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It is well known that there should be a total cancellation of the IR divergences in unitary interacting

field theory, such as QED and gravity. The cancellation should be at all orders between loop and tree-level

contributions to cross sections. This is the crucial fact related to the unitarity of the evolution operator

(S-matrix) of the underlying interacting field theory. In this paper we show that such a cancellation does

not happen in de Sitter space.
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I. INTRODUCTION

It is commonly accepted that de Sitter background
should correspond to the lowest energy state in the gravity
theory with the positive cosmological constant. The main
argument behind this point of view is that de Sitter space
has the largest possible isometry group with the given
cosmological constant, while any deviation from de Sitter
background breaks the isometry. As well, it can be shown
that there are no exponentially growing linearized fluctua-
tions in de Sitter space [1].

Let us address, however, the following question in the
interacting field theory on de Sitter background: Does an
inertially moving charged particle in de Sitter space emit
radiation or not? Because the space in question is confor-
mally flat, we propose to consider field theory which is not
conformal, otherwise the behavior of fields is not much
different from the one in Minkowski space. For example,
free electromagnetic fields do not feel the expansion of de
Sitter space and behave as if they are in the Minkowski
one. However, we can consider either minimally coupled
scalars and gravitons (whose free field theories already are
nonconformal) or turn on interactions which break confor-
mal invariance.

It is possible to fetch the answer on the posed question
even before going into the calculational details using just
general physical arguments. In fact, an inertially moving
particle in de Sitter space accelerates with respect to a free
floating (inertial) observer in the same space. Hence, it is
tempting to think that the inertial particle should radiate
from the point of view of the observer in question. We
support these general comments with explicit calculation
in the main body of the text. Somewhat similar phenome-
non have been considered in [2].

But if the particle radiates it will do that eternally—as
long as the particle and the background are left untouched.
Where does the energy for the radiation come from? One
can object that we should not ask about energy in a time

dependent de Sitter-like background. But exactly in this
objection resides the answer to our question. In fact, the
Hamiltonian of an interacting nonconformal field theory in
de Sitter background does not have a ground state, if the
cosmological constant is held fixed. We argue that the
radiation happens at the cost of the decrease of the cosmo-
logical constant, if the latter is not supported to be constant
by any imaginary external influence.
What we are trying to point out here is that the situation

in many respects is similar to the one in QED with the
constant electric field if we use the creation/annihilation
operators which correspond to the exact harmonics rather
than just to plain waves. As is well known the similarity
goes even further—up to the pair creation [3]—but to avoid
any mystery of quantum field theory in curved back-
grounds with horizons, we prefer to discuss a simple
semiclassical (tree-level QFT) phenomenon and IR rather
than UV behavior of quantum corrections, which can be
completely understood with the presently existing level of
knowledge. It is obvious that, even if we neglect the pair
production, a charge placed in the constant electric field
background will radiate at the cost of the decrease of the
field in question or at the cost of work performed by the
external source keeping the electric field constant.
Similarly the cosmological constant should decrease if it
is not held fixed by any external source.
In this note we would like to find a straightforward

signal showing that there are problems with quantum fields
in de Sitter background. Because of asymptotic nonflatness
of de Sitter space (hence, no energy conservation) the
radiation discussed above could be considered as not being
a problem, but we show that it inevitably results in one. We
observe that the evolution operator in de Sitter space is not
unitary if we keep the cosmological constant fixed. The
way to see that is through the noncancellation of the IR
divergences between tree and loop contributions to the
cross sections.
Let us sketch here the arguments presented in the main

body of the text. The statement is that in de Sitter space a
charged particle on mass shell does emit radiation. Hence,
its virtuality [4] is not related to the momentum of the
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emitted radiation. Thus, the tree-level cross sections for
emitting soft radiation are finite. In fact, recall that IR
divergences in cross sections (of a QFT without back-
ground fields) appear because the propagators of the par-
ticles which create radiation, being proportional to their
inverse virtuality, are singular as the momentum of the
emitted radiation goes to zero [5]: As follows from the
energy-momentum conservation the virtuality is propor-
tional to the momentum of the soft radiated quantum. The
power of the singularity is such that, after the integration
over the phase volume of the radiated soft quantum in any
cross section, the logarithmic IR divergence appears. Such
IR divergences cancel with the ones appearing in loop
corrections to the cross sections [5]. The cancellation can
be directly linked to the unitarity of the S-matrix in the
QFT [6] or, more concretely, to the optical theorem.

Now in the case of de Sitter space, while tree-level cross
sections are finite, the loop diagrams do have IR divergen-
ces. As a result, unlike the situation in a QFT without
background fields, there is nothing which can cancel
them. Hence, the evolution operator in de Sitter space is
not unitary, as it should be for a nonclosed system due to
the presence of a background field which is held fixed by
an external source.

