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We model the cosmic medium as the mixture of a generalized Chaplygin gas and a pressureless matter

component. Within a neo-Newtonian approach (in which, different from standard Newtonian cosmology,

the pressure enters the homogeneous and isotropic background dynamics) we compute the matter power

spectrum. The 2dFGRS data are used to discriminate between unified models of the dark sector (a purely

baryonic matter component of roughly 5% of the total energy content and roughly 95% generalized

Chaplygin gas) and different models, for which there is separate dark matter, in addition to that accounted

for by the generalized Chaplygin gas. Leaving the corresponding density parameters free, we find that the

unified models are strongly disfavored. On the other hand, using unified model priors, the observational

data are also well described, in particular, for small and large values of the generalized Chaplygin gas

parameter �. The latter result is in agreement with a recent, more qualitative but fully relativistic,

perturbation analysis in [V. Gorini, A.Y. Kamenshchik, U. Moschella, O. F. Piatella, and A.A.

Starobinsky, J. Cosmol. Astropart. Phys. 02 (2008) 016.].
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I. INTRODUCTION

The crossing of different cosmological observations, in
particular, the anisotropy spectrum of the cosmic micro-
wave background radiation (CMBR), the luminosity dis-
tance of supernovae of type Ia, gravitational lensing and
baryonic acoustic oscillations, indicates that around 95%
of the cosmic substratum is not directly detectable through
electromagnetic emission [1–4]. As long as one accepts
General Relativity (GR) to be valid, the now widely ac-
cepted conclusion is that most of the substance in the
Universe must be of nonbaryonic origin. This dynamically
dominating nonbaryonic substratum is usually divided into
two components: dark matter, a pressureless, agglomerat-
ing component, being present in local structures like gal-
axies and clusters of galaxies, and smoothly distributed
dark energy, an exotic fluid with negative pressure. Dark
matter is required in order to explain the observed anoma-
lies in the dynamics of galaxies and cluster of galaxies, as
well as to generate the large-scale structures in the
Universe; dark energy is required in order to account for
the present stage of accelerated expansion of the Universe
and for the position of the first acoustic peak in the CMBR
spectrum. The nature of these dark components remains a
mystery. For reviews on the subject see [5,6].

Among the host of models that have been proposed for
dark matter and dark energy over the last years, there are

unified models of the dark sector according to which there
is just one dark component that simultaneously plays the
role of dark matter and dark energy. The most popular
proposal along this line is the Chaplygin gas, an exotic
fluid with negative pressure that scales as the inverse of the
energy density [7]. This phenomenologically introduced
equation of state can be given a string theory based moti-
vation [8]. It has also been generalized in different phe-
nomenological ways [9]. Another example for a unification
scenario for the dark sector is a bulk viscous model of the
cosmic substratum [10]. While the Chaplygin gas model
(in its traditional and generalized forms) has been very
successful in explaining the supernovae type Ia data [11],
there are claims that it does not pass the tests connected
with structure formation because of predicted but not
observed strong oscillations of the matter power spectrum
[12]. It should be mentioned, however, that oscillations in
the Chaplygin gas component do not necessarily imply
corresponding oscillations in the observed baryonic power
spectrum [13]. For previous studies of inhomogeneities in
Chaplygin gases see also [14].
The generalized Chaplygin gas is characterized by the

equation of state

p ¼ � A

�� : (1)

