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We propose a regular black hole whose inside generates a de Sitter space and then is finally frustrated

into a singularity. It is a modified model which was suggested originally by Frolov, Markov, and

Mukhanov. In our model, we could adjust a regular black hole so that its period before going into the

extreme state is much longer than the information retention time. During this period an observer could

exist who observes the information of the Hawking radiation, falls freely into the regular center of the

black hole, and finally meets the free-falling information again. The existence of such an observer implies

that the complementary view may not be consistent with a regular black hole, and therefore, is not

appropriate as a generic principle of black hole physics.
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I. INTRODUCTION

The black hole information paradox is one of the most
important and difficult problems in modern physics [1].
Resolutions have been proposed by various authors with
different motivations (e.g., [2–4]). Remarkably, the black
hole complementarity principle [5–7] cooperates well with
string theory based on holography (e.g., [8–10]).

According to the complementary view of a black hole,
information about matter which falls into the black hole is
actually copied near the event horizon. The asymptotic
observer observes that the information resides near the
event horizon, and the information will reemit in the
form of Hawking radiation. On the other hand, the free-
falling observer who goes beyond the horizon can always
observe the original information, and the information is not
affected by Hawking radiation. In fact, neither of these two
kinds of different observations are permitted by the no
cloning theorem, but if no observer has access to both
pieces of information, in other words, if the asymptotic
and the free-falling observer cannot communicate forever,
then there will essentially be no problem.

However, a problem remains in terms of how to make a
connection between the two copied pieces of information
of the complementary observers. To archive the comple-
mentary view, we may require that ‘‘nonlocality’’, as a
fundamental ingredient of quantum gravity, should be
realized [6], or there may be a nonunitary collapse near
the singularity [11]. There are some proposals which are
closely related to the black hole complementarity, but no
commonly accepted conclusion on the issue seems to exist.

If the complementarity is true, then we at least have a
nice picture of the information flow for an asymptotic
observer. But, what if an outer observer sees the
Hawking radiation and free-falls into the black hole (we
will call this a duplication experiment)? Then the observer

may verify whether or not the information duplication
actually happened, and the complementarity principle
may be falsified. The inventors of the complementarity
argue that we can circumvent this problem as follows:
since the outer observer must wait by the information
retention time [12], and since this time scale is quite
long, it will be almost impossible for the outer observer
to meet the free-falling information before touching the
singularity [7].
In this paper, we reconsider the complementarity in the

context of a regular black hole. In Sec. II, the Frolov,
Markov, and Mukhanov’s model of a regular black hole
is reviewed. Physical initial conditions are also introduced
for the duplication experiment. In Sec. III, the causal
structure of our model is explained, and the information
which flows in and out around the horizon is discussed. In
Sec. IV, the penetrability of the inner horizon and the safety
of the inside structure are discussed. In Sec. V, the dupli-
cation experiment is shown to be realized, and in Sec. VI,
its implications to the black hole complementarity and
holography are discussed.

II. FROLOV, MARKOV, AND MUKHANOV’S
MODEL

There are many well-known models of regular black
holes [13,14]. We will use the model of Frolov, Markov,
and Mukhanov [15]. If there is a local false vacuum and we
push some matter to it, then there will be a black hole
without singularity since the inside of the black hole
becomes a de Sitter space. However, in order to paste
two different vacua, we may need a transition layer which
would be approximated by a thin massive shell [16].
Originally, this model was used to replace the space around
the singularity with a regular de Sitter space, using a
principle known as the limiting curvature hypothesis
[15,17]. However, we do not appeal to this hypothesis
and use only its metric. So the local false vacuum needs
not be as small as the Planck size.
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The metric and the energy-momentum tensor of the
massive shell are as follows:

ds2 ¼ �
�
1� 2mðr; lÞ

r

�
dt2 þ

�
1� 2mðr; lÞ

r

��1
dr2

þ r2d�2: (1)

