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In this work, we consider time-dependent dark-energy star models, with an evolving parameter !

crossing the phantom divide ! ¼ �1. Once in the phantom regime, the null energy condition is violated,

which physically implies that the negative radial pressure exceeds the energy density. Therefore, an

enormous negative pressure in the center may, in principle, imply a topology change, consequently

opening up a tunnel and converting the dark-energy star into a wormhole. The criteria for this topology

change are discussed and, in particular, we consider a Casimir energy approach involving quasilocal

energy difference calculations that may reflect or measure the occurrence of a topology change. We denote

these exotic geometries consisting of dark-energy stars (in the phantom regime) and phantom wormholes

as phantom stars. The final product of this topological change, namely, phantom wormholes, have far-

reaching physical and cosmological implications, as in addition to being used for interstellar shortcuts, an

absurdly advanced civilization may manipulate these geometries to induce closed timelike curves,

consequently violating causality.
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I. INTRODUCTION

Recent high-precision observational data have con-
firmed that the Universe is undergoing a phase of accel-
erated expansion [1]. Several candidates, responsible for
this expansion, have been proposed in the literature, in
particular, dark-energy models (see Ref. [2] for a review)
and modified gravity (e.g., see Ref. [3] for recent reviews).
In particular, the former models are fundamental candi-
dates, in which a simple way to parameterize the dark
energy is by an equation of state of the form ! � p=�,
where p is the spatially homogeneous pressure and � is the
dark-energy density. A value of !<�1=3 is required for
cosmic expansion, and ! ¼ �1 corresponds to a cosmo-
logical constant. A specific exotic form of dark energy
denoted phantom energy, with !<�1, has also been
proposed [4], and possesses peculiar properties, such as
the violation of the null energy condition (NEC) and the
energy density increases to infinity in a finite time [4], at
which point the size of the Universe blows up in a finite
time, which is known as the Big Rip. In this context, the
violation of the NEC presents us with a natural scenario for
the existence of traversable wormholes, and indeed it has

been shown that these exotic geometries can be supported
by phantom energy [5,6]. It is also interesting to note that
recent fits to supernovae, cosmic microwave background
radiation, and weak gravitational lensing data probably
favor an evolving equation of state, with the parameter
crossing the phantom divide ! ¼ �1 [7].
Despite the fact that the dark-energy equation of state

represents a spatially homogeneous cosmic fluid and is
assumed not to cluster, it is possible that inhomogeneities
may arise due to gravitational instabilities. More precisely,
although the equation of state leading to the acceleration of
the Universe on large scales is an average equation of state
corresponding to a background fluid, it is possible that
dark-energy condensates may possibly originate from den-
sity fluctuations in the cosmological background, resulting
in the nucleation through the respective density perturba-
tions. Despite the fact that once in the dark-energy regime
the material system becomes gravitationally repulsive, we
may consider the possibility of the formation of a matter
system that originally obeys all the energy conditions.
Cosmological observations do not rule out, and in some
studies favor, an evolving equation of state for the dark
energy. It is therefore quite possible that what we know as
dark energy today has evolved from a more benign fluid.
An over density of this fluid could in principle commence a
collapse into a star that at late times crosses the phantom
divide in its interior. Such a model is presented in
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Sec. III C. We also point out that even in the case of a dark-
energy fluid, there is no definite resolution to the debate of
clustering scales. This is mainly due to nonlinearity, espe-
cially in the vein of dark energy interacting with ordinary
fluids. It may also be possible to glean some information on
the cosmological dark matter by studying certain proper-
ties of such gravitational condensates. (See [8] and refer-
ences therein for comments on these issues.) In this
context, a number of inhomogeneous solutions have been
the object of analysis, such as the phantom wormholes
[5,6] mentioned above, dark-energy stars [9], and other
structures such as condensates supported by the general-
ized Chaplygin gas [10], which possibly arise from density
fluctuations in the generalized Chaplygin gas background,
and condensed structures supported by the van der Waals
equation of state [11]. In a recent paper [12], it was also
shown that the 4D Einstein-Klein-Gordon equations with a
phantom scalar field possess nonsingular, spherically sym-
metry solutions, although a stability analysis on these
solutions indicates they are unstable.

The dark-energy star models are also a generalization of
a new emerging picture for an alternative final state of
gravitational collapse, namely, the gravastar (gravitational
vacuum star) models. The latter proposed by Mazur and
Mottola [13], has an effective phase transition at/near
where the event horizon is expected to form, and the
interior is replaced by a de Sitter condensate. The latter
is then matched to a thick layer, with an equation of state
given by p ¼ �, which is in turn matched to an exterior
Schwarzschild solution. The issue of gravastars has been
extensively analyzed in the literature, and we refer the
reader to Refs. [14,15]. The generalization of the gravastar
picture is considered by matching an interior solution
governed by the dark-energy equation of state! � p=� <
�1=3 to an exterior Schwarzschild vacuum solution at a
junction interface [9]. The dynamical stability of the tran-
sition layer was also explored, and it was found that large
stability regions exist that are sufficiently close to where
the event horizon is expected to form, so that it was argued
that it would be difficult to distinguish the exterior geome-
try of the dark-energy stars from an astrophysical black
hole. Thus, these alternative models do not possess a
singularity at the origin and have no event horizon, as its
rigid surface is located at a radius slightly greater than the
Schwarzschild radius. This restriction arises from the ob-
served lack of energy emission due to surface collisions of
infalling material in suspected black hole systems. In fact,
although evidence for the existence of black holes is very
convincing, a certain amount of scepticism regarding the
physical reality of event horizons is still encountered, and it
has been argued that despite the fact that observational data
do indeed provide strong arguments in favor of event
horizons, they cannot fundamentally prove their existence
[16].

As mentioned above, recent fits to observational data
probably favor an evolving equation of state, with the dark-

energy parameter crossing the phantom divide ! ¼ �1
[7]. Motivated by this fact, in a rather speculative scenario
one may theoretically consider the existence of a dark-
energy star, with an evolving parameter starting out in the
range �1<!<�1=3, and crossing the phantom divide
! ¼ �1. Once in the phantom regime, the null energy
condition is violated, which physically implies that the
negative radial pressure exceeds the energy density.
Therefore, an enormous negative pressure in the center
may, in principle, imply a topology change, consequently
opening up a tunnel, and converting the dark-energy star
into a wormhole [9,17]. One may assume that the topology
change may occur at approximately the Planck length
scales, and once created may be self-sustained as shown
in Ref. [18]. In fact, the change in topology is an extremely
subtle issue, as in general relativity these changes probably
entail spacetime singularities. However, at the Planck
length scales quantum gravity effects dominate and space-
time undergoes a deep and rapid transformation in its
structure, probably producing a multiply-connected quan-
tum foam structure [19,20]. It was suggested in Ref. [17]
that one could imagine an absurdly advanced civilization
[21] pulling a wormhole from this submicroscopic space-
time quantum foam and enlarging it to macroscopic di-
mensions. However, in a more plausible scenario, the
possibility that inflation might provide a natural mecha-
nism for the enlargement of such wormholes to macro-
scopic size was explored [22]. In this work, we outline the
theoretical difficulties associated to the change in topology
and present a method based on the Casimir energy ap-
proach. Although it is still unsure if this method confirms a
topology change, it is extremely useful as the quasilocal
energy difference calculation may reflect or measure the
occurrence of a change in topology. Other concepts of
topology changing spacetimes have been studied. For in-
stance, using semiclassical and Morse-index methods in
Ref. [23], higher order back-reaction terms due to fluctua-
tions of gauge fields in the vicinity of a black hole may
result in the formation of a wormholelike object [24], and
more recently an approach based on a Ricci flowmay result
in quantum wormholes [25].
Once the topology change has occurred, with the re-

