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The impact of particle production during inflation on the primordial curvature perturbation spectrum is

investigated both analytically and numerically. We obtain an oscillatory behavior on small scales, while on

large scales the spectrum is unaffected. The amplitude of the oscillations is proportional to the number of

coupled fields, their mass, and the square of the coupling constant. The oscillations are due to a

discontinuity in the second time derivative of the inflaton, arising from a temporary violation of the

slow-roll conditions. A similar effect on the power spectrum should be produced also in other inflationary

models where the slow-roll conditions are temporarily violated.
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I. INTRODUCTION

Inflation is considered one of the most promising can-
didates to explain the statistical features of the observable
Universe revealed by the detection of the cosmic micro-
wave background (CMB) [1,2] and large scale structure
surveys such as the Sloan Digital Sky Survey (SDSS) [3].

In the simplest models, inflation is an exponential ex-
pansion period of the Universe, driven by a scalar field,
called inflaton, slowly rolling down its potential. One of its
main predictions is a primordial curvature perturbation
spectrum of the form PRðkÞ ¼ kns�1, where ns is the so-
called scalar spectral index.

Various extensions of the simplest models have been
proposed, and in this paper we will consider the coupling
of the inflaton to another massive scalar field, which has
been previously investigated by different groups, leading to
apparently conflicting results [4,5]. The first group was in
fact obtaining just a local peak in the power spectrum for
scales which leave the horizon around the time of particle
production, while the second obtained a small scale oscil-
latory behavior leading to a step between large and small
scales. We study the problem both analytically and nu-
merically, obtaining an intermediate result which confirms
the oscillation of the power spectrum on small scales, but
without any step. We also derive an analytical approxima-
tion for the curvature power spectrum, which clearly shows
the dependency of the amplitude and period of the oscil-
lations on the mass and number of the coupled fields and
the coupling constant.

We mention that the presence of a temporary non-slow-
roll stage during inflation and its effect on the scalar and
tensor perturbation spectrum as well as the resulting CMB
anisotropy have been investigated in [6,7]. Our analysis
may be regarded as a special case where the perturbation
spectrum can be studied analytically, and confirms other
general studies [8–10] of the effects of singularities in the
inflaton potential. See also a recent paper by Joy et al. [11]
for comparizon with the WMAP data.

The paper is organized as follows. In Sec. II, we briefly
describe the main features and motivations of the model we
study. In Sec. III, we describe our analysis and present the
numerical results for the spectrum of the curvature pertur-
bation. In Sec. IV, we adopt an analytical approximation
and derive the spectrum in both large and small k limits. In
Sec. V, we summarize the results obtained and provide
some ideas about possible extensions.

II. MODEL

We will consider a theory with the potential,

Vð�;’Þ ¼ V0 þ 1
2m

2
��

2 þ 1
2Nðm’ � g�Þ2’2; (1)

where we assume V0 dominates over the other terms during
the period of interest, so that the evolution of H can be
neglected in the calculation.
The equation for the inflaton can be written in the form

[4]

€�þ 3H _�þm2
��� gNðm’ � g�Þh’2i ¼ 0; (2)

h’2i � �ðt� t0Þ C
m’ � g�

n0

�
a

a0

��3
;

n0 ¼ g3=2
j _�0j3=2
ð2�Þ3 ;

(3)

where C is a constant of order unity, t0 is the time at which
g� ¼ m’, when the effective mass of the ’ field becomes

zero and most of the particles are produced. Here and in the
following, the suffix 0 denotes a quantity evaluated at t ¼
t0. The two point function can be approximated with the
expression above after renormalizing by subtraction of its
asymptotic past value, when no particles were produced
[4].
It can be shown that the time scale �tc over which

particles are produced is much smaller than the Hubble
time, H�c � 10�3 � 1 [5]. This justifies our approxima-
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tion of h’2i by a step function as given by Eq. (3) for scales
k=a0 <�t�1

c � 103H.
For later convenience, we slightly rewrite the above field

equation as

€�þ 3H _�þm2
�� ¼ SðtÞ; (4)

S ¼ �ðt� t0ÞgNCn0

�
a

a0

��3
: (5)

We solve the equation for the curvature perturbation on
comoving hypersurfaces:

R 00
c þ 2

z0

z
Rc þ k2Rc ¼ 0; z � a _�

H
; (6)

where a prime denotes the conformal time derivative, 0 ¼
d=d� ¼ ad=dt. The inflaton perturbation on flat hyper-
surfaces ��f, which is to be quantized on subhorizon

scales, is related to Rc as

��f ¼ �
_�

H
Rc: (7)

We assume that there is no isocurvature perturbation after
inflation, So, the power spectrum of the curvature pertur-
bation is given by

2�P1=2
R ðkÞ ¼

ffiffiffiffiffiffiffiffi
2k3

p
jRkðtfÞj; (8)

where Rk is a properly normalized mode function, and tf
is the time at which inflation ends.