The mass function mðr; lÞ becomes m�ðr� r0Þ þ
ðr3=2l2Þ�ðr0 � rÞ, where l ¼ ð�=3Þ�1=2 is the Hubble

scale parameter and r0 ¼ ð12=�Þ1=6ð2m=lÞ1=3l is the radius
of the false vacuum boundary (we can choose the value of
� as a free parameter). Then, one can easily check that (if
we choose � ¼ 12) the metric gives the outer horizon
(rþ ¼ 2m) and the inner horizon (r� ¼ l), and usually
r� < r0 < rþ holds as long as l � m. If r < r0, the metric
is exactly the same as a de Sitter space, and, otherwise, it is
exactly the same as a Schwarzschild black hole. We can
calculate a proper mass shell condition [15]:

S�� ¼ diag

�
�

4�
; 0;

�þ �

8�
;
�þ �

8�

�
; (2)

where

� ¼ r0
l2

��
r0
l

�
2 � 1

��1=2 þ m

r20

�
2m

r0
� 1

��1=2
; (3)

� ¼ 1

r0

��
r0
l

�
2 � 1

�
1=2 � 1

r0

�
2m

r0
� 1

�
1=2

: (4)

This massive shell can be constructed by ordinary scalar
(matter) fields [18,19].

One problem of the initial condition is the origin of the
local false vacuum. One may guess that, since the false
vacuum inflates and it will deflate to the past direction, we
may start the initial singularity [20]; however, this happens
only for unbuildable states [21], and since we do not
consider the exponentially expanding vacuum (our vacuum
will collapse to the singularity), we can think that we start
from the buildable vacuum prepared in unitary processes.
To prepare our local false vacuum, we may need to assume
that the background is a kind of de Sitter space for the
energy conservation problem. Although we assume this, as
long as the false vacuum is almost a true vacuum, our
metric form will not be so different around the black
hole radius (see Appendix B).

Let us assume that the change of mass m or parameter l
is sufficiently slow, and then we can use the metric form as
Vaidya [15]. One may notice that, if there is an initial local
vacuum and at an ideal time, if we push some critical mass
(m� ¼ l=2) to the vacuum, there will be a black hole with
one horizon at rþ ¼ r� ¼ r0 ¼ l since the outer and the
inner horizons are the same. The fact that we can assume
the metric structure before this time is supported by the
stability of G-lumps [22]. The geometry of this black hole
is described as a junction between a Friedmann space and a
de Sitter space. By adjusting �, we initiate the regular

black hole with no mass shell [15]. As the mass of the
black hole grows, two horizons will be separated, and r0
will be located between two regions.
After the mass supply ends, the Hawking radiation

becomes important. We can easily calculate the Hawking
temperature of some regular black holes (See
Appendix A.) There are two potential problems: mðr; lÞ
is not a C1 function and the value � becomes large as the
black hole approaches becoming an extreme black hole.
However, the thin shell approximation would not be valid if
the transition layer was comparable to the length difference
between two horizons, as they approach the extreme limit.
So, the approximation of the transition layer should be
modified so that the metric and field contents are regular-
ized around the extreme limit (a possible modified version
of a regular black hole is described in [14]). Then, we know
that our calculation of Hawking temperature is still valid
and conclude that it would become 0 as the black hole
approaches the extreme limit. Since the evaporation pro-
cess is sufficiently slow, because of the stability of the mass
shell [23] for small perturbations, the vacuum will not
collapse to singularity, and we can assume the metric
structure (i.e., Vaidya type structure) until nearly the ex-
treme limit. In any case, there is no problem to penetrate
the shell along the radial direction, and its energy density
will become zero around the extreme limit.
Finally, the field of the false vacuum rolls down to

another false vacuum. In this stage, we assume that the
perturbation is large enough to form a singularity by the
collapse of the mass shell, so the mass shell must collapse
and form a Schwarzschild black hole. However, the inter-
nal matter will not form a singularity until the mass shell
collapses because the inside is still a false vacuum (for
detailed analysis, see [23] and Appendix B).

