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We solve one of the open problems in Einstein-Cartan theory, namely, we find a natural matter source

whose spin angular momentum tensor is compatible with the cosmological principle. We analyze the

resulting evolution equations and find that an epoch of accelerated expansion is an attractor. The torsion

field quickly decays in that period. Our results are interpreted in the context of the standard model of

cosmology.
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I. INTRODUCTION

General relativity is a successful theory in agreement
with a vast number of observations. It is based on the
Einstein-Hilbert action which yields the field equations if
varied with respect to the metric. If, however, the metric
and the connection (more precisely the non-Riemannian
part of the connection) are considered as a priori indepen-
dent variables, two field equations are obtained. The first
one relates the Einstein tensor (not necessarily symmetric)
to the canonical energy-momentum tensor, while the other
field equation relates the skew-symmetric part of the con-
nection, the torsion tensor, to the spin angular momentum
of matter; see e.g. [1–6]. Spin and torsion are related by
algebraic equations, and torsion vanishes in the absence of
sources.

The cosmological principle states that the Universe is
homogeneous and isotropic on very large scales. More
mathematically speaking, the four dimensional spacetime
ðM;gÞ is defined by 3d spacelike hypersurfaces of constant
time which are orbits of a Lie group G action on M, with
isometry group SOð3Þ. We assume all fields to be invariant
under the action of G which means L�g�� ¼ 0 and

L�T��
� ¼ 0, where L� denotes the Lie derivative with

respect to the generator of the group. This assumption
reduces the cosmological metric to the well-known
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) form
which is characterized by the scale factor and the geometry
of the constant time hypersurfaces. If applied to the torsion
of spacetime, it reduces the components compatible with
the cosmological principle to a spatial axial torsion and a
vector torsion part [7].

Cosmological models with torsion were pioneered by
Kopczyński in [8,9], who assumed a Weyssenhoff fluid
[10] to be the source of both curvature and torsion. The
cosmological principle was first extended to Einstein-
Cartan theory in [7], where it was also suggested to recon-
sider the results in [8,9], since the Weyssenhoff fluid turns
out to be incompatible with the cosmological principle (see

also [11–13]). An elaborate analysis of the most general
action up to quadratic terms in curvature and torsion as-
suming the cosmological principle can be found in [14].
Analytical solutions of the Riemann-squared gravity have
recently been discussed in a cosmological context in [15].
Non-Riemannian models of cosmology in general have
been discussed in [16–19].
However, nobody has so far succeeded in constructing a

nontrivial spin angular momentum tensor in cosmology by
minimally coupling matter fields to the geometry. We show
that the minimally coupled eigenspinors of the charge
conjugation operator [20,21] yield a spin tensor compatible
with the cosmological principle.
These spinors belong to a wider class of so-called flag-

pole spinors [22]. They are nonstandard spinors according
to the Wigner classification and obey the unusual property
ðCPTÞ2 ¼ �1. Hence, their dominant coupling to other
fields is via the Higgs mechanism or via gravity [20,21].
The particles associated with such a field theory are natu-
rally dark and we will refer to them as dark spinors hence-
forth; note that they were originally named Elko spinors.
Dark spinors are defined by

� ¼ ��2�
�
L

�L

� �
; (1)

where ��
L denotes the complex conjugate of �L and �2

denotes the second Pauli matrix. For a detailed treatment of
the field theory of the eigenspinors of the charge conjuga-
tion operator we refer the reader to [20,21]. Dark spinors
have an imaginary biorthogonal norm with respect to the
standard Dirac dual �c ¼ c y�0, and in order for a consis-
tent field theory to emerge the dual is given by

�
:
u ¼ i"vu�

y
v�0; (2)

with "f�;þg
fþ;�g ¼ �1 ¼ �"fþ;�g

f�;þg such that

�
:
uðpÞ�vðpÞ ¼ �2m�uv; (3)

where p denotes the momentum.
Because of their formal structure, dark spinors couple

differently to gravitation than scalar fields or Dirac spinors
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[23], eigenspinors of the parity operator. This allows for
many interesting applications; for instance, in [24] it has
been shown that dark spinors naturally yield an anisotropic
expansion in the context of cosmological Bianchi type I
models. This allows for a suppression of the low multipole
amplitude of the primordial power spectrum. The primor-
dial power spectrum of the quantum fluctuations of dark
spinors has been investigated in [25,26] where it was found
that the small scale power spectrum essentially agrees with
that of scalar field inflation while the large scale power
spectrum shows new features.