For A > 0 the pressure p is negative, hence it may induce
an accelerated expansion of the Universe. The correspond-
ing sound speed is positive as long as �> 0. Recently, a
gauge-invariant analysis of the baryonic matter power
spectrum for generalized Chaplygin gas cosmologies was
shown to be compatible with the data for parameter values
� � 0 and � � 3 [15]. This result seems to strengthen the
role of Chaplygin gas type models as competitive candi-
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dates for the dark sector. The present work provides a
further investigation along these lines. While we shall
rediscover the mentioned results of [15], albeit in a differ-
ent framework, we also extend the scope of the analysis in
the following sense. The authors of [15] have shown that
Chaplygin gas cosmologies are consistent with the data
from structure formation for certain parameter configura-
tions. Here we ask additionally whether or not the data
really favor generalized Chaplygin gases as unified models
of the dark sector. By leaving the density parameters of the
Chaplygin gas and the nonrelativistic matter component,
respectively, free, we allow for a matter fraction that can be
different from the pure baryonic part. This is equivalent to
hypothetically admit the existence of an additional dark
matter component. In other words, we do not prescribe the
unified model from the start. Moreover, our study is not
restricted to the spatially flat case. The 2dFGRS data are
then used to test whether or not the unified model, requir-
ing that the matter component describes baryonic matter
with a density parameter of the order of 5% only, is
favored.

Now, a precise estimation of the cosmological parame-
ters using the matter power spectrum is very involved,
since a detailed discussion of many physical processes
like free streaming of neutrinos, electron diffusion, etc. is
necessary. We shall avoid such more complex analysis by
using conveniently the BBKS transfer function [16–18],
which connects the primordial spectrum with the spectrum
observed today, to impose the initial conditions. We be-
lieve that this type of analysis retains the essential features
of the process and leads to quantitatively relevant results.

Our study relies on a neo-Newtonian approach which
represents a major simplification of the problem. In some
sense, the neo-Newtonian equations can be seen as the
introduction of a first-order relativistic correction to the
usual Newtonian equations [19]. The neo-Newtonian equa-
tions for cosmology [19–22] modify the Newtonian equa-
tions in a way that makes the pressure dynamically relevant
already for the homogeneous and isotropic background.
This allows us to describe an accelerated expansion of the
Universe as the consequence of a sufficiently large effec-
tive negative pressure in a Newtonian framework. While
the neo-Newtonian approach reproduces the GR back-
ground dynamics exactly, differences occur at the pertur-
bative level. However, the GR first-order perturbation
dynamics and its neo-Newtonian counterpart coincide ex-
actly in the case of a vanishing sound speed [22]. One may
therefore expect that the neo-Newtonian perturbation dy-
namics reproduces the correct GR results on all perturba-
tion scales at least for small values of the sound speed. For
constant equations of state it has been demonstrated that
the correct large-scale behavior in the synchronous gauge
is reproduced [21]. On small scales one expects the spatial
pressure gradient term to be relevant and the difference to
the GR dynamics should be of minor importance. Since the
observational data correspond to modes that are well inside

the Hubble radius, the use of a Newtonian type approach
seems therefore adequate.
On this basis our analysis extends previous neo-

Newtonian studies to the two-component case. One of
the components is a generalized Chaplygin gas, the other
one represents pressureless matter. The advantage of em-
ploying a neo-Newtonian approach is a gain in simplicity
and transparency. While in future work all results will have
to be confirmed within GR, we shall ensure already here
that in the region of overlap between GR and neo-
Newtonian dynamics our results coincide with the corre-
sponding GR results. Our neo-Newtonian approach repro-
duces the parameter estimations for the unified dark
matter/dark energy in [15] also numerically. We mention,
that the coincidence of neo-Newtonian and GR results on
the scales of interest here was also demonstrated in [23].
Backed up by this success of the neo-Newtonian approach
we then enlarge the scope of our analysis and test the
validity of the unified model itself by relaxing the unified
model priors used in [15]. Denoting the present value of the
Chaplygin gas density parameter by �c0, we admit the
total present matter density parameter�m0 to be the sum of
an additional dark matter component with density parame-
ter �dm0 and the baryon contribution �b0, i.e., �m0 ¼
�dm0 þ�b0. Leaving the density parameters free, we in-
vestigate whether or not the unified model with �c0 �
0:96, �b0 � 0:04 and �dm0 � 0 is favored by the large-
scale structure data. We mention that a similar investiga-
tion using supernova type Ia data reveals that the unifica-
tion scenario is the most favored one [11].
Our Chaplygin gas cosmology has four free parameters:

the value of �, the present Chaplygin gas and dark matter
density parameters �c0 and �dm0, respectively, and the
present Chaplygin gas sound speed v2