III. CAUSAL STRUCTURE AND INFORMATION
FLOW

We can draw the whole causal diagram of our model
(Fig. 2). We choose the advanced time v as a time parame-
ter of the Vaidya metric. Until v1, the space-time is flat.
Around v1, a false vacuum is generated (Fig. 1). Between
v1 and v2, the critical mass falls into the black hole, and
there is no horizon. After v2, horizons are generated, and a
mass shell is also generated between two horizons. As
mass falls, the outer horizon grows in a spacelike direction
and the inner horizon in a timelike direction. After v3, the
mass flow ends, and the Hawking radiation becomes im-
portant; the outer horizon moves in a timelike direction,
and the inner horizon in a spacelike direction (on the
dynamics of local horizons, see [24]). After v4, or after
two horizons approach, the scalar field decays, and the
mass shell collapses to form a singularity. The regular
center and the mass shell will approach spacelike singu-
larity, and the regular center must be connected smoothly
in a timelike direction. This will form the left boundary of
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the Penrose diagram. After v4, since there is no significant
effect on the outside observer, the geometry is exactly like
a Schwarzschild black hole. Because parameter l in-
creased, although the mass shell collapses, the outer and
the inner horizons are outside of the shell. Thus, one may

guess that two horizons disappear after v4 and the mass
shell will form another apparent horizon as it collapses
[24]. After v5, the evaporation ends, and the final space-
time becomes flat again. Finally, we can draw the event
horizon of this black hole (each step of the causal diagram
is consistent with [15], and one can compare and find some
differences in [14]).
One may guess that the left boundary must be a straight

line from bottom to top, but it is still enough to understand
the essential behavior; furthermore, we can simply modify
it to a straight line.
We assume that the time evolution of the black hole is

unitary. Then, it is known that, its entanglement entropy
starts from 0 at v3 and reaches the maximum as the thermal
entropy (or, equivalently, its area) of the black hole be-
comes half of its original value [12]. If l � M, whereM is
the maximum mass of the black hole, then the half point
will be located between v3 and v4 and the entanglement
entropy will approach 0 as the black hole evaporates since
we assume the unitarity. However, we know that the ther-
mal entropy will increase as the area of the black hole
decreases.
Therefore, if we choose f, the fraction of the total

degrees of freedom contained outside as an x-axis parame-
ter, then the entanglement entropy and the thermal entropy
behave as in Fig. 3, and we know the information from the
definition [7,12]:

I ¼ Sthermal � Sentanglement: (5)

So one finds the information retention time. The informa-
tion retention time will be between v3 and v4. After the
information retention time, the entanglement entropy de-
creases monotonically and the thermal entropy increases
monotonically. Therefore, if the escaped mass after the
information retention time is not negligible, it must contain
some information. From this point forward, we can regard
the flow of mass as equivalent to the flow of information.

FIG. 1. The scalar field of a local false vacuum changes. At
time v1, it is generated. At time v4, it starts to decay.

FIG. 3 (color online). Flow of information [7,12].

FIG. 2 (color online). The Penrose diagram. This shows the
inner horizon and the outer horizon. The dashed curve is the
mass shell. The left curve means the regular center, and we
regard it as a timelike curve. The arrows are the in-falling matter
and out-going matter (i.e., the Hawking radiation). Eventually,
one can see the event horizon as a thin null line.
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Now we estimate the flow of mass (Fig. 2). Between v1

and v2, we push critical mass m� � l=2. As long as l is not
too small, the critical mass is not negligible. After v2, we
push M�m� until v3. From v3 to v4, since the black hole
becomes extreme, M�m� escapes by the Hawking radia-
tion. After v4, the mass must remain l=2 inside of the black
hole. Finally, after v5, l=2 will escape.

IV. ON INSTABILITY OF INNER HORIZON

One possible problem is the instability of the inner
horizon. This problem was suggested in the context of
the cosmic censorship of charged black holes [25]. This
instability was identified with the effect known as mass
inflation [26], which induces singularity along the inner
horizon since the curvature becomes infinite (this singu-
larity was regarded as a boundary condition or important
boundary by some authors [11,27,28]). However, the inner
horizon singularity is weak enough and does not imply the
end of space-time, like the Schwarzschild singularity [29],
so although the penetration is difficult, the inside structure
may be safe.

We have to consider two problems: one is whether the
inner horizon can be penetrable or not and the other is
whether the inside of the inner horizon can be safe or not.
Recently, the authors performed numerical calculations for
dynamical charged black holes, and we will report on some
of the results [30].

