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This paper aims at clarifying the link between loop quantum gravity and spin-foam models in four

dimensions. Starting from the canonical framework, we construct an operator P acting on the space of

cylindrical functions Cylð�Þ, where � is the four-simplex graph, such that its matrix elements are, up to

some normalization factors, the vertex amplitude of spin-foam models. The spin-foam models we are

considering are the topological model, the Barrett-Crane model, and the Engle-Pereira-Rovelli model. If

one of these spin-foam models provides a covariant quantization of gravity, then the associated operator P

should be the so-called ‘‘projector’’ into physical states and its matrix elements should give the physical

scalar product. We discuss the possibility to extend the action of P to any cylindrical functions on the

space manifold.
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I. INTRODUCTION

Finding the physical scalar product is certainly one of
the most important question of loop quantum gravity [1,2].
This is somehow equivalent to the problem of finding
solutions of the remaining scalar constraint which is, so
far, still an open issue. Two main and very active directions
have been followed to tackle the problem: (i) formulating
consistently the scalar constraint as a well-defined operator
acting on the kinematical Hilbert space; (ii) making sense
of the covariant quantization to compute physical transi-
tions amplitudes between states of quantum geometry. The
former has been explored mainly by Thiemann [3] and
collaborators: very tricky and very nice regularizations of
the scalar constraints have been found; the important ques-
tion is now to extract physical solutions out of it. The
master constraint program [4] has been considered to that
aim. Spin-foam models [5] are the covariant alternative
attempt to solve the problem: they propose a way to
‘‘compute’’ the path integral of gravity where space-time
appears as a combinatorial foam which can be understood
as a covariant generalization of the notion of spin net-
works. Then a spin foam is somehow interpreted as the
structure which encodes the ‘‘time evolution’’ of a state of
quantum gravity. Spin-foam models have been studied
intensively these last years to answer some fundamental
questions they have raised, two of the most important being

the following: What is the precise link between spin-foam
models and the path integral of quantum gravity? Can we
establish an explicit link between spin-foam models and
loop quantum gravity as in the three dimensional case [6]?
To understand the meaning of the first question, it is

worth recalling that spin-foam models are only ansatz for
the path integral of quantum gravity. The ansatz is based on
the Plebanski formulation of general relativity [7] where
gravity appears as a topological background field (BF)
theory supplemented with simplicity constraints on the B
field. The path integral of a (Euclidean) BF theory is a
topological invariant which can be reformulated ‘‘exactly’’
as a spin-foam model which is called, in a more mathe-
matical language, a state sum model. The natural idea is to
try to impose the simplicity constraints at the level of the
path integral to get a spin-foam model for gravity. Barrett
and Crane (BC) [8] proposed a first model: it was studied a
lot but recently it was shown not to reproduce expected
behavior at the semiclassical limit [9] while computing the
two-point functions of gravity in the context of loop quan-
tum gravity (LQG) propagator calculations [10]. It was
then realized that the way Barrett and Crane had imposed
the simplicity constraints at the level of the spin foam
would have been, in a sense, too strong. Engle, Pereira,
and Rovelli (EPR) have proposed a new model [11] which
seems a more promising candidate: in a subsequent paper
with Livine [12], they have proposed a way to impose the
simplicity constraints using the ‘‘master constraint’’ tech-
niques introduced in the context of canonical quantization
by Thiemann. One can incorporate the Immirzi parameter
in the new model and it is possible to extend it to the
Lorenzian case [13]. In the meanwhile another model from
Freidel and Krasnov (FK) [14] has appeared. The FK
model instead imposes the constraints using the coherent
states techniques introduced by Livine and Speziale [15].
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All of these new models are under study at this moment
[16] in order to see, in particular, if they behave correctly in
the classical and semiclassical limits [17].

The second question concerning the link between ca-
nonical and covariant quantizations of gravity has been
quite problematic for a long time: the Lorentzian BC
model seems incompatible with loop quantum gravity
because it is known that the spectra of the area operator
are not identical in the two approaches. Covariant loop
quantum gravity [18] was introduced to repair this problem
modifying (in a covariant way) the canonical quantization:
the obtained theory is unfortunately too cumbersome to be
useful for the moment. Instead of modifying the canonical
quantization, one could consider standard loop quantm
gravity as the good framework for the canonical quantiza-
tion of gravity and think about finding a spin-foam model
consistent with this approach. This is exactly what the new
EPR model is doing: the projected states of the new model
are naturally identified with the standard spin-network
states; the spectrum of the area operators in the covariant
quantization is the same as the one in the canonical quan-
tization. Therefore, the EPR model seems to be a good
candidate to test if spin-foam models can explicitly realize
a ‘‘projection’’ (in the sense of loop quantum gravity) into
physical states. Indeed, we expect the physical scalar prod-
uct between two spin-network states to be given by the
spin-foam amplitude associated to a graph whose bounda-
ries are the two given spin networks.

This article aims at clarifying this relation with a simple
example. We consider Euclidean spin-foam models asso-
ciated to the groupG ¼ SUð2Þ � SUð2Þ. It is characterized
by its vertex amplitude V: the vertex amplitude is the
weight associated to a four simplex; it is therefore a
function VðIij; !iÞ of the G representations Iij coloring

the 10 faces of the four simplex and of the G intertwiners
!i associated to the five tetrahedra of the four simplex. The
index i runs from 1 to 5 and labels the five tetrahedra in the
boundary of the four simplex. We want to interpret this
vertex amplitude V as the physical scalar product between
two spin-network states: the one-tetrahedron state �1 and
the four-tetrahedra state �4 associated to spin networks,
respectively, dual to one tetrahedron and to four tetrahedra
as illustrated in the Fig. 1. The free ends of these spin

networks coincide and therefore �1 and �4 are particular

cylindrical functions of the same graph, denoted ~�, as

illustrated in Fig. 9 in the core of the paper. The graph ~�
is the union of the four-simplex graph � with four free
edges and it was introduced to take into account the free
ends of the states �1 and �4.
More precisely, we construct on operator P acting on the

space of cylindrical functions Cylð~�Þ such that its matrix
elements are related to the vertex amplitude of spin-foam
models as follows:

h�4; P�1i ¼ NVðIij; !iÞ; (1)

where N is an eventual normalization factor. In that sense,
the matrix element h�4; P�1i would be the physical scalar
product between the kinematical states �1 and �4. In fact,
the bra-ket notation for the physical scalar product might
be misleading because mathematically P is a linear form

on the space Cylð~�Þ, i.e., P 2 Cylð~�Þ�, abusively called a
‘‘projector,’’ and the physical scalar product is h�4; P�1i ¼
Pð ��4�1Þ. In the context of the Gelfand-Naimark-Segal
theory (see the Ashtekar-Lewandowski review [1] and
references therein), P, if it satisfies some additional prop-
erties, would be a state and would allow to construct the
whole physical Hilbert space in principle.
We find a solution for the projector P for different spin-

foam models: the topological SUð2Þ BF model whose
vertex VBF is the 15j symbol of SUð2Þ (this system has
no physical relevance); the BC model whose vertex VBC is
the well-known 10j symbol; the new model whose vertex
VEPR has been defined recently; and also the FK model
whose vertex construction is a direct extension of the EPR
one (in this paper we concentrate only on the vertex
amplitude without discussing the measure factors associ-
ated to the FK model, see [14]). The projector PBF asso-
ciated to the topological model is a multiplicative operator
which acts only on the edges of the spin networks and
imposes that the connection is flat. The projectors, PBC and
PEPR, respectively, associated to the BC and the EPR
models act both on the vertices (as derivative operators,
in the sense that it involves left and right invariant deriva-
tives) and on the edges of spin networks. Note that we
construct one solution of P and we do not precisely address
the question of the unicity in this article.
The plan of this article is the following. In Sec. II, we

propose a simple and general integral formula of the vertex
amplitudes of Euclidean four dimensional spin-foam mod-
els. It is quite a universal formula for it contains as par-
ticular cases the vertices of all the known models as the
topological, the BC, and the EPR models. In Sec. III, we
make use of this formula to construct physical operators for
each model in a way similar to the three dimensional case.
More precisely, we find a solution to the equation (1) for
each model and we discuss the properties of these solu-
tions. We conclude with some perspectives.

