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In this paper we study the possibility of sustaining an evolving wormhole via exotic matter made out of

phantom energy. We show that this exotic source can support the existence of evolving wormhole

spacetimes. Explicitly, a family of evolving Lorentzian wormholes conformally related to another family

of zero-tidal force static wormhole geometries is found in Einstein gravity. Contrary to the standard

wormhole approach, where first a convenient geometry is fixed and then the matter distribution is derived,

we follow the conventional approach for finding solutions in theoretical cosmology. We derive an

analytical evolving wormhole geometry by supposing that the radial tension (which is negative to the

radial pressure) and the pressure measured in the tangential directions have barotropic equations of state

with constant state parameters. At spatial infinity this evolving wormhole, supported by this anisotropic

matter, is asymptotically flat, and its slices t ¼ constant are spaces of constant curvature. During its

evolution the shape of the wormhole expands with constant velocity, i.e without acceleration or

deceleration, since the scale factor has strictly a linear evolution.
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I. INTRODUCTION

Wormholes, as well as black holes, are an extraordinary
consequence of Einstein’s equations of general relativity.
During recent last decades, there has been a considerable
interest in the field of wormhole physics. Two separate
directions emerged: one relating to Euclidean signature
metrics [1,2] and the other concerned with Lorentzian
ones. The interest has been focused on traversable
Lorentzian wormholes (which have no horizons, allowing
two-way passage through them), and were especially
stimulated by the pioneering works of Morris, Thorne,
and Yurtsever [3], where static, spherically symmetric
Lorentzian wormholes were defined and considered to be
an exciting possibility for constructing time machine mod-
els with these exotic objects, for backward time travel (see
also [4]).

Most of the efforts are directed to study static configu-
rations that must have a number of specific properties in
order to be traversable. The most striking of these proper-
ties is the violation of energy conditions. This implies that
the matter supporting the traversable wormholes is exotic
[3,5], which means that it has very strong negative pres-
sures, or even that the energy density is negative, as seen by

static observers. However, one can also consider time-
dependent wormhole configurations, such as rotating
wormholes [6] or evolving wormholes in a cosmological
background [7–10].
Lower [11] and higher dimensional wormholes have

also been considered by several authors. Euclidean worm-
holes have been studied by Gonzales-Diaz and by Jianjun
and Sicong [12], for example. The Lorentzian ones have
been studied in the context of the n-dimensional Einstein
theory [13] or Einstein-Gauss-Bonnet theory of gravitation
[14]. Evolving higher dimensional wormholes also have
been studied [15].
The theoretical construction of wormhole geometries is

usually performed by using the method where, in order to
have a desired metric, one is free to fix the form of the
metric functions, such as the redshift and shape functions,
or even the scale factor for evolving wormholes. In this
way one may have a redshift function without horizons, or
with a desired asymptotic. Unfortunately, in this case we
can obtain expressions for the energy and pressure den-
sities that are physically unreasonable.
In this paper we shall follow the conventional method

for finding solutions in general relativity, and used also in
theoretical cosmology. We shall prescribe the matter con-
tent by specifying the equations of state of the radial and
the tangential pressures and then we solve the Einstein field
equations in order to find the redshift and shape functions
together with the scale factor. Specifically, we shall con-
sider that these pressures obey barotropic equations of state
with constant state parameters. In other words, we shall
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find all evolving wormhole geometries that have the radial
and the tangential pressures proportional to the energy
density.

The outline of the present paper is as follows: In Sec. II,
we briefly review some important aspects of static worm-
holes and give the definition of evolving wormholes. In
Sec. III, we find the metric of evolving wormholes with
pressures obeying barotropic equations of state with con-
stant state parameters. In Sec. IV, the properties of the
obtained wormhole geometry are studied. We use the
metric signature (�þþþ) and set c ¼ 1.

II. EVOLVING LORENTZIAN WORMHOLES

A. Characterization of a static Lorentzian wormhole

Before treating evolving Lorentzian wormholes let us
review the static ones. The metric ansatz of Morris and
Thorne [3] for the spacetime that describes a static
Lorentzian wormhole is given by

ds2 ¼ �e2�ðrÞdt2 þ dr2

1� bðrÞ
r

þ r2ðd�2 þ sin2�d’2Þ; (1)

where �ðrÞ is the redshift function, and bðrÞ is the shape
function, since it controls the shape of the wormhole.

