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A number of positive and null results on the time variation of fundamental constants have been reported.

It is difficult to judge whether or not these claims are mutually consistent, since the observable quantities

depend on several parameters, namely, the coupling strengths and masses of particles. The evolution of

these coupling-parameters over cosmological history is also a priori unknown. A direct comparison

requires a relation between the couplings. We explore several distinct scenarios based on unification of

gauge couplings, providing a representative (though not exhaustive) sample of such relations. For each

scenario we obtain a characteristic time dependence and discuss whether a monotonic time evolution is

allowed. For all scenarios, some contradictions between different observations appear. We show how a

clear observational determination of nonzero variations would test the dominant mechanism of varying

couplings within unified theories.
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I. INTRODUCTION

Any observation of a time variation of ‘‘fundamental
constants’’ would be a far-reaching discovery. There are
various claims for a detection, and many more observations
indicating a null variation: criteria for judging their mutual
consistency would be useful. We investigate whether a
simple scenario exists which can account for several ob-
servational claims simultaneously and is consistent with
unification of standard model (SM) gauge couplings.
Several observations motivate such a study. First, the
claimed deviations from the present value of the fine
structure constant �, or the proton-to-electron mass ratio
�, observed in quasar absorption systems. Second, the
discrepancy between the primordial 7Li abundance ex-
pected from standard nucleosynthesis (BBN) and seen in
old halo stars, which may be explained by a variation of
‘‘constants’’ within a unified framework [1,2]. Third, the
theoretical insight that scalar fields cannot be exactly con-
stant over the entire cosmological evolution, and that a
possible ‘‘late’’ time evolution can play an important role
in the dynamics of the expanding Universe. A time varia-
tion of couplings arising from the evolution of a ‘‘cosmon’’
field in so-called ‘‘quintessence scenarios’’ [3,4] would
link these variations to observables in cosmology [5,6].

Because of the many unknowns of the underlying parti-
cle physics models and the partly contradictory present
observational situation, a systematic treatment is not
easy, and may even seem premature. Nevertheless we
consider a first attempt to be useful, in order to discuss
strategies that can be used to compare variations of differ-
ent observables. The power of the proposed method will
only become clear if and when future observations present
a less ambiguous picture.

The basic approach in the present paper relates the
fractional variations of different fundamental couplings
Gk, such as the fine structure constant �, the proton-

electron mass ratio � or the ratio of the nucleon mass to
the Planck mass, by an assumption of proportionality, with
fixed ‘‘unification coefficients’’ dk. The choice of the
values of dk is in turn determined within different scenarios
of varying parameters in grand unified theories (GUTs)
where the gauge couplings of the standard model converge
at a unification scale MX. The assumption of time-
independent coefficients dk covers a large class of possible
models for varying couplings. This assumption is, how-
ever, not a necessity, and we will describe specific quin-
tessence models where it may not be realized in a
forthcoming paper [7].
In Sec. II of this paper we review observational deter-

minations of the variation or constancy of couplings, con-
sidering five types of methods: early-universe cosmology,
astrophysical spectroscopy, nuclear physics in the Earth
and the Solar System, gravitational physics, and atomic
clock comparisons. In Sec. III we introduce the unification
of gauge couplings and determine the implications of uni-
fication and supersymmetry (SUSY) for the standard
model parameters and for the observables we consider.
We further define six unified scenarios by considering
different possibilities for the variation of the Fermi scale
and the superpartner masses. Within each scenario we
reduce the various observational results to constraints on
the time evolution of a single fundamental coupling, and
discuss the mutual consistency of observations.
In Sec. IV six cosmological epochs are introduced, and

the constraints on variation deduced in Sec. III are col-
lected into a set of ‘‘evolution factors’’ for each unified
scenario. These evolution factors are a measure of the
overall size of coupling evolution between a given epoch
and the present. We then determine for each scenario to
what extent a monotonic variation over time can be con-
sistent with the data. Sec. V draws some general
conclusions.
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In a subsequent paper [7] we will investigate the scalar
field dynamics that could give rise to a small but nonzero
variation of couplings. The presence of a cosmologically
varying degree of freedom gives rise to important addi-
tional effects. It affects gravity on large scales, altering the
expansion of the Universe and potentially giving rise to the
observed late-time acceleration. Also on local scales, a
light field weakly coupled to matter produces long-range
forces which are tightly constrained [8] by Solar System
precision tests of gravity and the null results of experi-
ments testing the Weak Equivalence Principle. Combining
all these considerations leads to tighter constraints on
models but also offers more possibilities to test them.

II. DATA: VARIATIONS AND CONSTRAINTS

Here we review and discuss the observational data that
we will consider in our effort to obtain a unified picture of
time variation of couplings. We summarize the results that
are most relevant for our analysis in Table III.

A. Early universe: BBN and CMB

The earliest processes for which standard model physics
can be tested are primordial nucleosynthesis (BBN) at z�
1010 and the cosmic microwave background (CMB) de-
coupling at z� 103. Hence they constitute the most far-
reaching tests of a possible variation of couplings.

BBN The influence of varying constants on BBN has
been studied extensively [2,24–34] (see also [35] and
references therein). The method developed in [1,27] ac-
counts for possible simultaneous variations of different
fundamental parameters, while previous studies restricted
attention to the variation along one particular direction in
parameter space.
Our approach in [1] was first to calculate the leading

dependence of BBN abundances on a set of ‘‘nuclear
parameters’’, comprising elementary particle coupling
strengths and masses and nuclear binding energies. In a
second step, these nuclear parameters were related to
fundamental parameters in particle theory, which allowed
us to consider (at linear order) any combination of varia-
tions at BBN. Thus, our results are independent of any
assumptions about unification.
In an extension of our previous treatment, we include in

Appendix A the possible effect of varying constants at
CMB on the input parameter � of our BBN procedure.
The important parameter is here the variation of mN=MP

at CMB relative to the variation at BBN, where mN

is the nucleon mass and MP is the ‘‘reduced’’ Planck
mass. We consider two limiting cases. First, when
�ðmN=MPÞjCMB � �ðmN=MPÞjBBN: then our previous re-

sults hold. In the second case, with �ðmN=MPÞjCMB ’
�ðmN=MPÞjBBN, the value of � may be significantly

rescaled.