For the first problem, we notice that the mass function
around the inner horizon mðu; vÞ � exp�iðuþ vÞ (of
course, this behavior will be common for the inner horizon
of a regular black hole [31]) becomes infinite only for u !
1 or v ! 1 limit, where u and v are coordinate variables
of the double null coordinate, and �i is the surface gravity
of the inner horizon. If we turn on the Hawking radiation,
all locations of the Penrose diagram are accessible in finite
u and v; thus, the mass function is finite everywhere.
Therefore, there is no curvature singularity in the classical
sense, and a field or matter will be penetrable [30].

The second problem is whether or not the inner horizon
collapses and forms a strong singularity due to some
perturbations. However, we know that the inner horizon
is regular and penetrable from the previous remarks. If it is
penetrable, as long as the perturbation is small enough, it
will not destroy the inside structure. Thus, as long as we
push matter or signals slowly, we can trust the metric
structure everywhere (at least, qualitatively). (This conclu-
sion is also supported by some stability arguments
[22,23].)

One potential problem is that the mass function or
curvature function becomes large (possibly greater than
the Planck scale) for charged black holes. This problem
may occur in regular black holes, but the situation will be
better than charged black holes since there is no strong
singularity inside of regular black holes. Moreover, we
noticed that, as we choose a large number of massless

fields, we can tune the Planck cutoff scale to be larger
and larger [30]; in this limit, we can trust the entire region
with a semiclassical description except the classical
singularity.
In conclusion, we found physically possible conditions

in which we can trust the semiclassical description of our
model. Note that, since the singularity only happens at the
final stage of the black hole, the Horowitz-Maldacena’s
proposal [11] cannot work before v4.

V. THE DUPLICATION EXPERIMENT

Now, we are ready to perform the duplication experi-
ment (Fig. 4).
We use the free-falling observer along the null direction

between the information retention time and v4. The ob-
server can observe enough information from the Hawking
radiation, and the penetration seems to be possible, as we
discussed previously. Thus, the observer can compare the
Hawking radiation with almost all of the free-falling in-
formation. The existence of an observer performing this
duplication experiment invalidates the no cloning theorem;
therefore, there is an observer who observes the violation

FIG. 4 (color online). The duplication experiment.
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of a natural law. This implies the violation of the black hole
complementarity.

One may suspect that, around the extreme limit, the
information can escape from the shell, since the outer
horizon crosses the shell. However, this is not a real prob-
lem in the duplication experiment for the following two
reasons. First, information should escape before the outer
horizon closely approaches the mass shell; thus, the dupli-
cation experiment will be possible even if all of the shell is
inside of the outer horizon. Second, the mass shell has
small mass compared to the initial massM, and so it cannot
contain enough information; thus, it will not be helpful to
rescue the complementarity principle.

In [27], the same gedanken experiment is proposed in a
charged black hole, but they did not fully considered
dynamical cases; thus, the conclusion was unclear.
However, now we have a concrete model. Of course, one
can argue that maybe there are some incorrect assumptions
in our model. One point of concern is whether it may be
possible to destroy the m� so m� experiences some Planck
scale region before v4. Furthermore, one may suspect that
the inner horizon never became penetrable. However, ac-
cording to our analysis [30], the inner horizon can be
regular and penetrable, as well as have low curvature,
when we assume a large number of massless degrees of
freedom. If the assumption is not fundamentally impos-
sible, our model can be meaningful to test the complemen-
tarity principle.

VI. DISCUSSION

Although some fine-tuning is needed, it seems to be
possible to construct the regular black hole of our model.
The existence of an observer performing the duplication
experiment means that the black hole complementarity is
not consistent to some extent. It is now a proper step to ask
the validity of the complementarity, which is to be ‘‘opera-
tionally meaningful.’’ In fact, the complementary view is
an inevitable choice to protect the holographic principle
and the unitarity of the quantum mechanics; however, we
argue that our model would work as a counterexample.

One may say that our model is delicately fine-tuned to
invalidate the black hole complementarity, and the dupli-
cation experiment is successful only in a certain type of
regular black holes. Then, it would be fair to say that the
complementarity is true effectively in facing various gravi-
tational systems like black holes in general relativity.