Morris and Thorne have discussed in detail the general
constraints on the functions bðrÞ and �ðrÞ that make a
wormhole [3]:

Constraint 1: A no-horizon condition, i.e. e�ðrÞ is finite
throughout the spacetime in order to ensure the absence of
horizons and singularities.
Constraint 2: The shape function bðrÞ must obey at the
throat r ¼ r0 the following condition: bðr0Þ ¼ r0, being r0
the minimum value of the r coordinate. In other words,
g�1
rr ðr0Þ ¼ 0.

Constraint 3: Finiteness of the proper radial distance, i.e.

bðrÞ
r

� 1; (2)

(for r � r0) throughout the spacetime. This is required in
order to ensure the finiteness of the proper radial distance
lðrÞ defined by

lðrÞ ¼ �
Z r

r0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bðrÞ=rp : (3)

The � signs refer to the two asymptotically flat regions
that are connected by the wormhole. The equality sign in
(2) holds only at the throat.Constraint 4: Asymptotic flat-
ness condition, i.e. as l ! �1 (or equivalently, r ! 1),
then bðrÞ=r ! 0.

Notice that these constraints provide a minimum set of
conditions that lead, through an analysis of the embedding
of the spacelike slice of (1) in a Euclidean space, to a
geometry featuring two asymptotically flat regions con-
nected by a bridge.

Although asymptotically flat wormhole geometries have
been extensively considered in the literature, one can study
however other asymptotic behaviors that are worth consid-
ering. For instance, asymptotically anti-de Sitter worm-
holes may also be of particular interest [16].

B. Evolving Lorentzian wormholes

We shall consider a simple generalization of the original
Morris and Thorne metric (1) to a time-dependent metric
given by

ds2 ¼ �e2�ðrÞdt2 þ aðtÞ2
�

dr2

1� bðrÞ
r

þ r2ðd�2 þ sin2�d’2Þ
�
;

(4)

where aðtÞ is the scale factor of the Universe. Note that the
essential characteristics of a wormhole geometry are still
encoded in the spacelike section. It is clear that if bðrÞ ! 0
and �ðrÞ ! 0, the metric (4) becomes the flat Friedmann-
Robertson-Walker (FRW) metric, and as aðtÞ ! const it
becomes the static wormhole metric (1).
In general, in order to construct an evolving wormhole,

one has to specify or determine the redshift function �ðrÞ,
the shape function bðrÞ, and the scale factor aðtÞ. So, one of
them may be chosen by fiat, and the others may be deter-
mined by implementing some physical conditions. For
example, in Ref. [17] an exponential scale factor is con-
sidered in order to explore the possibility that inflation
might provide a natural mechanism for the enlargement
of an initially small (possibly submicroscopic) wormhole
to macroscopic size. In Ref. [7] also different choices for
the scale factor aðtÞ are considered, and the constraints are
found on the minimum values of the throat radii.
In this paper we shall require that �ðrÞ ¼ 0 in order to

have a family of evolving Lorentzian wormholes confor-
mally related to another family of zero-tidal force static
wormholes, and to ensure that there is no horizon. We also
shall require that the radial tension, which is the negative of
the radial pressure, and the pressure measured in the tan-
gential directions (orthogonal to the radial direction) have
barotropic equations of state with constant state parame-
ters. These simple choices will permit us to find explicit
analytical expressions by solving the Einstein field equa-
tions for the shift and shape functions, the scale factor, and
the energy and pressure densities.

III. EINSTEIN FIELD EQUATIONS FOR THE
EVOLVING LORENTZIAN WORMHOLES

In order to simplify the analysis and the physical inter-
pretation (with �ðrÞ ¼ 0) we now introduce the proper
orthonormal basis as

ds2 ¼ ��ðtÞ�ðtÞ þ �ðrÞ�ðrÞ þ �ð�Þ�ð�Þ þ �ð’Þ�ð’Þ; (5)

where the basis one forms �ð�Þ are given by
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�ðtÞ ¼ dt; �ðrÞ ¼ aðtÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bðrÞ

r

q ; �ð�Þ ¼ aðtÞrd�;

�ð’Þ ¼ aðtÞr sin�d’:
(6)

These basis one forms are related to the following set of
orthonormal basis vectors defined by

et̂ ¼ et; er̂ ¼ aðtÞ�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bðrÞ

r

s
er;

e�̂ ¼ aðtÞ�1r�1e�; e’̂ ¼ aðtÞ�1r�1sin�1�e’:

(7)

This basis represents the proper reference frame of a set of
observers who always remain at rest at constant r, �, ’
[17].