FIG. 1. Illustration of the one-tetrahedron state �1 on the left
and the four-tetrahedron state �4 on the right. Vertices, labeled
by i 2 f0; 5g, are colored with intertwiners !i and edges ‘ij with

representations Iij. The four free ends are colored with repre-

sentations I1i.
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Let us finish the introduction with a point concerning the
notations: all the spin networks we are considering are
SUð2Þ colored spin networks as in standard LQG.

II. THE VERTEX OFA SPIN-FOAM MODEL

In this section, we present some properties concerning
the vertex amplitude of several spin-foam models. The
notion of vertex amplitude is defined in the first part where
we give a very brief introduction on spin-foam models. In a
second part, we propose a general and rather simple inte-
gral formula for the vertex amplitude which will be useful
in the next section to make a link with the canonical
quantization. In the last part of this section, we illustrate
this formula in the particular models we are interested in,
namely, the topological, the BC, and the EPR models.
Furthermore, we underline that the BC and the EPR mod-
els are particular cases of a large class of spin-foam mod-
els. We present the construction of this class of spin-foam
models and we show that their vertex amplitude admits an
integral formulation of the same type.

A. A brief introduction on spin-foam models

A spin-foam model is basically the assignment of a
complex amplitude AðT Þ to any triangulation T of a
given four dimensional manifold M. The triangulation
consists in the union [4

i¼2T i of the set of its faces T 2,
the set of its tetrahedra T 3 and the set of its four simplices
T 4. The amplitude A is constructed from the representa-
tion theory of a given Lie groupG that we assume compact
for simplicity. To do so, one first colors each face f 2 T 2

with an unitary irreducible representation (UIR) jf of G

and each tetrahedron t 2 T 3 with intertwiners �t between
representations coloring its four faces. Then, one asso-
ciates an amplitude A2ðjfÞ to each face f, an amplitude

A3ð!t; jftÞ to each tetrahedron t which depends on the

intertwiner !t and on the representations coloring its four
faces ft, and an amplitude Vð!ts ; jfsÞ to each four simplex

swhich depends on the representations jfs and!ts coloring

its ten faces fs and five tetrahedra ts. Finally, the spin-foam
amplitude is formally defined by the series

AðT Þ � X
fjfg;f!tg

Y
f2T 2

A2ðjfÞ
Y
t2T 3

A3ð!t; jftÞ

� Y
s2T 4

Vð!ts ; jfsÞ: (2)

where the sum runs into a certain subset of UIR and
intertwiners ofG. The sum is a priori infinite and therefore
the amplitude is only defined formally at this stage unless it
is convergent. Notice that in all the models that have been
studied in the literature, the amplitude A3 is assumed to
depend on the intertwiners !t only. The function V is
precisely the vertex amplitude of the spin-foam model.
To finish with this brief introduction of spin-foam models,
let us mention that the previous construction could be

generalized to the case where G is noncompact and to
the case where G is replaced by a quantum group. Spin-
foam models can also be defined for any dimensional
manifold M.
In this paper, we consider exclusively the case whereM

is four dimensional and we study some properties of the
vertex amplitude V only. Therefore, we will not mention
the amplitudes A2 and A3 when we discuss the spin-
foam models in the sequel; as a result, we will omit any
discussion concerning the amplitude A and a fortiori the
question of its convergence. We hope to study these aspects
in the future. Furthermore, we will only consider Euclidean
spin-foam models that are associated to the compact Lie
groups G ¼ SUð2Þ (for the topological model) or G ¼
SUð2Þ � SUð2Þ (for the BC and EPR models). Letters
I; J; � � � label unitary irreducible representations of the
group G and the associated vector spaces are denoted
UI;UJ; � � � . When G ¼ SUð2Þ, I is a half interger whereas
it is a couple of half integers when G ¼ SUð2Þ � SUð2Þ.
Because of the compactness of G, each representation I is
finite dimensional and associates to any g 2 G a finite
dimensional matrix which will be denoted RIðgÞ when
G ¼ SUð2Þ � SUð2Þ and DIðgÞ in the other case. To a
representation, I is associated a contragredient (or a dual)

representation I� such that RI� ðgÞ ¼ tRIðg�1Þ and the same

for the SUð2Þ representations DI� ; it is common to identify
U�

I � UI� to UI. More precision concerning the represen-
tation theory of the groups G will be given later.
The vertex VðIij; !iÞ is then a function of the five

intertwiners !i coloring the five tetrahedra (which are
ordered and labeled by i 2 f1; 5g) of a four simplex and
of the ten representations ðIijÞi<j of G coloring the ten

faces at the intersections of the tetrahedra i and j; !i: �j>i

UIij ! �j<iUIji is an intertwiner between the representa-

tions Iij ‘‘meeting’’ at the tetrahedron i. In the next part, we

are going to show that the vertex amplitude of all the
models we consider can be written as an integral over ten
copies of the three sphere S3 as follows:

VðIij; !iÞ ¼
Z �Y

i<j

dxij

�
CðxijÞV ðIij; !i; xijÞ; (3)

where CðxijÞ is a universal function, in the sense that it is

model independent, which reads

CðxijÞ �
Z �Y5

i¼1

dxi

�
�ðx�1

ij xix
�1
j Þ: (4)

V is a model dependent function of the variables xij. As

we will see in the next section, such a formula will be
crucial to link spin-foam models with loop quantum
gravity.
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B. A General expression of the vertex

There exists many equivalent ways to define the vertex
amplitude of a spin-foam model. For our purposes, it is
convenient to view the vertex amplitude as a ‘‘Feynman
graph’’ evaluation of a closed oriented graph which is dual
to a four simplex. The dual of a four simplex � is in fact
topologically equivalent to a four simplex and then consists
in a set of five vertices linked by ten edges: we endow the
set of vertices with a linear ordering such that the vertices
are labeled with an integer i 2 f1; 5g; this ordering induces
a natural orientation on the links, indeed the link ‘ij
between the edges i and j is oriented from i to j if i < j.
One associates a complex amplitude to this graph using the
following ‘‘Feynman’’ rules: each oriented link ‘ij, with

i < j, is associated to a UIR of G denoted Iij (the opposite

link ‘ji is associated to the contragredient representation

denoted for simplicity Iji ¼ I�ij); each vertex i is associated
to an intertwiner !i: �j>i UIij ! �j<iUIji . As a result, the

‘‘Feynman evaluation’’ of such a graph is the scalar ob-
tained by contracting the ten propagators with the five
intertwiners and gives the vertex amplitude which formally
reads

VðIij; !iÞ ¼
�O5
i¼1

!i

�
� X

feijg

Y5
i¼1

�O
j<i

ejij!ij
O
j>i

eij

�
; (5)

where eij runs over the finite set of a given orthonormal

basis ofUIij and we have used the standard bra-ket notation

to denote the vectors jeiji of UIij and the dual vectors heijj.
In the language of loop quantum gravity, we would say that
VðIij; !iÞ is simply the evaluation of the spin network

associated to the colored graph ð�; fIij; !igÞ when the

connection is flat.
In order to have a more useful formula, it will be

convenient to trivially identify !i with an element of
Homð�j�iUIij ;CÞ and then to notice that !i is completely

characterized by a vector vi 2 �j�iU
�
Iij
. These vectors can

be written in the form vi ¼
P

ðaijÞ�
ðaijÞ
i �j�i vaij where

ðaijÞj�i is a set whose elements label vectors vaij 2 UIij ,

�
ðaijÞ
i are complex numbers and the sum is finite. The

explicit relation between !i and vi is the following:

!i ¼ hvij
Z

dg
O
j�i

RIijðgÞ 2 Hom

�O
j�i

UIij ;C
�
; (6)

where we have used the SUð2Þ � SUð2Þ notations for the
representations and

R
dg is the Haar measure of G. As a

result, the vertex amplitude can be reformulated as a multi-
integral over G according to the formula

VðIij; !iÞ ¼
X
ðaijÞ

Y5
i¼1

�
ðaijÞ
i

Z �Y5
i¼1

dgi

�

�h�i<jvaij j
O
i<j

RIijðgig�1
j Þj �i>j vaiji; (7)

which can be written in the following more compact well-
known form

VðIij; !iÞ ¼
Z �Y5

i¼1

dgi

�
ð�5

i¼1viÞ �
�O
i<j

RIijðgig�1
j Þ

�
; (8)

where the dot � denotes the appropriate contraction be-
tween the vectors vi and the matrices of the representa-
tions. This vertex amplitude is in fact rather general and
characterizes partially a large class of spin-foam models. It
is general because we have for the moment a total freedom
in the choice of the representations and the intertwiners; it
is nonetheless only partial because we do not consider the
amplitudes associated to faces and tetrahedra. To go further
in the study of this amplitude, we need to recall some basic
results on the representation theory of SUð2Þ � SUð2Þ.