This paper is organized as follows. In Sec. II we briefly
summarize Einstein-Cartan theory. In Sec. III the cosmo-
logical field equations in Einstein-Cartan theory in the
presence of dark spinors are presented. We analyze the
field equations qualitatively and numerically in Sec. IVand
conclude our work in Sec. V.

II. EINSTEIN-CARTAN THEORY WITH DARK
SPINORS

It is well-known that in general relativity the presence of
matter yields the metric energy-momentum tensor that acts
as the source term of the curvature of spacetime. From a
field theory point of view, this tensor is related to trans-
lations. However, special relativity is based on the Poincaré
Lie algebra which has two conserved quantities, mass
squared and angular momentum squared. It is therefore
natural to extend the theory of general relativity by taking
into account the spin angular momentum as an additional
property of matter, which is associated to rotations.

In line with standard conventions we use Greek letters
ð�; �; . . .Þ taking values ðt; x; . . .Þ for holonomic indices

and Latin letters ða; b; . . .Þ taking values ð0̂; 1̂; . . .Þ for an-
holonomic indices. The line element is defined by

ds2 ¼ g��dx
�dx� ¼ gabe

a
�e

b
�dx

�dx�: (4)

We assume there exists a metric compatible covariant

derivative operator ~r�g�� ¼ 0, and do not require the

connection to be symmetric. The torsion tensor is defined
as the skew-symmetric part of the (full) connection

T��
� ¼ ~��

½��� ¼
1

2
ð~��

�� � ~��
��Þ; (5)

and in turn we can decompose the connection into the
Christoffel symbol and an additional piece, the contortion
tensor

~� �
�� ¼ ��

�� � K��
�: (6)

Combining the latter relation with the definition of torsion
(5), it follows that torsion and contortion are algebraically
related by

T��
� ¼ 1

2
ðK��

� � K��
�Þ: (7)

The covariant derivative when acting on a spinor is
defined by

~r a� ¼ @a�� 1

4
�a�þ 1

4
Kabc�

b�c�; (8)

where �a ¼ �abcf
bc and fbc ¼ 1

4 ½�b; �c� are the genera-

tors of the Lorentz group. The anholonomic and holonomic
connections are related by

�c
ab ¼ e�a e�br�e

c
� ¼ e�a e�be

c
��

�
�� � e�a e�b@�e

c
�; (9)

�abc ¼ gcd�
d
ab; �aðbcÞ ¼ 0: (10)

We use the �-matrices in the chiral form

�0̂ ¼ O 1
1 O

� �
; �n ¼ O ��i

�i O

� �
;

�5̂ ¼ 1 O
O �1

� �
; n ¼ 1̂; 2̂; 3̂;

(11)

with �5̂ ¼ i�0̂�1̂�2̂�3̂, and the �-matrices satisfy

�ða�bÞ ¼ gab; �� ¼ e
�
a �a; �ð���Þ ¼ g��:

(12)

The action of Einstein-Cartan gravity is

S ¼
Z �M2

pl

2
~Rþ ~Lmat

� ffiffiffiffiffiffiffi�g
p

d4x; (13)

where ~R is the Ricci scalar computed from the complete
connection with contortion contributions, g is the determi-

nant of the metric, ~Lmat denotes the matter Lagrangian, and
1=M2

pl ¼ 8	G is the coupling constant; the speed of light

is set to one (c ¼ 1). The resulting field equations are

~G ij ¼ ~Rij � 1

2
~Rgij ¼ 1

M2
pl

�ij; (14)

Tij
k þ �i

kT
j
l
l � �j

kT
i
l
l ¼ M2

pl

ij
k; (15)

where 
ijk is the spin angular momentum tensor, defined by


k
ji ¼ � ~Lmat

�Kij
k
; (16)

and �ij is the total energy-momentum tensor

�ij ¼ �ij þ ð~rk � Klk
lÞð
ijk � 
j

k
i þ 
kijÞ; (17)

where �ij is metric energy-momentum tensor

�ij ¼ 2ffiffiffiffiffiffiffi�g
p �ð ffiffiffiffiffiffiffi�g

p ~LmatÞ
�gij

: (18)

The field equations (15) are in general 24 algebraic equa-
tions, and in the absence of spin sources torsion vanishes;
torsion does not propagate.
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We have not included the cosmological constant in the
field equations for simplicity. It should be noted, however,
that there exist models where the cosmological constant
might be induced by the torsion of spacetime. Likewise,
torsion could contribute to the bare cosmological constant
and yield today’s observed effective cosmological term;
see e.g. [27–29] and also [30] for a spinorial dark energy
model.