TABLE I. Observational 1� bounds on variations. Observables are defined as � � mp=me, x � �2gp�
�1, y � �2gp, F �

gp½�2��1:57, and F0 � �2=�. The given redshift may denote a single measurement, or an averaged value over a certain range: see

main text. The two CMB bounds are independent of each other. Our BBN bounds cannot be displayed in this form.

Method redshift � ln� � ln� � lnGm2
N � lnx � lny � lnF � lnF0 � ln�187

½10�6� ½10�5� ½10�2� ½10�5� ½10�5� ½10�5� ½10�4� ½10�2�
Oklo � [9] 0.14 0:00� 0:06

21 cm [10] 0.247 �0:20� 0:44
Sun [11] 0.43 0� 0:72
Heavy/HI, low-z [12] 0.40 1:0� 1:7
Meteorite [13] 0.44 3:3� 3:2
M� epoch 2 [14] 0.65 �2:9� 3:1
Ammonia [15] 0.68 0:06� 0:19
21 cm [10] 0.685 �0:16� 0:54
HI/OH [16] 0.765 0:4� 1:1

Absorption [17] 1.15 �0:1� 1:8
M� epoch 3 [14] 1.47 �5:8� 1:3
Absorption [18] 1.84 5:7� 2:7
Heavy/HI, high-z [12] 2.03 0:6� 1:9

H2 [19] 2.59 2:78� 0:88
M� epoch 4 [14] 2.84 �8:7� 3:7
H2 [19] 3.02 2:06� 0:79
Neutron stars [20] 3.3 �0:7� 2:4
CII/CO [21] 4.69 1:4� 1:5
CII/CO [21] 6.42 0:1� 1:0

CMB [22,23] 103 0þ1�104

�3�104
0þ7
�6
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Our result for the leading dependence of primordial
abundances Ya on fundamental particle physics parameters
Gk ¼ ðG;�; h�i; me; �q; m̂Þ is summarized in Table I. Here

�q � md �mu denotes the light quark mass difference,

m̂ � ðmd þmuÞ=2 the average light quark mass, and h�i is
the expectation value of the Higgs scalar that determines
the Fermi scale of the weak interactions. The variation of
dimensionful quantities is defined relative to the QCD
strong coupling scale �c. We found that only D, 4He and
7Li can be used to constrain parameters at BBN. While
Table I only gives linear dependencies, we can account for
nonlinearities by running the full BBN code with the
appropriate variations [1].

The current observational and theoretical values for the
Ya are given in Table II, where Yp is the helium mass

fraction equal to 4 times the ratio of 4He number density
to hydrogen. The uncertainty in the � determination, � ¼
ð6:20� 0:16Þ � 10�10 [36] yields a further correlated error
for the abundances, which can be treated using the method
of [37]. For any given set of fundamental variations we can
define

�2 � X
i;j

ðYi � Yobs
i ÞwijðYj � Yobs

j Þ; (1)

with the inverse weight matrix

wij ¼ ½�2;�
ij þ �ijð�2

obs;i þ �2
th;iÞ��1; (2)

where

�2;�
ij � YiYj

@ lnYi

@ ln�

@ lnYj

@ ln�

�
��

�

�
2
: (3)

We take, as in [1],

@ lnðD=H; Yp;
7Li=HÞ

@ ln�
¼ ð�1:6; 0:04; 2:1Þ: (4)

The 1ð2Þ� error contour is given by �2=	 � 1ð4Þ where 	
is the number of degrees of freedom. As the final abun-
dances depend on variations of all fundamental constants,
we have to evaluate the variations allowed by BBN for
every model separately.

It has been pointed out that the important 8Be resonance
very near the ground states of 7Beþ n and 7Liþ p makes

the exchange reaction converting 7Be into 7Li potentially
sensitive to variations in nuclear forces. We give an esti-
mate of this sensitivity in Appendix B and show that it is
unlikely to be significant for the range of variations that we
consider.
In the light of complex astrophysics which may affect

the extraction of the primordial 7Li fraction [38], we also
consider bounding the variations using deuterium and 4He
alone. This yields a value consistent with zero for varia-
tions at BBN, since these abundances are consistent with
standard BBN.
CMB In principle, � and G are bounded by CMB, but

there are significant degeneracies with other cosmological
parameters [22,39]: see also the discussion in Appendix A.
Current bounds are

0:95<
�CMB

�0

< 1:02 ð2�Þ: (5)

The CMB anisotropies may also be used to constrain the
variation of Newton’s constant G. The resulting bound
depends on the form of the variation of G from the time
of CMB decoupling to now. Using a step function one finds
[23,40]

0:95 � G

G0

� 1:05 ð2�Þ; (6)

where the instantaneous change in G may happen at any
time between now and CMB decoupling. Using instead a
linear function of the scale factor a, the bound is

0:89 � G

G0

� 1:13 ð2�Þ: (7)

Note that here, as in most studies of time-dependent G,
units are implicitly defined such that the elementary parti-
cle masses (and thus the mass of gravitating bodies, if
gravitational self-energy is neglected) are constant. The
relevant bound on dimensionless parameters concerns
Gm2

N � ðmN=MPÞ2ð8
Þ�1.

B. Quasar absorption spectra

The observation of absorption spectra of distant inter-
stellar clouds allows to probe atomic physics over large
time scales. Comparing observed spectra with the spectra
observed in the laboratory gives bounds on the possible
variation of couplings. Different kinds of spectra (atomic,
molecular, . . .) are sensitive to different parameters, prin-
cipally � and � � mp=me.

Atomic spectra are primarily sensitive to �. Several
groups using various methods of modeling and numerical
analysis have published results; we quote here only the
latest bounds. Murphy and collaborators [14] studied the
spectra of 143 quasar absorption systems over the redshift
range 0:2< zabs < 4:2. Their most robust estimate is a
weighted mean

TABLE II. Sensitivity of abundances Yi to variations of fun-
damental parameters Gk and the baryon-to-photon ratio �.