spective opening of a tunnel, then the dark-energy star has
been converted into a wormhole supported by phantom
energy. As mentioned above, it has recently been shown
that traversable wormholes may, in principle, be supported
by phantom energy [5,6], which apart from being used as
interstellar shortcuts, may induce closed timelike curves
with the associated causality violations [26,27].
Particularly interesting solutions have been found [6],
and by using the ‘‘volume integral quantifier,’’ it was found
that these wormhole geometries are, in principle, sustained
by arbitrarily small amounts of averaged null energy con-
dition violating phantom energy. A complementary ap-
proach was traced out in [5], by considering specific
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choices for the distribution of the energy density threading
the wormhole. Recently, 4D static wormhole solutions
supported by two interacting phantom fields were found
as well [28]. Despite the fact that traversable wormholes
violate the NEC in general relativity (see Ref. [29] for a
recent review), it has been shown that the stress-energy
tensor profile may satisfy the energy conditions in the
throat neighborhood in dynamic wormholes (see
Ref. [30] and references therein) and in certain alternative
theories to general relativity [31]. Perhaps not so appeal-
ing, one could denote these exotic geometries consisting of
dark-energy stars (in the phantom regime) and phantom
wormholes as phantom stars. We would like to state our
agnostic position relative to the existence of dark-energy
stars and phantom wormholes, or for that matter of phan-
tom stars. However, it is important to understand their
general properties and characteristics, and we emphasize
that the presence of a dark-energy fluid permeating the
Universe makes the study of dark-energy condensates a
physically relevant endeavor.

This paper is organized in the following manner: In
Sec. II, we briefly review static dark-energy stars, followed
by a deduction of general solutions of time-dependent
spacetimes. In Sec. III, specific time-dependent dark-
energy solutions are outlined; in particular, we present
the specific cases of a constant energy density, the
Tolman-Matese-Whitman mass function solution, and a
class of models with a nonzero energy flux term, which
form from gravitational collapse. In Sec. IV, we describe
the theoretical difficulties associated with changes in to-
pology and present in some detail specific methods used in
the literature, namely, a Casimir energy approach involving
quasilocal energy difference calculations that may reflect
or measure the occurrence of a topology change. In Sec. V,
we conclude.

II. TIME-DEPENDENT DARK-ENERGY STARS

A. Static spacetime

In this section, we provide a brief outline of the mathe-
matical models of static and spherically symmetric dark-
energy stars considered in Ref. [9]. Consider the following
time-independent line element, in curvature coordinates,
representing a dark-energy star

ds2 ¼ �e2�ðrÞdt2 þ dr2

1� 2mðrÞ=rþ r2ðd�2 þ sin2�d�2Þ;
(1)

where �ðrÞ and mðrÞ are arbitrary functions of the radial
coordinate, r. The function mðrÞ can be interpreted as the
quasilocal mass, and is denoted as the mass function [9].
The factor �ðrÞ is the ‘‘gravity profile’’ and is related to the
locally measured acceleration due to gravity, through the

following relationship: A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðrÞ=rp

�0ðrÞ [9,11],
where the prime denotes a derivative with respect to the

radial coordinate r. The convention used is that �0ðrÞ is
positive for an inwardly gravitational attraction, and nega-
tive for an outward gravitational repulsion.
The Einstein field equations are given by [9]

m0 ¼ 4�r2�; (2)

�0 ¼ mþ 4�r3pr

rðr� 2mÞ ; (3)

p0
r ¼ �ð�þ prÞðmþ 4�r3prÞ

rðr� 2mÞ þ 2

r
ðpt � prÞ; (4)

where �ðrÞ is the energy density, prðrÞ is the radial pres-
sure, and ptðrÞ is the tangential pressure orthogonal to pr.
Note that Eq. (4) corresponds to the anisotropic pressure
Tolman-Oppenheimer-Volkoff equation.
An additional constraint is placed on the system of

equations by considering the dark-energy equation of state
prðrÞ ¼ !�ðrÞ and taking into account Eqs. (2) and (3), we
have the following relationship:

�0ðrÞ ¼ mþ!rm0

rðr� 2mÞ : (5)

There is, however, a subtle point that needs to be empha-
sized [5,6]. The notion of dark energy is that of a spatially
homogeneous cosmic fluid. Nevertheless, it can be ex-
tended to inhomogeneous spherically symmetric space-
times by regarding that the pressure in the equation of
state p ¼ !� is a radial pressure, and that the transverse
pressure may be obtained from Eq. (4). In addition to this,
and as mentioned in the introduction, despite the fact that
the dark-energy equation of state represents a spatially
homogeneous cosmic fluid and is assumed not to cluster,
inhomogeneities may arise due to gravitational instabil-
ities. Thus, the dark-energy star geometries considered
here may possibly originate from density fluctuations in
the cosmological background, resulting in the nucleation
through the respective density perturbations [11].
In Ref. [9], specific solutions were found by considering

that the energy density is positive and finite at all points in
the interior of the dark-energy star. In particular, several
relativistic dark-energy stellar configurations were ana-
lyzed by imposing specific choices for the mass function
mðrÞ, and through Eq. (5), �ðrÞ was determined, conse-
quently providing explicit expressions for the stress-energy
tensor components. This interior solution was further
matched to an exterior Schwarzschild vacuum solution
given by

ds2 ¼ �
�
1� 2M

r

�
dt2 þ

�
1� 2M

r

��1
dr2

þ r2ðd�2 þ sin2�d�2Þ; (6)

at a junction interface a. The Schwarzschild spacetime
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possesses an event horizon at rb ¼ 2M, so that to avoid the
latter, the junction radius lies outside 2M, i.e., a > 2M.

The surface stresses on the thin shell are given by

� ¼ � 1

4�a

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

a
þ _a2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

a
þ _a2

s �
; (7)

P ¼ 1

8�a

�
1� M

a þ _a2 þ a €affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

a þ _a2
q

� 1þ!m0 � m
a þ _a2 þ a €aþ _a2m0ð1þ!Þ

1�2m=affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

a þ _a2
q �

; (8)

where � and P are the surface energy density and the
tangential surface pressure [9,32,33], respectively. The
overdot denotes a derivative with respect to �, which is
the proper time on the junction interface, and the prime
here denotes a derivative with respect to the junction
surface radius a.