It is worth pointing out here that the problems with
cancellation of the IR divergences appear in de Sitter space
even if we respect the de Sitter isometry at every step of the
calculation, i.e. de Sitter space is unstable and the isometry
is broken, at least if one turns on interactions. It is unstable
in the sense that the cosmological constant will decrease,
which will result eventually in the Friedmann-Robertson-
Walker (FRW) universe (with nonaccelerating expansion).
In the latter case we are going to have an analog of the
standard Minkowski vacuum for quantum fields.

II. GENERAL DISCUSSION

We set the cosmological constant to be one and keep it
fixed throughout the paper. Although our arguments are
general, for simplicity we would like to consider two
minimally coupled real scalar particles in D-dimensional
de Sitter space with the Yukawa type interaction:

Smatter ¼ 1

2

Z
dDx

ffiffiffiffiffiffiffi�g
p ½gab@a�@b�þM2�2

þ gab@ac @bc þm2c 2 þ ��2c �: (1)

It will become clear from the discussion below that the
reason for consideration of such a theory is that we would
like to keep both masses m and M greater than zero.

This theory in Minkowski space does possess the can-
cellation of the IR divergences ifm ¼ 0 andM> 0 or does
not have them at all ifM, m> 0. As well one can consider
nonminimally coupled scalars if they will make such sub-
stitutions as m2 ! m2 þ �R for all scalar masses, where R
is the de Sitter curvature, and � is a parameter. Conformal

coupling corresponds to the case m ¼ 0, � ¼ ðD�
2Þ=4ðD� 1Þ. It is important that the interaction term
breaks the conformal invariance in any case.
At first sight the most convenient reference frame where

one can do all the calculations is the planar one

ds2 ¼ �dt2 þ e2tdxidxi ¼ 1

�2
ð�d�2 þ dxidxiÞ; (2)

where � ¼ e�t, because then we have to deal with the
noncompact spacial sections and the formulas for ampli-
tudes are very similar to those in Minkowski space QED
with constant electric field. Unfortunately in these coordi-
nates we encounter problems. To see them, consider the
Klein-Gordon equation describing propagation of free
waves in these coordinates:

ð�2@2� � ðD� 2Þ�@� � �2@i@i þm2Þc ¼ 0 (3)

and similarly for �. Because this is a free wave equation,
its solutions obey the superposition principle. Hence, from
the point of view of the observer, seeing the corresponding
metric, particles (single waves) are just solutions of such an
equation, having a finite flux to be defined below. But we
would like to respect the de Sitter isometry, which restricts
the choice of the basis of harmonics. A particular basis
which leads to the de Sitter invariant vacuum state is as
follows [7]:

c k / ei
~k ~x�ðD�1Þ=2Hð2Þ

� ðk�Þ; � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
D� 1

2

�
2 �m2

s
;

k ¼ j ~kj: (4)

These harmonics correspond to the positive energy states,

while their complex conjugates—to the negative. HereHð2Þ

is the Hankel function: Hð1Þ
� ¼ ðHð2Þ

� Þ�.
Let us stress here the main problem with these harmon-

ics. The term linear in the differential over � under the
brackets in (3), which we refer to as a ‘‘friction’’ term, has
a wrong sign as � goes to þ1 (past infinity). As the result
among the harmonics present in the complete basis of the
solutions of this equation we have those which are expo-
nentially big (in t) in the past, when D � 3. In fact, the
solution presented in (4) behaves, when � ! þ1 (t !
�1), as follows:

c k / �ðD�2Þ=2e�ik�þi ~k ~x: (5)

This happens because the metric in (2) is singular as � !
þ1. As the result all loop diagrams have divergences in
the � ! þ1 corner of the time integration axis. Such a
divergence is present along with the IR one which appears
at the � ¼ 0 corner.
We postpone the discussion of the problems with the

definition of the S-matrix in de Sitter space to the following
sections and define here the mass-shell three leg amplitude
as follows. It is proportional to the integral:
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A /
�
k; q

��������
Z

dDx
ffiffiffiffiffiffiffi�g

p
�̂2 ĉ

��������p
�

/
Z þ1

0

d�

�D

Z
dðD�1Þ ~xeið ~p� ~k� ~qÞ�ð3=2ÞðD�1ÞHð1Þ

�1
ðp�Þ

�Hð2Þ
�1
ðk�ÞHð2Þ

�2
ðq�Þ ¼ �ðD�1Þð ~p� ~k� ~qÞ

�
Z þ1

0
d��ðD�3Þ=2Hð2Þ

�1 ðp�ÞHð1Þ
�1
ðk�ÞHð1Þ

�2
ðq�Þ: (6)

Here jk; qi ¼ âþk b̂
þ
q jvaci, etc. Here â and b̂ are creation

operators for the harmonics (4) of the fields � and c ,
correspondingly; jvaci is the de Sitter invariant Bunch-

Davies vacuum [7] and �1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD�1

2 Þ2 �M2
q

, �2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD�1

2 Þ2 �m2
q

. Because of such a behavior as in (5), the

integral in (6) looks like

A /
Z þ1

d� �ðD�6Þ=2eiðp�k�qÞ�

at the upper integration limit. Hence, for D � 5 we have a
divergence even in the tree-level amplitude independently
of the value of m and M. Similar problems appear in the
loop diagrams starting with D ¼ 4.