@ lnYa=@ lnGk D 4He 7Li

G 0.94 0.36 �0:72
� 3.6 1.9 �11
h�i 1.6 2.9 1.7

me 0.46 0.40 �0:17
�q �2:9 �5:1 �2:9
m̂ 17 �2:7 �61
� �1:6 0.04 2.1
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��

�
¼ ð�0:57� 0:11Þ � 10�5: (8)

In discussing unified models in Sec. IV, we will define
various ‘‘epochs’’ for the purpose of collating data and

comparing them with models over certain ranges of red-
shift. The 143 data points are then assigned to different
epochs: we choose to put boundaries at z ¼ 0:81 and z ¼
2:4, thus we obtain three subsamples

z < 0:81; Nsys ¼ 18; hzi ¼ 0:65;
��

�
¼ ð�0:29� 0:31Þ � 10�5

0:81< z < 2:4 Nsys ¼ 85; hzi ¼ 1:47;
��

�
¼ ð�0:58� 0:13Þ � 10�5

z > 2:4; Nsys ¼ 40; hzi ¼ 2:84;
��

�
¼ ð�0:87� 0:37Þ � 10�5:

(9)

Here we have used the ‘‘fiducial sample’’ of [41], the
weighted average has been taken, and we have included
[42] the 15 additional samples used in [14]. For conve-
nience we will refer to these results as ‘‘M�’’.

Further results have been obtained by Levshakov et al.
[18], and reported in [17]:

��

�
¼ ð�0:01� 0:18Þ � 10�5; zabs ¼ 1:15

��

�
¼ ð0:57� 0:27Þ � 10�5; zabs ¼ 1:84:

(10)

Previously [43,44] more stringent null results were
claimed, but doubts have been cast [45] (see also [46])
on the validity of the statistical analysis. We note that the
value for z ¼ 1:84 has an opposite sign of variation to the
M� result, though the variation does not have high statis-
tical significance. The observational situation is clearly
unsatisfactory.

Vibro-rotational transitions of molecular hydrogen H2

are sensitive to � � mp=me. From H2 lines of two quasar

absorption systems (at z ¼ 2:59 and z ¼ 3:02) a variation
is found [19] of

��

�
¼ ð2:4� 0:6Þ � 10�5; (11)

taking a weighted average. We will refer to this result as
‘‘R�’’ after Reinhold et al. The individual systems yield
[19]

��

�
¼ ð2:78� 0:88Þ � 10�5; zabs ¼ 2:59

��

�
¼ ð2:06� 0:79Þ � 10�5; zabs ¼ 3:02:

(12)

Recently the z ¼ 3:02 system has been reanalyzed [47],
with the result that the claimed significance of Eq. (12) was
not reproduced, and the absolute magnitude of the varia-
tion is bounded by j��=�j � 4:9� 10�5 at 2�, or

j��=�j � 2:5� 10�5; zabs ¼ 3:02 ð1�Þ: (13)

The inversion spectrum of ammonia has been used to
bound � precisely at lower redshift [15]. Recently the
single known NH3 absorber system at cosmological red-
shift has been analyzed [48], yielding

��

�
¼ ð0:74� 0:89Þ � 10�6; z ¼ 0:68: (14)

This is a considerably stricter bound but applies at a differ-
ent epoch. Extrapolation to today with linear time depen-
dence gives _�=� ¼ ð1:2� 1:4Þ � 10�16 y�1.
The 21 cm HI line and molecular rotation spectra are

sensitive to y � �2gp, where gp is the proton g-factor.

Bounds on this quantity from [10] are

�y

y
¼ ð�0:20� 0:44Þ � 10�5; z ¼ 0:247

�y

y
¼ ð�0:16� 0:54Þ � 10�5; z ¼ 0:685:

(15)

Further, the comparison of UV heavy element transi-
tions with HI line probes for variations of x � �2gp�

�1

[12]: the weighted mean of nine analyzed systems yields

�x

x
¼ ð0:63� 0:99Þ � 10�5; 0:23< zabs < 2:35:

(16)

However, we note that (i) the systems lie in two widely-
separated low-redshift (0:23< z < 0:53) and high-redshift
(1:7< z < 2:35) ranges; and (ii) these two subsamples
have completely different scatter, �2=	 about the mean
for the low- and high-redshift systems being 0.33, and 2.1,
respectively. Hence we consider two samples, with average
redshift z ¼ 0:40 (5 systems) and z ¼ 2:03 (4 systems).
With expanded error bars in the high-redshift sample (after
‘‘method 3’’ of [12]) we find

�x

x
¼ ð1:02� 1:68Þ � 10�5; hzi ¼ 0:40

�x

x
¼ ð0:58� 1:94Þ � 10�5; hzi ¼ 2:03:

(17)
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The comparison of HI and OH lines is sensitive to
changes in F � gp½�2��1:57 [16] and yields

�F

F
¼ ð0:44� 0:36stat � 1:0sysÞ � 10�5; z ¼ 0:765:

(18)

A similar method comparing CII and CO lines has very
recently been proposed at high redshift [21] yielding the
best bound at redshifts >4:5. The following bounds on
F0 � �2=� are obtained for two systems:

�F0

F0 ¼ ð0:1� 1:0Þ � 10�4; z ¼ 6:42

�F0

F0 ¼ ð1:4� 1:5Þ � 10�4; z ¼ 4:69:

(19)

C. Terrestrial and solar system nuclear constraints

Oklo natural reactor From modeling nuclear reaction
processes which happened in the Oklo mine about two
billion years ago (�t ’ 1:8� 109 y, z� 0:14 with
WMAP5 best fit cosmology) one can in principle bound
the variation of � over this period. The determination of
� ln� at the time of the reactions results from considering
the possible shift, due to variation of electromagnetic self-
energy, in the position of a very low-lying neutron capture
resonance of 149Sm. The analysis of [9] gives the bound
(taken as 1�)

� 5:6� 10�8 <��=�< 6:6� 10�8: (20)

For a linear time dependence this results in the bound

j _�=�j � 3� 10�17 y�1:

A more recent analysis using different reactor models and
consequently different neutron spectra [49] found

� 2:4� 10�8 � ��=� � 1:1� 10�8

with an additional nonzero solution (due to the other
branch of the resonance peak) at ��=� ’ 8� 10�8. We
will consider the more conservative bound.

