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We shall investigate the properties of a congruence of geodesics in the framework of Palatini fðRÞ
theories. We shall evaluate the modified geodesic deviation equation and the Raychaudhuri’s equation and

show that fðRÞ Palatini theories do not necessarily lead to attractive forces. Also, we shall study energy

condition for fðRÞ Palatini gravity via a perturbative analysis of the Raychaudhuri’s equation.
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I. INTRODUCTION

Recently, modified gravity theories in which the gravi-
tational Lagrangian is an arbitrary function of the Ricci
scalar (fðRÞ gravity [1,2]) has received increasing atten-
tion both from the gravitational and cosmological aspects.
The flat rotation curve of galaxies and the current obser-
vation of the accelerated expansion of the Universe are two
important motivations for such a theory [3].

One can categorize fðRÞ gravity theories in three
classes. First, one may consider the metric as the only
dynamical variable and assume that covariant derivatives
are metric compatible, i.e. taking the connection to be the
Levi-Civita connection of the metric. Such a theory is
called metric fðRÞ theory.

Choosing the metric and the connection as independent
dynamical variables, leads to the second class of such
theories, usually called metric-affine fðRÞ theories [1].
In this case, some complexities arises as the matter action
should satisfy some consistency relations [1,2].

One can simplify the situation by considering a third
class called Palatini fðRÞ theories, in which the gravita-
tional part of the action depends both on the metric and the
connection, but the matter part is independent of the affine
connection. That is the metric connection is used in the
matter action.

For Einstein’s theory of gravity (fðRÞ ¼ R) all these
three classes leads to the same theory, but for a general
fðRÞ theory they differ. The reader is referred to the
literature for field equations of each theory [1,2], but here
we shall briefly review the case of the Palatini fðRÞ theory.

The appropriate action of the Palatini fðRÞ gravity is

A ¼ 1

2�

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðR½g;��Þ þAm; (1)

where � ¼ 8�G=c4, and Am is the matter action and has
no dependence on the connection. Varying action (1) with
respect to the metric (g��) and the connection (�

�
��) yields

the following field equations:

f0ðRÞR�� � 1

2
fðRÞg�� ¼ �T��; (2)

and

r�ðf0ðRÞ ffiffiffiffiffiffiffi�g
p

g��Þ ¼ 0; (3)

where we have assumed that the connection is symmetric,
and r� indicates covariant derivative with respect to the

affine connection. By the latter equation one has

��
�� ¼

�
�
��

�
þ��

��; (4)

where

��
�� ¼ 1

2
ð	�

�@� lnf
0 þ 	�

�@� lnf
0 � g��g

�	@	 lnf
0Þ (5)

is the difference between the affine connection and the
Christoffel symbols �

�
��

�
;

and a prime denotes differentiation with respect to R.
In this paper, the behavior of a geodesics congruence in

the Palatini fðRÞ theories is investigated. Since in these
theories one deals with two different connections
(Christoffel symbols and the affine connection), what is
meant by (for example) geodesic and geodesic deviation
should be clarified. It is a well-known fact that in the
Palatini fðRÞ theories, the matter energy-momentum ten-
sor is divergence free with respect to the covariant deriva-
tive defined with the Levi-Civita connection of the metric.
This is because of the fact that the matter does not couple to
the connection. This implies that test particles shall move
on the metric geodesics [4], calculated using the Levi-
Civita connection. This result can be obtained also from
the variational principle. On the other hand, the distance
between neighboring geodesics, involves the Riemann
tensor calculated from the affine connection.
More precisely, in the Palatini fðRÞ gravity the affine

connection is not coupled to the matter ( 	Am

	��
��

¼ 0), and this

theory is dynamically equivalent to a scalar-tensor theory
with the Brans-Dicke parameter!0 ¼ �3=2 [5]. However,
these two theories are not completely equivalent, since
Palatini theory is genuinely a metric-affine theory, and it
is different from a metric theory in which the connection of
the space-time is the Levi-Civita connection. In order to
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stress this point, we recall that in a metric-affine theory the
role of the affine-connection is not only in the equations of
motion for metric and connection, but also it defines par-
allel transport and covariant derivatives. Therefore, differ-
ent connections lead to the different space-time structures.
This point that the test particles move on metric geodesic
(and not on the affine curve) only means that the particle’s
trajectory is not a curve along which the tangent vector,
particle’s velocity, is propagated parallel to itself. The
distance between geodesics and the description of a con-
gruence of them are of course given by the affine
connection.