0. There are two main

observational sources concerning the matter power spec-
trum today: the 2dFGRS and the SDSS data sets [24,25].
For reasons to be discussed later, we will mainly use the
2dFGRS data. For �dm0 � 0, �b0 � 0:04 and �c0 �
0:96, equivalent to the unified model, we obtain a very
good fit of the date where very small or very large values of
� are preferred. This reproduces the GR results of [15] in a
Newtonian context. On the other hand, when �dm0, �c0

and� are left free, large values of�dm0 and small values of
�c0 are preferred, thus disfavoring the unification model.
The same result is obtained when all four parameters
(�dm0,�c0, � and �A) are left free. If the curvature is fixed
to zero, as indicated by the Wilkinson Microwave
Anisotropy Probe (WMAP) results [26], implying �c0 �
1��m0, the predictions do not change substantially and a
scenario with almost no dark energy is again preferred. In
all cases, including those for which the unification scenario
is imposed from the beginning, the minimum values of the
�2 statistical parameter are very similar. This does not
seem to allow definite predictions of the model. Any con-
clusion seems to depend on the chosen priors. We compare
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our results with those obtained from the�CDMmodel, for
which the power spectrum test indicates �dm0 � 0:25.
However, almost no restrictions on the value of the cos-
mological constant are obtained. In fact, the matter power
spectrum seems to be a good indicator for dark matter but
not for dark energy.

The paper is organized as follows. In Sec. II we recall the
generalized Chaplygin gas model and the basic equations
of standard Newtonian cosmology. In Sec. III we introduce
the neo-Newtonian framework for the two-component
model of a generalized Chaplygin gas and pressureless
matter and establish the perturbation equations for this
system. In Sec. IV the power spectrum is determined,
from which the probability distribution functions for each
parameter are obtained. Our results are discussed in
Sec. IV.

II. THE GENERALIZED CHAPLYGIN GASMODEL

The generalized Chaplygin gas is characterized by the
equation of state (1), implying a negative pressure and a
positive sound speed as long as A > 0 and �> 0. The
observational constraints from supernova type Ia data in-
dicate that negative values for � are favored, but the
dispersion is high enough to allow for a large range of
positive values for this parameter [11]. Negative values for
� imply an imaginary sound velocity, leading to small-
scale instabilities at the perturbative level. Rigorously, the
general situation is more complex: such instabilities for
fluids with negative pressure may disappear if the hydro-
dynamical approach is replaced by a more fundamental
description using, e,g., scalar fields. However, this is not
true for the Chaplygin gas: even in a fundamental ap-
proach, using, for example, the Born-Infeld action, the
sound speed square may be negative if �< 0. For this
reason we shall not allow � to be negative.

The traditional Chaplygin gas model is characterized by
� ¼ 1. It is a consequence of the Nambu-Goto action
parametrized in light-cone coordinates. Through some
suitable transformations, the light-cone parametrized
Nambu-Goto action reduces to the action of a Newtonian
fluid that obeys the equation of state (1) with � ¼ 1 [8]. In
this sense, it is somehow natural to construct a cosmologi-
cal Chaplygin gas scenario within a Newtonian framework.
To be precise, the symmetries of the Lagrangian are broken
when gravity is included. But this drawback cannot even be
cured by using a relativistic version: in order to preserve
the symmetries of the original Nambu-Goto action a full
string model must be implemented. But the Newtonian
approach remains a reasonable approximation because of
the mentioned relation between the Chaplygin gas and the
Nambu-Goto action.