Note that these results concern varying � only. If other
parameters affecting nuclear forces, in particular, light
quark masses, are allowed to vary, the interpretation of
this bound becomes unclear [50,51] since it depends on a
nuclear resonance of 150Sm whose properties are very
difficult to investigate from first principles. In the absence
of a resolution to this problem we consider Oklo as apply-
ing only to the � variation in each model. In scenarios
where several couplings vary simultaneously we do not
consider strong cancellations. Nevertheless, we allow for a
certain degree of accidental cancellation and therefore
multiply the error on the bound Eq. (20) by a factor three.

Meteorite dating Long-lived �- or �-decay isotopes
may be sensitive probes of cosmological variation
[13,50,52]. Their (generally) small Q-values result from

accidental cancellations between different contributions to
nuclear binding energy, depending on fundamental cou-
plings in different ways, thus the sensitivity of the decay
rate may be enhanced by orders of magnitude.
The best bound concerns the 187Re �-decay to osmium

with Q� ¼ 2:66 keV. The decay rate �187 is measured at

present in the laboratory, and also deduced by isotopic
analysis of meteorites formed about the same time as the
solar system, tMet ’ 4:6� 109 y ago (z ’ 0:44). More pre-
cisely, the ratio �187=�U, averaged over the time between
formation and the present, is measurable [13,53], where �U

is the rate of some other decay (for example uranium) used
to calibrate meteorite ages. The experimental values of
�187 imply (setting �U to a constant value)

t�1
Met

Z 0

�tMet

��187ðtÞ
�187

dt ¼ 0:016� 0:016: (21)

Since the redshift back to tMet is relatively small, we obtain
bounds on recent time variation by assuming a linear
evolution up to the present, for which the left-hand side
of Eq. (21) is�ðtMet=2Þ _�187=�187 and the fractional rate of
change is bounded by

_�187

�187

’ ð�7:2� 6:9Þ � 10�12 y�1: (22)

Projected back to tMet this gives the bound � ln�187 ’
0:033� 0:032 (z ’ 0:44). This is a conservative bound
unless the time variation has recently accelerated (which
we consider unlikely), or there are significant oscillatory
variations over time.
The decay rate varies as [50]

�187 / G2
FQ

3
�m

2
e / h�i�2Q3

�y
2
e

where ye is the electron Yukawa coupling. Variation in Q�

is determined by the near-cancellation between the nuclear
Coulomb self-energy and asymmetry energy of 187Re and
187Os, and the nucleon masses, via

�Q� ’ 0:77�aA � 26�aC þ�ð�N �meÞ;

where aA ’ 23:7 MeV and aC ’ 0:71 MeV are the asym-
metry and Coulomb terms of the semiempirical mass for-
mula and �N � mn �mp is the nucleon mass splitting.

Thus the fractional variation in �187 is

� ln
�187

mN

’ 2:1� 104� ln
aA
mN

� 2:1� 104� ln�

þ 880� ln
�N �me

mN

: (23)

Since the possible dependence of ‘‘control’’ decay rates
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�U=mN on nuclear or fundamental parameters is much
weaker than that of �187=mN , we use this result for the
variation of �187 in units where �U is constant.1 Then using
relations derived in [54] and considering also the effect of
varying ms on the nucleon mass,

� ln
�N �me

mN

’ 2:6� ln
�q

�c

� 0:65� ln
me

�c

� 0:97� ln�

� 0:12� ln
ms

�c

; (24)

� ln
aA
mN

	 �0:9� ln
m̂

�c

; (25)

we find the decay rate dependence to be

� ln
�187

mN

’ �2:2� 104� ln�� 1:9� 104� ln
m̂

�c

þ 2300� ln
�q

�c

� 580� ln
me

�c

: (26)

D. Bounds on the variation of the gravitational constant

Variations of Newton’s constant have been studied in the
solar system and in astrophysical effects. While all refer-
ences give bounds exclusively on a potential variation of
G, one should note that besides G also nuclear parameters
(neutron/proton masses and parameters of nuclear forces)
can vary, which would in general add degeneracies and
make the results less stringent. It has generally been as-
sumed that particle masses are constant, thus the resulting
bounds actually constrain variation of Gm2

N / ðmN=MPÞ2.
In the solar system, changes of G induce changes in the

orbits of planets. Range measurements to Mars from 1976
to 1982 can be used to obtain [55]

_G=G ¼ ð2� 4Þ � 10�12 y�1: (27)

Lunar laser ranging from 1970 to 2004 yields [56]

_G=G ¼ ð4� 9Þ � 10�13 y�1: (28)

The stability of the orbital period of the binary pulsar PSR
1913þ16 [57] may be used to deduce

_G=G ¼ ð1:0� 2:3Þ � 10�11 y�1: (29)

Recent observational advances may improve such bounds
considerably, with a limit of

_G=G ¼ ð0:5� 2:6Þ � 10�12 y�1 (30)

from PSR J04374715 quoted in the preprint [58]. All these
results apply at the present epoch z ¼ 0.
A bound on the behavior of G over the lifetime of the

Sun (approximately 4:5� 109 y, z ¼ 0:43) was found by
Krauss et al. [11] by considering the effect of the resulting
discrepancy in the helium/hydrogen fraction on p-mode
oscillation spectra. The claimed constraint is

j _G=Gj � 1:6� 10�12 y�1

j� lnGj � 7:2� 10�3 z ¼ 0:43;
(31)

where the assumed form of variation is a power law in time
since the big bang, which may be approximated over the
last few billion years as a linear dependence. For models
with significantly nonlinear time dependence the bound
may be reevaluated: since the bound arises from the accu-
mulated effect of hydrogen burning since the birth of the
Sun, it may be expressed as an integral of the variation over
the Sun’s lifetime analogous to Eq. (21).
The properties of compact objects such as white dwarfs

and neutron stars (NS) have been used to bound possible
variations of G: see for example [59,60]. The strongest
bound not relying on speculative physical effects arises
from comparing the masses of young and old neutron stars
in binary systems [20]: if one member of the binary is a
pulsar, precision timing can be used to determine the
masses. The mass of neutron stars at formation is deter-
mined to first approximation by the Chandrasekhar mass