To state this important point in another way, let us to
stress that the theory is not only the field equations. It is the
field equations derived from the action defined on some
space-time with predefined properties. For the Palatini
fðRÞ theory one assumes the space-time has an indepen-
dent affine connection and thus any parallel transport
should be evaluated using it. The fact that the field equa-
tions are equivalent to the Brans-Dicke theory does not
means that these theories are identical. Because the Brans-
Dicke theory is defined on a space-time that parallel trans-
port is done by the Christoffel symbols of the metric.

According to the above, one expects to have changes in
the geometrical concepts like geodesic deviation and
Raychaudhuri’s equation representing how a flux of geo-
desics expands. Here, we shall look for the way these
concepts differ from the general relativity.

II. GEODESIC DEVIATION IN PALATINI fðRÞ
THEORY

In the Einstein’s theory of gravitation the physical mean-
ing of the Riemann tensor is illustrated by examining the
behavior of neighboring geodesics, the geodesic deviation
concept. The Riemann tensor as a geometrical object is
related to the tidal forces as a physical concept. It is a good
idea and seems necessary to investigate the same problem
in the framework of Palatini fðRÞ theory.

For this purpose, as for the standard general relativity,
we consider a 2-surface S covered by a congruence of
timelike geodesics. The parametric equation of the surface
is given by x�ð
; �Þ in which 
 is an affine parameter along
the specified geodesic, and � labels distinct geodesics. At
any point of S there exist two vector fields: u� ¼ @x�

@
 ,

�� ¼ @x�

@� . The first one is tangent to the geodesics at that

point, and the second connects two nearby curves in the
congruence. Therefore, one has the Lie derivative relations
Lu�

� ¼ L�u
� ¼ 0. Since in our formulation the affine

connection is symmetric as well as the Christoffel symbols,
the above relations can be written either as

u�r��
� ¼ ��r�u

�; (6)

or as

u�r
c

��
� ¼ ��r

c

�u
�; (7)

where r
c

is the covariant derivative with the Christoffel
symbols as the connection.
In the Palatini fðRÞ theory, using the Nöether theorem

one has the conservation of energy-momentum tensor in
terms of the metric connection [4]. That is, the geodesic
equation is

u�r
c

�u
� ¼ 0: (8)

These equations can be combined to prove that ��u� and
u�u� are constant along any geodesics. This means that in
the Palatini fðRÞ theory the character of a particle is
invariant on the particle’s trajectory. That is, a timelike
trajectory remains timelike during the particle’s motion.
The same is true for spacelike and lightlike trajectories.
Also by an appropriate parametrization of the geodesics,
�� is orthogonal to u� everywhere, and so �� can be
interpreted as the deviation vector.
In order to obtain the geodesic deviation, one has to

evaluate the relative acceleration of neighboring geodesics.
This can be achieved by parallel transporting D��=D
 ¼
u�r��

�, which is the covariant derivative of �� along a

curve of congruence. Using relation (6), we obtain

D2��

D
2
¼ u�r�ð��r�u

�Þ

¼ ��r�ðu�r�u
�Þ �R�

���u
���u�: (9)

Although the first term vanishes in Einstein’s theory by
virtue of the geodesic equation, it is not zero in the Palatini

fðRÞ theory. Substituting r in terms of r
c

, using the
relation (4) the first term can be expressed as

��r�ðu�r�u
�Þ ¼ ��r�ðu���

�	u
	Þ

¼ 1

2
��r�ð2u�u	@	 lnf0 � g��@� lnf

0Þ:
(10)

