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We compare results from numerical simulations of spinning binaries in the ‘‘orbital hang-up’’ case,

where the binary completes at least nine orbits before merger, with post-Newtonian results using the

approximants Taylor T1, T4, and Et. We find that, over the ten cycles before the gravitational-wave

frequency reaches M! ¼ 0:1, the accumulated phase disagreement between numerical relativity (NR)

and 2.5 post-Newtonian (PN) results is less than three radians, and is less than 2.5 radians when using

3.5PN results. The amplitude disagreement between NR and restricted PN results increases with the black

holes’ spin, from about 6% in the equal-mass case to 12% when the black holes’ spins are Si=M
2
i ¼ 0:85.

Finally, our results suggest that the merger waveform will play an important role in estimating the spin

from such inspiral waveforms.
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I. INTRODUCTION

Direct observation of gravitational waves may be at
hand. Several ground-based gravitational-wave (GW) de-
tectors have reached design sensitivity [1–3], and the re-
cent completion of the LIGO S5 science run, where science
data have been taken for almost two years, marks an
important milestone in the field. With the joining of the
GEO600 and Virgo detectors for part of this run, an im-
portant step has also been taken in establishing a global
network of detectors, and data from all these detectors are
currently being analyzed.

For black-hole binary systems, which are the strongest
expected GW sources, current GW template banks use
waveforms calculated by analytic post-Newtonian (PN)
approximation methods to model waves from a binary’s
slow inspiral, and perturbation-theory techniques to model
the ringdown of the final merged black hole. It is not clear
how well these models describe the crucial merger phase,
which will produce the strongest signal. Recent break-
throughs in numerical relativity (NR) [4–6] have made it
possible to describe the late inspiral, merger, and ringdown
in full general relativity, and future GW searches will be
able to use ‘‘hybrid’’ waveforms produced by combining
PN and NR waveforms [7–10].

The construction of hybrid waveforms requires an
understanding of the frequency range in which PN and
NR waveforms overlap, and how close to merger the PN
waveforms cease to be sufficiently accurate. Studies so far
have focused on nonspinning binaries [7,11–14]. The
broad conclusion from that work was that, up to a few
orbits before merger, standard PN approximants predict the
phase evolution of the binary to within an accuracy of
about 1 rad [12–14], the lowest-order PN contribution to

the wave amplitude disagrees with numerical results by
about 6% over the frequency range considered in numeri-
cal simulations, and the error from higher-order PN am-
plitude corrections is reduced to only a few percent up to
10–15 orbits before merger [13,14].
We now consider binaries in which the individual black

holes are spinning. Spinning binaries have already been
simulated in many contexts [15–31], but in this work we
present the first long (> 15 GW cycles) simulations of
spinning binaries, and compare with PN results during
the inspiral. As a first example from the large parameter
space, we consider equal-mass binaries with equal spins
that are parallel to the orbital angular momentum of the
binary. In addition, we compare the spinning waveforms
with their nonspinning counterparts, and begin to address
the question of how well the spin can be estimated from an
observation of one of these waveforms. We find that, dur-
ing the slow inspiral stage, spinning and nonspinning
binaries are difficult to distinguish; while during the
merger and ringdown the waveforms can be clearly
distinguished.
We summarize our numerical methods in Sec. II, and

also the main features of the numerical simulations that we
performed, and in Sec. III summarize three PN calculations
of a spinning binary’s phase evolution, the Taylor T1, T4,
and Et methods. In Sec. IV we compare the NR phase
evolution and amplitude from the (l ¼ 2, m ¼ 2) mode of
r�4 with the PN phase calculated from the Taylor T1, T4,
and Et approximants, and with the PN amplitude at re-
stricted (quadrupole) order. We also compare the numeri-
cal waveforms with each other in Sec. V to get an estimate
of how much nonspinning and spinning waveforms differ
in the inspiral and merger phases.
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II. NUMERICAL METHODS AND RESULTS

We performed numerical simulations with the BAM code
[32–34]. The code starts with black-hole binary puncture
initial data [35,36] generated using a pseudospectral code
[37], and evolves them with the � variant of the moving-
puncture [38,39] version of the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) [40,41] formulation of the 3þ
1 Einstein evolution equations. Spatial finite-difference
derivatives are sixth-order accurate in the bulk [34],
Kreiss-Oliger dissipation terms converge at fifth order,
and a fourth-order Runge-Kutta algorithm is used for
time evolution. The gravitational waves emitted by the
binary are calculated from the Newman-Penrose scalar
�4, and the details of our implementation of this procedure
are given in [32].

The new simulations we performed for this analysis are
summarized in Tables I and II. All simulations are of equal-
mass binaries; the black-hole punctures are placed on the y
axis at y ¼ �D=2, and given momenta in the x direction of
px ¼ �p. The black holes each have the same spin angular
momentum Si oriented parallel to the total orbital angular
momentum, i.e., in the positive z direction. The grid setup
is described following the notation introduced in [32]. For
example, ��¼2½5� 64:5� 128:6� indicates that the simu-

lation used the � variant of the moving-puncture method,
five nested mesh-refinement boxes with a base value of 643

points surround each black hole, and five nested boxes with
1283 points surround the entire system, and there are six
mesh-refinement buffer points. As summarized in Table II,
simulations were performed with spins S=M2

i ¼ 0:25, 0:5,
0:75, 0:85. We also make use of the results from non-
spinning binaries, i.e., Si=M

2
i ¼ 0, as reported in [13].