The dynamical stability of the transition layer a of these
dark-energy stars to linearized spherically symmetric ra-
dial perturbations about static equilibrium solutions was
also explored. It was found that large stability regions exist
that are sufficiently close to where the event horizon is
expected to form, so that it would be difficult to distinguish
the exterior geometry of the dark-energy stars, analyzed in
[9], from an astrophysical black hole.

B. Time-dependent spacetime

In this section, we generalize the above static dark-
energy star models to time-dependent geometries. This is
mainly motivated by the fact that recent fits to supernovae,
cosmic microwave background radiation, and weak gravi-
tational lensing data probably favor an evolving equation
of state, with the dark-energy parameter crossing the phan-
tom divide ! ¼ �1 [7].

In the following, we consider a time-dependent and
spherically symmetric metric given by

ds2 ¼ �e2�ðr;tÞdt2 þ e2�ðr;tÞdr2 þ r2ðd�2 þ sin2�d�2Þ:
(9)

Note that one may also define the function �ðr; tÞ as

�ðr; tÞ ¼ 1

2
ln

�
1� 2mðr; tÞ

r

�
; (10)

where the ‘‘mass function’’ mðr; tÞ is now time dependent.
The Einstein field equation provides the following non-

zero components:

�ðr; tÞ ¼ e�2�

8�r2
ð2�0rþ e2� � 1Þ; (11)

prðr; tÞ ¼ e�2�

8�r2
ð2�0r� e2� þ 1Þ; (12)

fðr; tÞ ¼
_�e�ð�þ�Þ

4�r
; (13)

ptðr; tÞ ¼ 1

8�

�
e�2�

�
�00 þ �02 � �0�0 þ 1

r
ð�0 � �0Þ

�

þ e�2�ð _� _�� €�� _�2Þ
�
; (14)

where the prime denotes a partial derivative with respect to
the radial coordinate r, and the overdot a partial derivative
with respect to the time coordinate t. Note the presence of
an energy flux term in the radial direction, Tt

r ¼ �fðr; tÞ,
which depends on _�.
An important issue in the time-dependent dark-energy

stars with the parameter crossing the phantom divide are
the energy conditions, in particular, the NEC. The NEC is
defined as T	
k

	k
 � 0, where k	 is any null vector, and

consequently provides �þ pr � 2f � 0. The latter defi-
nition, taking into account the field Eqs. (11)–(13), is given
by

�þ pr � 2f ¼ 1

4�r
½e�2�ð�0 þ �0Þ � 2 _�e�ð�þ�Þ� � 0:

(15)

In this context, one may consider a generalization of the
equation of state pr ¼ !�, given by

prðr; tÞ ¼ !ðr; tÞ½�ðr; tÞ � 2fðr; tÞ�; (16)

or

prðr; tÞ � 2fðr; tÞ ¼ !ðr; tÞ�ðr; tÞ; (17)

where fðr; tÞ ¼ �Tt
r is the energy flux term, as noted

above. However, one can come up with an interesting class
of solutions considering the following equation of state:

prðr; tÞ ¼ !ðr; tÞ�ðr; tÞ: (18)

Throughout this work, we essentially use the equation of
state given by Eq. (18).
Taking into account the field Eqs. (11) and (12), then

Eq. (18) provides the following relationship:

!ðr; tÞ�0ðr; tÞ ¼ �0ðr; tÞ þ 1

2r
½1þ!ðr; tÞ�½1� e2�ðr;tÞ�:

(19)

A similar analysis was carried out in Ref. [34], in the
context of time-dependent wormholes.
Equation (19) may be formally solved in terms of�ðr; tÞ,

and provides the following general solution:

�ðr; tÞ ¼
Z 1

�r

�
!ð�r; tÞ�0ð�r; tÞ �r

� 1

2
½1þ!ð�r; tÞ�½1� e2�ð �r;tÞ�

�
d�r: (20)

Thus, in principle, if !ðr; tÞ and �ðr; tÞ are known, then
�ðr; tÞ may be obtained from Eq. (20).
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As an alternative, Eq. (19) can be formally integrated for
�ðr; tÞ to yield the general solution

�ðr; tÞ ¼ � 1

2
ln

�
�2FðtÞ þ

Z e�ð �r;tÞð1þ!ð �r; tÞÞ
!ð�r; tÞ �r d�r

�

þ 1

2
�ðr; tÞ; (21)

where FðtÞ is an integration function, and the factor �ðr; tÞ
is defined as

�ðr; tÞ ¼
Z �

2�r�0ð �r; tÞ þ �rþ 1

�r!ð�r; tÞ
�
d�r: (22)

A particularly simple and interesting toy model is the
specific case of a purely time-dependent parameter ! ¼
!ðtÞ, so that the general solution (21) takes the form

�ðr; tÞ ¼ � 1

2

�
2�ðr; tÞ
!ðtÞ � ln

�
r�ð1þ!ðtÞ=!ðtÞÞð�2FðtÞ

þ 1þ!ðtÞ
!ðtÞ

Z
e2�ð�r;tÞ=!ðtÞ �r1=!ðtÞd�rÞ

��
: (23)

In the next section, we analyze specific solutions,
namely, that of a constant energy density, the Tolman-
Matese-Whitman mass function, which were extensively
explored in Ref. [9], and a collapsing model with a nonzero
energy flux term.

III. SPECIFIC TIME-DEPENDENT DARK-ENERGY
STAR SOLUTIONS

A. Constant energy density

Consider the specific case of a constant energy density,
�ðr; tÞ ¼ �0, so that Eq. (11) provides the solution

�ðr; tÞ ¼ � 1

2
ln

�
1� Ar2 þ F1ðtÞ

r

�
; (24)

with A ¼ 8��0=3, and F1ðtÞ is a function of integration.