One can try to avoid the divergence by turning on the
interactions at some finite �0 and evolve to a future � < �0.
This is explicitly done in loop amplitudes in the papers [8]
and implicitly in the papers [9,10]. However, in this way
we break the de Sitter invariance by hand, because the
latter acts on �0. Hence, it is not an occasion that in the
quoted papers a perturbation of the de Sitter metric which
does not respect the invariance was observed. It is not that
we completely disagree with such an approach, taking into
account that de Sitter invariance is going to be dynamically
broken anyway, but we just would like to show here that
one will encounter problems even if they will always try to
respect the invariance.

Before going further let us point out the meaning of the
amplitude (6). First, let us stress that the calculation of the
amplitude gives a generally covariant (and gauge invariant)
way to address the question of radiation. In fact, if it is not
vanishing for given directions of external momenta and
when all its external legs are on mass shell, it just means
that a single wave can split into two waves from the point
of view of the observer corresponding to the background
metric, in which all calculations have been done.

Second, notice that the amplitude (6) is proportional to
the spacial � function imposing the momentum conserva-

tion law ~p ¼ ~kþ ~q. In Minkowski space the time integral
would impose as well the energy conservation law p0 ¼
k0 þ q0 via � function. At the same time on mass shell in

Minkowski space we obtain p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þM2

p
, k0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~k2 þM2
p

, q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þm2

p
and the energy conservation

condition does not have a solution. Hence, the amplitude is
zero and mass-shell (inertial) particles in Minkowski space
cannot emit radiation.

Now, in (6) we do not have the energy conservation due
to the presence of the external gravitational field originat-
ing from the cosmological constant—similar to the QED in
an external constant electric field. Thus, the amplitude is
not zero on mass shell. For the case when it is convergent
(i.e. whenD � 4 andM,m> 0) this can be seen explicitly
via numerical calculation of the integral in (6) using
MATHEMATICA or MAPLE.

In our opinion, the aforementioned divergencies in loop
diagrams at the past infinity (� ¼ þ1) are simply sort of
boundary effects, which emerged because the planar coor-
dinates cover only half of de Sitter space. To avoid the
aforementioned divergencies in loop diagrams at the past
infinity (� ¼ þ1) we propose to consider the global co-
ordinate system:

ds2 ¼ �dt2 þ cosh2td�2
D�1; (7)

where d�2
D�1 ¼ d�21 þ sin2�1d�

2
2 þ � � � þ

sin2�1 . . . sin
2�D�2d�

2
D�1. Unlike the planar coordinates,

the global ones cover de Sitter space completely. An im-
portant feature of these and the planar coordinates is that
they are seen by the inertial observer. The Klein-Gordon
equation in these coordinates is as follows:

�
@2t þ ðD� 2Þ tanht@t þm2 � �D�1ð�Þ

cosh2t

�
c ¼ 0: (8)

Here �D�1ð�Þ is the Laplacian on the ðD�
1Þ-dimensional sphere.
The friction term in (8) is proportional to tanht and

changes sign from �ðD� 1Þ in the past infinity (t !
�1) to þðD� 1Þ in the future infinity (t ! þ1). As
the result we obtain a complete set of modes which are
finite at every value of t at any given mass m. To solve (8)
explicitly we can use the separation of variables:

c jnðt;�Þ ¼ ’jðtÞYjnð�Þ: (9)

Here �D�1ð�ÞYjnð�Þ ¼ �jðjþD� 2ÞYjnð�Þ and n is

the multi-index ðn1; . . . ; nD�2Þ.
The spherical harmonics Yjnð�Þ have obvious properties

presented in [11]. The field ’jðtÞ obeys the obvious equa-
tion following from (8) and (9). This equation has two
designated complete sets of solutions: the so-called ‘‘in’’
and ‘‘out’’ modes [12] (see as well [11]). The complete set
of in modes is

’�
j ðtÞ / coshjðtÞeðjþðD�1Þ=2	i�ÞtF

�
jþD� 1

2
; jþD� 1

2

	 i�; 1	 i�;�e2t
�
; (10)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � ðD�1

2 Þ2
q

and Fða; b; c; zÞ is the hyper-

geometric function. The solution (10) can be continued to
the case when m< ðD� 1Þ=2. The out modes �’�

j ðtÞ are
related to the in modes as follows �’�

j ðtÞ ¼ ð’�
j ð�tÞÞ�.
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The in or out wave functions in question [as well as
(4)] are orthonormal with respect to the norm
i
R
X c 1

ffiffiffiffiffiffiffi�g
p

g00@0c
�
2d

D�1�, which is invariant under the

change of the spacial section X, as the consequence of
Eq. (8) [or (3)]. This norm defines the flux. Hence, any
solution of Eq. (8) which has a definite finite flux (i.e.
corresponds to a propagating particle) can be decomposed
in the complete basis of either in or ’’out’’ modes. The
particular choice of the in or out modes as the basis of
harmonics leads to the de Sitter invariant vacuum state
[12].