The physical parameters are given in Table II. As the
spin is increased, the mass parameter mi decreases. This is
partly because this quantity parametrizes the mass associ-

ated with the area of the apparent horizon, MAH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=16�

p
, where A is the area of the horizon, while the

total mass of the black hole is estimated by a variant of the
Christodoulou formula [42],

M2
i ¼ ðMAH;iÞ2 þ S2i

4ðMAH;iÞ2
: (1)

If we are to keep Mi constant as Si is increased, then MAH

must decrease, and therefore mi decreases. The decreasing
value of mi is also due to the extra ‘‘junk’’ energy that the
spin adds to the initial data: the Bowen-York extrinsic
curvature used in the initial-data construction contains
unwanted gravitational radiation that increases in ampli-
tude as the spin is increased. That radiation adds to the
mass of the black hole, and can be compensated by further
lowering mi, but only up to a point: eventually there is too
much junk radiation, and we reach a limit in the Si=M

2
i that

we can obtain. This limit has been found experimentally to
be about Si=M

2
i � 0:928 [43,44]. A form of puncture data

that permits higher spins has been suggested [45], but for
the present study we consider spins no larger than
Si=M

2
i ¼ 0:85, which is well below the limit for Bowen-

York data.
The initial momenta for quasicircular inspiral were cal-

culated using a 2.5-PN-accurate procedure based on the
results in [46] and outlined in [28]. We expect these
parameters to lead to inspiral with a small eccentricity,
and this is indeed what we see in the numerical data; the
eccentricity is typically of the order of e � 0:006. We
found that the procedure described in [47] to produce
lower-eccentricity inspiral, although applicable for spin-
ning binaries, does not yet include sufficient accuracy in
the spin terms to be of use for the scenarios described in
this work.
We Richardson extrapolate our data with respect to

numerical resolution and radiation extraction radius as
described in [13]. We first split the (l ¼ 2, m ¼ 2) mode
of the waveform r�4 into amplitude and phase according
to

r�4 ¼ Að�ðtÞÞe�i�ðtÞ: (2)

TABLE II. Physical parameters for the moving-puncture simu-
lations: the coordinate separation, D=M, the mass parameters in
the puncture data construction, mi=M, and the momenta px=M.
The punctures are placed on the y axis, and for all simulations
the total initial black-hole mass is M ¼ 1.

Simulation Si=M
2
i D=M mi=M px=M

S25 0.25 12.0 0.475 79 0.083 813

S50 0.50 11.0 0.432 77 0.087 415

S75 0.75 10.0 0.336 08 0.091 435

S85 0.85 10.0 0.256 28 0.090 857

TABLE I. Summary of grid setup for numerical simulations.
The grid parameters follow the notation introduced in [32]; see
text. hmin denotes the resolution on the finest level and hmax the
resolution on the coarsest level. The outer boundary of the
computational domain is at approximately rmax. The simulations
with spin S=M2

i ¼ 0:75, 0.85 use one extra level of mesh refine-
ment.

Run hmin hmax rmax

S=M2
i ¼ 0, 0.25, 0.5 simulations

��¼2½5� 64:5� 128:6� M=42:7 12M 774M
��¼2½5� 72:5� 144:6� M=48:0 32=3M 773M
��¼2½5� 80:5� 160:6� M=53:3 48=5M 773M
S=M2

i ¼ 0:75, 0.85 simulations

��¼2½6� 64:5� 128:6� M=85:3 12M 774M
��¼2½6� 72:5� 144:6� M=96:0 32=3M 773M
��¼2½6� 80:5� 160:6� M=106:7 48=5M 773M
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The amplitude is in turn written as a function of phase,
Að�Þ, and this function is Richardson extrapolated with
respect to numerical resolution. Five such functions are
produced, one for each extraction radius, Rex ¼
f50; 60; 70; 80; 90gM. We then note that the dependence
of the amplitude on extraction radius is modeled well by

Að�;RexÞ ¼ A1ð�Þ þ kð�Þ
R2
ex

þO

�
1

R3
ex

�
; (3)

and applying a curve fit of the form (3) to Að�Þ, we
estimate Að�;Rex ! 1Þ. Although a method has been

suggested to also extrapolate the phase to infinite extrac-
tion radius [14], in this work we again follow the procedure
described in [13] and use the phase from the largest ex-
traction radius, Rex ¼ 90M.