1. Representation theory of G: basic results

Let us start with the group SUð2Þ: its representations are
labeled by a half integer, the spin I; they are finite dimen-
sional of dimension dI ¼ 2Iþ 1 and we denote by jI; ii
with i 2 ½�I; I� the vector of an orthonormal basis of UI.
The group G ¼ SUð2Þ � SUð2Þ is the double cover of
SOð4Þ; it is also known as the spin group Spinð4Þ. Any of
its elements g can be written as a couple ðgL; gRÞ of two
SUð2Þ group elements. Its UIR are labeled by a couple of
(integers or half integers) spins ðI; JÞ: they are finite di-
mensional and the vector space UIJ ¼ UI �UJ of the
representation ðI; JÞ is the tensor product of the two
SUð2Þ representation vector spaces UI and UJ.
Therefore, the family of vectors ðjI; ii � jJ; jiÞIJij form

an orthonormal basis of UIJ. The action of g 2 G in this
basis is simply given by

RIJðgÞjI; ii � jJ; ji ¼ RIJðgL; gRÞjI; ii � jJ; ji
¼ DIðgLÞjI; ii �DJðgRÞjJ; ji: (9)

The SUð2Þ matrix elements hI; ijDIjI; ji are the Wigner
functions.
The spaceUIJ admits another natural basis which will be

useful in the sequel. This other basis is constructed from
the remark that the vector space UIJ decomposes into
SUð2Þ UIR vector spaces UK as follows:

UIJ ’
MIþJ

K¼jI�Jj
UK: (10)

This decomposition provides indeed another orthonormal
basis of UIJ, given by the family of vectors ðjK; kiÞKk

where K 2 ½jI� Jj; Iþ J� and k 2 ½�K;K� as usual.
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The changing basis formulas are given in terms of the
Clebsch-Gordan coefficients hKkjIiJji as follows:

jIii � jJji ¼ X
K;k

hKkjIiJiijKki and

jKki ¼ X
IJij

hKkjIiJiijIii � jJji: (11)

To write the action of G on the basis elements jKki, it is
convenient to find the subgroup H � G which leaves the
subspaces UK of the decomposition (10) invariant and then
to identify G with the space G ’ H � ðG=HÞ. In fact, it is
immediate to see that H ’ SUð2Þ, the coset G=H is iso-
morphic to the sphere S3 and then we identify G with
SUð2Þ � S3. Notice that the identification we have just
mentioned is not canonical because G admits many
SUð2Þ subgroups; therefore, to make this identification
well-defined, one has to precise which SUð2Þ subgroup
one is talking about. In our case, the SUð2Þ subgroup is
the diagonal one, i.e., it is the group of the elements
ðgL; gRÞ where gL ¼ gR. As a result, the explicit mapping
between G and SUð2Þ � S3 is

G ! SUð2Þ � S3

ðgL; gRÞ ¼ ðu; uxÞ � ðu; xÞ ¼ ðgL; g�1
L gRÞ: (12)

This mapping is of course invertible and its inverse is
trivially given by

SUð2Þ � S3 ! G ðu; xÞ � ðu; uxÞ: (13)

The multiplication law ðgL; gRÞðg0L; g0RÞ ¼ ðgLg0L; gRg0RÞ
induces the multiplication rule

ðu; xÞðu0; x0Þ ¼ ðuu0; u0�1xu0x0Þ (14)

in the SUð2Þ � S3 representation of G. In particular, the
inverse of the element ðu; xÞ is given by ðu; xÞ�1 ¼
ðu�1; ux�1u�1Þ. The diagonal terms u � ðu; 1Þ and the
pure spherical terms x � ð1; xÞ will be relevant in the
following construction. Note that elements of S3 are iden-
tified with SUð2Þ group elements so that they can be multi-
plied or inverted.

Let us now come back to the action of G on the vectors
jK; ki of the vector spaceUIJ; this action is best written and
simpler using the factorization SUð2Þ � S3 of G. Indeed, a
simple calculation shows that

RIJ
KkL‘ðuÞ ¼ RIJ

KkL‘ðu; uÞ
¼ X

m1;m2

hKkjIm1Jm2iDI
m1;n1ðgLÞDJ

m2;n2ðuÞ

� hIn1Jn2jL‘i
¼ �K;LD

K
k‘ðuÞ

RIJ
KkL‘ðxÞ ¼ RIJ

KkL‘ð1; xÞ ¼
X
ijj0

hKkjIiJjihIiJj0jL‘iDJ
jj0 ðxÞ;

(15)

where we have introduced the notation RIJ
KkL‘ðgÞ �hKkjRIJðgÞjL‘i for the SUð2Þ � SUð2Þ matrix elements.

As expected, we see that u 2 SUð2Þ leaves any SUð2Þ
representation spacesUK of the decomposition (10) invari-
ant whereas x moves the vectors from one SUð2Þ repre-
sentation space to another. This closes the brief review on
SUð2Þ � SUð2Þ representations theory.

2. The vertex amplitude as an integral over several copies
of S3

We make use of the basic properties on representations
theory recalled above to write the general formula of the
vertex amplitude (8) in the form (3). To do so, one splits the
integrations over the group variables gi 2 G in the formula
(8) into integrations over the xi 2 S3 variables and inte-
grations over the ui 2 SUð2Þ variables using the isomor-
phism (12) and one obtains

VðIij; !iÞ ¼
Z �Y5

i¼1

dxi

��Y5
i¼1

dui

�
ð�5

i¼1viÞ

�
�O
i<j

RIijðuiÞRIijðxix�1
j ÞRIijðu�1

j Þ
�
; (16)

FIG. 2. This picture is a graphical representation of the inte-
grand in the formula (16) defining the vertex amplitude. Each
line is doubled because it carries a representation of SUð2Þ �
SUð2Þ and the single lines in the pair colored with ðI; JÞ are
colored by I and J, separately. Furthermore, the single lines are
endowed with bullets that represent the insertion of SUð2Þ group
elements: the small ones are associated to diagonal elements
ui 2 SUð2Þ whereas the big ones are associated to spherical
elements xix

�1
j 2 S3. The vectors vi are represented by boxes

and they are contracted with the free ends of the graph.
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where RIðuÞ � RIðu; 1Þ (respectively, RIðu; uÞ) and
RIðxÞ � RIð1; xÞ (respectively, RIð1; xÞ) are the matrices
of SUð2Þ � SUð2Þ representations I in the SUð2Þ � S3

(respectively SUð2Þ � SUð2Þ) formulations. To have a
‘‘geometrical’’ intuition of this formula, we give a graph-
ical representation of the integrand in Fig. 2 below. In the
models we are going to consider explicitly in the sequel,
we can perform the integrations over the ui variables;
therefore we formally perform the integration over the
ui’s in the general formula (16) and we obtain a formula
for the vertex amplitude as an integral over five copies of
S3 only

VðIij; !iÞ ¼
Z �Y5

i¼1

dxi

�
ð�5

i¼1�iÞ �
�O
i<j

RIijðxix�1
j Þ

�
:

(17)

The integrations over the five SUð2Þ variables ui have been
hidden in the following definition of the vectors �i 2
�j�iU

�
Iij
:

�i �
X
ðaijÞ

�
ðaijÞ
i

Z
duð�j>ihvaij jRIijðuiÞÞ

� ð�j<iR
IjiðuÞ�1jvaijiÞ (18)

where we have used the explicit decomposition of the
vectors vi 2 �j�iU

�
Iij

given in the introductive part of

Sec. II B. This formula will be much more explicit when
we consider the particular spin-foam models we are inter-
ested in. For the moment, for pedagogical purposes, we
propose a pictorial representation in Fig. 3 of the argument
of the previous integral (18) when i ¼ 1.