For the future references let us discuss here the asymp-
totic behavior of the in modes. The hypergeometric func-
tion Fða; b; c; zÞ does not have any poles on the negative z
axis (z ¼ �e2t in our case). Hence, the in modes (10) are
regular at any value of t and m and behave in the past
infinity (t ! �1) as

’�
j ! eððD�1Þ=2	i�Þt (11)

because F ! 1 as z ¼ �e2t ! 0. In the future infinity
(t ! þ1, z ¼ �e2t ! �1) they look like

’�
j ! e�ððD�1Þ=2Þtðc1e	i�t þ c2e

�i�tÞ (12)

with some complex constants c1 and c2. Such a behavior
follows from

lim
z!�1Fða; b; c; zÞ ! c1ð�zÞ�a þ c2ð�zÞ�b: (13)

Note that if m ¼ 0 we have harmonics which approach
nonvanishing constants as t ! �1, but there are not any
modes which are exponentially growing.

For the future reference let us define here the propagator
for the in modes [11,12]. Consider the de Sitter invariant
function depending on two points [11,12]:

Zðz; z0Þ ¼ � sinht sinht0 þ cosht cosht0 cos��; (14)

where �� is the angle between the spacial parts of the
coordinates z and z0. It can be shown that Zðz; z0Þ ¼ cosL,
where L is the geodesic distance between z and z0 for
spacial separations, or i times the geodesic proper time
difference for timelike separations. The Green function,
being de Sitter invariant, should depend only on such a
combination of the two points. Hence, the equation for the
Green function, which is (8) with the appropriate
�-functional sources on the right-hand side (RHS), can
be converted into

½ð1� Z2Þ@2Z �DZ@Z �m2�GðZÞ
¼ A�ðZþ 1Þ þ B�ðZ� 1Þ (15)

by the direct change of variables (14), from ðt;�Þ to Z.
Here A and B are some constants. The RHS of this equation
is singular when the z and z0 points coincide (i.e. when Z ¼
1) and when z coincides with the antipodal point of z0 (i.e.
when Z ¼ �1) [12]. The in Feynman type propagator
obeys this equation with A ¼ B ¼ 1 and is given by [12]:

GinðZÞ / �ð�þ 1Þ
sinhð��Þ
�

�
F

�
D� 1

2
þ i�;

D� 1

2
� i�;

D

2
;
1þ Z

2

�

þ F

�
D� 1

2
þ i�;

D� 1

2
� i�;

D

2
;
1� Z

2

��
;

(16)

where� is defined above. We are going to use this function
in the loop calculations below.

III. ON QFTWITH COMPACT SPACIAL SECTIONS

We see that spacial sections in global coordinates are
compact ðD� 1Þ-dimensional spheres, which is less con-
venient than flat sections in planar coordinates. To see that
compactness of spacial sections does not spoil all the
picture, in this chapter we would like to consider the
general features of QFT on such a space-time as, for
example, ds2 ¼ �dt2 þ R2d�2

D�1 with fixed radius R.
We are going to show that such a QFT as (1) on the
background in question has similar properties to the theory
in Minkowski space: such properties as the impossibility
for inertial particle to emit radiation as measured by an
inertial observer and the cancellation of IR divergences.
Let us stress here that our confidence in the fact that there
are no problems with the theory (1) on the background in
question is relaying on the obvious observation that it has
the unitary evolution operator.
Definite energy mass-shell harmonics in such a theory

look like 	j / e�ik0tYjmð�Þ, where k0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 1

R2 jðjþD� 2Þ
q

. Then, the three leg mass-shell

amplitude is

A /
Z þ1

�1
dt e�iðp0�k0�q0Þt

Z
d�Yj1n1ð�ÞY�

j2n2
ð�ÞY�

j3n3
ð�Þ
(17)

and is proportional to �ðp0 � k0 � q0Þ. The second inte-
gral (over the angles) gives the generalization of the 3j
symbols to the SOðD� 1Þ group with D � 4, which is not
quite a convenient object in comparison with the � func-
tion appearing for the case of the flat spacial sections. The
3j symbols are nonzero if j2 � j3 � j1 � j2 þ j3.
On mass shell we have that

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 1

R2
j1ðj1 þD� 2Þ

s
;

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 1

R2
j2ðj2 þD� 2Þ

s
;

q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 1

R2
j3ðj3 þD� 2Þ

s
:
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With such p0, k0, and q0 the condition p0 ¼ k0 þ q0
cannot be saturated for j2 � j3 � j1 � j2 þ j3. Hence,
the argument of the � function imposing the energy con-
servation is always nonzero, i.e. the amplitude itself is
zero. Thus, similar to the Minkowski space, we arrive at
the obvious conclusion that in the space in question an
inertial (mass-shell) particle cannot emit radiation.