In the equal-mass case studied in [13], we found that the
numerical results were cleanly sixth-order convergent, and
were therefore able to both remove the sixth-order error
term by Richardson extrapolation, and to estimate the
uncertainty due to higher-order error terms. The present
simulations of spinning binaries do not show such clean
convergence. All of the simulations exhibit convergence
between fifth and sixth order. Since the code contains
fourth-, fifth-, and sixth-order elements, it is not obvious
at which resolutions each error term will dominate, and we
make the most conservative choice of using the highest-
resolution results and estimating an uncertainty by assum-
ing only fourth-order convergence. Even with this conser-
vative estimate of the discretization error, we find that, as
in the equal-mass case, the errors are anyway dominated by
the finite extraction radii. In general, we estimate the
uncertainty in our waveform amplitude as less than 3%,
and in the phase our uncertainty is 0.25 radians over the
frequency range that we will consider for comparison with
PN results.

These uncertainty estimates do not take into account the
effect of eccentricity. In the nonspinning case studied in
[13,48], the eccentricity was e < 0:0016, and the error in
the phase evolution due to the eccentricity was estimated as
being well below the finite-difference and finite-extraction-
radii errors. Figure 15 of [13] shows that the accumulated
phase error of a simulation with e� 0:008 is around 0.2 ra-
dians, which is comparable to the numerical phase error. In
the simulations presented in this work, the eccentricity can
be as high at e� 0:006, and so significant eccentricity-
induced phase errors may be expected. Based on Fig. 15 in
[13], we estimate that such errors are no larger than 0.2 ra-
dians. This is a systematic error: the binary merges sooner
if the eccentricity is increased, and therefore the accumu-
lated phase disagreement ��e ¼ �e¼0 ��e>0 will al-
ways be positive. This systematic uncertainty should be
taken into account in the comparisons we perform with PN
approximants in Sec. IV. The effect of the eccentricity on
the wave amplitude is to produce oscillations in the ampli-

tude. For the simulations with higher spin, the eccentricity
is larger, and the resulting oscillations are larger. This is
clear in Fig. 5, where the oscillations are visible in the
highest-spin case shown (Si=M

2
i ¼ 0:75), and the highest-

spin results are not shown because the oscillations reduce
the clarity of the figure. We emphasize that the errors due
to eccentricity may appear from our results to be larger for
systems with larger spin, but this is not necessarily the
case: the errors are simply larger when the eccentricity is
large, and in the particular simulations we have done the
larger-spin configurations also have larger eccentricity, and
therefore larger eccentricity-induced errors.
Some of the features of the simulations are summarized

in Table III: the mass and spin of the final black hole, and
two quantities that allow comparison between simulations,
and which demonstrate the orbital hang-up effect first
observed in numerical simulations in [15]. Starting from

TABLE III. Selected global features of the simulations: the
mass and spin of the final black hole, Mfinal and Sfinal=M

2
final; the

time �tA (in units of M) for the GW to evolve from M! ¼ 0:06
to its maximum amplitude; and the number of GW cycles �NGW

between M! ¼ 0:06 and the amplitude maximum.

Simulation Mfinal Sfinal=M
2
final �tAðMÞ �NGW

D12 0.950 0.680 719 11.0

S25 0.943 0.757 819 12.7

S50 0.932 0.826 917 14.7

S75 0.920 0.896 1040 16.8

S85 0.911 0.918 1096 18.0

FIG. 1 (color online). The accumulated phase difference be-
tween nonspinning and spinning binaries for the ten cycles
before M! ¼ 0:1, aligned such that the phase disagreement is
zero when M! ¼ 0:1. The black-hole spins are, in order of
increasing magnitude of the phase disagreement, Si=M

2
i ¼ 0:25,

0.5, 0.75, 0.85. Note that the differences are in some cases
comparable to the phase disagreements with PN results that
we will present in Sec. IV.
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a GW frequency ofM! ¼ 0:06, we list the time it takes the
GWs to reach their maximum amplitude, �tA, and the
number of GW cycles up to the maximum. (Dividing this
number by two gives the corresponding number of the
binary’s orbits.) The numbers clearly show that the bina-
ry’s merger is ‘‘hung up’’ by the presence of spin.

The mass of the final black hole was estimated by
subtracting the radiated energy, as measured at the largest
extraction radius Rex ¼ 90M, from the ADM mass of the
spacetime, as calculated on the initial time slice. The spin
of the final black hole was estimated by comparing a fit of
the ringdown with analytic quasinormal mode results. The
values for the mass and spin are consistent with those
already given in the literature [15,22,30].

Figure 1 shows the accumulated phase error between the
nonspinning-binary simulations presented in [13], and the
various spin cases, for the ten cycles before the given spin
waveform reaches a GW frequency ofM! ¼ 0:1. The GW
phases are aligned such that the phase difference is zero
whenM! ¼ 0:1 and we also relabel the time so that t ¼ 0
at this point; this procedure is described in more detail in
Sec. IVA. We see that for Si=M

2
i ¼ 0:25, the accumulated

phase difference is about 1.6 radians, while for Si=M
2
i ¼

0:85, the accumulated phase difference is almost five radi-
ans. These differences should be borne in mind when we
compare with the post-Newtonian phase predictions.