MCh ’ 1

G3=2m2
n

(32)

where mn is the neutron mass. This may be reexpressed in

terms of the baryon number of the star nB / MCh=mn /
ðGm2

nÞ�3=2, which is expected to be conserved up to small
corrections from matter accreting onto it. Thus the relative
masses of NS measured at the same epoch probes the
fractional variation of Gm2

n between their epochs of for-
mation. Given that the oldest neutron stars are up to 12 Gy
old, z� 3:3, the variation of the average NS mass �n is
found to be _�n ¼ �1:2� 4:0ð8:5Þ � 10�12M
 y�1 at
60% (95%) confidence level. In units where particle
masses are constant, we have

_G=G ¼ �0:6� 2:0ð4:2Þ � 10�12 y�1; (33)

where the averaging is performed over the last 12� 109 y,
and the bound should be reinterpreted for variations which
are not linear in time. The absolute variation over this
period is then bounded at 1� as

� lnG ¼ ð�0:7� 2:4Þ � 10�2; z ¼ 3:3: (34)

1Variation of �c alone would not cause a dominant effect on
�187. Both the Coulomb and asymmetry terms scale with �c,
thus the effect of varying �c is confined to the last term on the
right-hand side (RHS) of (23), i.e. varying the ratio of the weak
scale to the strong scale.

THOMAS DENT, STEFFEN STERN, AND CHRISTOF WETTERICH PHYSICAL REVIEW D 78, 103518 (2008)

103518-6



E. Atomic clocks

Stringent bounds on the present time variation of the fine
structure constant and the electron-proton mass ratio may
be obtained by comparing different atomic transitions over
periods of years in the laboratory [61]. A recent evaluation
[62] of atomic clock data gives

d ln�=dt ¼ ð�0:31� 0:3Þ � 10�15 y�1

d ln�=dt ¼ ð1:5� 1:7Þ � 10�15 y�1:
(35)

Fortier et al. [63] obtain stronger bounds, j _�=�j< 1:3�
10�16 y�1, if other relevant parameters are assumed not to
vary. If other atomic physics parameters are allowed to
vary, this bound becomes considerably weaker, depending
on a possible relative variation of the Cs magnetic moment
and the Bohr magneton. Direct comparison of optical
frequencies may yield bounds at the level of 10�17 per
year; limits on variation of � from this method are reported
with uncertainty 2:3� 10�17=y [64] but designated as
preliminary. If these bounds are used then our limits
from atomic clocks via � variation should be tightened
by about an order of magnitude.

Extrapolating the results of [62] to the time of Oklo (z ¼
0:14, t ¼ 1:8� 109 y) gives

� ln� ¼ ð�0:56� 0:54Þ � 10�6;

� ln� ¼ ð�0:27� 0:31Þ � 10�5:
(36)

The bound on � at this epoch is weaker than that from
Oklo, Eq. (20). The bound on � cannot be directly com-
pared, due to unquantified theoretical uncertainty in the
Oklo bound. However, if we interpret Oklo as simply
bounding ��=�, we find that it provides the strongest
bound on � variation for all unified scenarios we consider
(see Sec. III) except our Scenario 3, where the high ratio
� ln�=� ln� ’ �325 means that atomic clock bounds on
� are the most sensitive.

III. UNIFICATION AND RELATIONS BETWEEN
COUPLING VARIATIONS

In this paper we consider the hypothesis that, for all
redshifts, all fractional variations in the ‘‘fundamental’’
parameters Gk (see Sec. II A) are proportional to one non-
trivial variation with fixed constants of proportionality. If
the variation of the unified gauge coupling � ln�X is non-
vanishing, we may write

� lnGk ¼ dk� ln�X (37)

for some constants dk, assuming small variations. Different
unification scenarios correspond to different sets of values
for the ‘‘unification coefficients’’ dk. Considering the val-
ues of � lnGk as coordinates in an Nk-dimensional space,
this assumption restricts variations to a single line passing

through zero. The variation then constitutes exactly one
degree of freedom. We will go beyond this hypothesis in a
subsequent paper [7] where we consider a specific model
for which a fixed linear relation (37) is not realized for all z.

A. GUT relations

It is natural in this context to consider models with
unification of gauge couplings (GUTs). These have the
property that variations of the standard model gauge cou-
plings and mass ratios can be determined in terms of a
smaller set of parameters describing the unified theory and
its symmetry breaking. Hence, if nonzero variations in
different observables are measured at similar redshifts,
models of unification may be tested without referring to
any specific hypothesis for the overall cosmological history
of the variation. We need only assume that for a given
range of z the time variation is slow and approximately
homogeneous in space, hence � ln�X depends only on
redshift z to a good approximation. The relevant unified
parameters are the unification mass MX (relative to the
Planck mass), the unified gauge coupling �X defined at
the scaleMX, the Higgs v.e.v. h�i and, for supersymmetric
theories, the soft supersymmetry breaking masses ~m,
which enter in the renormalization group (RG) equations
for the running couplings. Then, for the variations at any
given z we can write

� ln
MX

MP

¼ dMl; � ln�X ¼ dXl;

� ln
h�i
MX

¼ dHl; � ln
~m

MX

¼ dSl;

(38)

where lðzÞ is the ‘‘evolution factor’’ introduced for later
convenience. If �X varies nontrivially we may normalize l
via dX ¼ 1. In supersymmetric theories we set �X ¼ 1=24,
in nonsupersymmetric theories we set �X ¼ 1=40 and
dS � 0 [65].
We make the simplifying assumption that the masses of

standard model fermions all vary as the Higgs v.e.v., i.e.
Yukawa couplings are constant at the unification scale:

� ln
me

MX

¼ � ln
�q

MX

¼ � ln
m̂

MX

¼ � ln
ms

MX

¼ � ln
h�i
MX

:

(39)

Here we neglect the effects induced by a variation of �X on
the RG running of fermion masses, and consider the quark
masses defined at an appropriate RG scale for low-energy
observables. We have explicitly calculated the effect of
varying �3ðMXÞ on the running of quark masses: for low-
energy observables such as mqðQ2Þ=�c one should con-

sider an RG scale Q2 that is fixed relative to �c. Thus the
variation of mqðQ2Þ=mqðM2

XÞ is entirely due to the depen-

dence on �3ðMXÞ, which is suppressed by a loop factor
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�X=
 compared to the nonperturbative dependence of
�c=MX on �X.