Substituting into Eq. (20), one arrives at

�ðr; tÞ ¼
Z 3A!ðr; tÞr3 þ Ar3 � 3F1ðtÞ

2r½3r� Ar3 þ 3F1ðtÞ�
þ F2ðtÞ; (25)

where F2ðtÞ is another function of integration. One may
further simplify the analysis by considering that F1ðtÞ ¼ 0,
which is physically justified by the imposition of a finite
mass function at the origin r ¼ 0 for all values of the time
coordinate t. Note that considering F1ðtÞ ¼ 0 implies that
the mass function is not time dependent, and the flux term
fðr; tÞ is zero, as _� ¼ 0.
For instance, consider the specific example of a separa-

tion of variables of the parameter !ðr; tÞ given by

!ðr; tÞ ¼ !1ðtÞ!2ðrÞ: (26)

Choosing the following functions,

!1ðtÞ ¼ !0 þ �!0 tanh½�ðt� t0Þ�; (27)

!2ðrÞ ¼ � �2

1þ ðr=RÞ2 ; (28)

where !0, �!0, �, t0, �
2, and R are constants. The factor

1=� may be interpreted as the ‘‘relaxation time,’’ describ-
ing the width of the time dependence.
See Fig. 1 for a qualitative description of!ðr; tÞ given by

Eqs. (26)–(28). The left plot represents the behavior of
! ¼ !ð0; tÞ at the center r ¼ 0. We have considered the
following values: R ¼ 1, � ¼ 1, !0 ¼ 3=4, �!0 ¼ 2=3 and
t0 ¼ 8.
Substituting the functions (26)–(28) into Eq. (25), yields

the following solution:

�ðr; tÞ ¼ 1

4
ln

� ð1� Ar2Þ �A!1ðtÞ�1

½1þ ðr=RÞ2� �A!1ðtÞ

�
þ F2ðtÞ; (29)

where, for notational simplicity, the constant �A is defined
as

�A ¼ 3AR2�2

R2Aþ 1
: (30)
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FIG. 1. Left plot: For this case, we considered the behavior of! ¼ !ð0; tÞ at the center r ¼ 0; for the dashed curve we have � ¼ 0:3
and for the solid curve � ¼ 0:1. Right plot: For this case, we considered the ! ¼ !ðt; rÞ dependence with � ¼ 0:3. For both cases, we
have assumed the following numerical values: R ¼ 1, � ¼ 1, !0 ¼ 3=4, �!0 ¼ 2=3, and t0 ¼ 8.
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The function F2ðtÞ can be absorbed through a redefinition of the time coordinate as before, so that without a significant loss
of generality one may impose the condition F2ðtÞ ¼ 0.

The pressure profile is given by

pr ¼ � 3�2R2A!1ðtÞ
8�ðR2 þ r2Þ ; (31)

pt ¼ 3A

32�

R2Ar2ðR2 þ 2r2Þ þ Ar6 þ!1ðtÞ�2R2½3Ar2!1ðtÞ�2R2 � 4ðAr4 þ R2Þ�
ð1� Ar2ÞðR2 þ r2Þ2 ; (32)

with pr ¼ pt at the center r ¼ 0.
The analysis simplifies by considering a purely time-

dependent parameter, i.e., ! ¼ !ðtÞ. Thus, Eq. (25) takes
the form

�ðr; tÞ ¼ � 1

4
½1þ 3!ðtÞ� lnð1� Ar2Þ þ F2ðtÞ: (33)

The pressure profile is given by the following relation-
ships:

pr ¼ 3A!ðtÞ
8�

; pt ¼ 3A½4!ðtÞ þ Ar2 þ 3Ar2!2ðtÞ�
32�ð1� Ar2Þ :

(34)

Note that pr ¼ pt at the center r ¼ 0 as expected.

B. Tolman-Matese-Whitman mass function

An interesting example is the Tolman-Matese-Whitman
mass function considered in Ref. [9]. As in the example
outlined above, we impose that _� ¼ 0, so that the flux term
fðr; tÞ is zero. Thus, consider the following choice for the
time-independent mass function, given by

�ðr; tÞ ¼ �ðrÞ ¼ 1

2
ln

�
1þ 2b0r

2

1þ b0r
2

�
; (35)

where b0 is a non-negative constant [9]. The latter may be
determined from the regularity conditions and the finite
character of the energy density at the origin r ¼ 0, and is
given by b0 ¼ 8��c=3, where �c is the energy density at
r ¼ 0.

Now, consider the radial and temporal dependent case of
! ¼ !ðr; tÞ given by the functions (26)–(28). Substituting

these functions and Eq. (35) into Eq. (20), yields the
following solution:

�ðr; tÞ ¼ 1

2
ln

�
ð1þb0r

2Þ�ðtÞð1þ 2b0r
2Þ�ðtÞ

�
1þ

�
r

R

�
2
�
�ðtÞ�

þF2ðtÞ; (36)

where the F2ðtÞ is a function of integration that may be
reabsorbed in a redefinition of the time coordinate, so that
without a loss of generality we impose F2ðtÞ ¼ 0, as be-
fore. For notational simplicity, we have considered the
following definitions:

�ðtÞ ¼ 1þ b0R
2ð2b0R2 � 3Þ � b0�

2R2!1ðtÞð1� 2b0R
2Þ

2ð1� 2R2b0Þð1� R2b0Þ
;

(37)

�ðtÞ ¼ 2b0�
2R2

1� 2R2b0
; (38)

�ðtÞ ¼ b0�
2R2!1ðtÞð2b0R2 � 3Þ

2ð1� 2R2b0Þð1� R2b0Þ
; (39)

respectively.
The stress-energy tensor components are given by

�ðrÞ ¼ b0ð3þ 2b0r
2Þ

8�ð1þ 2b0r
2Þ2 ; (40)

prðr; tÞ ¼ � b0R
2�2ð3þ 2b0r

2Þ!1ðtÞ
8�ðR2 þ r2Þð1þ 2b0r

2Þ2 ; (41)

ptðr; tÞ ¼ b0½4R4b30r
6ð1�!1ðtÞ�2Þ2 þ 8R2b30r

8ð1þ!1ðtÞ�2Þ þ 4R4b20r
4ð2� 3!1ðtÞ�2 þ 3!1ðtÞ�4Þ

þ 4R2b20r
6ð4þ 9!1ðtÞ�2Þ þ R4b0r

2ð3� 16!1ðtÞ�2 þ 9!2
1ðtÞ�4Þ þ 2R2b0r

4ð3þ 14!1ðtÞ�2Þ
þ b0r

6ð3þ 8b0r
2 þ 4b20r

4Þ � 12!1ðtÞR4�2�=½32�ð1þ b0r
2Þð1þ 2b0r

2Þ3ðR2 þ r2Þ2�: (42)

Note that pr ¼ pt at the center r ¼ 0.
For simplicity, considering a purely time-dependent parameter ! ¼ !ðtÞ, and substituting (35) into Eq. (20), provides

the following solution:

�ðr; tÞ ¼ 1

2
ln½ð1þ b0r

2Þ1�!ðtÞ=2ð1þ 2b0r
2Þ!ðtÞ� þ FðtÞ; (43)

where the FðtÞ is a function of integration which, as before, may be absorbed into a redefinition of the time coordinate, so
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that one may consider FðtÞ ¼ 0 without a significant loss of generality.
The stress-energy tensor components are given by

pr ¼ !ðtÞ� ¼ b0ð3þ 2b0r
2Þ!ðtÞ

8�ð1þ 2b0r
2Þ2 ; (44)

pt ¼ b0f4b20r4ð1þ!Þ½3þ b0r
2ð1þ!Þ� þ b0r

2½3þ!ð9!þ 16Þ� þ 8b20r
4 þ 12!g

32�ð1þ b0r
2Þð1þ 2b0r

2Þ3 ; (45)

with pr ¼ pt at the center, r ¼ 0.