Before considering specific examples, let us add one
more important remark. The vertex amplitude can be trivi-
ally reformulated as an integral over ten copies of G as
follows:

VðIij; !iÞ ¼
Z �Y

i<j

dxij

�
CðxijÞð�5

i¼1�iÞ �
�O
i<j

RIijðxijÞ
�
;

(19)

where the constraint CðxijÞ is a distribution which imposes,

roughly speaking, xij to be a ‘‘coboundary,’’ i.e., of the

form xix
�1
j . An explicit formula for CðxijÞ is simply given

by the integral

CðxijÞ ¼
Z �Y5

i¼1

dxi

�Y
i�j

�ðx�1
ij xix

�1
j Þ; (20)

where � is the SUð2Þ delta distribution. It is possible to
perform the above integration whose result is simply given
by the product of five delta distributions,

CðxijÞ ¼ �ðx123Þ�ðx234Þ�ðx345Þ�ðx451Þ�ðx512Þ; (21)

where xijk ¼ xijxjkxki and, by convention, xij ¼ x�1
ji . The

interpretation of the constraint CðxijÞ will become clear in

the last section where we make the link with the canonical
quantization. To conclude, we underline that we have
finally found the desired formula (3) for the vertex ampli-
tude with the announced expression of the distribution
CðxijÞ and the model dependent function V ðIij; !i; xijÞ ¼
ð�5

i¼1�iÞ � ð
N

i<jR
IijðxijÞÞ is a particular contraction of five

SUð2Þ matrices.

C. Vertices of particular models

This part is devoted to study some aspects of the vertex
amplitude (17) for the topological model, the BC model,
and the EPR model. In fact, these models differ only by the
choice of the intertwiners !i or equivalently the vectors vi

which are their building blocks. Thus, to understand the
construction of these models and their differences, one has
to understand the definition of their associated inter-
twiners. For that purpose, let us start by recalling basic
properties of intertwiners. First of all, in spin-foammodels,
we are interested in four valent intertwiners only. The four
valent intertwiners between four given representations
form a (normed) vector space of finite dimension. In the
case where G ¼ SUð2Þ, one can exhibit three canonical
(natural) orthogonal basis (labeled by an index � 2
fþ;�; 0g that indicates the ‘‘coupling channel’’) presented

FIG. 3. Structure of the node i ¼ 1. Four pairs of edges are attached at each node of the graph: each edge is colored with a SUð2Þ
representation. The bullets illustrate the inclusions of SUð2Þ variables ui or S3 variables xix

�1
j . Notice that, in the SUð2Þ � SUð2Þ

formulation, each pair of lines is associated to the element ðgL; gRÞ, gL corresponding to the left line and gR to the right one.
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in Fig. 4. Whatever the basis we choose, any of its element
is completely characterized by the representation appear-
ing in the intermediate channel in the tensor product de-
composition. Therefore, one often identifies the element of
each basis with a representation. We will use the notations
��ð�Þ to denote the SUð2Þ intertwiner in the basis � with
intermediate representation �. One can make uses of these
results to construct the basis of SUð2Þ � SUð2Þ four valent
intertwiners. In particular, one can naturally exhibit nine
‘‘tensor product’’ basis labeled by a couple ð�; �0Þ.
However, we will consider in the sequel only the three
basis of the type ð�; �Þ which will be labeled by a single �
for simplicity: elements of the basis � are denoted ��ð�Þ as
in the SUð2Þ case but with the difference that � is now a
couple of SUð2Þ representations.

Now, we are ready to define the intertwiner !i for the
model we are interested in. Afterwards, we are going to
make the general abstract formula of the vertex amplitude
more concrete and more useful for studying its properties.

1. The topological model

We start with the simplest, certainly the more mathe-
matically precise but nonphysical model. The topological
model is closely related to BF theory with gauge group
SUð2Þ. More precisely, given a triangulation T of a four-
dimensional manifoldM, one can discretize the BF action
to be well-defined on this triangulation and the path inte-

gral ZBFðT Þ of the discretized action can be formulated as
a state sum or equivalently a spin-foam model

ZBFðT Þ ¼ X
fjfg;f!tg

Y
f2T 2

dimðjfÞ
Y
t2T 3

dimð!tÞ�1

� Y
s2T 4

VBFð!ts ; jfsÞ; (22)

where we have used notations of (2); we have identified the
intertwiners !t with the associated representation and VBF

is the vertex amplitude completely defined by the graph 5.
This amplitude is known as a 15j symbol and can be
formulated as a finite sum of products of 6j symbols

VBFðIij; !iÞ ¼
X
K

1

d!1
d!5

d2K

�
!1 I12 I13
!2 I25 K

�

�
�
!2 !3 I13
I23 I13 K

��
I35 I24 I34
!3 !4 K

�

�
�
!1 I14 I15
I25 !5 K

��
I45 !5 I34
I14 !4 K

�
: (23)

The 6j symbols are the totally symmetrized 6j symbols
defined, for example, in chapter 6 of Ref. [19]. Note that
the sum is finite and then the vertex amplitude is well-
defined. However, the state sum is generally divergent;
it can be made convergent by gauge fixing or by turning
classical groups into quantum groups. The state sum
is a (formal) piecewise linear (PL) invariant, i.e., invariant
under homeomorphisms.
We have voluntarily not given neither the interwiners

!BF
i nor the vectors vi defining the model according to the

previous section. Indeed, such a formulation is not very
useful for the topological model and the description of the
previous section is naturally adapted for SUð2Þ � SUð2Þ
spin-foam models and not really for SUð2Þ spin-foam
models.

2. The Barrett-Crane model

The Barrett-Crane model has been constructed as a step
towards the covariant quantization of four dimensional
pure Euclidean or Lorentzian gravity à la Plebanski.
Here, we consider exclusively the Euclidean case. The
BC model is then a state sum associated to a triangulation
T of a four manifold M which is supposed to reproduce
the path integral ZPlðT Þ of a discretized version of the
Plebanski action. However, the link between the BC model
and gravity is somehow misleading. Indeed, the BC state
sum has been constructed heuristically as a modification of
the SUð2Þ � SUð2Þ topological state sum according to the
following rules: representations coloring the faces of the
four simplex are supposed to be simple, i.e., of the form
ðIij; IijÞ; the intertwiners !BC

i associated to the tetrahedra

are also called simple or BC intertwiners we will recall the
definition in the sequel; the vertex amplitude VBC associ-
ated to the four simplices are the so-called 10j symbols

FIG. 4. The three canonical basis of the space of four-valent
intertwiners. The intermediate channel is endowed with the
representation �.

FIG. 5. Pictorial representation of a 15j symbol: vertices are
labeled by representations !i and edges by representations Iij.
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whose definition will also be recalled later. The BC model
does not say anything concerning the amplitudes A2 and
A3 associated to the faces and the tetrahedra of the
triangulation. However, many arguments lead to certain
expressions of A2 and A3 and the corresponding state
sums have been numerically tested [20]. Anyway, we will
not consider these amplitudes in this paper.