Recall that in Minkowski space IR divergences in the
cross section appear only when m ¼ 0. The amplitude of a
hard process containing emission of one soft c mass-shell
quantum by the heavy � particle has the three leg multi-
plicative contribution

Z þ1

�1
dt

Z
d�GMðt0;�0; t;�Þe�iðp0�q0ÞtYj1n1ð�ÞY�

j3n3
ð�Þ;
(18)

where GM is the propagator of the � field, i.e. one of the
legs in the amplitude is off shell. The propagator is

Gðt;�; t0;�0Þ ¼ X
�

��ðt;�Þ��
�ðt0;�0Þ

�
; (19)

where ½h�M2��� ¼ ��� andh ¼ �@2t þ 1
R2 �D�1ð�Þ.

Obviously �� / e�ik0tYj2n2ð�Þ, where now k0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ �þ 1

R2 j2ðj2 þD� 2Þ
q

, i.e.
P

� ¼ R
dk0

Pþ1
j2¼0 .

The integral over t in (18) leads to the energy conservation
of the form:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 1

R2
j1ðj1 þD� 2Þ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ �þ 1

R2
j2ðj2 þD� 2Þ

s
þ 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j3ðj3 þD� 2Þ

q
:

(20)

For the big j1 
 j2 and small (soft) j3 we have the solution
of this equation as follows: � � �2ðp0q0 � 1

R2 j1j3Þ,
where p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 1

R2 j1ðj1 þD� 2Þ
q

and q20 � 1
R2 j3ðD�

2Þ. Hence, the amplitude is divergent as 1=� / 1=
ffiffiffiffiffi
j3

p
when j3 ! 0, while the cross section is divergent as
1=j3. Similar divergences (with the opposite sign) appear
in one loop contributions to the cross sections.

To clarify the situation let us consider the Minkowski
space (ds2 ¼ �dt2 þ d~x2) variant of the theory in question
and the part of an amplitude responsible for the radiation of
a soft c particle by the hard� one. For simplicity here we
restrict ourselves to the four space-time dimensions. If we
insert the Minkowski space analog of the propagator (19)
into the amplitude, we can use the � functions, imposing

energy-momentum conservation at the vertex, to fix � ¼
k20 � ~k2 �M2 ¼ ðp0 � q0Þ2 � ð ~p� ~qÞ2 �M2. Here p is

the four-momentum of the on-shell incoming� particle, q
is the four-momentum of the on-shell outgoing radiated c

particle, and k is the four-momentum of the off-shell (with
virtuality �) outgoing, after the radiation, � particle.
If we consider radiation of the very soft particle, i.e. the

modulus of the corresponding D momentum is jqj ! 0,
then k is very close to the mass shell, while p2 ¼ M2 and
q2 ¼ 0, i.e. � ¼ �2pq, because m ¼ 0. Thus, the propa-
gator is singular as jqj ! 0. Moreover, such a dependence
of � on q is important for the factorization of the IR
divergences in the cross sections for radiation of many
soft quanta [13], which, in its own right, is crucial for the
total cancellation of all divergences.
As a result, after the integration of the differential cross

section for the radiation of one soft quantum over its
invariant phase volume, we obtain

Z
jAj2 d

3 ~q

j ~qj /
Z 1

ðpqÞ2
d3 ~q

j ~qj / logm0:

This is the IR divergence with the cutoff m0 ! 0. Because
all IR divergences are of the same order, we have to sum
such contributions over all external legs of the hard process
in question [5,13]. Then similar divergences (with the
opposite sign) appear in the loop contributions to the cross
section of the hard process:

loop IR divergence /
Z

d4q
1

ðpqÞ2q2 :
All such contributions (from loops and tree-level diagrams)
add up, so that every divergence does cancel [13]. Higher
loop contributions cancel with the divergences coming
from multiple soft quantum radiations [5]. It is important
to stress here that we can choose another basis of harmon-
ics for � (dressed with the cloud of c ’s) such that IR
divergences will not be present, neither in trees nor in loops
[6], but it is impossible to get rid of the divergences only in
trees without cancelling them in loops or vise versa.