And finally, after calculating the above derivative one gets

D2��

D
2
¼ R�

��	u
�u��	 þ

�
u�

D��

D

þ u�

D��

D


�
r� lnf

0

þ ��

�
u�u� � 1

2
g��

�
r�r� lnf

0

� 1

2
��g��r� lnf

0r� lnf
0: (11)

The first term is the standard one, while the second term
introduces a new concept in the geodesic deviation. It is
proportional to the relative velocity. The last two terms are
proportional to the relative distance and thus have the same
effect as the first term. Although the first term in the
standard theory provides a negative relative acceleration
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(so that gravity is attractive), here this is not necessarily
true and thus one may have antigravity or repulsive gravity.
There are cases in the standard gravity for which the
gravity is repulsive. For example, for Israel shells, there
is a repulsive gravitational effect that depends on the
acceleration of the shell observers [6]. Also, it is possible
to have repulsive gravitational fields in the presence of
domain walls [7]. Circumstances under which the gravity
might be repulsive are studied in [8]. But the root of
repulsive gravity here, is different. It is a result of both
having fðRÞ instead of R as the Lagrangian density and
also having a connection different from the Christoffel’s
symbols. We shall see in the next section explicitly that
even if the conventional energy conditions are satisfied, it
is possible to have repulsive gravity.

III. RAYCHAUDHURI’S EQUATION IN PALATINI
fðRÞ THEORY

In order to investigate the relation between the nearby
geodesics more precisely one can use the Raychaudhuri’s
equation. In Einstein’s theory of gravity, the role of the
Raychaudhuri’s equation is to guarantee that gravity al-
ways acts as an attractive force, provided the strong energy
condition is satisfied [9]. To see what differences arise for
our case, in this section we first discuss the kinematics of
a congruence of geodesic and then we derive the
Raychaudhuri’s equation for the Palatini fðRÞ gravity.
Much of the techniques are parallel to the case of
Einstein’s gravity.

A. Kinematics of a congruence of timelike geodesics

Consider the same geometrical setup of the previous
section. Let us introduce the tensor field r�u

�, which

can be expressed as

r�u
� ¼ g��B�� þ ��

�	g
	�u�; (12)

where B�� � r
c

�u� [10] is a purely transverse tensor to the

congruence of the geodesics. To determine the evolution of
the deviation vector we need to calculate

D��

D

¼ u�r��

� ¼ ��r�u
� � ~B�

��
�; (13)

where

~B�
� ¼ B�

� þ 1

2
u�@� lnf

0 þ 1

2

D lnf0

D

	�
�: (14)

Therefore, ~B�
� determines the evolution of the deviation

vector. It has to be noted that it is not purely transverse,
unlike B�

�. To understand the geometric interpretation of

this tensor, we can decompose it into its spherical tensor
parts, its trace, a traceless symmetric tensor, and an anti-
symmetric tensor

~B�� ¼ 1

3
~
g�� þ ~��� þ ~!��; (15)

where

~
 ¼ 
þ 15

2

D lnf0

D

; (16)

~��
� ¼ ��

� � 2
D lnf0

D

	�
� þ 1

4
ðu�r� þ u�r�Þ lnf0; (17)

~!�
� ¼ !�

� þ 1

4
ðu�r� � u�r�Þ lnf0; (18)

~
, ~��
�, and ~!�

� are the expansion scalar, the shear tensor.

and the rotation tensor, respectively. The quantities without
~are constructed from B�

� in the same manner, and so they

are purely transverse.
Considering the congruence of the geodesics as a de-

formable medium, one can find the geometrical meanings
of these quantities. Consider a small displacement from
one spacelike hypersurface to another one, which leads to

��� ¼ ~B�
��

�ðt0Þ�t: (19)