Now, establishing a Newtonian model for a universe in
accelerated expansion seems to be impossible. In tradi-
tional Newtonian cosmology the pressure does not play
any role in an isotropic and homogeneous universe: the

universe evolves always with the scale factor aðtÞ / t2=3,
implying a decelerated expansion. This coincides with the
relativistic cosmology for a pressureless fluid. The pressure
becomes relevant only at perturbative level: there the na-
ture of the fluid is essential for the evolution of the density
contrast. For the evolution of density perturbations in
Newtonian cosmology see Ref. [27]. The specific applica-
tion to the Chaplygin gas model has been discussed in [28].
Let us sketch its main lines. The Newtonian cosmology is
defined through the continuity equation, the Euler equation
and the Poisson equation [27]:

@�

@t
þr � ð� ~vÞ ¼ 0; (2)

@ ~v

@t
þ ~v � r ~v ¼ �rp

�
�r�; (3)

r2� ¼ 4�G�: (4)

In Eqs. (2)–(4) the pressure appears only in the form of a
gradient. Hence, the pressure itself does not enter the
dynamics of a spatially homogeneous background, i.e.,
the equations do not depend on the nature of the fluid.
However, at perturbative level the relevant equation is

€�þ 2
_a

a
_�þ

�
k2v2

s

a2
� 4�G�

�
� ¼ 0; (5)

where � ¼ ��
� is the density contrast, �� being a first-order

fluctuation around the background solution, v2
s ¼ @p=@�

is the sound velocity and k is the wave number of the
perturbation. If we consider a fluid whose equation of state
is given by p ¼ ��", the solution is

� ¼ t�1=6

�
c1J5=ð6�Þ

�
�t��

�

�
þ c2J�5=ð6�Þ

�
�t��

�

��
; (6)

with � ¼ "� 4
3 .

For the Chaplygin gas model the perturbations initially
grow as in the matter-dominated universe, later they de-
crease, finally approaching zero, which is the value for the
cosmological constant model [28].

III. NEO-NEWTONIAN APPROACH

The drawback of standard Newtonian cosmology, the
absence of a pressure term in the background dynamics,
has been cured in a simple way [21]: in the conservation
Eq. (2) one takes into account the work done by the
pressure during the expansion of the Universe. At the
same time, the equation for the gravitational potential
must be modified in order to render the equations compat-
ible. This has been done in Refs. [19–21]. The final equa-
tions are

@�

@t
þr � ð� ~vÞ þ pr � ~v ¼ 0; (7)
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@ ~v

@t
þ ~v � r ~v ¼ � rp

�þ p
�r�; (8)

r2� ¼ 4�Gð�þ 3pÞ: (9)

For the case of two noninteracting fluids with energy
densities �c and �m and pressures pc and pm ¼ 0, respec-
tively, the equations are

@�c

@t
þr � ð�c ~vcÞ þ pcr � ~vc ¼ 0; (10)

@ ~vc

@t
þ ~vc � r ~vc ¼ � rpc

�c þ pc

�r�; (11)

@�m

@t
þr � ð�m ~umÞ ¼ 0; (12)

@ ~vm

@t
þ ~vm � r ~vm ¼ �r�; (13)

r2� ¼ 4�Gð�m þ �c þ 3pcÞ: (14)

The subscript m stands for pressureless matter and the
subscript c for the (generalized) Chaplygin gas component.
Considering now an isotropic and homogeneous universe
with � ¼ �ðtÞ, p ¼ pðtÞ and ~v ¼ _a

a
~r, we find

�
_a

a

�
2 þ k

a2
¼ 8�G

3
ð�m þ �cÞ; (15)

€a

a
¼ � 4�G

3
ð�c þ �m þ 3pcÞ: (16)

These equations are identical to the corresponding equa-
tions for a homogeneous and isotropic universe in GR. In a
sense, the neo-Newtonian formulation intends to reproduce
the equations of GR, but in a Newtonian conceptual
framework.