IV. RADIATION AND IR DIVERGENCES IN
DE SITTER SPACE

In this section we are going to show that in de Sitter
space the IR divergences do not cancel already at the
leading order. But before going into the calculational de-
tails let us note that we avoid using the term S-matrix in
de Sitter space. The latter is built on the basis of the matrix

element of the evolution operator Ŝ ¼ Te�i
Rþ1

�1 dtHintðtÞ

where Hint is the interaction Hamiltonian. The matrix
elements in question are defined with respect to the basis
of states houtjâ . . . â and âþ . . . âþjini while it is assumed

that jouti � e�i
Rþ1

�1 H0dtjini ¼ ðphaseÞjini, where H0 is the
free Hamiltonian. In the odd space-time dimensional
de Sitter spaces jouti ¼ jini. Hence, in odd dimensions
we are safe and our arguments pass smoothly [11].
But it appears that in even dimensional de Sitter spaces

jini � jouti [11,12]. In fact, in even dimensions jouti �
e�i

Rþ1
�1 H0dtjini � ðphaseÞjini, because jini is not an eigen-
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state of the free Hamiltonian. The latter has the form Ĥ0 /
�k½AðtÞâþk âk þ BðtÞâ�kâk þ B�ðtÞâþ�kâ

þ
k � with some

functions of time AðtÞ and BðtÞ [14]. Exactly due to the
presence of the nondiagonal terms â�kâk and â

þ
�kâ

þ
k in the

Hamiltonian we have to make the Bogolyubov transforma-
tion to diagonalize it and to observe the particle production
[3].

Thus, the jouti state differs from jini by the presence of
the created particles, which can be explicitly established by

the following relation jouti ¼ V̂ðâ; âþÞjini with some op-

erator V̂ [14]. In this paper we would like to consider the
matrix elements of the evolution operator which are of the

form hinjâ . . . â Ŝ âþ . . . âþjini. Physically this means that
we neglect the particle production by the external field and
consider only scattering amplitudes in such a background.
We strongly believe that this is sufficient to make a state-

ment about (non)unitarity of the evolution operator Ŝ itself.
To see that our arguments are meaningful one can consider
the similar situation appearing in QED in the background
of the constant electric field.
It is straightforward to find the basic tree-level mass-

shell amplitude describing the process when the� particle
radiates the c particle. In the global coordinates the am-
plitude is proportional to

A /
Z

d�Yj1n1ð�ÞY�
j2n2

ð�ÞY�
j3n3

ð�Þ
Z þ1

�1
dtcoshD�1ðtÞ

�
�
coshj1ðtÞeðj1þððD�1Þ=2Þþi�1ÞtF

�
j1 þD� 1

2
; j1 þD� 1

2
þ i�1; 1þ i�1;�e2t

��

�
�
coshj2ðtÞeðj2þððD�1Þ=2Þ�i�1ÞtF

�
j2 þD� 1

2
; j2 þD� 1

2
� i�1; 1� i�1;�e2t

��

�
�
coshj3ðtÞeðj3þððD�1Þ=2Þ�i�2ÞtF

�
j3 þD� 1

2
; j3 þD� 1

2
� i�2; 1� i�2;�e2t

��
; (21)

where �1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � ðD�1

2 Þ2
q

, �2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � ðD�1

2 Þ2
q

.

Note that (21) is valid even if m orM are less than ðD�
1Þ=2. Such an amplitude is just an analytical continuation
of the corresponding generalized 3j symbol, which follows
from the continuation SD ! dSD. From this we can al-
ready argue that the mass-shell amplitude (21) is nonzero.

However, if either one of the masses, m or M, is vanish-
ing, the integral for the amplitude is divergent (see below).
We discuss the meaning of these divergences in the con-
cluding section. At this stage we would like to avoid such
problems with divergences of the tree-level amplitudes and
to keep our discussion as transparent as it is possible for the
case in question. It happens that, if we keep both masses
M and m nonzero, the integral (21) is convergent.
Unfortunately, even MATHEMATICA and MAPLE refuse to
take such an integral analytically. Let us show explicitly
that it is really convergent.

The integrand expression in (21) can hypothetically
blow up only if t ! �1, because the hypergeometric
function is regular for the negative argument, i.e. for any
finite value of t. As t ! �1we can use the behavior of the
in harmonics from (11) to obtain that the integrand ex-

pression in (21) approaches eðððD�1Þ=2Þ�i�2Þt for the lower
integration limit. Hence, the integral is convergent in this
corner of the integration axis even if �2 is purely imagi-
nary, i.e. when m< ðD� 1Þ=2. Indeed in the latter case
j�2j � ðD� 1Þ=2. This inequality is saturated only
when m ¼ 0. It is only in the latter case there can be the
perfect cancellation of the exponential suppression

eðððD�1Þ=2Þ�i�2Þt ! 1 as t ! �1, and we have the divergent
amplitude.