C. A class of models with a nonzero flux term

In this section, we construct a set of models with a
nonzero energy flux term, where at early times possesses
a small inhomogeneity in the region near r ¼ 0, which
grows due to gravitational collapse. For the specific case
considered in this section, we assume for simplicity that
the parameter, which eventually crosses the phantom di-
vide in the central region, is purely time dependent, i.e.,
! ¼ !ðtÞ, and is governed by an equation of state of the
form

prðr; tÞ ¼ !ðtÞ�ðr; tÞ; (46)

and that the system tends to isotropy for large r.
For the energy density, we generalize the Mbonye-

Kazanas density profile [35] (also utilized by Dymnikova
[36]) to a reasonable time-dependent model given by

�ðr; tÞ ¼ �0aðtÞe�ðr=r0Þn ; (47)

where �0, r0, and n are appropriately chosen constants.
Here, the time-dependent function aðtÞ is chosen so that the
collapse will asymptote at late times, forming a static star.
Note for the sake of clarity that the time-dependent func-
tion aðtÞ should not be confused with the junction interface
radius introduced in Eqs. (7) and (8). This profile has been
extremely useful in the investigations of nonsingular black
holes (i.e., horizons not shielding a singularity) [35], in-
cluding de Sitter core black holes [36] and, more recently,
as a model for gravastars [15] (supplemented with an
appropriate equation of state).

The equation of state (46) then yields

prðr; tÞ ¼ !ðtÞ�0aðtÞe�ðr=r0Þn : (48)

At this stage, it is useful to write the solution to the field
equations as follows [37]:

e�2�ðr;tÞ ¼ 1� 8�

r

�
b2ðtÞþ

Z r

0þ
�ð �r; tÞ �r2d�r

�
; (49a)

e2�ðr;tÞ ¼ e�2�ðr;tÞ
�
exp

�
hðtÞþ 8�

Z r

0þ
½prð�r; tÞ

þ�ð �r; tÞ�e2�ð �r;tÞ �rd �r
��
; (49b)

fðr; tÞ ¼� 1

r2

�
2bðtÞ _bðtÞþ

Z r

0þ
_�ð �r; tÞ�r2d�r

�
e2½�ðr;tÞ��ðr;tÞ�;

(49c)

ptðr; tÞ ¼ r

2
ðp0

r þ _fÞþ
�
1þ r

2
�0
�
pr þ r

2
ð _�þ _�Þf

þ r

2
�0�; (49d)

respectively, where the explicit coordinate dependence has
been dropped in Eq. (49d), and as before, the prime denotes
a partial derivative with respect to the radial coordinate r,
and the overdot a partial derivative with respect to the time
coordinate t. The functions bðtÞ and hðtÞ are two arbitrary
functions of integration. For a star, bðtÞ is set to zero to
avoid a singularity at the center. However, at late time this
function need not vanish as it is useful for the wormhole
configuration. Note that with the prescription of the energy
density and radial pressure, the entire system of equations
may, in principle, be solved for the unknowns. We exploit
this fact here. To ensure that the star crosses the phantom
divide and yet does not collapse for infinite time, the
following prescriptions are made:

aðtÞ ¼ a0½ð1þ Þ � e�k0t�;
!ðtÞ ¼ !0 �!1ð1� e�k1tÞ; (50)

where 0 and 1 subscripts denote constant quantities. We
now have an infinite family of solutions with the desired
physical properties. At this stage we should note that the
generated spacetimes tend to Minkowski spacetime as r !
1. One would need to therefore cut off the solution at some
r ¼ r� and patch it to an appropriate dark-energy exterior.
However, given how small the energy density and pres-
sures of the currently accelerating Universe are (when
compared with those of an average star), the asymptotic
Minkowski approximation is probably a reasonable
approximation.
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Surprisingly, for certain values of n, the Eqs. (49a)–
(49d) may actually be integrated to yield an analytic result.
The expressions are rather unwieldly however so instead

we plot the various relevant parameters in Figs. 2 and 3.
From the figures it can be noted that the initial inhomoge-
neity is very small, most pronounced near the center, and

FIG. 2. Parameters for a sample stellar model presented in Sec. III C. Plotted on the vertical axes (from left to right, starting from the
top) are �ðr; tÞ, Tt

rðr; tÞ prðr; tÞ, ptðr; tÞ, and finally e2�ðr;tÞ and �e2�ðr;tÞ.

FIG. 3. The parameters !ðtÞ (left) and aðtÞ (right) for a sample stellar model presented in Sec. III C. For this particular evolution, the
following values were used: !0 ¼ �0:9, k1 ¼ 0:01, a0 ¼ 5,  ¼ 0:1, k0 ¼ 0:001, !1 ¼ 1.
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the spacetime almost flat everywhere. There is an inward
flow of energy, due to the gravitational collapse as can be
seen by the negative values of the energy flux plot. At late
time, the magnitude of the energy flux decreases and
asymptotes to zero, indicating the halt of the collapse. At
some point during the collapse, the phantom divide is
crossed and the conditions for possible wormhole forma-
tion are established. We show this in Fig. 4 where it may be
seen that the NEC violation is most severe in the center.

IV. TOPOLOGY CHANGE: THE CASIMIR
ENERGYAPPROACH

Although (50) also allows for an ordinary (positive
pressure) fluid at early times, all of the geometries consid-
ered in the previous sections were modeled so that the
evolving parameter!ðr; tÞjr¼0 starts out in the range�1<
!<�1=3, then crosses the phantom divide, and finally
ends up in the phantom regime ! ¼ pr=� <�1. Once in
the phantom regime, the negative radial pressure exceeds
the energy density, which in principle may imply a topol-
ogy change. It is still uncertain how to obtain this topology
change, and if possible, is riddled with difficulties, such as
the theoretical appearance of closed timelike curves. It is
likely that crossing the phantom divide is accompanied by
a large quantum fluctuation of the metric. Then a crucial
question is [27] what happens when the metric fluctuations
become large?