For these basises the only nonzero components of the
energy-momentum tensor Tð�Þð�Þ are precisely the diagonal
terms TðtÞðtÞ, TðrÞðrÞ, Tð�Þð�Þ, and Tð’Þð’Þ, which are given by

TðtÞðtÞ ¼ �ðt; rÞ; TðrÞðrÞ ¼ prðt; rÞ ¼ ��ðt; rÞ;
Tð�Þð�Þ ¼ Tð’Þð’Þ ¼ plðt; rÞ;

(8)

where the quantities �ðt; rÞ, prðt; rÞ, �ðt; rÞð¼ �prðt; rÞÞ,
and plðt; rÞð¼ p’ðt; rÞ ¼ p�ðt; rÞÞ are, respectively, the en-
ergy density, the radial pressure, the radial tension per unit
area, and lateral pressure as measured by observers who
always remain at rest at constant r, �, ’.

Thus, for the spherically symmetric wormhole metric
(4), with �ðrÞ ¼ 0, the Einstein equations are given by

��ðt; rÞ ¼ 3H2 þ b0

a2r2
; (9)

�prðt; rÞ ¼ ���ðt; rÞ ¼ �2
€a

a
�H2 � b

a2r3
; (10)

�plðt; rÞ ¼ �2
€a

a
�H2 þ b� rb0

2a2r3
; (11)

where � ¼ 8�G, H ¼ _a=a, and an overdot and a prime
denote differentiation with respect to t and r, respectively.

Now, we shall require that the radial tension and the
lateral pressure have barotropic equations of state. Thus,
we can write

�ðt; rÞ ¼ �prðt; rÞ ¼ �!r�ðt; rÞ;
plðt; rÞ ¼ !l�ðt; rÞ; (12)

where!r and!l are constant state parameters. Clearly, the
requirement (12) with !r ¼ !l allows us to connect the
evolving wormhole spacetime (4) with the standard FRW
cosmologies, where the isotropic pressure density is
expressed as p ¼ !�, with constant state parameter
!ð¼ !r ¼ !lÞ.

Now, using the conservation equation T
�
�;� ¼ 0, we have

that

_�þHð3�þ pr þ 2plÞ ¼ 0; (13)

2ðpl � prÞ
r

¼ 2ðpl þ �Þ
r

¼ p0
r; (14)

which may be interpreted as the conservation equation and
the relativistic Euler equation (or the hydrostatic equation
for equilibrium for the matter supporting the wormhole),
respectively. From these equations we see that for !r ¼
!l ¼ !, i.e. pl ¼ pr ¼ p, we have the standard cosmo-
logical conservation equation _�þ 3Hð�þ pÞ ¼ 0, with
p0
r ¼ 0, so if we want to isotropize the pressure with a

barotropic equation of state and constant state parameters,
then we cannot have a pressure of the form p ¼ pðt; rÞ, it
will depend only on time t.
Now, with the help of the conservation equation and the

relativistic Euler equation we can easily solve the Einstein
Eqs. (9)–(11). From the structure of these conservation
equations we see that one can write the energy density in
the form �ðt; rÞ ¼ �tðtÞ�rðrÞ. Thus, from the conservation
equation we obtain

�tðtÞ ¼ C1a
�ð3þ!rþ2!lÞ; (15)

where C1 is an integration constant. Now, taking into
account Eq. (12), from Eq. (14) we have that

�rðrÞ ¼ C2r
2ð!l�!rÞ=!r ; (16)

where C2 is an integration constant. Thus, from expres-
sions (15) and (16) we can write for the energy density

�ðt; rÞ ¼ Cr2ð!l�!rÞ=!ra�ð3þ!rþ2!lÞ; (17)

where we have introduced a new constant C in order to
redefine the integration constants C1 and C2.
Now, by subtracting Eqs. (10) and (11), and using

Eq. (9), we obtain the differential equation

�ð!l �!rÞCr2ð!l�!rÞ=!r

að3þ!rþ2!lÞ
¼ 3b� rb0

2a2r3
: (18)

Clearly, from this equation we conclude that if we want to
have a solution for the shape function b ¼ bðrÞ, we must
constrain the state parameters !r and !l in the following
manner:

!r þ 2!l þ 1 ¼ 0; (19)

thus obtaining for the shape function

bðrÞ ¼ Dr3 � �C!rr
�1=!r ; (20)

where D is a new integration constant.
Now, from Eqs. (9), (17), and (20) and taking into

account the constraint (19) we find that the scale factor is
given by

aðtÞ ¼ ffiffiffiffiffiffiffiffiffi�D
p

tþ F; (21)

where F is an integration constant, obtaining the following
final expression for the energy density (17):
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�ðt; rÞ ¼ Cr�ð1þ3!rÞ=!r