In the other corner of the integration axis, i.e. when t !
þ1, we can use the asymptotics as in (12) and find that the
integrand behaves as

e�ððD�1Þ=2Þtðc1eþi�1t þ c2e
�i�1tÞðc01e�i�1t þ c02eþi�1tÞ

� ðc001e�i�2t þ c002eþi�2tÞ: (22)

Hence, in this corner of the t integration axis the integral
(21) is convergent if �1 is real and m � 0.
As well, using MATHEMATICA and MAPLE for numerical

calculation of the integral (21), one can explicitly see that it
is not zero for j2 � j3 � j1 � j2 þ j3. The integrand ex-
pression in (21) is plotted in Fig. 1 for several different
values of M, m and j1, j2, j3. Thus, all our considerations
so far at least mean that a massive particle can radiate
another massive particle on mass shell in de Sitter space.
Based on these considerations we can make a general

conclusion that mass-shell particles can radiate fields under
which they carry charges, unless the corresponding theory,
describing interactions between ‘‘matter’’ and ‘‘radiation,’’
is conformal. For example, all particles can radiate grav-
itons, we just have to appropriately understand the corre-
sponding divergent amplitudes as the generalized
functions. With similar reasoning one can arrive at the
conclusion that an eternally accelerating charged particle
in Minkowski space (e.g. under the action of the constant
electric field) does emit radiation.
As a side remark let us point out here that one may

object to the conclusions made in the previous paragraph
based on the following considerations. It is known that if
one drops a spherically symmetric massive (m) body in de
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Sitter space it produces the static de Sitter black hole
metric outside its own volume:

ds2 ¼ �
�
1� r2 � 2m

rD�3

�
dt2 þ dr2

ð1� r2 � 2m
rD�3Þ

þ r2d�2
D�2 (23)

and does not produce any (nonstatic) gravitational waves
on top of that. Hence, it seems that this argument precludes
our conclusion that an inertial massive body in de Sitter
space will produce gravitational waves. But the important
point is that such a metric as (23) is seen by a noninertial
observer which is fixed above the surface of the spherical
body, i.e. the body and the observer compose a bound state
and do not move with respect to each other. Thus, it is not
an occasion that such an observer does not see any radia-
tion from the massive body. At the same time our statement
is that it is the inertial observer which sees the radiation
from free floating bodies in de Sitter space.

Let us see now what happens with the cross section of a
hard process containing the radiation of the soft c quan-
tum by� in de Sitter space. Because the amplitude (21) is
nonvanishing on shell the virtuality of the� particle is not
related to the mass-shell momentum (j3) of the radiated c
particle. Indeed, to obtain the multiplicative factor in the
amplitude of a hard process, corresponding to the radiation
of the soft quantum by the hard one, we have to multiply by
1=� the same amplitude as (21) with the only change of�1

in the second wave function under the integral in (21) byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ �� ðD�1

2 Þ2
q

. Obviously the amplitude is not singu-

lar as j3 ! 0, because � is not related to j3. In fact, we do
not have the � function (imposing energy conservation)
which fixes the value of � as it was in Minkowski space.

Hence, we just have to integrate over all possible values of
the virtuality in the amplitude, unlike the Minkowski space
case. Thus, the cross section is not divergent as well, which
can be explicitly seen via similar reasoning to the one
presented after Eq. (21). But even if it was divergent, we
would not have had the factorization of the divergences due
to such a behavior of �. The latter fact anyway spoils the
cancellation of the IR divergences at all orders [13].
At the same time it happens that loop diagrams in de

Sitter space do have IR divergences even for massive
particles. Consider the one loop self-energy diagram for
the � particle. It has the contributions of the form

�� /
Z þ1

�1
dt1

Z þ1

�1
dt2

Z
d�1

Z
d�2cosh

D�1ðt1Þ
� coshD�1ðt2Þ
� F

�
D� 1

2
þ i�1;

D� 1

2
� i�1;

D

2
;
1� Z

2

�

� F

�
D� 1

2
þ i�2;

D� 1

2
� i�2;

D

2
;
1� Z

2

�
; (24)

where Z is given by (14) and we have borrowed propaga-
tors from (16). It is straightforward to see [using (13)] that
such an integral divergent in the IR, i.e. as Zðz; z0Þ ! 1
(see e.g. similar discussion in [15]). Indeed, if say t1 !
�1, while t2 ! þ1, then according to (14), Zðz; z0Þ !
et2�t1ð1þ cos�Þ=4 and the integrand expressions in (23)
behave as

½c1e�i�1ðt2�t1Þ þ c2e
i�1ðt2�t1Þ�

½c01e�i�2ðt2�t1Þ þ c02e
i�2ðt2�t1Þ�:

(25)