Let us concentrate on the construction of the vertex
amplitude VBC whose basic ingredient is the simple inter-
twiner. A simple n-valent intertwiner is such that any of its
decompositions into three-valent intertwiners introduce
only simple representations in the intermediate channel.
The simple intertwiner has been studied intensively in the
literature; in particular, it was shown to be unique up to a
global normalization [21]. This property makes clear that
the vertex amplitude of the BC model is a function
VðIij; !BC

i Þ of only ten representations and it is called a

10j symbol. To precisely define the simple intertwiner
!BC

i , it is more convenient to start with the formula (6)
which shows that !BC

i is completely determined by the
choice of a ‘‘simple’’ vector vBC

i 2 �j�iU
�
IijJij

where

ðIij; JijÞ is a SUð2Þ � SUð2Þ UIR. If ðIij; JijÞ is a simple

representation, i.e., Iij ¼ Jij, then the associated vector

space admits a unique normalized (diagonal) SUð2Þ invari-
ant vector w (or jwi) which we identify with its dual hwj 2
V�
Iij
. In that case, indeed, the decomposition (10) of UIijJij

into SUð2Þ representations contains the space U0 which is
the one-dimensional space of diagonal SUð2Þ invariant
states. The simple vector is in fact the tensor product of
these invariant vectors: !BC

i ¼ w�4. As a result, the ex-
pression of the simple intertwiner in the tensor product
basis reads

!BC
i ¼ 1Q

j�i

ffiffiffiffiffiffiffi
dIij

q X
�

d���ð�Þ; (24)

where the sum runs over simple representations � �
ð�;�Þ only and is finite. An important property is that
the previous sum is independent on the choice of the basis
�. Using this formula of the simple intertwiner, one finds
immediately the vertex amplitude of the BC model

VBCðIij; !BC
i Þ ¼ 1Q

i�j dIij

X
�

d�VBFðIij; �Þ2 (25)

as a sum of BF amplitudes VBF which are SUð2Þ 15j
symbols. The sum runs over simple representations only
and is independent on the choice of the intertwiners defin-
ing the 15j symbol. Such a formula is too cumbersome to
be useful and one prefers to use the integral formulation
(19) of the amplitude to study its physical properties. This
integral formula simplifies indeed drastically because the
SUð2Þ integral defining �i (18) becomes trivial due to the
SUð2Þ invariance of the vectors vi, and reads

VBCðIij; !iÞ ¼
Z �Y5

i¼1

dxi

�
hw�10jO

i<j

RIijð1; xix�1
j Þjw�10i:

(26)

Using the second equations in (15), one obtains the follow-
ing integral formula for the 10j symbol:

VBCðIij; !BC
i Þ ¼

Z Y
i�j

dxij
�IijðxijÞ
dIij

CðxijÞ

¼
Z Y5

i¼1

dxi
Y
i<j

�Iijðxix�1
j Þ

dIij
; (27)

where �IðxÞ is the SUð2Þ character of x in the representa-
tion I. Up to some normalization factors, the previous
formula coincides with the Euclidean 10j symbols. This
integral formulation was very useful to study the classical
behavior of the Euclidean BCmodel. Let us finish this brief
presentation of the BC model with two important remarks.
Remark 1. The previous calculation can be done in a

completely graphical way. Indeed, the ‘‘black’’ boxes rep-
resenting the vectors vBC

i in Fig. 2 reduce to the following
form

where the dashed lines represent spin 0 representation. We
see explicitly that vBC

i project into diagonal SUð2Þ invari-
ant vectors. Furthermore, the 3j vectors involving a spin 0
representation are proportional to the ‘‘identity’’ according
to the following pictorial rule

As a result, one immediately obtains the pictorial repre-
sentation of the BC vertex amplitude which is given by the
product of the normalization factor

Q
i<jd

�1
Iij

and the graph

in Fig. 6. The graph consists in ten disconnected loops
colored by representations Iij which makes obvious that

the vertex amplitude integrand is, up to a normalization,
the product of ten characters �IijðxijÞ.
Remark 2. There is another equivalent expression for

the vertex amplitude which was very useful to study the
classical behavior of the vertex amplitude found by Freidel
and Louapre [22]. This formula will not be used in this
paper but it is still interesting to mention it at least to ask
the question whether a similar formula exists for the EPR
model. This formula is based on the simple fact that
the character �IðxÞ depends only on the conjugacy class
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� 2 ½0; 	� of x ¼ �hð�Þ��1: � 2 SUð2Þ=Uð1Þ and hð�Þ
is in the Cartan torus of SUð2Þ. This fact leads after some
calculations to an expression of the vertex amplitude as an
integral over the conjugacy classes

VBCðIij; !BC
i Þ ¼

Z �Y
i�j

d�ij
sinðdIij�ijÞ

dIij

�
~Cð�ijÞ: (30)

The notation ~C holds for the ‘‘Fourier transform’’ of the
distribution C; it is a distribution as well given by

~Cð�ijÞ � 210

	10

Z �Y
i<j

sin�ijd�ij

�
Cð�ijhð�ijÞ��1

ij Þ

¼ �ðG½cosð�ijÞ�Þ; (31)

where G holds for the Gramm matrix. Such a relation is in
fact a particular example of a much more general duality
relation [23].

3. The Engle-Pereira-Rovelli model

The BC model has been considered as the most prom-
ising spin-foam model for a long time: its definition is
simple, it has a quite appealing physical interpretation
and admits the good classical limit [20,22,24] in the sense
that the associated vertex amplitude tends to the Regge
action in the classical limit, apart from a term due to
degenerate contributions, and it was also successful in

reproducing the correct asymptotic behavior of the diago-
nal components of the graviton propagator [10,25].
Nevertheless, it has been recently realized that the model
does not satisfy the required properties to reproduce at the
semiclassical limit the nondiagonal components of the
propagator [9]. The reasons of this failure have been deeply
investigated and a quest for a new model have been started.
Recent researches have led to the so-called EPR model
which has been argued to be a serious candidate. However,
the model was discussed a lot and some criticisms can be
found in [16,26]. This section is devoted to recall the basis
of this model in the Euclidean sector with no Immirzi-
Barbero parameter 
 ¼ 0.
As in the BC framework, Engle, Pereira, and Rovelli

have proposed a formula for the vertex amplitude VEPR

only. To construct VEPR, one starts by coloring the faces of
the four simplex by simple representations and the tetrahe-
dra i by specific intertwiners denoted !EPR

i . We propose to
define !EPR

i through its associated vector vEPR
i according

to the formula (6). To do so, to each simple representation
ðIij; IijÞ, we associate the projector I2Iij :UIijIij ! U2Iij from

the SUð2Þ � SUð2Þ representation’s vector space UIijIij

into the vector space of the SOð3Þ representation of spin
2Iij. In the standard bra-ket notation, the projector reads

I2Iij ¼
P

mjm2Iijihm2Iijj; it is clear that it can be trivially

identified to its dual I�2Iij ¼ I2Iji . Then, the vector vi is

constructed from this projector as follows:

vEPR
i � ��ð�iÞ

�O
j�i

I2Iij

�
; (32)

where ��ð�iÞ is a SOð3Þ intertwiner, viewed as an element
of the tensor product �j�iV2Iij � , characterized by � 2
f0;þ;�g and the SOð3Þ representation �i as illustrated in
Fig. 4. As the vector vEPR

i is totally determined by a SOð3Þ
representation �i and a choice of basis �, we will identify
in the sequel the vector vEPR

i with the couple ð�i; �Þ. The
pictorial representation of vi is the following:

Note that we made a particular choice for � to draw the
picture; another choice would lead to a different contrac-
tion of the four edges colored by the representations 2Iij.

Contrary to the BC model, the EPR intertwiner between
four given representations Iij is not unique for it depends

on �i and ", both belonging to a finite set.
Now, it is possible to decompose the EPR intertwiner in

any tensor product basis of the space of four-valent
SUð2Þ � SUð2Þ intertwiners. We are interested in its de-
composition in the basis of the type ð�; �Þ whose elements

FIG. 6. Pictorial representation of the BC vertex integrant up
to the normalization factor

Q
i<jd

�1
Iij
. The graph is made of ten

disconnected unknots colored with representations Iij. In each

loop is inserted a S3 element of the form xix
�1
j .
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are denoted ��ð�Þ. After some simple calculation, we
recover the following expression of the EPR intertwiner
given in the literature

!EPR
i ¼ X

�

fð!i; Iij; ��ð�ÞÞ��ð�Þ; (34)

where the coefficient f is graphically ‘‘represented’’ in
Fig. 7 and the sum is finite and runs over SUð2Þ � SUð2Þ
representations � with a fixed chosen basis �. In the
notation of Engle-Pereira-Rovelli, � is denoted ðiþ; i�Þ
and the representation defining !i is denoted i. Note that
the sum (34) is not restricted to simple representations.

Now, we have all the ingredients to compute the vertex
amplitude VEPRðIij; !EPR

i Þ for the EPR model. From the

expression (34), we show immediately that

VEPRðIij; !EPR
i Þ ¼ X

�¼ðiþ;i�Þ
fð!i; Iij; ��ðiþ; i�ÞÞ

� VBFðIij; iþÞVBFðIij; i�Þ; (35)

where VBFðIij; i	Þ are the SUð2Þ 15j symbols which de-

pends on the representations Iij and � but also on the

choice of the basis � which has not been explicitly written.
The sums runs over SUð2Þ � SUð2Þ representations � with
a fixed �. Such a formula is rather complicated and one
might prefer working instead with an integral formula of
the form (5). To obtain such a formula, one has to separate
in the integral (8) the variables ui from the variables xi as in
(16) and then to perform the integration over the variables
ui. These last integrations are very simple to compute: the
integration over u3 is trivial and those over the remaining
variables ui give a simple normalization factor N ¼
ðd2I12d2I45d!1

d!5
Þ�1.