While there is a complete equivalence between the
general relativistic and the neo-Newtonian equations in
the homogeneous and isotropic background, this is no
longer the case at the perturbative level. As already men-
tioned, the GR first-order perturbation dynamics and its
neo-Newtonian counterpart coincide exactly only in the
case of a vanishing sound speed [22]. But also for small
values of the sound speed the neo-Newtonian perturbation
dynamics will very likely be a reasonable approximation.
Since the observational data correspond to modes that are
well inside the Hubble radius, the use of a Newtonian type
approach seems adequate, at least as a first and transparent
step towards a full relativistic treatment.

Defining the fractional density contrasts

�c ¼ ��c

�c

and �m ¼ ��m

�m

(17)

for the Chaplygin gas and matter components, respectively,

the first-order perturbation equations for the system (10)–
(14) are

€�c þ
�
2
_a

a
� _!c

1þ!c

þ 3
_a

a
ðv2

c �!cÞ
�
_�c

þ
�
3

�
€a

a
þ _a2

a2

�
ðv2

c �!cÞ þ 3
_a

a

�
_v2
c � _!c

ð1þ v2
cÞ

1þ!c

�

þ v2
ck

2

a2
� 4�G�cð1þ!cÞð1þ 3v2

cÞ
�
�c

¼ 4�G�mð1þ!cÞ�m (18)

and

€�m þ 2
_a

a
_�m � 4�G�m�m ¼ 4�G�mð1þ 3v2

cÞ�c;

(19)

where v2
c ¼ @pc

@�c
and !c ¼ pc

�c
. The quantity k2 denotes the

square of the comoving wave vector. Dividing the Eqs. (18)
and (19) by H2

0 and redefining the time as tH0 ! t, these
equations become dimensionless. In terms of the scale
factor a as dynamical variable, the system (18) and (19)
takes the form

�00
c þ

�
2

a
þ gðaÞ � !0

cðaÞ
1þ!cðaÞ � 3

1þ �

a
!cðaÞ

�
�0
c

�
�
3

�
gðaÞ
a

þ 1

a2

�
ð1þ �Þ!cðaÞ þ 3

a

�
1þ �

1þ!cðaÞ
�
!0

cðaÞ

þ �!cðaÞk2l2H
a2fðaÞ þ 3

2

�c0

fðaÞ hðaÞ½1þ!cðaÞ�

� ½1� 3�!cðaÞ�
�
�c ¼ 3

2

�m0

a3fðaÞ ½1þ!cðaÞ��m (20)

and

�00
m þ

�
2

a
þ gðaÞ

�
�0
m � 3

2

�m0

a3fðaÞ�m

¼ 3

2

�c0

fðaÞhðaÞ½1� 3�!cðaÞ��c; (21)

where lH ¼ cH�1
0 is the present Hubble radius and c is the

velocity of light. The prime denotes a derivative with
respect to a and the definitions

fðaÞ ¼ _a2 ¼
�
�m0 þ�c0a

3hðaÞ
a

þ�k0

�
; (22)

gðaÞ ¼ €a

_a2
¼ � �m0 þ�c0½hðaÞ � 3 �Ah���a3

2a½�m0 þ�c0a
3hðaÞ þ�k0a�

; (23)

hðaÞ ¼ ½ �Aþ ð1� �AÞa�3ð1þ�Þ�1=ð1þ�Þ; (24)

!cðaÞ ¼ �
�A

hðaÞ1þ�
; (25)
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with

�A ¼ A

�1þ�
c0

; v2
s0 ¼ � �A (26)

have been used. Recall that �m0 ¼ �dm0 þ�b0. For the
unified model to be an adequate description one expects
�m0 � �b0. In case the data indicate a substantial fraction
of �dm0, the unified model will be disfavored.