ð ffiffiffiffiffiffiffiffiffi�D
p

tþ FÞ2 : (22)

Notice that in principle one would expect the scale factor to
have the form aðtÞ ¼ Etþ F, where E is a constant, but the

field equations constrain this constant to be E ¼ ffiffiffiffiffiffiffiffiffi�D
p

.
Thus, the self-consistent solution for constant state pa-

rameters!r and!l is given by Eqs. (20)–(22), so obtaining
for the line element (4) the following wormhole metric:

ds2 ¼ �dt2 þ ð ffiffiffiffiffiffiffiffiffi�D
p

tþ FÞ2

�
�

dr2

1þ �C!rr
�ð1þ!rÞ=!r �Dr2

þ r2ðd�2 þ sin2�d’2Þ
�
: (23)

In this case, the constraint (19) implies that the radial and
tangential pressures are given by

pr ¼ !r�; pl ¼ �1
2ð1þ!rÞ�; (24)

so the energy density and pressures satisfy the following
relation:

�þ pr þ 2pl ¼ 0: (25)

Note that there is another branch of spherically symmetric
solutions to Eqs. (9)–(11). By adding these equations and
taking into account Eqs. (12) and (17), we obtain the
equation

6
€a

a
¼ ��ð1þ!r þ 2!lÞCr2ð!l�!rÞ=!ra�ð3þ!rþ2!lÞ;

(26)

which implies that we must take !r ¼ !l ¼ !, thus ob-

taining from Eq. (17) that � ¼ Ca�3ð1þ!Þ and, for the scale
factor aðtÞ ¼ ðAtþ BÞ2=ð3ð1þ!ÞÞ, i.e. the standard FRW so-
lution for an ideal fluid with pðtÞ ¼ !�ðtÞ.

IV. WORMHOLE SOLUTIONS

One interesting aspect to be considered is the possibility
of sustaining a traversable wormhole in spacetime via
exotic matter made out of phantom energy. The latter is
considered as a possible candidate for explaining the late
time accelerated expansion of the Universe [18]. This
phantom energy has a very strong negative pressure and
violates the null energy condition, so becoming a most
promising ingredient to sustain traversable wormholes.

Notice however that in this case we shall use the notion
of the phantom energy in a more extended sense since,
strictly speaking, the phantom matter is a homogeneously
distributed fluid, and here it will be an inhomogeneous and
anisotropic fluid [19,20], since pr <�1, and pl � pr.

Now, we shall discuss the above obtained analytical
solution. To start with, we shall consider first the static
case.

A. Static wormhole geometries

It is clear that for D ¼ 0 (without any loss of generality
we can set F ¼ 1) we have a static spherically symmetric
spacetime. From the condition for the throat that the r
coordinate has a minimum at r0, i.e. g�1

rr ðr0Þ ¼ 0, we

obtain for the integration constant C ¼ � rð1þ!rÞ=!r
0

�!r
, yield-

ing for the shape function and the energy density

bðrÞ ¼ r0

�
r

r0

��1=!r

; ��ðrÞ ¼ � ðr=r0Þ�ð1þ3!rÞ=!r

r20!r

;

(27)

respectively. In this case the metric is given by

ds2 ¼ �dt2 þ
�

dr2

1� ðr=r0Þ�ð1þ!rÞ=!r

þ r2ðd�2 þ sin2�d’2Þ
�
: (28)

The radial coordinate r has a range that increases from a
minimum value at r0, corresponding to the wormhole
throat, to infinity. From Eqs. (27) and (28) we can see
that for a matter content with a radial pressure having a
phantom equation of state, i.e. !r <�1, we have an
asymptotically flat wormhole with a positive energy den-
sity. This static wormhole solution is a traversable one and
was firstly considered in Ref. [20]. For !r > 0 we also
have an asymptotically flat wormhole spacetime, but in this
case the energy density is negative everywhere.