III. VARIOUS PRESCRIPTIONS FOR GW PHASE
EVOLUTIONS IN PN RELATIVITY

In this section, we provide formulas, extracted from
Refs. [46,49–55], required to construct Taylor T1, T4,
and Et templates for inspiraling equal-mass binary black
holes, having their spins S1 and S2 aligned with the
Newtonian angular momentum unit vector l. (We retain
G and c in the formulas in this section, although for the
remainder of the paper we will adopt geometrized units
G ¼ c ¼ 1.) The aim is to provide GW phase evolutions
under Taylor T1, T4, and Et prescriptions that include all
the nonspinning contributions to 3.5PN order and the spin
effects to 2.5PN order. We require, as in the case of non-
spinning compact binaries, the dynamical (orbital) energy

EðxÞ, expressed as a PN series in terms of x ¼
ðGM!b=c

3Þ2=3, !bðtÞ being the binary’s orbital angular
frequency, and the GW energy luminosity LðxÞ. The fact
that we are dealing with compact binaries having aligned
spins implies that to the highest PN order considered in this
paper, the spin vectors S1 and S2 have their directions and
magnitudes fixed.

The 3.5PN accurate LðxÞ and 3PN accurate EðxÞ asso-
ciated with nonspinning comparable mass compact bi-
naries are extractable from Refs. [49–51]. The lowest-
order general relativistic spin-orbit coupling, appearing at
1.5PN order for maximal Kerr black holes, and spin-spin

effects entering at 2PN order make contributions to LðxÞ
and EðxÞ at relative 1.5PN and 2PN orders [46]. In the usual
terminology adapted in the PN literature, this implies that
spin-orbit coupling provides corrections to EðxÞ in terms of

x3=2 with respect to its Newtonian counterpart and a similar
rule applies for LðxÞ. The monopole-quadrupole interac-
tions affect LðxÞ and EðxÞ at relative 2PN order [52]. The
next-to-leading order general relativistic spin-orbit cou-
pling affects LðxÞ and EðxÞ at relative 2.5PN order
[54,55]. However, for inspiraling spinning black holes,
there exist corrections to LðxÞ, also appearing at the rela-
tive 2.5PN order, due to the energy flowing in to the black
holes. For comparable mass spinning black holes, the
above-mentioned contributions are derived in Ref. [53].
For PN computations, available in Refs. [46,49–52,54,55],
a nonspinning black hole is modeled as a point particle
(spherically symmetric mass distribution), and a spinning
black hole is approximately treated as a spinning spheri-
cally symmetric mass distribution. It is important to note
that properties of black holes, like presence of black-hole
horizons, play no role in these PN computations. Because
of inclusion of black-hole absorption effects, available in
Ref. [53], it is reasonable to argue that our construction of
fully 2.5PN accurate Taylor T1, T4, and Et templates are
really applicable for spinning black-hole binaries.
We define spins as Si ¼ GM2

i �isi, i ¼ 1, 2 and in this
paper, we impose the restrictions, si � l ¼ þ1 and s1 � s2 ¼
þ1. For compact binaries having aligned spin configura-
tions, it is also possible to employ the restricted PN wave-
forms

hðtÞ / xðtÞ2=3 cos2�ðtÞ: (4)

To obtain the GW phase evolution �ðtÞ in the Taylor T1
approximant, one numerically solves the following two
differential equations:

d�ðtÞ
dt

	 !bðtÞ ¼ c3

GM
x3=2; (5a)

dxðtÞ
dt

¼ �LðxÞ
�
dE
dx

��1
: (5b)

Therefore, to obtain the GW phase evolution, relevant
for equal-mass black-hole binaries with aligned spins,
under the Taylor T1 approximant that includes all the
3.5PN accurate nonspinning and 2.5PN accurate spin ef-
fects, we require the following expressions for LðxÞ and
EðxÞ:
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LðxÞ ¼ LðxÞjNS þLðxÞjS; (6a)

LðxÞjNS ¼ 2c5

5G
x5
�
1� 373

84
xþ 4�x3=2 � 59

567
x2 � 767

42
�x5=2

þ
�
18 608 019 757

209 563 200
þ 355

64
�2 � 1712

105
�� 1712

105
lnð4 ffiffiffi

x
p Þ

�
x3 þ 16 655

6048
�x7=2

�
; (6b)

LðxÞjS ¼ 2c5

5G
x5
�
�ð�1 þ �2Þx3=2 þ 1

2

�
�2
1 þ �2

2 þ
31

16
�1�2

�
x2

þ
�
799

504
ð�1 þ �2Þ � 1

32
ð�1 þ �2 þ 3�3

1 þ 3�3
2Þ�

�
x5=2

�
; (6c)

EðxÞ ¼ EðxÞjNS þ EðxÞjS; (6d)

EðxÞjNS ¼ �Mc2

8
x

�
1� 37

48
x� 1069

384
x2 þ

�
1 427 365

331 776
� 205

384
�2

�
x3
�
; (6e)

EðxÞjS ¼ �Mc2

8
x

�
7

6
ð�1 þ �2Þx3=2 � 1

4
ð�1 þ �2Þ2x2 þ 335

144
ð�1 þ �2Þx5=2

�
; (6f)

where � is the Euler gamma, and where we use � to mark contributions due to black-hole absorption effects; it is set to one
to take those effects into account.