IV. THE POWER SPECTRUM: COMPARING THE
THEORY WITH OBSERVATIONS

The power spectrum is defined by

P ¼ �2
k; (27)

where �k is the Fourier transform of the dimensionless
density contrast �m. We will constrain the free parameters
using the quantity

�2 ¼ X
i

�
P o

i � P t
i

	i

�
2
; (28)

where P o
i is the observational value for the power spec-

trum, P t
i is the corresponding theoretical result and 	i

denotes the error bar. The index i refers to a measurement
corresponding to given wave number. The quantity (28)
qualifies the fitting of the observational data for a given
theoretical model with specific values of the free parame-
ters. Hence, �2 is a function of the free parameters of the
model. The probability distribution function is then defined
as

FðxnÞ ¼ F0e
��2ðxnÞ=2; (29)

where the xn denote the ensemble of free parameters and
F0 is a normalization constant. In order to obtain an
estimation for a given parameter one has to integrate
(marginalize) over all the other ones. For a more detailed
description of this statistical analysis see Ref. [11].

The 2dFGRS [24] and the SDSS [25] are the main
surveys to obtain matter power spectrum data. The last
one covers a larger range of scales but the error bars are
more narrow for the former one. There are some discus-

sions in the literature concerning the relation between the
different data [29]. In fact, the use of one or the other or the
combination of both may result in different parameter
estimations. For our model, however, the difference in
using one or the other set of data is not significant (we
have verified this!). Hence, from now on we focus on the
2dFGRS observational data for the power spectrum. We
use the data that are related with the linear approximation,
that is, those for which kh�1 � 0:185 Mpc�1, where h is
defined by H0 � 100 � h km=s �Mpc. This definition
should not be confused with the preceding definition of
the function hðaÞ.
To fix the initial conditions we use the following proce-

dure. The �CDM power spectrum is well fitted using the
BBKS transfer function [16]. Then, employing the per-
turbed equations for the �CDM model and integrating
back from today to a distant past, say z ¼ 1:000, we fix
the shape of the transfer function at that moment. The
spectrum determined in this way is then used as the initial
condition for our Chaplygin gas model. This procedure is
described in more detail in Refs. [17,18].
To ‘‘gauge’’ our approach, let us first consider the

�CDM model. In the general (nonflat) case there are two
parameters: �dm0 and ��0. In Fig. 1 we show the two-
dimensional probability distribution function (PDF) as
well the one-dimensional PDFs for the dark matter pa-
rameter�dm0 and for the cosmological constant parameter
��0, respectively. From the two-dimensional graphic it is
clear that there is a large degeneracy for the parameter
��0, while the region of allowable values for�dm0 is quite
narrow. The degeneracy for the cosmological constant
density is less visible in the one-dimensional PDF graphic,
but it is still considerable. Incidentally, the minimum value
for the �2 parameter is 0.3822 for �dm0 ¼ 0:2387 and
��0 ¼ 0:5937, corresponding to an open universe.
The four free parameters to be constrained in our

Chaplygin gas model are�dm0,�c0, �A and �. An analysis
with four free parameters is computationally hard. For this
reason we shall start working with sets of three or two free
parameters, fixing the remaining one or two, respectively.
Only afterwards we consider the most general case in
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FIG. 1 (color online). The two-dimensional probability distribution function (PDF) for �dm0 and ��0 (left) and the corresponding
one-dimensional probability distribution functions for the nonflat �CDM model. In the left panel: the darker the color, the smaller the
probability.
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which all parameters are left free. This strategy will allow
us to check the consistency of the final results. The bar-
yonic component �b0 is kept fixed in agreement with the
nucleosynthesis results. We use the value obtained by the
recent five-year WMAP results, �b0 ¼ 0:043 (with h ¼
0:72). We will consider the following cases: (i) a spatially
flat universe with no separate dark matter component, i.e.
�dm0 ¼ 0, a baryonic component given by �b0 ¼ 0:043
and a dark sector component �c0 ¼ 0:957—there are two
free parameters, � and �A; (ii) a flat universe with the
density parameters free, except for the condition �c0 ¼
1��dm0 ��b0, with the parameter �A fixed ( �A ¼ 0:15
and �A ¼ 0:95); (iii) a flat universe with �, �A and one
density parameter free; (iv) the parameter �A fixed (with
values 0.15 and 0.95), while � and the two density parame-
ters are free; (v) all four parameters free. Case (i) is the
configuration studied in Ref. [15]. Our results for the PDF
essentially confirm what was obtained in [15]: the one-
dimensional PDF, after marginalizing over �A, is higher
near � ¼ 0 and for �> 2. For �A, the one-dimensional
PDF, after marginalizing over �, is initially high, then it
decreases until �A	 0:7, subsequently it is increasing
again. This behavior is shown in Fig. 2. Considering the
two-dimensional distribution, the minimum value for �2 is
obtained for � ¼ 3:57 and �A ¼ 0, with �2