III. CALCULATION

First we solve the inflaton background. We assume the
inflaton is slow-rolling before t0. Introduce two indepen-
dent homogeneous solutions of (4),

U�ðtÞ ¼ exp½��Ht�; �� ¼ � 3

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2=9

q �
;

(9)

where �2 � m2
�=H

2, and the Wronskian,

WðtÞ � _UþU� � _U�Uþ ¼ ð�þ � ��ÞHUþU�

¼ ð�þ � ��ÞHe�3Ht; (10)

the solution of our interest is expressed as

�ðtÞ ¼ �0Uþðt� t0Þ þ
Z 1

�1
dt0Gðt� t0ÞSðt0Þ; (11)

where the Green function G is given by

G ¼ �ðt� t0ÞUþðtÞU�ðt0Þ �U�ðtÞUþðt0Þ
Wðt0Þ : (12)

Note that UþðtÞ describes the slow-roll solution, while
U�ðtÞ the rapidly decaying solution; �þ � ��2=3 and
�� � �3þ�2=3 for �2 � 1.

With the source term given by Eq. (5), we obtain the
solution explicitly as

�ðtÞ ¼ �0Uþðt� t0Þ þ �ðt� t0ÞM3

�þ��ð�þ � ��ÞH2

	 ½��þUþðt� t0Þ þ ��U�ðt� t0Þ
þ ð�þ � ��Þe�3Hðt�t0Þ�; (13)

where we have introduced the mass scale M by

M3 � gNCn0 ¼ g5=2NC
j _�0j3=2
ð2�Þ3 : (14)

Taking the time derivative of this equation gives

_� ¼ �þH�0uþðt� t0Þ þ �ðt� t0ÞM3

�þ��ð�þ � ��ÞH
	 ½��2þUþðt� t0Þ þ �2�U�ðt� t0Þ
þ ð�2þ � �2�Þe�3Hðt�t0Þ�: (15)

We note that this result implies the presence of a step in _�.
At late times, Hðt� t0Þ 
 1, the above equation reduces
to

_� ¼ �þH�0

�
1� M3

��ð�þ � ��ÞH2�0

�
Uþðt� t0Þ:

(16)

Thus there is a step of the relative magnitude � _�= _��
M3=ð9H2�0Þ compared to the case of no particle produc-
tion, and it will be reflected in the overall shape of the
spectrum in general. However, as we shall see immediately
below, for the values of the parameters we choose, the step
turns out to be negligible.
For ease of comparison, following [4,5], we will make

the following choices for the model parameters:

m� ¼ 10�6mpl; m’ ¼ 2mpl;

g ¼ 1; V0 ¼ 5m2
�m

2
’;

(17)

where mpl ¼ G�1=2 is the Planck mass. For this choice of

the parameters, we find the step relative to the case of no

particle production is small, � _�= _�� 10�5N unless N is

extremely large. The behaviors of _� and €� are plotted in
Figs. 1 and 2, respectively.

Setting u � a��f ¼ �zRc, where z ¼ a _�=H, we

have

u00 þ
�
k2 � z00

z

�
u ¼ 0: (18)

Since we assumed that the potential is dominated by V0,
the time variation of H in z can be neglected and the scale
factor a may be approximated by that of a pure de Sitter
universe, a ¼ ð�H�Þ�1. On the other hand, the time

variation of _� cannot be neglected, particularly at and after
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the transition. For _�, we use the solution given by Eq. (15)
with the identification Ht ¼ lnð�H�Þ.

At � ¼ �0, €� is discontinuous. Hence z00, which con-

tains the third derivative �
:::
, contains a delta function. This

implies u0 is discontinuous at � ¼ �0. To evaluate this
discontinuity, we calculate the contribution of the delta
function in z00,

D0 �
Z �0þ�

�0��

z00

z
d� ¼ ½ €�0þ � €�0�� a0_�0

¼ Ngn0C
a0
_�0

¼ M3a0
_�0

; (19)

where €�0� and €�0þ are the values of €� right before and
after t ¼ t0, respectively. Thus the matching condition at
� ¼ �0 for u is given by

u00þ ¼ u00�ð�0Þ þD0u0�; u0þ ¼ u0�: (20)