The Taylor T4 approximant is obtained by Taylor expanding the right-hand side of Eq. (5b) for dx=dt and truncating it at
the appropriate reactive PN order. Therefore, to construct GW phase evolution in the Taylor T4 approximant that contains
all the 3.5PN accurate nonspinning and 2.5PN accurate spin effects, the following set of differential equations are
numerically integrated:

d�ðtÞ
dt

	 !bðtÞ ¼ c3

GM
x3=2; (7a)

dxðtÞ
dt

¼ dxðtÞ
dt

��������NS
þdxðtÞ

dt

��������S
; (7b)

dxðtÞ
dt

��������NS
¼ 16c3

5GM
x5
�
1� 487

168
xþ 4�x3=2 þ 274 229

72 576
x2 � 254

21
�x5=2

þ
�
178 384 023 737

3 353 011 200
� 1712

105
�þ 1475

192
�2 � 856

105
lnð16xÞ

�
x3 þ 3310

189
�x7=2

�
; (7c)

dxðtÞ
dt

��������S
¼ 16c3

5GM
x5
�
� 47

12
½�1 þ �2�x3=2 þ

�
5

4
ð�2

1 þ �2
2Þ þ

79

32
�1�2

�
x2

þ
�
� 1

32
ð�1 þ �2 þ 3�1

3 þ 3�2
3Þ�� 8347

2016
ð�1 þ �2Þ

�
x5=2

�
: (7d)

The construction of the Taylor Et approximant requires PN accurate expressions for !b in terms of E. The radiation
reaction induced inspiral is incorporated by expressing L in terms of E. The restricted PN waveform associated with the
Taylor Et approximant reads

hðtÞ / EðtÞ cos2�ðtÞ: (8)

The PN accurate temporal evolutions for �ðtÞ and EðtÞ, that includes all the 3.5PN accurate nonspinning and 2.5PN
accurate spin effects, are obtained by solving the following coupled differential equations:
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d�ðtÞ
dt

	 !bðtÞ ¼ !bðtÞjNS þ!bðtÞjS; (9a)

!bðtÞjNS ¼ c3

GM
�3=2

�
1þ 37

32
�þ 12 659

2048
�2 þ

�
205

256
�2 þ 3 016 715

196 608

�
�3

�
; (9b)

!bðtÞjS ¼ c3

GM
�3=2

�
� 7

4
½�1 þ �2��3=2 þ 3

8
½ð�1 þ �2Þ2��2 � 655

64
½�1 þ �2��5=2

�
; (9c)

d�ðtÞ
dt

¼ d�ðtÞ
dt

��������NS
þd�ðtÞ

dt

��������S
; (9d)

d�ðtÞ
dt

��������NS
¼ 16c3

5GM
�5

�
1� 197

336
�þ 4��3=2 þ 374 615

72 576
�2 þ 299

168
��5=2

þ
�
3155

384
�2 � 1712

105
lnð4 ffiffiffi

�
p Þ þ 4 324 127 729

82 790 400
� 1712

105
�

�
�3 þ 4 155 131

96 768
��7=2

�
; (9e)

d�ðtÞ
dt

��������S
¼ 16c3

5GM
�5

�
� 41

6
½�1 þ �2��3=2 þ

�
7

4
ð�2

1 þ �2
2Þ þ

111

32
�1�2

�
�2

þ
�
� 1

32
ð�1 þ �2 þ 3�3

1 þ 3�3
2Þ�� 9943

448
ð�1 þ �2Þ

�
�5=2

�
; (9f)

where � ¼ �2E=�c2 and � is the reduced mass. In this
paper we keep d�=dt to its highest PN order and change
PN orders of d�=dt to create various PN accurate Taylor Et
approximants. The values of � corresponding to any initial
and final GW frequencies can be numerically evaluated
using the right-hand side of Eq. (9a). This is possible due to
the fact that for GWs from spinning compact binaries,
having negligible orbital eccentricities, the frequency of
the dominant harmonic is fGW 	 !b=2.

We want to emphasize that the above-mentioned Taylor
approximants can only provide, from a strict PN point of
view, fully 2.5PN accurate inspiral phase evolution for
spinning black-hole binaries. This is because there are
yet to be computed spin effects appearing at conservative
and reactive 3PN and 3.5PN orders. Another point is that in
these Taylor approximants, for the time being, we can only
incorporate next-to-leading order spin-orbit effects and all
other spin effects are mainly at the ‘‘Newtonian order’’
[Newtonian order in the sense one refers to radiation
reaction appearing for the first time at 2.5PN (absolute)
order as Newtonian radiation reaction]. Therefore, it is
quite conceivable that smooth convergence to exact GW
phase, reported in Ref. [48] for the Taylor Et approximant
for nonspinning compact binaries, would not be present in
its spinning counterpart.