Three cases are distinguishable:
(i) a) If ~!�

� ¼ ~��
� ¼ 0, then

��� ¼ 1

3
~
��ðt0Þ�t: (20)

This shows that ~
 represents the expansion of the
congruence of the geodesics. Because if one makes
the two nearby geodesics synchronized at t0 (that is
�0ðt0Þ ¼ 0), they remain synchronized at �t seconds
later, and the spatial distance expands at a rate

proportional to ~
 and ~�ðt0Þ. Also, the relation (16)
shows that the expansion parameter depends on the
choice of arbitrary function fðRÞ.

(ii) b) If ~��
� ¼ 0 and ~
 ¼ 0, then

��� ¼ ~!�
��

�ðt0Þ�t: (21)

This leads to some asynchronization

��0 ¼ ~!0
i �

i�t; (22)

where ~!0
i ¼ 1

4 ðu0ri � uir0Þ lnf0, and rotation of

the congruence

� ~� ¼ ~�� ~��t �; (23)

where �ijk�
k ¼ ~!ij. We see that although ~!i

j is

concerned with the overall rotation of the congru-
ence, like its role in general relativity, we also have
some asynchronization produced by ~!0

i elements.

(iii) c) If ~!�
� ¼ 0 and ~
 ¼ 0, then

��� ¼ ~��
��

�ðt0Þ�t: (24)
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Again, we have some asynchronization

��0 ¼ ~�0
i �

i�t; (25)

where ~�0
i ¼ 1

4 ðu0ri þ uir0Þ lnf0, and shearing of

the congruence

��j ¼ ~�j
i�

i�t: (26)

As a result, a 3 sphere would deform to an ellipsoid
with its axis as the principal axis of the spatial part
of ~�.

B. Raychaudhuri’s equation

Now, we want to derive an evolution equation for the
expansion scalar. We begin by evaluating the time deriva-

tive of
D ~B�

�

D
 and then substituting r in terms of r
c

using Eq.

(4) and (5), we arrive at

u�r�
~B�� ¼ u�r

c

�B�� � u�ð�	
��B	� þ�	

��B�	Þ

þ 1

2
u�r

c

�ðu�r
c

� lnf
0Þ � 1

2
u�ð�	

��u�r
c

� lnf
0

þ �	
��u�cr	 lnf

0Þ þ 1

2
u�r

c

�ðu	r	 lnf
0Þg��

þ 1

2
u�ðu	r

c

	 lnf
0Þr�g��: (27)

The equation for the expansion scalar is obtained by taking
the trace of the above equation. And after doing some
calculations, one gets

D~


D

¼ � 1

3

2 � ������ þ!��!�� �R

c

��u
�u�

� 3

2

�
D lnf0

D


�
2 � ð~
þ 
ÞD lnf0

D

þ 5

2

D2 lnf0

D
2
; (28)

where R
c

�� is the Ricci tensor constructed from the Levi-

Civita connection. Now, using Eqs. (16)–(18), we can
express the above relations with respect to the tensors
describing the congruence behavior in the Palatini fðRÞ
theory, ~
, ~��

�, ~!
�
�, and also expressing R

c

�� with respect

R��. The result is the modified Raychaudhuri’s equation

D~


D

¼ � 1

3
~
2 � ~��� ~��� þ ~!�� ~!�� �R��u

�u�

� 27

�
D lnf0

D


�
2 þ 3~


D lnf0

D

þ 3

2

D2 lnf0

D
2

� 1

2
r�r� lnf0 þ 1

2
r� lnf0r� lnf

0: (29)

Since ~B�
� is not purely transverse, having a hypersurface

orthogonal congruence does not mean that the rotation
tensor vanishes, ~!�� � 0. Therefore, for such a congru-
ence the term ~!�� ~!�� is not zero. Also, the term ~��� ~���

is not necessarily non-negative, since ~��
� is not transverse.