B. Evolving wormhole geometries

Let us now explore the features of the evolving worm-
hole. We shall consider the time interval 0< t <1 for the
evolution. In order to maintain the Lorentzian signature we
must require that D � 0; if D � 0 the signature of the
spacetime changes to a Euclidean one, obtaining an evolv-
ing Euclidean wormhole.
Clearly, in order to have an evolving wormhole, as in the

static case, we must require !r <�1 or !r > 1, yielding
in both these cases that ð1þ!rÞ=!r > 0. Thus, we con-
clude that the phantom energy can support the existence of
evolving wormholes.
Now, it can be shown that for D< 0 and C!r < 0 the

metric component g�1
rr ¼ 1þ �C!rr

�ð1þ!rÞ=!r �Dr2 of
the line element (23) is equal to zero for some value of the
radial coordinate. Effectively, from the formulated above
constraints on the parameters, i.e. !r <�1, C> 0, and
D< 0, we have that g�1

rr < 0 at the vicinity of r * 0, while
its first derivative dg�1

rr =dr > 0. This implies that for any
r > 0 we have always a growing g�1

rr . Thus, we conclude
that for some 0< r0 <1 we have g�1

rr ðr0Þ ¼ 0, implying
that at the location r ¼ r0 is the throat of the wormhole. So,
from the condition g�1

rr ðr ¼ r0Þ ¼ 0, we obtain for the
integration constant
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C ¼ ðDr20 � 1Þ
�!r

rð1þ!rÞ=!r

0 ; (29)

yielding for the shape function, the metric component grr
and the energy density

bðrÞ ¼ r0

�
r

r0

��1=!r þDr30

�
r

r0

�
3
�
1�

�
r

r0

��ð1þ3!rÞ=!r
�
;

g�1
rr ¼ 1�

�
r

r0

��ð1þ!rÞ=!r

�Dr20

�
r

r0

�
2
�
1�

�
r

r0

��ð1þ3!rÞ=!r
�
;

��ðt; rÞ ¼ 1�Dr20
!rr

2
0ð

ffiffiffiffiffiffiffiffiffi�D
p

t2 þ FÞ2
�
r

r0

��ð1þ3!rÞ=!r

; (30)

respectively.
Let us now enumerate some characteristic properties of

the found evolving wormhole geometry:
(i) The weak energy condition (WEC) for the energy-

momentum tensor (8) reduces to the following in-
equalities:

�ðt; rÞ � 0; �ðt; rÞ þ prðt; rÞ � 0;

�ðt; rÞ þ plðt; rÞ � 0;
(31)

for all (t,r). By using the expressions (12) and (19)
we can rewrite the WEC as follows:

�ðt; rÞ � 0; ð1þ!rÞ�ðt; rÞ � 0;

ð1�!rÞ�ðt; rÞ � 0:
(32)

Thus, for !r <�1 the first and third inequalities of
(32) are satisfied, while the second one is violated.
So, as one would expect, these evolving wormholes,
supported by an anisotropic phantom energy, do not
avoid the violation of the WEC.

(ii) The general form of the evolving wormhole solution
implies that there is only the standard coordinate
singularity at the throat, although for any t ¼ const,
the radial proper length between any two points r1
and r2

lðtÞ ¼ �aðtÞ
Z r2

r1

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Dr2 þ �C!rr

�ð1þ!rÞ=!r

q ;

(33)

with r1 � r0, is required to be finite everywhere.
There are, however, no spatial and temporal curva-
ture singularities (F > 0). The energy density also is
well behaved, since at ðt; rÞ ¼ ð0; r0Þ it is given by

� ¼ CF�2r�ð1þ3!rÞ=!r

0 . A temporal singularity oc-

curs at t ¼ 0 only for the case with F ¼ 0.
(iii) From Eq. (26) and the constraint (19) we conclude

that the expansion of the wormhole is not acceler-
ated. So this family of evolving wormholes, sup-

ported by an anisotropic phantom energy, expands
with a constant velocity. Note that from Eq. (24) we
have that if !r <�1 then always pl > 0, while
pr < 0.

(iv) From the metric (23) we can see that for wormholes
supported by phantom matter at spatial infinity
(r ! 1) we have the following asymptotic metric:

ds2 � �dt2 þ ð ffiffiffiffiffiffiffiffiffi�D
p

tþ FÞ2

�
�

dr2

1�Dr2
þ r2ðd�2 þ sin2�d’2Þ

�
: (34)

This metric has slices t ¼ const that are spaces of
constant curvature. This implies that the asymptotic
metric (34) is foliated with spaces of constant cur-
vature. So the form of the r-dependent part of this
metric may induce us to think that we have a four-
dimensional spacetime of constant curvature, im-
plying that we do not have an asymptotically flat
wormhole. Namely, since we have that D< 0, we
would have an asymptotically antide Sitter
spacetime.
However, if we calculate the Riemann tensor for the
metric (23) we find that its independent non-
vanishing components are

Rð�Þð’Þð�Þð’Þ ¼ �C!rr
�ð1þ3!rÞ=!r

ð ffiffiffiffiffiffiffiffiffi�D
p

tþ FÞ2 ;