IV. NR-PN COMPARISON DURING INSPIRAL

In this section we compare the phase and amplitude of
the numerical waveforms with that predicted by post-
Newtonian approximants. We have a lot of freedom in
how to make such a comparison. Here we follow the
procedure we used in [13], which is also used in [14]: we
line up the phase and frequency of the PN and NR wave-
forms when the gravitational-wave frequencyM! is equal
to 0.1. This occurs several orbits before merger (the num-

ber of orbits depends on the value of the black-hole spin, as
suggested by Table III), at which time we expect post-
Newtonian results to still be valid. We then compare the
phase and amplitude at earlier times. When comparing
results between different cases, we need to decide whether
to compare over a period of time, a frequency range, or a
number of GW cycles. The results do not change qualita-
tively with different choices; we simply must make some
choice; and the choice we make is to compare over a given
number of GW cycles, which it seems to us will be most
useful when later constructing hybrid waveforms. Our final
procedure, then, is to compare the ten cycles before the
GW frequency reaches M! ¼ 0:1. (This corresponds
roughly to a black-hole orbital frequency ofM!b ¼ 0:05.)

A. Phase

As an example of how our comparison procedure works,
Fig. 2 shows the accumulated phase disagreement between
the NR results for black holes with spins Si=M

2
i ¼ 0:5, and

the PN result using the Taylor T1 approximant at 2.5PN
order. The phase disagreement is zero by construction
when M! ¼ 0:1, and we choose t ¼ 0 at this point. As
we progress backwards in time, the phase disagreement at

first grows quadratically [since _�PN ¼ _�NR at t ¼ 0,

ð _��Þ ¼ 0, and so there cannot be any linear growth in
�� at ‘‘early’’ times]. A linear dependence soon develops,
however, and the phase disagreement grows roughly line-
arly for the remainder of the comparison, back to t �
�900M, when �NR has decreased by 20�, or ten GW
cycles. Note also that there are wiggles in the plot; these
are due to the small eccentricity in the binary that was
simulated numerically, and we expect that they introduce
an overall uncertainty in the numerical phase of about
0.2 radians with respect to a binary with zero eccentricity
(see Fig. 15 in [13]).
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In the example shown in Fig. 2, the accumulated phase
error over the ten cycles before M! ¼ 0:1 is
�2:69 radians. This is the most important piece of infor-
mation we obtain from the plot, and rather than produce
many very similar plots for different values of black-hole
spin compared with different PN approximants at different
PN orders, we summarize our results in Figs. 3 and 4. Here
we see the accumulated phase agreement over ten cycles
for five different values of spin (Si=M

2
i ¼f0; 0:25; 0:5; 0:75; 0:85g) compared with three PN approx-

imants, all calculated at 2.5PN and 3.5PN accuracy. The
three approximants are the standard Taylor T1 approxim-
ant, the Taylor T4 approximant introduced in [14], and the
Et approximant introduced in [56] and compared in detail
with the nonspinning case in [48]. The small eccentricity
tends to increase �NR, so the points in Figs. 3 and 4 are

systematically too low by at most 0.2 radians for the
spinning cases, and we should also recall the numerical
uncertainty in �NR of 0.25 radians.
The main points we wish to emphasize in Fig. 3 are that

the accumulated phase disagreement between NR and
2.5PN Taylor T1 results is roughly constant for all values
of black-hole spin. This suggests that, when producing
hybrid waveforms for these cases, the same number of
numerical cycles are needed for all spin values to produce
hybrid waveforms of the same phase accuracy. On the
other hand, the T4 and Et approximants have the advantage
that the phase disagreement is less than it is for T1, and
decreases for higher spins, with the Et approximant per-
forming best in the high-spin cases.
Figure 4 shows a similar plot, but this time the approx-

imants are calculated up to 3.5PN accuracy. As pointed out
in Sec. III, the 3.5PN results are not 3.5PN-accurate in all
terms, and these results will change when all 3.5PN terms
are known and included.
We note once again that the phase disagreement between

the NR and Taylor T1 phases is roughly constant for all
values of spins. We also see that, as already seen in [14],
the Taylor T4 approximant agrees extremely well with the
NR phase in the nonspinning case. However, this does not
hold for the spinning cases, and for larger spins 3.5PN
Taylor T4 performs worse than Taylor T1. The new
Taylor Et approximant agrees extremely well in one case
(when Si=M

2
i ¼ 0:25), but gives a large disagreement for

high spins.
Our general conclusion from all of these comparisons is

that, for the very small section of parameter space we have
considered (equal-mass binaries with nonprecessing spins
in the ‘‘orbital hang-up’’ configuration), the phase agree-
ment is roughly as good as in the nonspinning case; it
certainly has not gotten dramatically worse, as one might
have suspected. These numerical simulations can therefore
be used to produce hybrid waveforms of comparable phase

FIG. 3. The accumulated phase disagreement between NR and
PN results over the ten cycles before M! ¼ 0:1. The five
different spin values are Si=M

2
i ¼ 0, 0.25, 0. 5, 0.75, 0.85, and

we compare with the three approximants Taylor T1, Taylor T4,
and Taylor Et. All approximants are calculated at 2.5PN order.