In addition, let the conventional strong energy condition
ðT �� � 1

2T g��Þu�u� � 0, holds, we can see that

R��u
�u� is not necessarily non-negative. Consider the

modified Einstein’s Eq. (2), its trace is

f0R� 2f ¼ �T : (30)

Combining Eqs. (2) and (30), we get

T �� � 1

2
T �� ¼ f0R�� � 1

2
g��ðf0R� fÞ: (31)

Therefore, the conventional strong energy condition results
in

R ��u
�u� � 1

2

�
f

f0
�R

�
: (32)

Note that for f ¼ R this recovers the standard relation.
It must be noted that the extra terms in the modified

Raychaudhuri’s equation are also not negative necessarily.
So that the expansion scalar does not decrease during the
evolution of the congruence. This clearly shows that in
Palatini fðRÞ theories the gravitational force is not neces-
sarily attractive.

IV. CONCLUSION AND REMARKS

Although Palatini fðRÞ theory is one way to deviate
from general relativity giving expansive behavior in cos-
mology, it has some unappealing characteristics. For
Pallatini fðRÞ gravity, the Cauchy problem is not well
formulated yet [2,11], and for generic choices of fðRÞ
there is no satisfactory physical solutions describing stars
and compact objects [12]. These are the present problems
facing Palatini fðRÞ gravity.
In spite of these, from the theoretical point of view it is

instructive to study the behavior of the geodesics in such a
theory, as it can present a different viewpoint for the
phenomenology used in cosmology and also clarifies the
fundamental theoretical character of such a theory.
In this paper, we have presented an analysis of the

equation of the geodesic deviation and the properties of a
congruence of geodesics (using Raychaudhuri’s equation),
for the Palatini theory of gravity in which the gravitational
Lagrangian is an arbitrary function of the Ricci scalar. In
this theory, the existence of two different connection fields
has new consequences. The geodesics are determined by
the Christoffel symbols (this choice is motivated by
energy-momentum conservation), but the equation that
governs the evolution of the deviation vector involves the
affine connection (motivated by the fact that the covariant
derivative or parallel propagation along any arbitrary curve
is defined by the affine connection). We have formulated
the kinematics of a congruence of geodesics in terms of a
tensor, which is called ~B��.

For Einstein’s theory of gravity, using the strong
energy condition, one sees that the geodesic congruence
is converging. But for the Palatini fðRÞ gravity, the
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Raychaudhuri’s equation is so highly dependent on the
Ricci scalar that one can have both divergent and conver-
gent congruences.

Although we have dealt with the Palatini fðRÞ theory
here, similar calculations can be carried out for a general
metric-affine theory. For such a theory, test particles do not
follow the geodesics of either metric or the connection
necessarily. Three classes of curves, free fall trajectory,
metric geodesics, and affine geodesics are distinguishable
in metric-affine theory. Therefore, one expects to have
similar results for the metric-affine theories.

Furthermore, in a general metric-affine theory, there are
two tensors describing the matter, energy-momentum ten-

sor (T �� � � 2ffiffiffiffiffi�g
p 	Am

	g�� ) and the hypermomentum tensor

(�
��
� � � 2ffiffiffiffiffi�g

p 	Am

	��
��
). This means that all the information

about matter is not in the energy-momentum tensor.
Consequently, the energy conditions may have a different
form for this T ��.

Turning back to the Palatini case, and looking at
Raychaudhuri’s Eq. (29), it is obvious that the appropriate
energy conditions for having convergent congruences are
different from that of Einstein’s gravity. To study these
conditions more precisely, let us use Raychaudhuri’s Eq.
(28) written in terms of the purely transverse parts of B��.