In some cases, we can create a one to one correspon-
dence between topology and the asymptotic energy. In
particular, we will consider the Arnowitt-Deser-Misner
(ADM) energy [38] as a reference energy. The reason for
such a choice is that EADM � 0, and it is vanishing for flat
space. Therefore, we can think about flat space as the
unique reference space to compare a change in spacetime
associated to the corresponding topology. A trivial ex-
ample could be the comparison between flat space, where
the topology is R4 and the Schwarzschild space, with
topology R2 � S2: they are topologically distinct and pos-

sess a distinct ADM energy: Eflat ¼ 0 and ESchwarzschild ¼
M. A topology transition from Schwarzschild to flat or vice
versa, should be necessarily accompanied by a change in
ADM energy. In the same manner, we can think that a
transition from the dark star to the wormhole could be
associated to a change in the asymptotic energy, measured
by the ADM energy, namely, if a topology change appears,
this could be reflected to a change in the ADM energy. The
way to detect this is simply computed by

EDS
ADM � EWormhole

ADM ¼ ðEDS
ADM � EFlat

ADMÞ
� ðEWormhole

ADM � EFlat
ADMÞ0: (51)

For asymptotically flat spacetimes, the ADM energy is
defined as

EADM ¼ 1

16�G

Z
S
ðDihij �DjhÞrj; (52)

where the indices i, j run over the three spatial dimensions
and

hij ¼ gij � �gij; (53)

where �gij is the background three-metric. Dj is the back-

ground covariant derivative and rj is the unit normal to the
large sphere S. However, Hawking and Horowitz [39] have
shown that the definition (52) is equivalent to

EADM ¼ 1

8�G

Z
S1

d2x
ffiffiffiffi
�

p ðk� k0Þ; (54)

where � is the determinant of the unit 2 sphere. k0 repre-
sents the trace of the extrinsic curvature corresponding to
embedding in the two-dimensional boundary 2S in three-
dimensional Euclidean space at infinity. In an alternative to
the ADM energy, we can use quasilocal energy to compute
such a difference, which is defined by Eq. (54) but for a
finite 2 sphere. The main reason to use such a definition is
that we can extend the surface energy computation even to
nonasymptoticaaly flat spaces. For this purpose, consider a
manifold M composed by two wedges Mþ and M�,
located in the right and left sectors of a Kruskal diagram,
respectively, and bounded by two three-dimensional dis-
connected timelike boundaries Bþ and B� located in Mþ
and M�, respectively. The quasilocal energy Etot of a
spacelike hypersurface � ¼ �þ [�� bounded by two
spacelike boundaries Sþ and S� located in Mþ and
M�, respectively, is given by [40–42]

Etot ¼ Eþ � E�:

More specifically, Etot is defined as the value of the
Hamiltonian that generates unit time translations orthogo-
nal to the two-dimensional boundaries [40–42]. Eþ and E�
are defined as�Eþ ¼ 1

8�G

R
Sþ d

2x
ffiffiffiffi
�

p ðk� k0Þ
E� ¼ � 1

8�G

R
S� d

2x
ffiffiffiffi
�

p ðk� k0Þ ; (55)

FIG. 4. The figure depicts the null energy condition NEC ¼
�þ pr þ 2f for the specific model with a nonzero flux term
considered in the text.
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respectively. The trace of the second fundamental form k is
defined as

k ¼ � 1ffiffiffi
h

p ð ffiffiffi
h

p
n	Þ;	; (56)

where n	 is the normal to the boundaries, and h is the
determinant of the metric of �. As an example, consider
the static Einstein-Rosen bridge, with the metric given by

ds2 ¼ �N2dt2 þ gyydy
2 þ r2ðyÞd�2; (57)

where the lapse function N, gyy, and r are functions of the

radial coordinate y continuously defined onM, with dy ¼
dr=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2MG=r

p
. The boundaries Sþ and S� are located

at coordinate values y ¼ yþ and y ¼ y�, respectively, and
the lapse function is given by jNj ¼ 1 at both Sþ and S�.
In this case, n	 ¼ ðgyyÞ1=2�	

y . Since this normal is defined
continuously along �, the value of k depends on the
function r;y , which is positive for Bþ and negative for

B�. See Fig. 5 for a Penrose-Carter diagram illustrating the
boundary locations in a Schwarzschild metric.

From Eqs. (56) and (57), we obtain at either boundary
that

k ¼ � 2r;y
r

; (58)

where we have assumed that the function r;y is positive for

Sþ and negative for S�. The trace associated with the
subtraction term is taken to be k0 ¼ �2=r for Bþ and k0 ¼
2=r for B�. As an illustration, consider the case when the
boundary Bþ is located at right-hand infinity ðyþ ¼ þ1Þ
and the boundary B� is located at y�, then

Etot ¼ M� r

�
1�

�
1� 2MG

r

�
1=2

�
: (59)

It is easy to see that Eþ and E� tend individually to the
ADM mass M when the boundaries 3Bþ and 3B� tend,
respectively, to right and left spatial infinity. It should be
noted that the total energy is zero for boundary conditions
symmetric with respect to the bifurcation surface, i.e.,

E ¼ Eþ � E� ¼ Mþ ð�MÞ ¼ 0: (60)

Consider now the dark-energy star of metric (1) and a
wormhole defined by the shape function bðrÞ, with the
following difference:

�
Dark energy star ðDSÞ; mðrÞwith r 2 ½0;þ1Þ
Wormhole ðWÞ; bðrÞwith r 2 ½r0;þ1Þ: (61)

Consider also the relation (51). Thus, by repeating the
computation leading to Eqs. (59) and (60) in the case of
interest, we get

kW � kDS ¼ ðk� k0ÞW � ðk� k0ÞDS

¼ �2

r
ðr;y �1ÞW ��2

r
ðr;y �1ÞDS

¼ �2

r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bðrÞ

r

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðrÞ

r

s �
; (62)

where we are looking at the positive wedge Mþ only. For
large boundaries R 	 r0 and expanding around the throat,
one obtains

kW � kDS ¼ �2

r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bðr0Þ þ b0ðr0Þðr� r0Þ þ . . .

r

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðrÞ

r

s �
; (63)

’ �2

R

��
1� bðr0Þ þ b0ðr0Þðr� r0Þ þ . . .

2R

�

�
�
1�mðRÞ

R

��

¼ 1

R2
½r0 þ b0ðr0Þðr� r0Þ � 2mðRÞ�; (64)

where we have used the wormhole condition at the throat
bðr0Þ ¼ r0. If b

0ðr0Þ ¼ 0 and mðRÞ are negligible, then we
recover the ADM mass. Indeed, by integrating on the
boundary 2Sþ, we obtain

Eþ ¼ r0
2G

¼ M: (65)

If b0ðr0Þ � 0 andmðRÞ is not vanishing, then the evaluation
of the energy depends on a case to case scenario. The same

FIG. 5. A Penrose-Carter diagram illustrating the boundary
location in a Schwarzschild metric. Mþ and M� are the two
wedges, located in the right and left sectors of a Kruskal
diagram, respectively, and bounded by two boundaries Bþ and
B� located in Mþ and M�, respectively. � ¼ �þ [ �� is a
spacelike hypersurface. Hþ and H� are the future and past
horizon, respectively. S0 ðS0 ¼ Hþ \H�Þ is the bifurcation
surface (wormhole throat), and Sþ and S� are the two-
dimensional boundaries of �þ and ��, respectively.
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discussion can be applied on the negative wedge. As shown
in Eq. (60), if we choose boundaries symmetric with
respect to the bifurcation surface, here represented by the
throat r0, we have a total zero ADM-like energy. The
physical situation looks like a familiar QED physical pro-
cess � ! eþe�: the electric charge is conserved. In our
case, the charge is the asymptotic energy. Since there is no
reason to have an asymmetry in boundaries in the absence
of external forces, we have to conclude that the classical
term is not able to predict the appearance of a wormhole or
the permanence of a dark star. We are forced to compute
quantum effects. The implicit subtraction procedure of
Eq. (55) can be extended in such a way that we can include
quantum effects: this is the Casimir energy or in other
terms, the vacuum energy. One can in general formally
define the Casimir energy as follows:

ECasimir½@M� ¼ E0½@M� � E0½0�; (66)

where E0 is the zero-point energy, @M is a boundary and
E0½0� represents the zero-point energy without a boundary.
For zero temperature, the idea underlying the Casimir
effect is to compare vacuum energies in two physical
distinct configurations. The extension to quantum effects
is straightforward:

ECasimir½@M� ¼ ðE0½@M� � E0½0�Þclassical
þ ðE0½@M� � E0½0�Þ1-loop þ . . . : (67)

In our picture, the classical part represented by the
ADM-like energy is vanishing, because of the symmetry
of boundary conditions. This means that

ECasimir½@M� ¼ ðE0½@M� � E0½0�Þ1-loop þ . . . :; (68)

namely, ECasimir is purely quantum. Thus, the Casimir
energy can be regarded as a measure of the topology
change. With this, we mean that, if ECasimir is positive,
then the topology change will be suppressed, while if it is
negative, it will be favored. It is important to remark that in
most physical situations, the Casimir energy is negative.
Consider now the one loop term. We will evaluate it
following the scheme of Eq. (62). Thus,

ðEW
0 ½@M� � EDS

0 ½@M�Þ1-loop
¼ ðEW

0 ½@M� � E0½0�Þ1-loop þ ðE0½0�
� EDS

0 ½@M�Þ1-loop: (69)

The procedure followed to evaluate Eq. (69) relies heav-
ily on the formalism outlined in Refs. [43,44]. The com-
putation was realized through a variational approach with
Gaussian trial wave functionals. A zeta function regulari-
zation is used to deal with the divergences, and a renor-
malization procedure is introduced, where the finite one
loop is considered as a self-consistent source for travers-
able wormholes. Rather than reproduce the formalism, we

shall refer the reader to Refs. [43,44] for details, when
necessary. We can write,

ðEW
0 ½@M� � EDS

0 ½@M�Þ1-loop

¼ 1

64�2

��
ðm2

LðrÞ þm2
1;SðrÞÞ2 ln

�
m2

LðrÞ þm2
1;SðrÞ

4	2
0

ffiffiffi
e

p �

þ ðm2
LðrÞ þm2

2;SðrÞÞ2 ln
�
m2

LðrÞ þm2
2;SðrÞ

4	2
0

ffiffiffi
e

p ��
W

�
�
ðm2

LðrÞ þm2
1;SðrÞÞ2 ln

�
m2

LðrÞ þm2
1;SðrÞ

4	2
0

ffiffiffi
e

p �

þ ðm2
LðrÞ þm2

2;SðrÞÞ2 ln
�
m2

LðrÞ þm2
2;SðrÞ

4	2
0

ffiffiffi
e

p ��
DS

�
;

(70)

where we have defined two r-dependent effective masses
m2

1ðrÞ and m2
2ðrÞ, which can be cast in the following form:

�
m2

1ðrÞ ¼ m2
LðrÞ þm2

1;SðrÞ
m2

2ðrÞ ¼ m2
LðrÞ þm2

2;SðrÞ
; (71)

where

m2
LðrÞ ¼

6

r2

�
1� bðrÞ

r

�
; (72)

and

�m2
1;SðrÞ ¼ ½ 3

2r2
b0ðrÞ � 3

2r3
bðrÞ�

m2
2;SðrÞ ¼ ½ 1

2r2
b0ðrÞ þ 3

2r3
bðrÞ� ; (73)

respectively. We refer the reader to Refs. [43,44] for the
deduction of these expressions in the Schwarzschild case.
The zeta function regularization method has been used to
determine the energy densities, �i. It is interesting to note
that this method is identical to the subtraction procedure of
the Casimir energy computation, where the zero-point
energy in different backgrounds with the same asymptotic
properties is involved. In this context, the additional mass
parameter 	 has been introduced to restore the correct
dimension for the regularized quantities. Note that this
arbitrary mass scale appears in any regularization scheme.
Of course bðrÞ ¼ 2mðrÞ, then we can use only one function
recalling the different boundary conditions they must sat-
isfy. Generally speaking, we can adopt the condition
mð0Þ ¼ 0 for the dark-energy star and bðr0Þ ¼ r0 for the
wormhole. Thus, the leading part related to the dark-
energy star close to r ¼ 0, simply becomes

� ðE0½0� � EDS
0 ½@M�Þ1-loop

’
�
� 3

16�2r4
ln

�
6

4r2	2
0

ffiffiffi
e

p ��
DS
:

On the other hand, for the wormhole we get at the throat
[45]
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ðEW
0 ½@M� � E0½0�Þ1-loop
¼ 1

64�2

�
9

4r40
ðb0ðr0Þ � 1Þ2 ln

���������b0ðr0Þ � 1

8r20	
2
0

ffiffiffi
e

p ��������
�

þ 1

4r40
ðb0ðr0Þ þ 3Þ2 ln

�
b0ðr0Þ þ 3

8r20	
2
0

ffiffiffi
e

p ��
W
: (74)

To have an easy comparison with the dark-energy star,
we make a specific choice for the wormhole shape func-
tion. We assume that

bðrÞ ¼ r20
r
; (75)

then we obtain

ðEW
0 ½@M� � EDS

0 ½@M�Þ1-loop
’ 1

64�2

�
10

r40
ln

� ffiffiffi
e

p
4r20	

2
0

�
�

�
12

r4
ln

�
6

ffiffiffi
e

p
4r2	2

0

���
: (76)

Moreover, we evaluate the dark-energy star term close to r0
to get

ðEW
0 ½@M� � EDS

0 ½@M�Þ1-loop
’ 1

32�2r40

�
5 ln

� ffiffiffi
e

p
4r20	

2
0

�
�

�
6 ln

�
6

ffiffiffi
e

p
4r20	

2
0

���
: (77)

If we choose

	0 
 108
ffiffiffi
e4

p
r0

) ðEW
0 ½@M� � EDS

0 ½@M�Þ1-loop 
 0: (78)

It is important to remark that the result of inequality (78) is
valid only for the class of traversable wormholes expressed
by the shape function (75). To discuss the appearance of
different class of traversable wormholes, we need to use
expression (74) inside inequality (78), and it is quite evi-
dent that this strongly depends on the form of the shape
function as it should be. It is interesting to note that once
this has been created, there is a probability that it will be
self-sustained [18], at least for an inhomogeneous ! pa-
rameter, like in our case. This means that quantum fluctua-
tions related to the Casimir energy play a fundamental part
not only for the topology change but even for the travers-
able wormhole persistence.