FIG. 4. The same comparison as in Fig. 3, but this time the PN
approximants are evaluated at 3.5PN order in those terms where
this is possible (see text).

FIG. 2 (color online). An example of a phase comparison
between NR and PN results. The case shown here is Si=M

2
i ¼

0:5, and the PN results were obtained with the Taylor T1
approximant at 2.5PN order. The accumulated phase error over
the ten GW cycles before M! ¼ 0:1 is �� ¼ �2:69 radians.
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accuracy to those that can be produced from our previous
nonspinning data [8,9,13,57].

B. Amplitude

We now compare the amplitude of the (l ¼ 2, m ¼ 2)
mode of the NR r�4 with that calculated from the re-
stricted PN approximation, which is the same as the am-
plitude from the quadrupole formula. The restricted PN

amplitude of the GW strain h is given by Arestricted ¼
ðM!=2Þ2=3=R, where R is the distance from the source,
and we have

h ¼ Arestrictede
i�PNðtÞ: (10)

The phase �PNðtÞ depends on the PN approximant used in
the previous section. However, if we differentiate h twice
with respect to time to calculate r�4;22, and consider the

amplitude as a function of GW frequency M!, then we
find that the choice of approximant has a negligible effect
on the resulting function. In other words, the GW strain
amplitude Arestricted depends only on the GW frequency,
and so does the restricted PN amplitude of r�4;22, to a

good approximation. This point was also made in [14].
This fact allows us to make a comparison between the NR
and restricted PN amplitudes that is independent of the PN
approximant that we used to calculate the phase—the
results are independent of whether we use Taylor T1, T4,
or Et.

In the nonspinning case we found that the NR and
restricted PN amplitudes disagree by about ð6� 2Þ%
[13], while [14] found 5% disagreement using numerical
waveforms with higher accuracy. Both sets of numerical
results found that the disagreement was roughly constant
over the last ten cycles before M! ¼ 0:1.

The results for the spinning binaries we have considered
are shown in Fig. 5. We see that for spinning binaries the
amplitude disagreement increases. The plot shows results
for spins Si=M

2
i ¼ 0, 0.25, 0. 5, 0.75. For the highest spin

shown here, the amplitude disagreement between NR and
restricted PN is about 11%. In the case of Si=M

2
i ¼ 0:85,

fluctuations due to eccentricity make it difficult to clearly
measure the amplitude disagreement, and that case is not
shown in the plot; however, we estimate the disagreement
at around 12%, which is twice as high as in the nonspinning
case.

Higher-order PN amplitude corrections were able to
improve the agreement in the nonspinning case to around
2% using 2.5PN amplitude corrections [13,14], and even
better agreement was found when using 3PN amplitude
corrections [14]. It is clear from our current results that
higher-order PN amplitude corrections are even more cru-
cial when spins are included. Higher-order corrections up
to 2.5PN already exist [46,54,55], but 3PN amplitudes are
not yet known for spinning binaries. These corrections may
substantially improve the agreement with NR amplitudes,
but we will postpone that study to future work.

V. INSPIRAL AND MERGER

We may ask how much the waveforms from spinning
and nonspinning binaries differ. In data-analysis applica-
tions the overlap integrals between different waveforms
determine how well a GW search will distinguish between
them. If the phase of two waveforms can be lined up such
that the waveforms are identical, then the overlap between
them is one. If the waveforms differ slightly, the value of
the overlap integral falls below one. In real-world data-
analysis applications, the detector noise is included in the
overlap integral, which leads to results that depend on the
total mass of the binary. For the purposes of the purely
qualitative illustration in this section, we do not use the
detector noise, and we calculate the overlap integrals in the
time domain. Given some part of the waveform, we may
calculate an overlap integral of the form

Oð	t; 	�Þ ¼ 1

NNSNS

Z t2

t1

hNSðtÞh?S ðtþ 	t; 	�Þdt; (11)

where ‘‘NS’’ indicates the waveform from a nonspinning
binary, and ‘‘S’’ indicates one of the spinning-binary wave-
forms. The spinning waveform is time shifted by some 	t,
and phase shifted by some 	�. The normalization factors
are calculated by performing the integrals

N2
NS ¼

Z t2

t1

jhNSðtÞj2dt; (12)

N2
S ¼

Z t2

t1

jhSðtÞj2dt: (13)

For some choice of t1 and t2, the time and phase shifts 	t
and 	� can be optimized to find the largest possible
overlap.

FIG. 5. The disagreement between restricted NR and PN am-
plitudes of r�4;22 as a function of GW frequency M!. The lines

below correspond, from bottom to top, to the cases Si=M
2
i ¼ 0,

0.25, 0. 5, 0.75. (Every second line is dashed, to make them easier
to distinguish.) In the nonspinning case the disagreement is
roughly 6% over this frequency range. The disagreement in-
creases as spin is added, and is about 11% for Si=M

2
i ¼ 0:75.