Afterwards, the vertex amplitude reduces to the formula

VEPRðIij; !iÞ ¼ N
Z Y

i�j

dxijCðxijÞV ðIij; !i; xijÞ; (36)

where the amplitudeV is a function of the ten variables xij
and is graphically represented in Fig. 8. This formula is the
EPR counterpart of the formula (27) for the BC model. It
will appear very useful in the next section to make a
contact with loop quantum gravity. It might also be useful
to study the classical and semiclassical properties of the
EPR model as it is the case for the BC model.

4. A direct generalization: the Freidel-Krasnov models

This section is devoted to present a very direct general-
ization of the EPR model. This generalization leads to a
large class of spin-foam models to which both the EPR and
the BC models belong. This generalization is very well-
known and corresponds to considering generic projected
spin networks, as boundary states. The corresponding ver-
tex amplitude has been studied and computed in [26].
To motivate the construction of FK models, let us recall

that the vector vEPR
i , necessary to define the EPR inter-

twiner !EPR
i , has been constructed making use of a projec-

tor I2Iij from the vector space of the SUð2Þ � SUð2Þ simple

FIG. 7. EPR fusion coefficients. The edges are colored with
SUð2Þ representations and the vertices with symmetric SUð2Þ 3j
symbols. The picture illustrates the coefficient fð!i; Iij; ��ð�ÞÞ
for Iij ¼ fj1; j2; j3; j4g, !i is characterized by i (and some �) and

� ¼ ðiþ; i�Þ.

FIG. 8. Pictorial representation of the EPR argument in the
integral formula: vertices are labeled by i ¼ 1; � � � ; 5 where i ¼
1 is the top vertex and the others are enumerated according to the
anticlockwise orientation; edges are then oriented and are
labeled by ðijÞ with i < j. The doubled lines are colored with
simple representations ðIij; IijÞ. The lines ðijÞ in the same pair are

linked to a line colored with the representation 2Iij. At each

vertex, the four single lines are linked with a line of representa-
tion !i.
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representation ðIij; IijÞ into the SOð3Þ vector space repre-

sentationU2Iij . A direct generalization would be to define a

vector v
gen
i using instead, at each vertex i, projectors IKi

j

from VIijIij into the SOð3Þ representation UKi
j
for any

representation Ki
j 2 ½0; 2Iij�. The formal expression of

the general vector is then the following:

v
gen
i � ��ð�iÞ

�O
j�i

Ki
j

�
: (37)

The vector vgen
i so defined depends on the choice of the

intertwiner ��ð�iÞ and on the representations Ki
j. It is

represented by the following diagram

This leads to a vertex amplitude very similar to the EPR
one. In particular, its integral formula takes the same form
of (36) where the normalization factor is changed intoN ¼
ðdI1

2
dI4

5
d!1

d!1
Þ�1 and the functionV is represented by the

same graph drawn in Fig. 8 with different spin labels.
As a consequence, we get a large class of spin-foam

models vertex amplitudes V
gen
i which depends not only on

the ten representations Iij coloring the faces of the four

simplex but also depends on five other representations per
tetrahedron i which have been denoted �i, K

i
j. Up to now,

only special cases of such models have been studied: the
BC model where Ki

j ¼ �i ¼ 0, the EPR model where

Ki
j ¼ Kj

i ¼ 2Iij and �i is a free parameter. Thus, either

we choose to project into the trivial representation either
into the high test representation. The FK model consists in
another choice of the representations Ki

j and �i.

Many arguments lead to the fact that the EPR inter-
twiners define the good physical model, namely, the one
which should reproduce the discretized path integral of the
Euclidean Plebanski theory.

III. THE VERTEX AND THE PHYSICAL SCALAR
PRODUCT

In this section we are proposing a link between (cova-
riant) spin-foam models and (canonical) loop quantum
gravity. To explain our strategy, we start by recalling
some needed basic results of LQG. One of the main points
of LQG is the assumption that physical states can be
constructed from the so-called kinematical Hilbert space
H kin which consists in the space of cylindrical functions
endowed with the kinematical scalar product h; i defined
from the SUð2Þ Haar measure. The spin-network states
form an orthonormal basis of H kin. Then, the idea is

basically to impose the constraints of gravity to extract
physical states out of the kinematical space. So far, we
know how to impose the Gauss constraint and the space-
diffeomorphisms constraints and this leads to the construc-
tion of the diffeomorphism invariant states: they form the
space H diff which is endowed with the Ashtekar-
Lewandowski measure [27]. To be more correct, diffeo-
morphism invariant states are not elements of the kine-
matical spaces but rather dual elements. Their precise
construction is well described in [1]. The physical
Hilbert space H phys is still unknown but expected to be

constructed from the Ashtekar-Lewandowski measure. Up
to now, we do not how to solve the remaining Hamiltonian
constraint. Spin-foam models have been introduced as an
alternative to find physical states and the physical scalar
product in the sense that the amplitude of a spin-foam
models should reproduce the physical scalar product be-
tween the states at the boundary of the spin foam. This
section aims precisely at clarifying this last point in a
simple case.
More precisely, we consider the spin foam associated to

the four-simplex graph denoted �. Its amplitude is given,
up to some eventual normalization factors, by the vertex
amplitude V. From the general boundary (covariant) for-
mulation point of view, � is viewed as a graph interpolating
between two kinematical boundary states which are �1 and
�4 as schematically depicted in Fig. 9. In fact, as shown in

Fig. 9, �1 and �4 belong to the space Cylð~�Þ where ~� is the
union of � with four free ends. These free ends have been
added for technical purposes only. Notice that � can be
equivalently interpreted as the graph interpolating between
two different graphs that would be denoted �2 (with two
vertices) and �3 (with three vertices). For that, one would

FIG. 9. Representation of the graph ~�. The subgraphs associ-
ated to �1 and �4 have been underlined and the group variables
associated to each edge have been emphasized.
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need to introduce also some free ends at the graph �. From
the canonical point of view, the states �1 and �4 are
considered schematically as cylindrical functions on the

graph ~�. Therefore, one naturally asks the question
whether it exists a ‘‘physical projector’’ P acting on the

space Cylð~�Þ such that its matrix element h�4; P�1i con-
structed from the kinematical scalar product gives the
vertex amplitude. The notation h�4; P�1i can be misleading
because P has in fact to be viewed as a state in the sense of
Gelfand-Naimark-Segal (GNS), i.e., P is a linear form on

Cylð~�Þ, and the physical scalar product reads h�4; P�1i ¼
Pð ��4�1Þ. We abusively use the same notation for the pro-
jector viewed as a ‘‘ matricial operator’’ or a linear form.
To be interpreted as a GNS state, P has to satisfy additional
properties, like the positivity, that we will not discuss here.
We show that it is possible to construct explicitly such an
operator P for the topological, the BC, and the EPR
models. The projector for the FK model can also be ob-
tained immediately generalizing the construction in the
EPR case. We will use the obvious notations PBF, PBC,
and PEPR to denote the physical projector in the different
cases.

There are two important points to clarify. The first one is
the issue of uniqueness of the solution: we find one (class
of) solution(s) for P in each model but we do not know if it
is unique (in some precise sense of course). Second, we
work in the kinematical Hilbert space and we expect P to
behave correctly with respect to diffeomorphisms invari-
ance in order to extend it to H diff . We hope to address
these important mathematical issues in the future.

A. The topological model

The topological model is the simplest case to consider.
Even if it is not of a great physical interest, it is a good toy
model to test the possibility of constructing a ‘‘physical
projector’’ P. Furthermore, we will see that this construc-
tion will be useful to study the other more physical cases.
Let us emphasize that the construction of PBF is very
similar to the construction of the projector into physical
states in three dimensions as expected from the topological
nature of the model.