RðrÞð’ÞðrÞð’Þ ¼ RðrÞð�ÞðrÞð�Þ

¼ ��Cð1þ!rÞr�ð1þ3!rÞ=!r

2ð ffiffiffiffiffiffiffiffiffi�D
p

tþ FÞ2 :

(35)

From these expressions we see that at spatial infin-
ity these components vanish for a wormhole sup-
ported by a phantom matter. Since the energy
density (22) also vanishes for r ! 1, we have an
asymptotically flat evolving wormhole. Notice that
we obtain such an asymptotic behavior since the
integration constant D in Eq. (20) finally is con-
strained by the field equations to appear also in the
general expression for the scale factor (21). Thus,
the asymptotic metric (34) can be carried explicitly
to the Minkowski-form metric

ds2 ¼ �d�2 þ d�2 þ �2ðd�2 þ sin2�d’2Þ;
with the help of the transformation

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

q
� Fffiffiffiffiffiffiffiffiffi�D

p ; r ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Dð�2 � �2Þp :

(36)

(v) The shape of a wormhole is determined by bðrÞ as
viewed, for example, in an embedding diagram in a
flat 3-dimensional Euclidean space R3. To construct
such a diagram of a wormhole, one considers an
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equatorial slice (� ¼ �=2) at a fixed instant of time
t ¼ t0 of the geometry. Since the wormhole (23)
evolves in time, each such slice will be different
for different values of time. In other words, the
shape of the wormhole is determined also by the
scale factor aðtÞ. However, it can be shown that the
form of the wormhole is preserved with time by
using an embedding procedure. The metric of a
such a wormhole slice for t ¼ t0 ¼ const is given by

ds2 ¼ a2ðt0Þ
�

dr2

1� bðrÞ
r

þ r2d’2

�
; (37)

where bðrÞ is given by the first expression of
Eq. (30). One may rewrite this slice by rescaling
the radial coordinate as �r ¼ aðt0Þr. Thus, the metric
(37) may be rewritten in the following form:

ds2 ¼ d�r2

1� �bð�rÞ
�r

þ �r2d’2; (38)

where we have introduced the definition �bð�rÞ ¼
aðt0ÞbðrÞ. Now, we shall embed this slice in a flat
3-dimensional Euclidean space R3, which we shall
write as

ds2 ¼ d�z2 þ d�r2 þ �r2d’2: (39)

Comparing the metrics (38) and (39) we conclude
that

d�z

d�r
¼ �

�
�r
�b
� 1

��1=2 ¼ �
�
r

b
� 1

��1=2
: (40)

This implies that the evolving wormhole will remain
the same size in the �z, �r, ’ coordinates.
On the other hand, we also conclude that in order to
visualize the slice � ¼ �=2, t ¼ t0 embedded into
the three-dimensional Euclidean space we must re-
quire that the shape function bðrÞ must be positive
and be such that bðrÞ=r < 1 in order to guarantee

that the root
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=bðrÞ � 1

p
be real, as for static worm-

holes [21]. In other words, we can draw the graph
�z ¼ �zð �rÞ only for bðrÞ=r < 1 with bðrÞ> 0. In this
case, the embedded two-dimensional section has a
minimum radius at the throat r ¼ r0 and has the
maximum upper radius at the mouth (b ¼ 0) of the
wormhole. For larger radii where bðrÞ< 0 the em-
bedding process is no longer valid. Notice that in our
case the general metric (4), with the scale factor and
shape function (21) and (30), is well defined even
for bðrÞ< 0, so this spacetime is geodesically com-
plete. Thus, the requirement bðrÞ> 0 emphasizes
the fact that the importance of the embedding is near
the throat of the wormhole. In our case, as we stated
above, the space is asymptotically flat far from the
wormhole mouth. In principle, if one includes a
cosmological constant, the space can be de Sitter

or anti-de Sitter far from the mouth.
Now, in order to maintain the shape of the travers-
able wormhole the flaring out condition must be
required, i.e. d2 �r=d�z2 > 0. So from Eq. (40) we
have that

d2 �r

d�z2
¼

�b� �b0r
2 �b2

¼ b� b0r
2aðt0Þb2

> 0; (41)

and taking into account the form of the shape func-
tion from Eq. (30) we obtain

d2 �r

d�z2
¼�

�
r

r0

�
1=!r

� 2D!rr
3ðr=r0Þ1=!r þð1þ!rÞr0ðDr20 � 1Þ

2!rðDr3ðr=r0Þ1=!r þ r0ð1�Dr20ÞÞ2
;

(42)

which for D< 0 is always positive, thus satisfying
the flaring out condition for the entire range of the
radial coordinate r. So, as we have seen, a distribu-
tion of an anisotropic phantom energy provides the
flareout conditions for the throat of evolving
wormholes.