The large oscillations in this last case are due to the relatively
high eccentricity of that system, e� 0:006.
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Let us compare the nonspinning-binary waveform with
that from a binary with Si=M

2
i ¼ 0:75. We first choose a

time interval that includes only inspiral, t1 ¼ 1200M and
t2 ¼ 1700M with respect to the nonspinning waveform;
this corresponds to roughly five GW cycles in the fre-
quency range M! � 0:06 to M! � 0:09. The maximum
overlap that can be achieved when comparing this small
number of cycles with the S75 simulation is just under
0.99, meaning that the overlap is extremely good. This
illustrates that, during the inspiral, it is difficult to distin-
guish between the spinning and nonspinning waveforms.
Put another way, if one of these waveforms were detected,
a large number of cycles would be required to estimate the
black holes’ spins. In practice, indeed many hundreds or
thousands of cycles may be detected during the inspiral,
and the accumulated phase difference between spinning
and nonspinning binaries may be more obvious. However,
at present we must use PN approximants to model those
hundreds or thousands of cycles, and it is not entirely clear
how the variation in number of cycles when spin is added
compares with the deviation of the PN approximants at
different PN orders from the true solution.

In addition, if a noticeable phase difference between
spinning and nonspinning waveforms does accumulate
over many hundreds of cycles, this might be partially
compensated by rescaling the total mass of one of the
binaries; a spinning binary may thus be detected as a non-
spinning binary with the wrong mass.

We now examine a time interval that includes the
merger, t1 ¼ 1870M and t2 ¼ 2020M. The maximum
overlap that we can now achieve is less than 0.90: the
waveforms differ far more in the merger phase. This is a
far greater difference than we observe during the inspiral,
and a far greater difference than we would expect to see
even if many more inspiral cycles were available.

Furthermore, if wewere to adjust the total mass of one of
the binaries, such that the overlap of the inspiral wave-
forms was increased to almost one, this would not signifi-
cantly improve the overlap of the merger waveforms.
Therefore, detecting both the inspiral and merger may
allow a significantly better estimate of the black holes’
parameters.

In Fig. 6 we illustrate this point by showing the wave-
forms for the nonspinning and Si=M

2
i ¼ 0:75 simulations,

over the two time intervals we just discussed, and lined up
such that the overlap integral (11) is a maximum. It is
immediately clear from the two plots that the overlap
will be larger for the earlier time interval.
We conclude from this simple analysis that, at least for

binaries in an orbital hang-up configuration, an accurate
estimate of the black holes’ spins will be far easier if the
merger waveform is detected, rather than the inspiral.
Perhaps not surprisingly, the most accurate parameter es-
timation would be possible if both the inspiral and merger
were detected. A similar conclusion can be made when
looking at higher modes, although all modes up to l ¼ 4
have an amplitude no more than 10% that of the (l ¼ 2,
m ¼ 2) mode in the cases we consider.

VI. DISCUSSION

We have extended our previous comparison of NR and
PN inspiral waveforms [13] to spinning binaries. In par-
ticular, we considered equal-mass binaries whose black
holes have equal spins oriented parallel to the orbital
angular momentum. In these cases the spins do not precess
and there is no net radiated linear momentum, but there is
an ‘‘orbital hang-up’’ effect that delays the merger as the
spin is increased [15].
We compared the accumulated phase difference between

NR and PN approximants over the ten cycles before the
GW frequency reaches M! ¼ 0:1. We used the PN ap-
proximants Taylor T1, T4, and Et, at orders 2.5PN and
3.5PN. We conclude that, as in the nonspinning case, the
growth of phase error is fairly small; for the number of
cycles we considered, it is less than 2.5 radians for all
3.5PN approximants for spins up to Si=M

2
i ¼ 0:85, and

less than 1.5 radians for the Taylor T1 approximant. The
3.5PN Taylor T4 approximant, which performed extremely
well in the equal-mass case [14], is seen to perform much
worse in the spinning cases. However, we stress that not all
terms in the PN approximants are known to 3.5PN order. At
2.5PN order (the highest at which all terms are known), the
Et approximant gives the best phase agreement. These
results are summarized in Figs. 3 and 4.
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FIG. 6. Spinning and nonspinning waveforms in the time intervals t ¼ ½1200; 1700� and t ¼ ½1870; 2020�, with the time and phase
shifted so that they give the maximum value of the overlap integral (11). We can clearly see by eye that the overlap for the earlier time
interval is much larger than that for the later interval.
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We also compare the amplitude of the (l ¼ 2, m ¼ 2)
mode of the NR r�4 with that calculated by the restricted
PN approximation. In the equal-mass case the PN ampli-
tude was larger than its NR counterpart by about 6%. In a
binary whose black holes have spins Si=M

2
i ¼ 0:85, the

amplitude disagreement grows to around 12%.
Finally, we gave an illustration of how the inspiral and

merger waveforms differ between the spinning and non-
spinning cases. Our simple analysis suggests that the spin
is difficult to distinguish during inspiral, but has an ex-
tremely clear effect on the merger waveform. As such, we
expect that estimating the spins of a binary’s constituents
should be much easier in cases where the merger is also
detected.

In the future we intend to extend this analysis to a larger
sample of parameter space (in particular, more general spin

configurations), and to explore the data-analysis implica-
tions of our results.
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