As we said in the introduction of this section, the bound-

ary states �1 and �4 are elements of Cylð~�Þ: �1 is a function
of the eight group variables yh, zk, with k ¼ 1; � � � ; 4 and
h ¼ 2; � � � ; 5, as shown in Fig. 10; �4 is a function of 14
group variables, ten of them are denoted xij with i, j ¼
1; � � � ; 5 and i � j, and the four remaining are the zk
variables as shown in Fig. 10. Note that the zk group

variables are those associated to the free ends of ~� which
are common to the spin-network graphs associated to �1
and �5.

We now address the concrete question of finding the
projector PBF such that h�4; PBF�1i is, up to some eventual
irrelevant normalization factors, the vertex amplitude VBF.
Of course, we have implicitly assumed that �1 and �4 are

spin-network states, i.e., they are associated to a coloring
of the edges and the vertices of their associated graphs.
Concerning �1, its vertex is colored with an intertwiner
denoted!1 and each edge associated to the variables yk are
colored with a representation denoted Jk. Concerning �4,
its vertices i are colored with intertwiners!i and each edge
associated to the variables xij are colored with representa-

tions Iij.

The operator PBF has to be a discretization of the flatness
condition on the connection: it is a cylindrical distribution
on � which imposes that the holonomies around the closed
faces of � are trivial. One candidate which realizes such a
requirement is given by

PBF ¼ �ðx123Þ�ðx234Þ�ðx345Þ�ðx451Þ�ðx512Þ (39)

with the notation of (21). We need only five delta distribu-
tions to impose the flatness condition on the ten faces of the
four simplex. Furthermore, we see that PBF is nothing but
the distribution CðxijÞ we have previously introduced (21).
To show that this operator is indeed a solution of our
problem, let us compute its matrix element between the
states �1 and �4 making use of the kinematical scalar

FIG. 10. Pictorial representation of the graph associated to �1
and �4, separately. The free edges are oriented from the vertices
to the free ends; the internal edges are oriented according to the
order on the vertices. The variables associated to the free ends
are denoted zk for the two graphs; those associated to the internal
edges of �4 are denoted xij with i, j ¼ 2; � � � ; 5; those associated
to the internal edges of �1 are denoted yh.
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product

h�4; PBF�1i ¼
Z �Y5

i�j

dxij

��Y5
k¼2

dyk

�

�
�Y4
‘¼1

dz‘

�
�4ðx; z‘ÞCðx; yÞ�1ðy; zÞ

¼ Y4
k¼1

�Jk;I1k

dI1k

Z �Y
i�j

dxij

�
CðxijÞ�5ðxijÞ; (40)

where �5ðxijÞ is the spin-network state associated to the

four-simplex graph. To obtain this result, we have per-
formed the integration over the z variables first, then we
have absorbed the y variables using the invariance of the
Haar measure to get as a final result an integral involving
only the variables xij. At this point, it is immediate to see

that the previous integral simplifies and we have

h�4; PBF�1i ¼
�Y4
k¼1

�Jk;I1k

dI1k

�
VBFðIij; !iÞ: (41)

Up to a renormalization factor, the physical scalar product
gives exactly the desired vertex amplitude of the topologi-
cal model. Therefore, we found a projector P into the
physical states of the topological model.

Let us finish the study of this case with some remarks.
First, the construction of PBC can be easily generalized to
the space of all cylindrical functions: we only have to
impose the flatness condition around the closed loops of
the spin networks, but taking into account the fact that one
has to avoid redundant delta distributions in order to have a
finite amplitude. Second, as we have already said, the
projector PBC has a clear physical interpretation in the
sense that it is a discretization of the first class constraints
of the BF theory. For that reason, one can suppose that the
solution we found is unique. As a final remark, let us
emphasize that, even if the topological model is not physi-
cally interesting, it will appear very useful to understand
the gravitational models, namely, the BC and the EPR
models. Indeed, the three models admit the same kinemati-
cal Hilbert space and, as we will see, the operators PBC and
PEPR are constructed from the operator PBF we have just
constructed. In other words, the physical scalar products of
the gravitational models are obtained from the physical
scalar product of the topological model. This aspect will be
precisely described in the next section.

B. The Barrett-Crane model

This section is devoted to the construction of the opera-
tor PBC. For that purpose, we use the same notations as in
the previous section concerning the space of cylindrical

functions Cylð~�Þ, in particular, concerning the states �1 and
�4. This makes sense because the topological and the BC

models possess the same kinematical Hilbert space. By
kinematical Hilbert space, we mean the space of SUð2Þ
gauge invariant functions which is needed to construct
physical states. Thus, we look for an operator PBC acting

on the space of cylindrical functions Cylð~�Þ such that

h�4; PBC�1i ¼ N

�Y4
k¼1

�Jk;I1k

�
VBCðIij; !BCÞ; (42)

where N is an eventual normalization factor. We propose a
solution where the projector is the product PBC ¼ PBF

~PBC

of the projector PBF ¼ CðxijÞ of the topological model and

another operator ~PBC we are going to define. First, ~PBC has
a nontrivial action on Cylð�Þ but can be trivially extended

to the space Cylð~�Þ. Then, its action on any function F 2
Cylð�Þ is explicitly given by

ð ~PBCFÞðxijÞ ¼
Z �Y

i<j

dvij

�
Fðvijxijv

�1
ij Þ; (43)

where we used the obvious notation xij for the group

variable associated to the oriented edge ðijÞ of �. Thus,
~PBC acts nontrivially on the internal edges of ~�; this action
can be graphically represented as follows:

Let us now see that PBC reproduces the physical scalar
product in the sense of the equation (42). Indeed, an
immediate calculation leads to the result

h�4; PBC�1i ¼
�Y4
k¼1

�Jk;I1k

dI1k

�Z �Y
i<j

dxij

�
ðPBC�5ÞðxijÞ (45)

¼
�Y4
k¼1

�Jk;I1k

dI1k

�
�5ð1Þ

Z �Y
i�j

dxij

��IijðxijÞ
dIij

CðxijÞ; (46)

where �5ð1Þ is the spin network �5 evaluated at the identity
xij ¼ 1, then it is the vertex amplitude of the topological

model, i.e., a SUð2Þ 15j symbol. Thus, the previous equa-
tion can be recasted as follows:

h�4; PBC�1i
h�4; PBF�1i

¼
�Y4
k¼1

�Jk;I1k

dI1k

�
VBCðIij; !BC

i Þ: (47)

Up to some normalization factor, the operator PBC repro-
duces the vertex amplitude of the BCmodel. Thus,PBC can
be interpreted as a projection into physical states of the BC
model. Note however that the normalization factor does not
have a clear interpretation for it cannot be reabsorbed into
the whole spin-foam sum as a face or a tetrahedron
amplitude.
The construction we are proposing rises many important

remarks.
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Remark 1. The operators PBF and ~PBC do not commute
and therefore the order of their product clearly matters. The
operator PBF is a multiplicative operator that impose the
discrete analogous of a flatness—connection condition.
This operator might be related to a projector into space-
diffeomorphism invariant states. This interpretation is
based on the fact that, in three dimensions, the flatness
constraint on the connection generates diffeomorphisms
even if, in 4D, the situation is more complicated. The
operator ~PBC is a kind of ‘‘derivative’’ operator for its
action involves SUð2Þ right and left derivatives. Its physi-
cal interpretation is not clear.

Remark 2. If one believes that the BC model is related
to gravity, then it is clear that PBF is the projection into
H diff and ~PBC should contain the projection into the
kernel of the Hamiltonian constraint. This is far from being
obvious and that conjecture is even false if the BC model is
not the one that discretizes gravity as it is suspected. Let us
notice that, in our construction, ~PBC acts first and then acts
PBC which is contrary to what one usually does in LQG
where the projection intoH diff arises before the projection
into the kernel of the Hamiltonian constraint.