Turning back to the original variable Rc, it is noted that
this matching condition implies that both R0

c and Rc are
continuous at � ¼ �0. This is of course consistent with the

evolution equation (6) for Rc, in which there is no delta
function.
To calculate the power spectrum, we split it into two

parts, corresponding to the modes greater or smaller than
k0, where k0 ¼ ðaHÞ0. We assume the standard Bunch-
Davies vacuum for ��f at � ! �1, and solve for the

positive frequency mode functions. Thus at sufficiently
early times, � ! �1, the mode function can be well
approximated by

u< ¼ v � e�ik�ffiffiffiffiffi
2k

p
�
1� i

k�

�
; (21)

where u< denotes the mode function at �< �0. For nu-
merical analysis, we use this as the initial condition for
each mode when it is inside the horizon and when �< �0.
Then we return to the original variableRc and numerically
integrate Eq. (6). As we noted in the above, there is no delta
function in this equation, but only a discontinuity in z0=z.
Hence it can be numerically integrated across the time� ¼
�0 without any problem.
For modes k < k0, for which the sudden change in the

effective potential of the inflaton happens after horizon
crossing, Eq. (21) continues to be a good approximation
until a mode crosses the horizon. Hence using it as the
initial condition at horizon crossing, we solve the differ-
ential equation numerically.
For modes k > k0, the particle production takes place

before the modes leave the horizon. So, we set the initial
condition at a sufficiently early time � ¼ �i < �0 com-
mon to all the modes, when the mode functions are well
approximated by Eq. (21). Then we integrate Eq. (6)
numerically.
The numerical results for the power spectrum are given

in Figs. 3–5. For the modes k < k0, we do not find any
appreciable evolution of modes on superhorizon scales
except for modes close to k ¼ k0. For the modes k > k0,

-0.1 0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

FIG. 2. €�ðtÞ=ðmpm
2
�Þ is plotted for �0:1<m�ðt� t0Þ< 0:5.

The parameters are the same as Fig. 1.
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FIG. 3. P1=2
R ðkÞ is plotted for 3	 10�2 < k=ða0H0Þ< 50 in the

case of N ¼ 8. The solid line is the numerical result, the dashed
line is the analytical approximation, and the long dashed line is
the spectrum in the absence of particle production.
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FIG. 1. _�ðtÞ=ðmpm�Þ is plotted for �0:1<m�ðt� t0Þ< 0:5.
The solid line corresponds to N ¼ 1, the small dashed line to
N ¼ 8, and the long dashed line to N ¼ 16.
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the oscillatory feature of the spectrum is in agreement with
[5] and other studies such as [12].

Our result that there appears no step in the spectrum is in
agreement with Adams et al. [12], while it differs from
Elgaroy et al. [5] who claim that a step in the power
spectrum is produced due to the nonconservation of en-
tropy perturbation. We disagree with this interpretation,
since a source term should be present for the superhorizon
evolution of Rc due to entropy perturbations, which is
absent in the present case.

In order to confirm our numerical results, we consider an
analytical approximation to the problem in the next sec-
tion. We find a good agreement between the numerical
results and analytical approximations.

IV. ANALYTICAL APPROXIMATION OF THE
SPECTRUM

In this section, we consider an analytical approximation
for the power spectrum. As in the case of numerical
analysis, we split the modes into the two, k < k0 and k >
k0, and discuss them separately.

For the modes k < k0, since the transition occurs on
superhorizon scales, the only possible time variation of
Rc is due to the discontinuity in z0=z in Eq. (6).
However, since z0=z ¼ a _z=z, it grows exponentially large
as time goes on and the discontinuity becomes totally
irrelevant, unless the magnitude of the discontinuity is
exponentially large (which is apparently not the case).
Therefore, for k � k0, there can be no time evolution of
Rc on superhorizon scales. In fact, by using the technique
developed in [13], one can explicitly show that the spec-
trum can be modified only near k ¼ k0 and quickly ap-
proaches the standard result at k � k0. Thus the curvature
perturbation spectrum is given by the standard formula,

P1=2
R ðkÞ ¼ H2

2�j _�ðtkÞj
ðk � k0Þ; (22)

where tk is the horizon crossing time, k ¼ aðtkÞH.
As for the modes k > k0, the analysis is a bit more

complicated. First we note that, as we stated before, the
mode functions u are well approximated by Eq. (21) when
�< �0. After the transition, there is a short period when
the slow-rolling solution for the background inflaton does
not hold. Nevertheless, for sufficiently large k, for which
the mode is still deep inside the horizon at the time of
transition, this small violation of the slow-roll conditions is
totally negligible because k2 
 z00=z. Hence the approxi-
mate solution v defined in Eq. (21) is still a valid solution
even at �> �0, including the non-slow-roll period right
after the transition. However, v is no longer the positive
frequency mode function there. Instead the desired mode
function at �> �0 should be expressed as a linear combi-
nation of v and v�. Hence we may set

u> ¼ 	kvþ 
kv
�; (23)

where u> denotes the mode function at �> �0. It is useful
to note that the coefficients 	k and 
k can be expressed in
terms of u>, v, and v� as

	k ¼ �iðv�0u> � v�u0>Þ; 
k ¼ iðv0u> � vu0>Þ:
(24)