2 Such effects enter at the order of 1%
correction, which is already smaller than our uncertainties
in hadronic and nuclear physics. With the assumption (39)
one finds for the QCD scale [5,65]

� lnð�c=MXÞ
l

¼ 2


9�X

dX þ 2

9
dH þ 4

9
dS (40)

and for the fine structure constant,

� ln�

l
¼ 80�

27�X

dX þ 43

27

�

2

dH þ 257

27

�

2

dS: (41)

Similar values with somewhat different assumptions were
found earlier [33,66].

For the nucleon mass we include possible strange quark
contributions.3 The uncertainty in the strangeness content
is an indicator of the overall uncertainty that may arise due
to ms variation. We obtained [1]

� ln
mN

�c

¼ 0:048� ln
m̂

�c

þ ð0:12� 0:1Þ� ln
ms

�c

; (42)

� ln
�N

�c

¼ �0:59� ln�þ 1:59� ln
�q

�c

; (43)

where �N � mn �mp, and thus

� ln�

l
¼ ð0:58� 0:08Þ dX

�X

þ ð0:37� 0:05ÞdS
þ ð�0:65� 0:09ÞdH; (44)

� lnðGm2
NÞ

l
¼ 2dM þ ð1:16� 0:17Þ dX

�X

þ ð0:74� 0:11ÞdS þ ð0:71� 0:19ÞdH; (45)
where the upper or lower signs correspond to the positive
or negative signs in Eq. (42) respectively.

The largest contribution to variations of the proton g-
factor gp has been argued to arise from the pion loop [14],

yielding at first order a dependence on the light quark mass
of

� lngp ’ �0:087� lnm̂=�;

� lngp
l

’ 0:06
dX
�X

� 0:07dH þ 0:04dS:
(46)

Hence the variations of observables including gp are

� lnx

l
¼ ð�0:48� 0:08Þ dX

�X

þ ð0:59� 0:09ÞdH
þ ð�0:31� 0:05ÞdS

� lny

l
¼ 0:10

dX
�X

� 0:06dH þ 0:06dS

� lnF

l
¼ ð1:04� 0:13Þ dX

�X

þ ð�1:08� 0:14ÞdH
þ ð0:65� 0:08ÞdS

� lnF0

l
¼ ð�0:54� 0:08Þ dX

�X

þ ð0:65� 0:09ÞdH
þ ð�0:35� 0:05ÞdS:

(47)

We have now expressed the variations accessible to obser-
vation in terms of three (four) variables: l, dX, dH (and dS),
where one parameter may be eliminated by normalization.
Different unified scenarios will be characterized by differ-
ent relations among these parameters.
Most data points are upper bounds on a possible varia-

tion, with the exception of two epochs. First, we consider
specifically whether claimed nonzero variations of � [14]
and� [19] at redshift 2–3 are compatible with one another,
since the ratio of their fractional variations is predicted in
each scenario.
Second, we consider whether there is an indication of

nonzero variation at BBN. For no variation at BBN we
obtain�2 ¼ 17:9 for 3 measured abundances (4He, D, 7Li).
This discrepancy between theory and observation is exclu-
sively due to 7Li. (Considering only 4He and D, the value
of �2 is 0.24.) If we wish to solve or ameliorate the
‘‘lithium problem’’ by a nonzero variation, we will require
�2=	 to be not much larger than unity, taking 	 ¼ 2 as
appropriate for one adjustable parameter. If there is no
significant range where the three abundances have a 2�
fit (�2=	 � 4) then we give up the hypothesis that the 7Li
problem is solved by coupling variations and instead as-
sume that the observed depletion is due to some astrophys-
ical effect. In this case we consider only D and 4He
abundances as observational bounds on the size of varia-
tions at BBN.
We will now investigate six different scenarios for the

variation of the grand unified parameters �X, MX=MP,
h�i=MX and ~m=MX. These will fix the unification coeffi-
cients dk. For each unified scenario we display the
z-dependence of the fractional variation (Figs. 1–7). Each
figure shows the available information from observations
of different couplings, interpreted as constraints on the
variation of a single parameter. These figures are one of
the main results of our paper.
Varying � alone Before describing the six different

grand unified scenarios, we consider a variation of the
fine structure constant � alone. Clearly here we are unable
to account for any nonzero variation in � or other quanti-

2We find �lnð �mqðQ2Þ= �mqðM2
XÞÞ¼ 2=7�ln�X ’ ð9�X=7
Þ �

�lnð�c=MXÞ under variation of �X, where �mq is the running
quark mass and Q2 ¼ const ��2

c.
3In our previous paper [1] we assumed ms=�c ¼ const, here

we include the roughly known strange contribution to the proton
mass. For BBN, the difference in the final dependence is less
than 3% and hence much lower than the model uncertainty (e.g.
for nuclear binding energies).
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ties independent of �. The cosmological history is domi-
nated by the nonzero variation of the M� values at red-
shifts z ’ 1 to 4. We find that there is almost no 2� match
of the BBN values (�2=	  3:9): the 2-sigma range is

3:25%  � ln�BBN  4:06%: (48)

Hence it seems unlikely that the ‘‘lithium problem’’ can be
solved by a variation of � alone. If we regard the 7Li
discrepancy as due to systematic or astrophysical effects
we can set a conservative bound on � variation from 4He
and D abundances [1]

� 3:6%  � ln�BBN  1:9%; (49)

where we imposed that neither the D nor 4He abundance
should deviate by more than 2� from observational values.
See Fig. 1 for a summary of the bounds in this case.

B. Scenario 1: Varying gravitational coupling

In this scenario we have only dM nonvanishing,

dH ¼ dS ¼ dX ¼ 0; (50)

therefore

� ln
MX

MP

¼ 1

2
� lnG�2

c: (51)

We find that there is no value of� lnG�2
c for which BBN is

consistent with the three observed abundances within 2�.
The best fit values are �2=	  7:7 for no variation of
mN=MP at CMB and �2=	  5:9 if the variation of
mN=MP has the same size at BBN and CMB. Assuming
that the discrepancy in the 7Li abundance is due to some
other effect, we find the allowed region of variation of G at
BBN under which primordial D and 4He abundance lie
within the observed range at 1� (2�),

� 5%ð�13%Þ � � lnG�2
c � 12%ð22%Þ (52)

If the variation of mN=MP has the same size at BBN and
CMB one finds

� 4%ð�11%Þ � � lnG�2
c � 10%ð16%Þ: (53)

The bounds on time variation of G�2
c are much weaker

than for many other varying couplings. This scenario also
predicts a vanishing value of � in Eötvös experiments.