As for the matter, we consider a dark spinor field. It
obeys scalar fieldlike equations of motion since its mass
dimension is one and the Lagrangian reads

~L ¼ 1

2
gab ~rða�

:
~rbÞ�� Vð�:�Þ; (19)

where Vð�:�Þ denotes the dark spinor field potential. It is
important to emphasize that the nonstandard Wigner class
spinors lead to more torsion structure than Dirac spinors
[23]. The resulting metric energy-momentum tensor and
spin angular momentum tensor, respectively, become

�ij ¼ ~rði�
:
~rjÞ�� gij

~L; (20)


kji ¼
1

4
~ri�

:
�j�k�� 1

4
�
:
�j�k ~ri�: (21)

III. COSMOLOGICAL FIELD EQUATIONS

Current observations [31,32] suggest that the energy
density of the Universe is very close to the critical density,
resulting in spatially flat hypersurfaces. The flat FLRW
metric is

ds2 ¼ dt2 � aðtÞ2ðdx2 þ dy2 þ dz2Þ; (22)

where aðtÞ is the expansion parameter. It yields the follow-
ing nonvanishing holonomic Christoffel symbols compo-
nents:

�x
tx ¼ �y

ty ¼ �z
tz ¼ _a

a
; �t

xx ¼ �t
yy ¼ �t

zz ¼ a _a; (23)

where the dot denotes differentiation with respect to t. This
then implies the following nonvanishing anholonomic
Christoffel symbols �a to be

�n ¼ � 1

2

_a

a
ð�0̂�n � �n�0̂Þ ¼ �2

_a

a
f0̂n; (24)

n ¼ 1̂; 2̂; 3̂: (25)

When the cosmological principle is applied to the torsion
tensor [7,14] the allowed components reduce to

T1̂ 1̂ 0̂ ¼ T2̂ 2̂ 0̂ ¼ T3̂ 3̂ 0̂ ¼ hðtÞ; (26)

T1̂ 2̂ 3̂ ¼ T3̂ 1̂ 2̂ ¼ T2̂ 3̂ 1̂ ¼ fðtÞ: (27)

The cosmological Einstein tensor with torsion is now given
by

Gtt ¼ 3
_a

a

�
_a

a
þ 2h

�
þ 3h2 � 3f2; (28)

Gxx ¼ a2
�
�2

€a

a
� _a

a

�
_a

a
þ 4h

�
� 2 _h� h2 þ f2

�
; (29)

Gxx ¼ Gyy ¼ Gzz: (30)

In addition to the geometry, also the matter has to be
compatible with homogeneity and isotropy. This yields two
classes of dark spinors, dark ghost spinors which satisfy

�
:
� ¼ 0 and standard dark spinors where �

:
� � 0. The

name ghost spinors refers to the fact that such spinors
lead to a vanishing metric energy-momentum tensor and
hence do not affect the curvature of spacetime in general
relativity; see also [33–36]. A cosmological ghost spinor
field can be written in the form

�f�;þg ¼ ’ðtÞ�; (31)

�fþ;�g ¼ ’ðtÞ�; (32)

where � and � are two linearly independent constant
spinors given by

� ¼
0
�i
1
0

0
BBB@

1
CCCA; � ¼ i

�i
0
0
�1

0
BBB@

1
CCCA; (33)

with their respective dual spinors

�
: ¼ i 0 i �1 0

� �
; �

: ¼ �i 0 0 �1
� �

:

(34)

The set of 24 algebraic equations (15) reduces to two
independent equations relating spin and torsion if we as-
sume homogeneity and isotropy. The torsion functions f
and h can therefore be expressed [37] in terms of the matter

h ¼ � ’4=M4
pl

4þ ’4=M4
pl

_a

a
; (35)

f ¼ � 2’2=M2
pl

4þ A4
0=M

4
pl

_a

a
; (36)

which can be combined to give

h

f
¼ 1

2
’2=M2

pl: (37)

Therefore, a dark ghost spinor field satisfying the cosmo-
logical principle indeed yields nontrivial contributions to
the spatial axial torsion component and to the time com-
ponent of the torsion vector. Hence, the spin angular mo-
mentum tensor induced by this matter source satisfies
homogeneity and isotropy.
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The total energy-momentum tensor �ij for the dark

spinor matter is given by

�tt ¼ V0; (38)

�xx ¼ �a2V0 þ a2’2

�
3h�

_f

f
� 2

_’

’

�
f; (39)

�xx ¼ �yy ¼ �zz; (40)

where V0 ¼ Vð0Þ. This completes the formulation of the
cosmological field equations. Next, we investigate the
qualitative behavior of the equations of motion.