(vi) Let us now study the range of validity of the radial
coordinate more adequately. From the condition
bðrÞ � 0, which we must impose in order to have
a good embedding, we obtain that bðrÞ ¼ 0 for

rmax ¼ r0

�
1� 1

Dr20

�
!r=ð1þ3!rÞ

; (43)

implying that bðrÞ � 0 for r � rmax. Thus, the
wormhole is located at the range r0 � r � rmax,
being the throat at r0. Notice that the radius rmax

may be made arbitrarily large by taking D ! �0,
but still having an evolving wormhole.

(vii) In order for this evolving wormhole to be travers-
able, the tidal forces experienced by a traveller
must not be too great. So during its radial journey,
the tidal acceleration felt by the traveller between
two parts of her body (i.e. head to feet) must not
exceed by much one Earth gravity. This travers-
ability criteria was considered in Ref. [3]. In gen-
eral the tidal acceleration may be written as (the
Greek indices take the values 0, 1, 2, 3)

4 a�̂ ¼ �c2R�̂
	̂ 
̂ �̂

u	̂�
̂u�̂; (44)

where the vector �
̂ denotes the separation be-
tween the head and feet of the traveller’s body,
so �
̂ is a spacelike vector.
In order to calculate the tidal acceleration felt by a
traveller we introduce the orthonormal reference
frame used by her: ðe0̂0 ; e1̂0 ; e2̂0 ; e3̂0 Þ. Since in this

frame we have that �0̂0 ¼ 0 and u	̂
0 ¼ �	̂0

0̂0 for the

four velocity, and additionally the Riemann tensor
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is antisymmetric in its first two indices, the tidal
acceleration is purely spatial with components (the
Latin indices take the values 1, 2, 3)

4 ak̂
0 ¼ �c2Rk̂0

0̂0 ĵ00̂0�
ĵ0 ; (45)

where the spacelike vector � may be oriented
along any spatial direction in the traveller’s frame.
Now, this traveller moves at a constant speed v
with respect to the observer who uses the ortho-
normal basis (7) and who always remains at rest at
constant r, �, ’. Thus, both sets of orthonormal
basis vectors are connected by the standard special
relativity Lorentz transformation as follows [3]:

e0̂0 ¼ �u ¼ 
et̂ � 
	er̂; e1̂0 ¼ 
	er̂ � 
er̂;

e2̂0 ¼ e�̂; e3̂0 ¼ e’̂; (46)

where �u is the traveller’s four velocity, 
 ¼ ð1�
	2Þ�1=2, and 	 ¼ v=c. In this case, the vector e1̂
points along the direction of travel (towards in-
creasing radial proper distance l).
Thus, from the generic metric (4) (with �ðt; rÞ ¼
0) and the Lorentz transformation (46), the rele-
vant Riemann tensor components for (45) are

R1̂00̂01̂00̂ ¼ RðrÞðtÞðrÞðtÞ ¼ €a

a
;

R2̂00̂02̂00̂0 ¼ R3̂00̂03̂00̂0

¼ 
2Rð�ÞðtÞð�ÞðtÞ � 2
2	Rð�ÞðtÞð�ÞðrÞ
þ 
2	2Rð�ÞðrÞð�ÞðrÞ

¼ 
2 €a

a
� 
2	2

2a2r3
ð2 _a2r3 � bþ rb0Þ:

(47)

If now we consider the size of the traveller’s body
to be j�j � 2 ðmÞ and j 4a j� g	 ( 
 one Earth
gravity, i.e. 9; 8 m=s2) the Riemann tensor compo-
nents are constrained to be

jR1̂00̂01̂00̂j ¼ j €a
a
j � g	

c2 � 2 m
’ 1

ð108 mÞ2 ; (48)

and

jR2̂00̂02̂00̂0 j ¼ jR3̂00̂03̂00̂0 j

¼
��������
2 €a

a
� 
2	2

2a2r3
ð2 _a2r3 � bþ rb0Þ

��������
� g	

c2 � 2 m
’ 1

ð108 mÞ2 : (49)