Remark 3. The operator ~PBC:Cylð�Þ ! CðSUð2ÞÞ�10
Ad is

in fact a projector from the space of cylindrical functions to
ten copies of the space of functions on the conjugacy
classes CðSUð2ÞÞAd of the group SUð2Þ where F 2
CðSUð2ÞÞAd if and only if Fðgxg�1Þ ¼ FðxÞ for any x
and g in SUð2Þ. Its action on a �5 spin-network state is
given by

ð ~PBC�5ÞðxijÞ ¼ �5ð1Þ
Y
i<j

�IijðxijÞ
dIij

; (48)

where Iij are the representations coloring the edges ðijÞ of
the graph �. It is straightforward to check that ~P2

BC ¼ ~PBC.
As a consequence, for the definition of PBC to make sense,
one has to extend PBF as an operator acting on
CðSUð2ÞÞ�10

Ad which is trivial.

Remark 4. In fact, the decomposition of PBC as the
product of PBF and ~PBC is not canonical. Our construction
provides an equivalent class of functions ~PBC according to

the trivial relation ~PBC 
 ~QBC if and only if PBF
~PBC ¼

PBF
~QBC. Another natural choice for the derivative operator

is ~QBC defined by its following action on �5 spin-network
states:

ð ~QBC�5ÞðxijÞ � �5ðxijÞ
Y
i<j

�IijðxijÞ
dIij

: (49)

This representative is clearly a multiplicative operator.
Remark 5. As a last remark, let us underline that the

physical scalar product between two states in the BCmodel
(47) can be viewed as the matrix element of the operator
~PBC with respect to the physical scalar product of the
topological model up to the ‘‘norm’’ h�4; PBF�1i. In that
sense, the BC model is very closely related to the topo-
logical model.

C. The Engle-Pereira-Rovelli model

In this section, we propose an operator PEPR which
reproduces the vertex amplitude of the EPR model. The
construction of PEPR is very similar to the construction of
PBC. As for the BC model, PEPR is the product of the
noncommuting operators, PEPR ¼ PBF

~PEPR, one of them
being the projector of the topological model as well. The
operator ~PEPR is defined by its action on spin-network
states �5ðxijÞ explicitly given by

ð ~PEPR�5ÞðxijÞ ¼
Z �Y

i<j

dvijdvji

�

�
�Y
i<j

�~Iij
ðvijxijvjiÞ�~Iij

ðvijÞ�~Iij
ðvjiÞ

	

� �5ðvijxijvjiÞ; (50)

where we have introduced the notation ~Iij ¼ Iij=2. As in

the BC model, ~PEPR acts on each edge of the spin network
and this action can be pictured as follows:

In this figure, the closed loops represent SUð2Þ characters. The last equality has been obtained after integrating over the vij

variables. Using this pictorial representation, it is quite easy to compute the matrix elements of PEPR between the states �1
and �4

h�4; PEPR�1i ¼
�Y4
k¼1

�Jk;I1k

dI1k

�Z Y
i<j

dxijðPEPR�5ÞðxijÞ (52)
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¼
�Y4
k¼1

�Jk;I1k

dI1k

�
N�1VEPRðIij; !EPR

i Þ; (53)

where N is the normalization factor introduced in (36). As
a consequence, we claim that the matrix elements of PEPR

reproduce the vertex amplitude of the EPR model. Let us
now finish this section with some important remarks.

Remark 1. The previous remarks (1 and 2) concerning
the BC model can be transposed to the EPR model. In
particular, if the EPR model is a discretization of the path
integral of gravity, ~PEPR should be closely related to the
Hamiltonian constraint. If this is true, our formula could
give some hints about the regularization of the Hamiltonian
constraint. Furthermore, we can easily generalize the con-
struction to any cylindrical functions with no restriction on
the underlying graph.

Remark 2. The operator ~PEPR is constructed making use
of an integration over 20 variables vij with i � j because

vij � vji in the formula (50). Contrary to the BC model,
~PEPR is not a projector neither an operator from Cylð�Þ to
the space of functions on the SUð2Þ conjugacy classes. The
integral (50) can be reduced to an integral over only ten
variables vij with i < j as follows:

ð ~PEPR�5ÞðxijÞ ¼
Z �Y

i<j

dvij

�

�
�Y
i<j

�~Iij
ðvijÞ�~Iij

ðx�1
ij vijÞ

d~Iij

	
�5ðvijÞ:

(54)

To obtain such a formula, we have first integrated over the
variables vij with i > j and then we have performed some

changing of variables.
Remark 3. Our construction can be generalized imme-

diately to the FK models presented in Sec. II C 4. The
resulting operator PFK would take exactly the same form
as PEPR with some differences in the representations of the
characters in the integrand of (50).

Remark 4. Concerning the unicity of ~PEPR, we can
make the same remark 4 as in the BC model, namely, our
construction provides a certain equivalent class of solu-
tions for ~PEPR and the decomposition of PEPR as a product
of PBF and ~PEPR is not canonical.

IV. CONCLUSIONS AND PERSPECTIVES

On the first hand, this article opens one way towards the
understanding of an eventual link between loop quantum
gravity and spin-foam models. We have shown that the
vertex amplitudes of some spin-foam models can be pre-
cisely interpreted as a ‘‘physical’’ scalar product between
two spin networks, only if one of the spin-foam models we
have studied is a quantization of gravity and this point is
still under active discussions. If this is the case, then our

work would make a relation between the canonical and
covariant quantizations of four dimensional Euclidean
gravity. It is indeed possible to construct operators P acting
on the space Cylð�Þ of cylindrical functions on the (ex-

tended) four-simplex graph ~� such that its matrix elements
between spin-networks states gives, up to some eventual
normalization, the vertex amplitudes for spin-foam mod-
els. In a formal language, we have shown that

hs; Ps0i ¼ Aðs; s0Þ; (55)

where h; i is the kinematical scalar product; s and s0 belong
to Cylð~�Þ and Aðs; s0Þ is the spin-foam amplitude of a
graph interpolating between s and s0 which is, here, pro-
portional to the vertex amplitude. The construction works
for the topological model, the Barrett-Crane model, the
Engle-Pereira-Rovelli model, and their direct generaliza-
tions, namely, the Freidel-Krasnov models.
On the other hand, the same article opens questions that

certainly deserve to be investigated. The first one concerns
the possibility to extend our construction to the case where
the spin-networks s and s0 (55) are any cylindrical func-

tions and not restricted to Cylð~�Þ as this was the case in this
article. It is clear that the action of the operators P we have
constructed can be easily extended to any spin-networks
with no assumption on the underlying graph defining the
spin networks. It would be very nice to first compute the
matrix elements of P between these general states and to
check if the result is related to a spin-foam amplitude
associated to a graph interpolating between the two asso-
ciated spin-network graphs. We hope to study this very
exciting problem in the close future.
The second question concerns the link between the

operators P we have constructed and the regularization
of the Hamiltonian constraint à la Thiemann. Indeed, one
would expect that, if the spin-foam models are a discre-
tized version of the path integral of gravity, then P should
be related to the Hamiltonian constraint. It is nonetheless
intriguing to notice an important difference between the
ways the constraints are imposed in LQG and in the spin-
foam models through the operators P: indeed, in LQG, one
imposes the vectorial constraint before imposing the scalar
constraint whereas the operator P ¼ PBF

~P is the noncom-
mutative product of two operators, the second one PBC

imposes clearly the space-diffeomorphisms invariance and
‘‘projects’’ into the vectorial constraint kernel. Of course, it
is too early to conclude anything but its seems to have a
quite important discrepancy between the two approaches.
To understand more precisely these aspects, one could start
by understanding the link between the projector P and the
classical constraints of gravity. Another disturbing point
concerning the order of the two operators defining the
projector P is that it gives the feeling that only flat con-
nections contribute to the dynamics whereas this is obvi-
ously not true in general relativity. Indeed, the flatness
condition is imposed at the last step. This observation rises
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the question whether the BC and even the EPR or the FK
spin-foam models are really related to gravity. This point
certainly deserves to be deeply investigated. We have al-
ready found in the literature arguments against the fact that
these spin-foam models are related to gravity [26].

The third question is more mathematical: is P a GNS
state? Indeed, it is quite misleading to view P as an
operator acting on cylindrical functions for it is a linear

form on Cylð~�Þ. Thus it seems that the GNS theory is the
good mathematical framework to study P. But, if one
wants to interpret that P has a GNS state, one has to check
that it satisfies all the required property, among others the
positivity.

We finish this conclusion by mentioning the possibility
that our work could give some hints to study the classical
and semiclassical behaviors of the EPR model.
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