min ¼ 0:378,
which is a value slightly better than that for the �CDM

model, �2
min ¼ 0:382. However, the superluminal sound

speed renders this model unphysical. (For a possible modi-
fication that could preserve causality, see [15].)
In case (ii) we relax the restriction that the pressureless

matter component is entirely given by baryons. It will turn
out that this leads to curious results. For vanishing spatial
curvature�c0 ¼ 1��dm0 ��b0 is valid. As before,�b0

is fixed and we fix also �A ¼ 0:95. Now, varying �dm0, we
span a two-dimensional PDF which depends on � and
�dm0. This two-dimensional PDF and the corresponding
one-dimensional PDFs for � and �dm0, respectively, are
shown in Fig. 3. Again, values near � ¼ 0 and for �> 2
are favored. On the other hand, the PDF for�dm0 decreases
as �dm0 increases. This seems to favor the unification
scenario which requires a small �dm0. However, if we
vary �c0 instead of �dm0, we find that the PDF for �c0

also decreases as �c0 increases as is shown in Fig. 4. This
seems to lead to the opposite conclusion than in the pre-
vious case: now the unified scenario which requires a large
�c0 seems to be disfavored. Such a contradiction seems to
be an artifact of the marginalization procedure as can be
seen in the corresponding two-dimensional PDFs in Figs. 3
and 4: in the first case the probabilities are high near � ¼ 0
and for low values of �dm0, but at the same time the
minimum value for �2 is obtained for � ¼ 0 and �dm0 ¼
1; on the other hand, in the second case, the probabilities
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FABRIS, GONÇALVES, VELTEN, AND ZIMDAHL PHYSICAL REVIEW D 78, 103523 (2008)

103523-6



are high near � ¼ 0 and �c0 ¼ 0, which are also the
values for which the minimum of �2 is obtained. We
conclude that under the given conditions the unification
scenario is disfavored. The same results are obtained for
�A ¼ 0:15. In all these cases the minimum value for �2 is
essentially the same as before.

To test the previous result, we construct again a three-
dimensional parameter space with zero spatial curvature
but leaving � and �A free (case (iii)). Again, the PDF for �
is initially decreasing but increasing later for �> 2, while
the PDF for �md0 is an increasing function of �md0, as
well as the PDF for �A increases with �A. This result is shown
in Fig. 5. If we now vary �c0, its PDF is a decreasing
function of �c0 as shown in Fig. 6.

The curious fact that the antiunification scenario seems
to be favored is confirmed by another three-dimensional

parameter space study for which �, �dm0 and �c0 are left
free, while �A ¼ 0:95 (case iv). Notice that the curvature
now is arbitrary. As can be seen in Fig. 7, the PDF for �
shows the same behavior as in the previous cases, while the
PDF for�dm0 now increases with�dm0. On the other hand,
the PDF for �c0 decreases with �c0. The antiunification
scenario is clearly favored in this case, and there is no
contradiction as for configuration (ii). As in the previous
cases, the minimum value for �2 is around 0.378.
Varying all four parameters, all the preceding results