If we substitute 
 and R
c

�� in terms of ~
 and R�� in the

right-hand side of Eq. (28), we arrive at

D~


D

¼ � 1

3
~
2 � ������ þ!��!�� �R��u

�u�

� 41

4

�
D lnf0

D


�
2 þ 3~


D lnf0

D

þ 3

2

D2 lnf0

D
2

� 1

2
r�r� lnf0: (33)

Now, consider a hypersurface orthogonal congruence.
According to the Frobenius’ theorem [9], the purely trans-
verse part of the rotation tensor!�� is zero. Also, since the

transverse part of the shear tensor ��� is purely spatial, the

second term in Eq. (33) is non-negative. Therefore, one can
be sure about the convergence of a congruence of timelike
geodesic by requiring

R��u
�u� þ 41

4

�
D lnf0

D


�
2 � 3~


D lnf0

D

� 3

2

D2 lnf0

D
2

þ 1

2
r�r� lnf0 � 0: (34)

Let us proceed with the case that the theory differs
slightly from Einstein’s theory. We can cope with the
method for metric fðRÞ theory [13]. Writing fðRÞ ¼
Rþ �SðRÞ, where � is a small parameter, the field Eq.
(2) leads to

ð1þ �S0ÞR�� � 1

2
ðRþ �SÞg�� ¼ �T ��: (35)

The trace of this equation up to first order in � is

R þ 2�S þ �T ð1þ �S0Þ ¼ 0 �: (36)

Combining Eqs. (35) and (36), we also get

R �� ¼ �

�
T �� � 1

2
T g��

�
� �

�
�T ��S0 þ 1

2
Sg��

�
:

(37)

Keeping only first order terms, we may substitute R ¼
��T in the argument of the SðRÞ function in the second
term in the relation (37)

R�� ¼ �

�
T �� � 1

2
T g��

�

� �

�
�T ��

_SðT Þ þ 1

2
SðT Þg��

�
þOð�2Þ; (38)

where _S ¼ dSðT Þ
dT

. And finally, for the other terms in

Raychaudhuri’s equation, we substitute lnf0 ¼ �� _S=�þ
Oð�2Þ. Thus, Eq. (34) reads as�

�

�
T �� � 1

2
T g��

�

� �

�
�T ��

_SðT Þ þ 1

2
SðT Þg��

��
u�u�

þ 3�

�~

�

d _S
d


þ 1

2�

d2 _S
d
2

� 1

6�
r�r�S

�
� 0 (39)

up to this order.
Let us consider the special case f ¼ Rþ �Rn(which

has cosmological applications especially for negative n
[14]), and consider a dust with T �� ¼ �u�u�. The above

equation then reads as

�þ �ð��Þn�2

�
ð2n� 1Þ��n þ 6nðn� 1Þ~
�n�2 d�

d


þ 3nðn� 1Þðn� 2Þ�n�3

�
d�

d


�
2 þ 3nðn� 1Þ d

2�

d
2

�r�r��n

�
� 0: (40)

For Einstein’s theory in which � ¼ 0, this energy con-
dition coincides with the physical condition � � 0. But for
� � 0, even having the physical condition � � 0, the
above condition is not necessarily satisfied, so the congru-
ence is not necessarily convergent.
Another suitable choice is to consider the cosmological

constant. The corresponding energy-momentum tensor is

T �� ¼ �
� g��. The convergence condition of the congru-

ence is now

��þ ��

�
_S � �

2
S � 0: (41)

For the special case f ¼ Rþ �Rn, we get
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��þ �

4
ð�4�Þnðn� 2Þ � 0: (42)

It is clear from the above relation that for Einstein’s theory
(� ¼ 0) the convergence condition is � � 0, as it should
be. On the other hand, there is a special case (n ¼ 2) for
which the same condition is achieved. It is interesting to
note that it is possible to choose n and � such that even for
� � 0 one gets converging congruence.

We can conclude now that Einstein’s general relativity
and the Pallatini fðRÞ theory can completely disagree on
the attractive character of gravity. For example, for a dust

with � � 0 the first gives attraction, while the second can
give repulsion. Also, for a positive cosmological constant,
the first gives repulsion, while the second can give
attraction.
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