �� to write

B�� ¼ �ð ��þ�I@��þÞð ��þ�I@��þÞ
and assumed VðTÞ � VðT; _TÞ. Thus, the Hamiltonian can
be written as

H ¼ PI
X
_XI þ P�þ

_�þ þ Pi
AF0i þ PT

_T �L

¼ VðTÞ detðhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detðMÞp ; (A6)

where we have fixed the final gauge freedom via @iA0 ¼ 0.

Let us define

CI � H
�
ð ��þ�I

_�þÞ � 1

2
ðEðþÞ

j h�1
ji � h�1

ij Eð�Þ
j Þ

� ð ��þ�I@i�þÞ
�
; (A7)

and use the identities

H
2

ðEðþÞ
j h�1

ji � Eð�Þ
j h�1

ij Þ ¼ @iXmP
m
X þ @iTPT þ FijP

i
A

þ @i�þP�þ � Ii; (A8)

H 2½ _Xm
_Xm þ _T _TþB00 þ EðþÞ

j h�1
ji E

ð�Þ
i �

¼ ðPm
X Þ2 þ ðPTÞ2 þ ðCIÞ2 þ ðIiÞ2 þ ðPi

A@iX
mÞ2

þ ðPi
A@iTÞ2 þ ½Pi

Að ��þ�I@i�þÞ�2 þ ðPi
AÞ2; (A9)

H 2½1� _Xm
_Xm � _T _T�B000E

ðþÞ
i hð�Þ

ij Eð�Þ
j �

¼ VðTÞ2 detðhÞ; (A10)

to find

H ¼ ½ðPm
X Þ2 þ ðPTÞ2 þ ðCIÞ2 þ ð@iXmP

m
X þ @iTPT

þ FijP
j
A þ @i�þP�þÞ2 þ ðPi

A@iX
mÞ2 þ ðPi

A@iTÞ2
þ ðPi

A
��þ�I@i�þÞ2 þ ðPi

AÞ2 þ VðTÞ2 detðhÞ�1=2:
(A11)

Notice that the bosonic case, �þ ¼ ��þ ¼ P�þ ¼ CI ¼ 0,

gives us Eq. (3.1), as expected.
The fermionic terms lend themselves to a simplification,

by noting that

P�þ ¼ CI
��þ�I: (A12)

Thus, we see that all the �þ terms occur in the combina-
tion

��þ�I@i�þ; and CI: (A13)

If we define new coordinates YI, such that @�YI ¼
��þ�I@��þ, then

PI
Y ¼ H

�
ð ��þ�I _�þÞ þ � 1

2
ðEðþÞ

i h�1
ij � h�1

ij Eð�Þ
j Þ

� ð ��þ�I@i�þÞ
�
¼ CI: (A14)

So, in terms of YI the Hamiltonian Eq. (A11) becomes

H ¼ ½ðPm
X Þ2 þ ðPTÞ2 þ ðPI

YÞ2 þ ðIiÞ2
þ ðPi

A@iX
mÞ2ðPi

A@iTÞ2 þ ðPi
A@iYIÞ2

þ ðPi
AÞ2 þ VðTÞ2 detðhÞ�1=2: (A15)
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