This gives the formula for the spectrum,

P1=2
R ðkÞ ¼ H2

2�j _�ðtkÞj
j	k � 
kj: (25)

It should be noted that j	kj2 � j
kj2 ¼ 1. This relation can
be used as a consistency check.
Now, the matching condition (20) implies

u>ð�0þÞ ¼ v0; u0>ð�0þÞ ¼ v0
0 þD0v0: (26)

Applying Eq. (27) to an epoch right after the transition,
� ¼ �0þ, with u> and u0> given by these equations, we
find
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FIG. 4. The same as Fig. 3, but in the case of N ¼ 16.
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FIG. 5. P1=2
R ðkÞ in the cases of both N ¼ 8 and N ¼ 16 are

plotted for 3	 10�2 < k=ða0H0Þ< 50. Clearly the amplitude of
oscillations is larger for larger N, approximately in proportion to
N. The long dashed line is the spectrum in the absence of
coupling.
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	k ¼ 1þ iD0v0v
�
0 ¼ 1þ i

D0

2k

�
1þ 1

ðk�0Þ2
�
;


k ¼ �iD0v
2
0 ¼ �i

D0

2k

�
1� i

k�0

�
2
e�2ik�0 :

(27)

Inserting them into Eq. (25), we obtain the spectrum at
k 
 k0 as

PRðkÞ1=2 ¼ H2

2�j _�ðtkÞj
�
1þD0

k

�
sin2k�0þO

�
1

k�0

��

þ D2
0

2k2

�
1þcos2k�0þO

�
1

k�0

���
1=2 ðk
 k0Þ:

(28)

As seen from Figs. 3 and 4, the above analytical approxi-
mation agrees well with the numerical results at large k.
However, the analytical approximation loses its accuracy
for modes which leave the horizon around the time of
particle production �0. This is because the effect of non-
slow-rolling is non-negligible for these modes and the
approximate solution (21) is no longer valid.

The spectrum at k > k0 behaves like a dumped harmonic
oscillator, where the amplitude of the oscillations is pro-
portional toD0, providedD0=k < 1. As one can guess from
the formula (25), together with Eq. (27), these oscillations
are due to an interference between the positive and nega-
tive frequency mode functions, or contamination of nega-
tive frequency modes with positive frequencymodes due to
the transition. One might doubt if this is due to the ap-
proximation of replacing an otherwise smooth function by
a step function in Eq. (3). However, as we mentioned there,
our approximation is valid for k < a0=�t ¼ k0ðH�tÞ�1 �
103k0, while the oscillations are present for all k > k0. This
confirms that the oscillations are not an artifact of the
approximation but real.

Using the expression for D0, Eq. (19), the amplitude is
evaluated as

D0

k
¼ a0

k

M3

_�0

¼ a0H

k

Ng2ffiffiffi
3

p ð2�Þ3
m�m

1=2
’

H3=2
: (29)

This analytical estimate not only confirms the numerical
result that the oscillations amplitude is proportional to the
number of coupled fields N, but also shows that it is
proportional to the square root of the mass m’ and is

proportional to the square of the coupling constant g. It
also shows that the period of the oscillations is given by
k0�.

V. CONCLUSION

We have studied the impact of the coupling of the
inflaton to a scalar field on the primordial curvature per-
turbation spectrum. We found the presence of an oscilla-
tory behavior on small scales for the modes which leave the
horizon after the time of particle production. We have also
presented a very good analytical approximation for the
evolution of small scale modes. This method can be ap-
plied to the general case of a sudden change in the inflaton
potential, leading to a temporary violation of the slow-roll
conditions.
The amplitude of the oscillations is proportional to the

number of coupled fields N and the square root of their

mass m1=2
’ , and to the square of the coupling constant g2.

The period of the oscillations is k0�, where k0 is the
wavelength that crosses the horizon right at the time of
the particle production.
On large scales, k < k0, the power spectrum is virtually

unaffected by the particle production, contrary to what was
claimed in a previous numerical investigation [5]. This is
because the violation of the slow-roll conditions can affect
only on those modes close to k ¼ k0 on superhorizon
scales, and the curvature perturbation is conserved on
sufficiently large superhorizon scales, k � k0, no matter
what occurs there.
Our results are quite general in the sense that in models

where slow-roll conditions are temporarily violated, the
spectrum will have oscillations on scales smaller than the
mode which leaves the horizon at the time of transition,
while it will remain unchanged on the larger scales. The
presence of such features in the observed CMB spectrum
could help to determine the magnitude and the lapse of
periods during which the slow-roll conditions are violated,
although it may be difficult in practice to distinguish such a
feature of a primordial origin from a similar feature due to
intermediate astrophysical processes happening before
and/or after recombination.
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