This insight leads us to make a cautious remark on using
the black hole complementarity on the inflationary mea-
sure problem [32]. The difficulty of finding a proper mea-
sure in a multiverse where eternal inflations take place has
been discussed in many instances. It is known that, by
assuming the complementarity, we may suggest a better
measure without those difficulties. However, if the sug-
gested measure assumes the complementarity, and the

complementarity principle cannot be true for all situations,
the measure will possibly not work.
There are various interpretations of the holographic

behavior of black hole entropy. While the holographic
principle of string theory implies that the real information
constructing the black hole is encoded on the horizon,
another interpretation of the holographic principle implies
that the outer horizon looks like a holographic screen since
we cannot access beyond the horizon in a practical sense.
For example, loop quantum gravity provides the entropy
formula by using this interpretation on the holography
[33]. They (e.g., loop quantum gravity area) give ‘‘opera-
tionally practical’’ ways to define the accessible degrees of
freedom to an asymptotic observer. In this context, the
holography does not need to be protected by the comple-
mentarity and could be consistent with a naive expectation
of general relativity near the black hole horizon. Thus, our
model may be able to cooperate with this rather weak
version of the holographic principle. However, the perspec-
tive of a dynamical observer is not clear, and, of course, the
information paradox puzzle should be resolved in this case
(see discussions in [4,34] and also [35,36]).
Therefore, the authors think that this gedanken experi-

ment reveals the limitation of the complementarity princi-
ple. It seems that although the string theory and the
holographic principle may be fundamentally true, they
must be modified within a certain limit.
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APPENDIX A: HAWKING TEMPERATURE OFA
REGULAR BLACK HOLE

Let us begin with the following metric form:

ds2 ¼ r2d�2 þ dr2

FðrÞ � FðrÞdt2; (A1)

where FðrÞ ¼ 1� 2MðrÞ=r andMðrÞ is a regular function.
Then Fðr�Þ ¼ 0 holds.
At first, the Hawking temperature may be proportional

to the surface gravity of the outer horizon (�o). For the
spherically symmetric case, the surface gravity on the
trapping horizon [24] is calculated by these authors (e.g.,
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[37]). The result is as follows:

�o ¼ 1

4MðrþÞ ð1� 2M0ðrþÞÞ: (A2)

Now we have to check whether or not the surface gravity
is proportional to the Hawking temperature. We prove this
in two ways. (Note that the Hawking temperature must be
related with local horizons [38]).

First, we use the Euclidean rotation method [39]. If we
use the Wick rotation on the metric (A1), since the topol-
ogy changed, we can choose a new metric form:

ds2 ¼ R2d�2 þ dR2 þ r2d�2; (A3)

where

Rð2�Þ ¼ FðrÞ1=2�; (A4)

R ¼
Z r

rþ
Fðr0Þ�1=2dr0; (A5)

and � is the period of the Wick rotated time. We can
identify this as the inverse of the Hawking temperature.

Now we use the Taylor expansion near rþ for FðrÞ.
Since FðrÞ vanishes at rþ, the result is

F ¼
�
2MðrþÞ

r2þ
� 2M0ðrþÞ

rþ

�
ðr� rþÞ þO½ðr� rþÞ2�:

(A6)

And after changing rþ to 2MðrþÞ, we obtain 2�oðr� rþÞ
up to the first order.

Then we will derive that

2�T ¼
ffiffiffiffiffiffiffiffi
2�o

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� rþ

p
1ffiffiffiffiffiffi
2�o

p R
r
rþ

1ffiffiffiffiffiffiffiffiffiffi
r0�rþ

p dr0
¼ �o; (A7)

and this will be true as long as r approaches rþ. This
completes the proof.

Second, we use the Parikh and Wilczek’s tunneling
method [40]. Although there are coordinate singularities
around rþ, if we choose a good coordinate system (the
Painleve-Gullstrand form), we can regularize them [38].
Then the radial out-going null geodesics are given by

_r � dr

dt
¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MðrÞ

r

s
: (A8)

In this case, Parikh and Wilczek suggest [40] that

�� e�2 ImS � e�E=T; (A9)

where � is the emission rate, and S is the action related to
the tunneling.

Now the action is calculated as follows:

S ¼
Z rout

rin

prdr ¼
Z rout

rin

Z pr

0
dp0

rdr ¼
Z M�!