are confirmed. The one-dimensional PDFs for �, �A,
�dm0 and �c0 are displayed in Fig. 8. It can be seen that
the preferred values are either � 
 1 or � � 2, while the
probability is higher for large values of �dm0 and small
values of �c0.
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Finally, let us consider the particular case � ¼ 0. In this
situation, the neo-Newtonian perturbation dynamics ex-
actly coincides with that of GR. The �CDM model is
recovered for �A ¼ 1. The results for � ¼ 0 and �A � 1 as
well as for � ¼ 0 and �A ¼ 1, both for a flat universe, are
displayed in Fig. 9: the predictions for�dm0 are essentially
the same as for the �CDM model. For �A � 1, the proba-
bility for �A grows as �A approaches unity. This shows that
the method employed is consistent.

V. ANALYSIS OF THE RESULTS AND
CONCLUSIONS

In the present work we obtained statistical information
about the matter power spectrum by comparing the theo-

retical results for the generalized Chaplygin gas model
with the 2dFGRS observational data. The free parameters
of the model are the equation of states parameters � and �A
and the density parameters �dm0 and �c0. The complete
four-dimensional analysis is computationally hard but still
feasible. We have complemented it by a detailed study of
the cases for which only two or three parameters are free.
This allows us to verify the consistency and the correctness
of the method employed here.
If the unification scenario with dark matter and dark

energy as a single fluid in a spatially flat universe is
imposed from the beginning (case (i)), the results of
Ref. [15] are essentially confirmed: there are parameter
ranges for which the data are well described by the gener-
alized Chaplygin gas model. The probability distribution
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function for � is high for very small (near zero) or very
large (greater than 2) values of �. Allowing the parameter
�A to vary, we find that its one-dimensional PDF initially
decreases with �A, but increases as �A ¼ 1 is approached.
Notice that values �> 1 imply a superluminal sound
speed and are therefore unphysical (see, however, [15]).

A different picture emerges for different priors. Leaving
the density parameters for the Chaplygin gas and the
pressureless matter components free allows us to test the
unified models (pressureless matter is entirely baryonic)
against models in which there is separate dark matter, not
accounted for by the Chaplygin gas (cases (ii) and (iii)).
We find that the unification scenario is clearly disfavored.
The PDF is highest in regions with very small values for
�c0 and large values for�dm0. The behavior for � remains
essentially the same as in the previous case. This result is
confirmed when the condition of a spatially flat universe is
relaxed and both density parameters are allowed to vary
freely (case iv): the one-dimensional PDFs for � and �c0

are decreasing functions of � and �c0, respectively, while
the PDF for �dm0 increases with �dm0. Finally, the full
four-dimensional analysis of the phase space (case (v))
reproduces the results for the lower-dimensional
cases (ii)–(iv).

What is the origin of these apparently contradictory
results? The first aspect to be mentioned is that the matter
power spectrum data only poorly constrain the dark energy
component. Even for the �CDM model the matter power
spectrum gives information mainly on the dark matter
component, the dark energy component remaining largely
imprecise. It is not by chance that the dark energy concept

emerged from the supernova data. Our results for the
Chaplygin gas model show that a large amount of dark
matter, different from those described by the Chaplygin
gas, is necessary to fit the data. However, the dispersion is
quite high. For the flat case with a three-dimensional
parameter space we find at 2	, that �dm0 ¼ 1þ0:00

�0:91.

Another point is the use of the neo-Newtonian formalism.
However, for small values of the parameter �, the main
case of interest here, the differences to the full general
relativistic treatment are not expected to be substantial.
Moreover, in the cases of overlap the results of the full
theory are reproduced. Finally, possible statistical subtle-
ties may influence the outcome of the investigation. But as
far as we could test the statistical analysis (precision,
crossing different information, etc.), the results seem to
be robust. If this is really the case, we must perhaps live
with the fact that, while the SNe type Ia data favor a unified
model of the dark sector [11], this scenario is disfavored if
large-scale structure data are taken into account, unless
specific priors are imposed.
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