Notice that, since the wormhole metric evolves
with time, the tidal acceleration also depends on

time. In this case, the radial tidal constraint (48)
can be regarded as directly constraining the accel-
eration of the expansion of the wormhole, while
the lateral tidal constraint (49) can be regarded as
constraining the speed v of the traveller while
crossing the wormhole.
In particular, the evolving wormholes obtained in
this paper evolve with the scale factor (21). This
implies that the expansion is not accelerated (i.e.
€a ¼ 0) and then the radial tidal acceleration is
identically zero, thus satisfying the constraint
(48). On the other hand, by taking into account
Eqs. (23) and (35) we obtain the following con-
straint for the lateral tidal acceleration:

��������
2	2 �Cð1þ!rÞr�ð1þ3!rÞ=!r

2ð ffiffiffiffiffiffiffiffiffi�D
p

tþ FÞ2
��������

� g	
c2 � 2 m

’ 1

ð1010 cmÞ2 : (50)

It is interesting to note that the lateral tidal accel-
eration at fixed r diminishes with time. Now, by
taking into account Eq. (22) this constraint may be
rewritten as

��������12
2	2�ð1þ!rÞ�
��������& 1

ð1010 cmÞ2 ; (51)

thus the lateral tidal constraint (50) can be re-
garded more exactly as constraining both the speed

TABLE I. This table shows the maximum values of vmax at
which the traveller could cross the static wormhole for given
values of!r and r0 in order to satisfy the constraint on the lateral
tidal acceleration.

vmax !r r0

542 m=s �1:5 100 m

1038 m=s �1:1 100 m

1084 m=s �1:5 200 m

2076 m=s �1:1 200 m

TABLE II. This table shows the minimum values tmin for the
cosmological time at which the traveller could cross the evolving
wormhole for given values of D (F ¼ 1), v, !r, and r0 in order
to saturate the constraint on the lateral tidal acceleration.

tmin D v !r r0

4.55 s �15 50 m=s �1:1 100 m

1.65 s �0:1 50 m=s �1:1 100 m

4.55 s �15 50 m=s �1:1 200 m

1.65 s �0:1 50 m=s �1:1 200 m

6.06 s �0:1 50 m=s �1:5 100 m

4.71 s �100 50 m=s �1:1 100 m
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v of the traveller and the energy density of the
matter threading the wormhole. By taking into
account the expression for the energy density of
Eq. (30) and considering that the motion of the
traveller is nonrelativistic (v � c, 
 � 1) we may
rewrite Eq. (51) as follows:

��������v
2ð1þ!rÞð1�Dr20Þ
!rr

2
0ð

ffiffiffiffiffiffiffiffiffi�D
p

tþ FÞ2
��������& g	: (52)

For the static case (i.e. D ¼ 0 and F ¼ 1) Eq. (52)
gives the following constraint on the speed v:

v &

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g	!rr

2
0

1þ!r

s
: (53)

In Table I, we show the maximum values of the
speed at which the traveller could cross the static
wormhole for some given values of the !r and r0
parameters in order to satisfy the constraint (53).
In Table II, we show for some given values of !r,
r0, D (F ¼ 1), and v the minimum values of the
cosmological time t ¼ tmin at which it is possible
to cross the evolving wormhole in order to satisfy
the constraint (52) for t � tmin.

(viii) This wormhole solution also may be interpreted as
an interior one [10]. This implies that one may, in
principle, match the found wormholes to an ex-
terior Kottler solution (Schwarzschild-de Sitter or
Schwarzschild–anti-de Sitter spacetimes) at some
matching interface rm, where r0 < rm < rmax (see
Fig. 1), in the spirit of Ref. [21], where a proce-
dure is given for matching static spherically sym-
metric wormholes to Kottler solution by using
directly the field equations to make the match.
This work is in progress.

V. CONCLUSIONS

In this paper we have constructed exact evolving worm-
hole geometries supported by phantom energy, showing
explicitly that the phantom energy can support the exis-
tence of evolving wormholes. Specifically, we have con-
structed asymptotically flat evolving wormholes with
radial and tangential pressures obeying barotropic equa-
tions of state with constant state parameters. One interest-
ing feature of these evolving wormholes, supported by an
anisotropic phantom matter, is that they expand with con-
stant velocity.
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FIG. 1. In the graphs we show some embedding diagrams zðrÞ
of two-dimensional sections along the equatorial plane (t ¼
const, � ¼ �=2) with the help of Eq. (40) of the traversable
evolving wormhole (23). For all diagrams the throat is located at
r0 ¼ 1, and curves are drawn for the specified values of D and
!r, taking into account the shape function bðrÞ of Eq. (30). The
range of r is r0 < r < rmax, where rmax is given by Eq. (43). For a
full visualization of the surfaces the diagrams must be rotated
about the vertical z axis.
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