M

Z rout

rin

dr

_r
dH:

(A10)

After changing _r to (A8) and H to m�!, we obtain an
integral

S ¼
Z þ!

0

Z rout

rin

dr

1�
ffiffiffiffiffiffiffiffiffi
2MðrÞ

r

q ð�d!0Þ: (A11)

Although H ¼ m�!, for simplicity, we just use m and
ignore the backreaction. Now we change rin (i.e., rþ) to
2M, and we assume that rout is slightly smaller than rin. To
evaluate the integration, we expandMðrÞ=r around rþ, and
we getZ þ!

0
ð�d!0Þ

Z rout

rin

dr

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�oðr� rþÞ

p : (A12)

If we change the variable r to r� rþ, since rout � rþ is
less than 0, the only possible imaginary term comes from
�LogðrÞ=�o. Then the imaginary part is !�=�o. Finally
we get the Hawking temperature �o=2�. This completes
the proof.
According to these proofs, now we obtain a reasonable

formula for the Hawking temperature of regular black
holes.
Now, let us think about the extreme case. In this case,

since the condition is F0ðr�Þ ¼ 0, the result is M0ðr�Þ ¼
1=2, and this will give T ¼ 0. If the black hole evolves
slowly, then we can use this formula successively. As time
goes on, the black hole will approach the extreme case, but
in this limit, the Hawking temperature approaches 0.
Therefore, the final stage of the black hole can be assumed
to slowly vary. Then we can write

dm

dt
��T�; (A13)

where � is a positive constant, and one can notice that the
black hole will approach the extreme limit. However, one
can think that the thermodynamical description may be
false if the situation is highly dynamic. Anyway, although
it is actually true and two horizons disappear completely, it
will make the duplication experiment clearer.
To extend the thin shell approximation, one may suggest

a regular M function as mAðrÞ þ ðr3=2l2ÞBðrÞ where AðrÞ
(BðrÞ) begins with 1 from the outside (inside) and quickly
decreases to 0 as the radius changes along r0. By using this
method, we may modify and extend the metric around the
extreme limit.

APPENDIX B: FALSE VACUUMGENERATION INA
TRUE VACUUM

We should consider two facts to make a local false
vacuum. One is the energy conservation problem, and the
other is the stability of the mass shell.
If the background itself is a kind of de Sitter, since the

energy cannot be defined globally and the scalar field can
have thermal fluctuations, a tunneling or roll-down process
will be possible [41].
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Now, let us choose the metric form as

ds2 ¼ �
�
1� 2mðr; lÞ

r
� 1

3
~�r2

�
dt2

þ
�
1� 2mðr; lÞ

r
� 1

3
~�r2

��1
dr2 þ r2d�2; (B1)

where ~� is a cosmological constant of the background. As

long as 1=M2 	 ~�, where M is typical mass or length
scale of our model (so M * l), the metric form will be
similar to (1). So the only difference of the causal structure
is to change the past and future infinity to the cosmological
horizon.

For the stability of mass shell, we use the method which
is considered in [23]. Define a parameter x by

R ¼ l

�
m

l

�
1=3

x; (B2)

where R is the location of the mass shell, andm is the black
hole mass. The researchers argue that the parameter x
satisfies

_x 2 þ VðxÞ ¼ a2 (B3)

by a constant a and some potential-like function VðxÞ
(Fig. 5).

We can see that the Frolov, Markov, and Mukhanov’s
model has a stable local minimum, and this implies that the
mass shell is stable during small fluctuations of parameter
m or l. However, a large perturbation results in a significant

change of x. If the false vacuum decays (but not to 0 for
maintaining the regularity of the center), l will increase,
and x will become smaller and smaller. This implies that
the mass shell collapses and forms a singularity.
This technique was also considered by [19,42].

According to [23], the potential-like function for [19] has
no stable local minimum, so the mass shell must be dy-
namic. If its initial condition is nonsingular, it will behave
in a left-rolling manner (i.e., x will decrease)[20].
However, if we assume tunneling from left-rolling to
right-rolling, or from a small vacuum to a large vacuum,
a baby universe will be possible; however, since this situ-
ation may imply the violation of unitarity in the context of
the holographic principle [21], this must be considered
carefully.
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