V. SUMMARYAND DISCUSSION

In this work, we have considered time-dependent dark-
energy star models, with an evolving parameter! crossing
the phantom divide ! ¼ �1. In particular, we briefly
reviewed static and spherically symmetric dark-energy
stars, and further analyzed general solutions of time-
dependent spacetimes in detail. Specific time-dependent
solutions were extensively explored, in particular, the spe-
cific cases of a constant energy density, the Tolman-
Matese-Whitman mass function solution, and a class of
models with a nonzero energy flux term, which form from

gravitational collapse. Once the parameter ! evolves into
the phantom regime, the null energy condition is violated,
which physically implies that the negative radial pressure
exceeds the energy density. Therefore, an enormous nega-
tive pressure at the center may, in principle, imply a
topology change, consequently opening up a tunnel and
converting the dark-energy star into a wormhole. The
theoretical difficulties and criteria for this topology change
were discussed in detail, where, in particular, we consid-
ered a Casimir energy approach involving quasilocal en-
ergy difference calculations that may reflect or measure the
occurrence of a topology change. Once the topology
change has occurred, it is possible that the resulting worm-
hole structures, supported by phantom energy, be self-
sustained. As mentioned in the introduction, recent fits to
observational data probably favor an evolving equation of
state, with the dark-energy parameter crossing the phantom
divide! ¼ �1 [7]. However, in a cosmological setting the
transition into the phantom regime is physically implau-
sible for a single scalar field [7], so that a possible approach
would be to consider a mixture of interacting non-ideal
fluids. One may consider that the time-dependent dark-
energy star model outlined in this work, is a simplification
of this possible approach. In fact, recently, static models
with two interacting phantom and ghost scalar fields were
considered, and it was shown that regular solutions exist
[28]. It would be interesting to generalize the latter study to
time-dependent solutions, extending the analysis consid-
ered in this work.
It is interesting to note that the topology change at the

center should influence the surface stresses at the thin shell,
as there is a redistribution of the stress-energy tensor
components of the interior solution during the change in
topology. That this is so may be verified through the
conservation identity given by Si

jji ¼ ½T	
e
	
ðjÞn


�þ�, where
½X�þ� denotes the discontinuity across the surface interface
�, i.e., ½X�þ� ¼ Xþj� � X�j�. The quantity Sij is the sur-

face stress-energy tensor at the junction surface �; n	 is
the unit normal 4-vector to �; and e

	
ðiÞ are the components

of the holonomic basis vectors tangent to � (see Ref. [32]
for details). Note the dependency of the conservation iden-
tity on the stress-energy tensor T	
, and the right-hand side

of the conservation identity may also be written as Si
�ji ¼

�½ _�þ 2 _að�þ P Þ=a�. The momentum flux term, i.e.,
½T	
e

	
ðjÞn


�þ�, corresponds to the net discontinuity in the

momentum flux F	 ¼ T	
U

, which impinges on the

shell. The conservation identity is a statement that all
energy and momentum that plunges into the thin shell,
gets caught by the latter, and converts into conserved
energy and momentum of the surface stresses of the junc-
tion. Now, it may be that the topology change is sufficiently
violent to destabilize the thin shell. On the other hand, one
may also assume that it is sufficiently mild as not to
significantly affect the stability of the surface layer.
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In analogy to the case outlined in Ref. [22], where the
possibility that inflation might provide a natural mecha-
nism for the enlargement of wormholes to macroscopic
size was explored, one could imagine that microscopic
wormholes originated through a topology change, and
due to the accelerated expansion of the Universe, these
submicroscopic constructions could naturally be grown to
macroscopic dimensions. For instance, in Ref. [46] the
evolution of wormholes and ringholes embedded in a
background accelerating Universe driven by dark energy,
was analyzed. It was shown that the wormhole’s size
increases by a factor proportional to the scale factor of
the Universe, and still increases significantly if the cosmic
expansion is driven by phantom energy. The accretion of
dark and phantom energy onto Morris-Thorne wormholes
[47,48] was further explored, and it was shown that this
accretion gradually increases the wormhole throat, which
eventually overtakes the accelerated expansion of the
Universe, consequently engulfing the entire Universe, and
becomes infinite at a time in the future before the Big Rip.
This process has been dubbed the ‘‘Big Trip’’ [47,48].
However, in the context of the generalized Chaplygin
gas, it was shown that the Big Rip may be avoided alto-
gether [49,50]. We refer the reader to Ref. [51] for more
recent details on these issues. In summary, we denote these
exotic geometries consisting of dark-energy stars (in the
phantom regime) and phantom wormholes as phantom
stars. The final product of this topological change, namely,
phantom wormholes, have far-reaching physical and cos-
mological implications, as in addition to being used for
interstellar shortcuts, an absurdly advanced civilization
may manipulate these geometries to induce closed timelike
curves, consequently violating causality.

Concerning the geometry of spacetime undergoing
quantum fluctuations, this does not seem to be a source
of disagreement, but when we turn to the question of
whether or not the topology of spacetime undergoes quan-
tum fluctuations, the problem becomes more subtle. It was
Wheeler who first conjectured that spacetime could be
subjected to a topology fluctuation at the Planck scale.
This means that spacetime undergoes a deep and rapid

transformation in its structure. The changing spacetime is
best known as spacetime foam, which can be taken as a
model for the quantum gravitational vacuum. Some au-
thors have investigated the effects of such a foamy space on
the cosmological constant; for instance, one example is the
celebrated Coleman mechanism, where wormhole contri-
butions suppress the cosmological constant, explaining its
small observed value [52]. Nevertheless, how to realize
such a foam-like space and also whether this represents the
real quantum gravitational vacuum are still unknown. We
can mention some results about topological constraints on
the classical evolution of general relativistic spacetimes.
They are summarized in two points [27]:
(1) In causally well-behaved classical spacetimes the

topology of space does not change as a function of
time.

(2) In causally ill-behaved classical spacetimes the to-
pology of space can sometimes change.

From the quantum point of view we can separate the
problem of topology change generated by a canonical
quantization approach and a functional integral quantiza-
tion approach. The Hawking topology change theorem is
thus enough to show that the topology of space cannot
change in canonically quantized gravity [53]. In the
Feynman functional integral quantization of gravitation
things are different. Indeed, in this formalism, an approach
is possible to spacetime foam where we know that fluctua-
tions of topology become an important phenomenon at
least at the Planck scale [54]. However, we hasten to add
that at the moment it is not clear that such topology
changes are completely forbidden. Although there are
now promising candidate theories of quantum gravity, it
is unknown which, if any, provide the correct methods for
calculating properties of quantum spacetime.
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