CMB BBN

FIG. 2 (color online). Variations for scenario 2; BBN bounds
are 2� bounds.

CMB BBN

FIG. 1 (color online). Variations for varying � alone. Only
observations constraining � variation are shown; the BBN fit
including 7Li is poor (�2=	  7:8=2) hence we also display a
conservative bound from 4He and D abundances neglecting 7Li.

BBNCMB

FIG. 3 (color online). Variations for scenario 3; BBN bounds
are 2�. Note that due to the very large ratio � ln�=� ln� in this
scenario, points indicating any nonzero variation of � fall well
outside the range of the graph.

CMB BBN

FIG. 4 (color online). Variations for scenario 4; BBN bounds
are 2�.
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Thus, to any one of the following scenarios we may add an
additional nonzero dM of similar size to dX, dH or dS
without changing the results significantly.

C. Scenario 2: Varying unified coupling

In the first GUT scenario without SUSY we consider the
case when only dX is nonvanishing,

dH ¼ dS ¼ dM ¼ 0; �X ¼ 1=40: (54)

Within a supersymmetric theory the same relations will
apply except that �X ¼ 1=24 and the variations of observ-
ables are scaled by a factor 24=40 relative to � ln�X: we
designate this as Scenario 2S.

In both cases we find here

� ln�

� ln�
¼ 27: (55)

It is then highly unlikely for the nonzero M� result for
variation of � to coexist with the determination of � at
redshift around 3 [19], even if the latter is interpreted as an
upper bound on the absolute size of variation [47].

For the BBN fit, we find without SUSY (excluding
modifications of the baryon fraction � due to varying

mN) no range of values fitting at 1� level (�2=	  2:3).
At 2� the abundances, including 7Li, become consistent
for the range

� 5:7� 10�4 � � ln�X � �1:7� 10�4 ð2�Þ:
(56)

If one includes a variation of mN at the time of CMB with
the same magnitude as at BBN the result remains un-
changed (�2=	  2:45), with the same 2� range. For this
scenario we may consider a nonzero variation at BBN, but
more recent probes must all be viewed as increasingly tight
null bounds.

D. Scenario 3: Varying Fermi scale

In this scenario we consider the case when the variation
arises solely from a change in the Higgs expectation value
relative to the unified scale, thus only dH is nonzero:

dS ¼ dM ¼ dX ¼ 0; �X ¼ 1=40: (57)

This scenario implies

� ln�

� ln�
¼ �325: (58)

Whether we interpret the determination of � [19] as a
detection or an upper bound, any variation in � at large
redshift case should be orders of magnitude smaller than
current observational sensitivity.
We find for BBN including 7Li (	 ¼ 2) no 1� range

(�2=	  1:95) but

6� 10�3 � � lnh�i=MX � 22� 10�3 ð2�Þ: (59)

A variation of mN at the time of CMB with the same
magnitude as at BBN does not change this result.

E. Scenario 4: Varying Fermi scale and SUSY-breaking
scale

This scenario corresponds to Scenario 3, but includes
supersymmetry and assumes that the mass-generating

CMB BBN

FIG. 5 (color online). Variations for scenario 5, ~� ¼ 42; BBN
bounds are 2�.

CMB BBN

FIG. 6 (color online). Variations for scenario 6, ~� ¼ 70; BBN
bounds are 2�.

BBNCMB

FIG. 7 (color online). Variations for scenario 6, ~� ¼ 25; BBN
bounds are 2�.
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mechanism for SM particles and their superpartners gives
rise to the same variation:

dM ¼ dX ¼ 0; dS ¼ dH; �X ¼ 1=24: (60)

We find here

� ln�

� ln�
¼ �21:5; (61)

such that again the claimed nonzero variations in � and �
cannot be compatible and the variation in � at redshift 3
must be below current sensitivities. We demonstrate this in
Fig. 4, where we show for this scenario the bounds on the
variable dHl ¼ � lnðh�i=MXÞ that arise from various ob-
servations. Since we have only one free variable we can
plot all observations simultaneously as a function of red-
shift. Inspection ‘‘by eye’’ permits to judge if a smooth and
monotonic evolution of dHl is consistent or not.

We find for BBN including 7Li (	 ¼ 2) no 1� fit
(�2=	  1:60), while at 2�

1:25� 10�2 � � lnh�i=MX � 5:4� 10�2 ð2�Þ:
(62)

If one includes a variation of mN at the time of CMB with
the same magnitude as at BBN the allowed range becomes
slightly restricted (�2=	  1:72),

1:20� 10�2 � � lnh�i=MX � 4:9� 10�2 ð2�Þ:
(63)

F. Scenario 5: Varying unified coupling and Fermi scale

In this scenario we study a combined variation of the
unified coupling and the Higgs expectation value:

dM ¼ dS ¼ 0; dH ¼ ~�dX; �X ¼ 1=40: (64)

The parameter ~� can be related to the parameter � �
� lnh�i=MX

� ln�c=MX
which was introduced in [1] via

� ¼ ~�

�
2


9�X

þ 2

9
~�

��1
: (65)

In [1] we examined the cases � ¼ ð0; 1; 1:5Þ which corre-
spond to ~� ¼ ð0; 36; 63Þ. Here we find that the best BBN fit
is reached for ~� 	 50 with �2=	 ¼ 1:45. Note that we
have the freedom to adjust ~� such that nonzero variations
of � and � at redshift ’ 3 are consistent with each other.
We have

� ln�

� ln�
¼ 23:2� 0:65~�

0:865þ 0:002~�
: (66)

We choose for illustration ~� ¼ 42, for which

� ln� ¼ �5:6� ln� (67)

and the 2� contour for BBN is

7:5� 10�4 � � ln�X � 28� 10�4: (68)

For a variation of mN at the time of CMB with the same
magnitude as at BBN the fit becomes worse (�2=	 
1:68). However, a 2� fit to BBN is obtained over a wide
range of 0 � ~� � 26 (negative � ln�X) and 40 � ~� <1
(positive � ln�X).
Assuming that the apparent 7Li mismatch at BBN is due

to systematic astrophysical effects, we may bound �X with
only D and 4He abundances. Here we find at 1�

� 5:5� 10�4 � � ln�X � 1:44� 10�3 (69)

In Fig. 5 we again plot simultaneously all observations for
this scenario. This shows that the bound from BBN includ-
ing 7Li is not consistent with the claimed nonzero varia-
tions of � and � for a monotonic evolution over z.