The geometrical part of the cosmological field equations
(28)–(30) can, for example, be read off from [14] (cf. their
action L4) which we verified. In Ref. [38], where h ¼ 0
was assumed, the geometry parameter k was redefined to
include the remaining torsion by �k ¼ k� f2a2=2; see also
[39].

IV. COSMOLOGICAL DARK SPINOR DYNAMICS

The complete set of field equations can be reduced to a
single first-order differential equation in the following
manner. First of all, all torsion functions in the field equa-
tions are written in terms of the spin tensor (36), thereby
eliminating torsion f and h for the matter field ’. Next, we
can use Eq. (28) and the derivative of that equation to find
expressions for _a=a and €a=a which are expressed entirely
in terms of the matter field ’. We analyze these equations
qualitatively and solve them numerically.

For the Hubble parameter H ¼ _a=a from Eq. (28) we
find

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=M

2
pl

q
2

ffiffiffi
3

p 4þ ’4=M4
plffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� ’4=M4
pl

q : (41)

Next, the terms with €a=a, _a=a, and f and h are eliminated

for ’ in the spatial component of the field equation which
results in

_’

’
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=M

2
pl

q
4

ffiffiffi
3

p 8þ 3’4=M4
pl

12� ’4=M4
pl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� ’4=M4

pl

q
: (42)

Positivity of the square root requires ’=Mpl <
ffiffiffi
2

p
. This

implies that the sign of the first derivative of the field
cannot change its sign and hence the field value is a
decreasing function of time and in fact quickly approaches
zero. When this happens, the Hubble parameter asymptotes
to a constant value and the Universe expands according to
a / expðHtÞ.
To see this behavior of the solutions qualitatively, let us

expand Eqs. (41) and (42) about ’ ¼ 0 which leads to

H ¼
ffiffiffiffiffiffiffiffiffiffiffi
V0

3M2
pl

s
þOð’=MplÞ4; (43)

_’

’
¼ � 1

3

ffiffiffiffiffiffiffiffiffiffiffi
V0

3M2
pl

s
þOð’=MplÞ4; (44)

and therefore we find that a period of accelerated expan-
sion is an attractor solution of this system of equations.
Taking into account Eq. (36), we also find that the torsion
of spacetime is quickly decreasing and approaching zero as
the Universe expands.
Such a behavior of the torsion is not unexpected; see e.g.

[40]. Spinors and inflation in the context of torsion theories
have received much attention in the past [39,41–46]. It
should be pointed out, however, that matter sources con-
sidered previously violate the cosmological principle.
We numerically solve the first-order differential equa-

tion (42) and use this solution to find the evolution of the
Hubble parameter; we plot the Hubble parameter in Fig. 1
(a), which approaches to a constant for different initial
conditions of the field. In Fig. 1(b) the torsion function h
is plotted for the same numerical solutions.
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FIG. 1 (color online). (a) Hubble parameter and (b) torsion function h for 1=M2
pl ¼ 8	 and V0 ¼ 1. Initial conditions of the matter

field are ’i ¼ ’ðt ¼ 0Þ ¼ f0:282; 0:25; 0:23; 0:20g, {short dashed line, dashed line, medium dashed line, and long dashed line}.
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In order to give a qualitative statement about the decay
rate of the torsion, in Fig. 2 we plot the torsion function h
as a function of the number of e-foldings. We assume the
total number of e-foldings to be 60. Therefore, the torsion
contribution of the spacetime becomes negligible after
approximately four e-foldings.

V. CONCLUSIONS

We identified a matter source whose spin angular mo-
mentum tensor is compatible with the cosmological prin-

ciple. We then solved the resulting field equations of
Einstein-Cartan theory. This matter source consists of the
eigenspinors of the charge conjugation operator, which we
refer to as a dark spinor field. It couples to all irreducible
parts of torsion and therefore leads to an interesting cou-
pling of matter and geometry. This matter source is also
naturally dark in that it can only interact via the Higgs
mechanism or gravity.
Our solutions of the field equations show that torsion

does vanish quickly (approximately after a few e-foldings)
and that the Hubble parameter has a constant value as an
attractor. Both features of the model fit very well into the
standard model of inflationary cosmology in that a period
of accelerated expansion is an attractor solution. It is worth
noting that in Einstein-Cartan theory the spins of elemen-
tary particles are thought to be the primary sources of
torsion, and it is therefore expected that on large scales
and over time torsion should average out or decay,
respectively.
We speculate that some nonzero cosmological torsion

has already been observed in the large scale anisotropies of
the cosmic microwave background radiation where torsion
leaves its imprint only on the largest scales.
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