Hence, the integrals over t1, t2 in (24) are divergent if�2 is
pure imaginary, i.e. when m< ðD� 1Þ=2. Furthermore,
we have the IR divergence in the causally connected
region, because any points with t ! �1 and t ! þ1
are causally connected in de Sitter space. Hence, restricting
oneself to the region within the cosmological horizon does
not help to cut or get rid of such IR divergences.
Thus, for anyM> 0, but 0<m< ðD� 1Þ=2, we obtain

finite tree-level contributions to cross sections and there is
nothing which can cancel the IR divergences in the loop
diagrams. It is probably worth pointing out here that we
cannot interpret the divergence in (24) as an analog of the
collinear one [5] for many obvious reasons. At least it is
present for any value of the massM of the particle emitting
the radiation.
All the considerations above make us conclude that the

evolution operator leading to such a diagram technic is not
unitary and the system of de Sitter background plus QFT is
not closed if the cosmological constant is held fixed. It is
important to stress that in the circumstances under consid-
eration one cannot make the IR divergences to cancel by a
unitary change of the basis of the creation-annihilation
operators.
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FIG. 1. The real part of the integrand in (21) for different
values of M, m and j1, j2, j3. The imaginary part is equal to
zero for the first three plots. The presence of the nonzero
imaginary contribution to the leading amplitude is already a
sign favoring that the theory in question is nonunitary.
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V. CONCLUSIONS

Before drawing any conclusions let us make a few side
remarks about the divergences of (21) when either of the
massesM or m is vanishing. Similar divergences appear in
anti-de Sitter (AdS) space: note the similarity of the anti-de
Sitter metric ds2 ¼ 1

z2
ðdz2 þ dxadx

aÞ to the one in (2) with
the crucial difference, however, that z is not timelike.
Hence, anti-de Sitter space is not globally hyperbolic
(because there is a timelike boundary) but does not have
an event horizon (because there is a globally defined time-
like Killing vector). Because of the lack of the global
hyperbolicity, which results in such a well-known effect
that in anti-de Sitter space waves can repel from the spacial
boundary, one cannot define the Cauchy problem in such a
space [16]. Thus, while it is possible to define the unique
anti-de Sitter invariant vacuum state, one cannot define
appropriately the evolution operator for a QFT in such a
background. According to the AdS/conformal field theory
correspondence [17–19] one treats the IR divergences in
the QFT on anti-de Sitter space, which appear in the wave
functional rather than in the S-matrix, as the UV divergen-
ces in the QFT on its boundary.

On the contrary, although we do not have Poincaré
invariance in de Sitter space, it is globally hyperbolic and
one can define the evolution operator there. Let us stress
here that we do not have Poincaré invariance, for example,
in the presence of the constant electric field in QED, but we
still can define the evolution operator, because the evolu-
tion problem can be correctly formulated in such
circumstances.

At this point we can and should address the question
why anti-de Sitter space is stable. It seems that a free
floating particle in anti-de Sitter space will emit radiation
as well. However, this question and the question of the
cancellation of the IR divergences cannot be formulated in
anti-de Sitter space because of the impossibility to define
the time evolution operator in such a background due to the
lack of the global hyperbolicity.

Let us now come back to the conclusions. We see that
QFT in de Sitter space (i.e. if we fix the cosmological
constant) behaves as if it is formulated in a background
of an external quasiclassical gravitational field (excitation
above the correct vacuum) due to a cosmological con-
stant—analogously to the QED in a constant (in space
and time) electric field, i.e. as the nonclosed system. That
is the only interpretation of the nonunitarity, which we can
give. Hence, the only conclusion which we can make here,
without performing a direct calculation, is that the cosmo-
logical constant will relax to zero creating particles via
Gibbons-Hawking pair production (which we do not dis-
cuss in our paper) and via performing work on accelerating
created particles, which leads to the radiation in its own
right.

The conceptual question is how fast will be the relaxa-
tion of the cosmological constant. If the relaxation goes
fast enough we can hope to explain via this mechanism the
cosmological constant problem along with obtaining natu-
ral inflation without any inflaton field [8]. We think that the
rate of the decay should just depend on the actual magni-
tude of the field. For the big enough field the rate of the
decay should be big: the bigger the energy pool is the easier
to create light particles. The technical question is how to
calculate the rate of the decay of the cosmological
constant.
If the cosmological constant is very big we have to use

the theory of quantum gravity. Unfortunately string theory
does not have a formulation on de Sitter space, because
such a background spoils conformal invariance of the
theory on the string world sheet. In this case we have to
deal with the off-shell formulation of the closed string
theory, which is very hard to do with the presently existing
first quantized variant of the theory (see, however, [15]).
Thus, the only hope is that we can use the ordinary

Einstein-Hilbert theory, which dominates in the IR, if the
cosmological constant is smaller than the Plank scale. In
this respect we should stress that the issue of the instability
of de Sitter space, of the IR divergences, and of the
nonunitarity have been discussed in various places
[2,8,12,15,20,21]. As well, the running of the cosmological
constant due to the quantum fluctuations have been found
in [8–10] using either Heisenberg or Schwinger-Keldish
technics. Here, apart from presenting the listed above new
phenomena supporting the conclusion that de Sitter space
is unstable, we should criticize the actual calculation of the
decay rate of the cosmological constant performed in [8–
10], because, as we just pointed out, the rate was found
with the use of the nonunitary evolution operator. Hence,
the questions posed above remain to be answered.
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