G. Scenario 6: Varying unified coupling and Fermi scale
with SUSY

In this scenario we study a combined variation of the
unified coupling and the Higgs v.e.v. including SUSY,
where as in Scenario 4 we tie the variations of the super-
partner masses and Fermi scale together:

dM ¼ 0; dS ’ dH ¼ ~�dX; �X ¼ 1=24: (70)

Now the relation to � is modified as

� ¼ ~�

�
2


9�X

þ 2

3
~�

��1
(71)

One may again adjust ~� to make nonzero variations in �
and � self-consistent. With

� ln�

� ln�
¼ 14� 0:28~�

0:52þ 0:013~�
; (72)

we find that a good fit to BBN is obtained over a large range
of ~�, ranging from ~� ¼ 100 to infinity with minimal
�2=	 ¼ 1:45. This shows that the main effect in the
SUSY model comes from the variation of the Higgs
v.e.v.. Including a variation of mN at the time of CMB
with the same magnitude as at BBN the fits gets worse
(�2=	  1:8). A 2� fit can be obtained for 0 � ~� � 28
(for negative � ln�X at BBN) and for 58 � ~� <1 (posi-
tive � ln�X).
First, we study the case ~� ¼ 70 for which

� ln� ¼ �3:9� ln� ð~� ¼ 70Þ (73)

and BBN is fit with a 2� range

5:5� 10�4 � � ln�X � 18� 10�4: (74)

Neglecting 7Li, we obtain a 1� bound from BBN

� 3:5� 10�4 � � ln�X � 9:3� 10�4: (75)

Secondly, we study the case ~� ¼ 25 where

� ln� ¼ 8:3� ln� ð~� ¼ 25Þ; (76)

and where the 2� contour for BBN is
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� 13� 10�4 � � ln�X � �7� 10�4: (77)

In this second case the Murphy � measurement and BBN
point into the same direction. The difference between the
two values of ~� can be seen from a comparison of Figs. 6
and 7.

IV. EPOCHS AND EVOLUTION FACTORS

A. Epochs

In this section we group the information contained in
Tables I, II, and III and Figs. 1–7 into different cosmologi-
cal epochs. This produces a first quantitative estimate of
the possible time evolution for the various unified scenar-
ios. The choice of epochs is somewhat arbitrary. Two
epochs are singled out by events in early cosmology,
namely, the last scattering surface of CMB, and BBN.
The very recent epoch comprises present day laboratory
experiments and the Oklo natural reactor, for which a
linear interpolation to the present rate of varying couplings
seems reasonable. We further divide the observations at
intermediate redshift into three epochs.

(i) Epoch 1: Today until Oklo
Contains Oklo and laboratory measurements. For the
laboratory measurements, we extrapolate the rate of
change of the couplings to finite changes at the
redshift z ¼ 0:14 (t ¼ 1:8� 109 y) of the Oklo
event.

(ii) Epoch 2: 0:2 � z � 0:8
Contains absorption spectra and isotopic abundance
measurements in meteorites. We chose a boundary
z ¼ 0:8 since theMurphy data set [14] has relatively
few systems around this redshift, making a natural
division.

(iii) Epoch 3: 0:8 � z � 2:4
Contains several absorption spectra measurements.
The end of the Tzanavaris data set [12] sets the cut
at z ¼ 2:4.

(iv) Epoch 4: 2:4 � z � 10
Contains absorption spectra measurements and
bounds on G from neutron stars.

(v) Epoch 5: CMB, z 	 1100
(vi) Epoch 6: BBN, z 	 1010

B. Evolution factors

We define ‘‘evolution factors’’ ln for epochs n ¼
1; . . . ; 6 by

� lnGk;n ¼ dkln: (78)

For each unification scenario we will proceed to a quanti-
tative estimate of ln, shown in Table IV. The usefulness of
considering the evolution factors ln is that the unknown
(and possibly not monotonic) behavior of the mechanism
driving the coupling variations is rolled into a finite num-
ber of parameters. For a monotonic behavior they satisfy
ln < lp whenever zn < zp. The basic assumption remains

the proportionality � lnGkðznÞ ¼ dklðznÞ ¼ dkln, with
constant unification coefficients dk independent of the
epoch. The normalization of ln is arbitrary, and we take
for Scenarios 2, 5 and 6

ln ¼ � ln�X;n; (79)

while for Scenarios 3 and 4 we take

ln ¼ � lnðh�i=MXÞ;n: (80)

TABLE III. Current observational and theoretical primordial
abundances.

Abundance Observational Theoretical

D/H ð2:8� 0:4Þ � 10�5 ð2:61� 0:04Þ � 10�5

Yp 0:249� 0:009 0:2478� 0:0002
7Li=H ð1:5� 0:5Þ � 10�10 ð4:5� 0:4Þ � 10�10

TABLE IV. Redshifts and evolution factors for each epoch, for the scenarios defined in Sec. III. In the first row the values of ln give
the fractional variation of �; in Scenarios 2, 5 and 6 that of �X; and in 3 and 4 that of h�i=MX. Values in brackets give, for BBN (l6) the
evolution factors neglecting 7Li; or for l4, the evolution factor with the ��=� value of [19] substituted by that of [47].

Epoch 1 2 3 4 5 6

zn 0.14 0.53 1.6 3.8 103 1010

Scenario l1 � 106 l2 � 106 l3 � 105 l4 � 105 l5 � 104 l6 � 103

� only �0:01� 0:06 �1:1� 1:0 �0:26� 0:10 �0:85� 0:37 �150� 350 5� 34
2 �0:1� 0:1 0:04� 0:03 �0:15� 0:08 0:10� 0:03 0:9� 14 �0:37� 0:20
3 4:1� 4:8 �1:5� 1:2 0:42� 3:3 �3:6� 0:9 69� 920 14� 8
4 3:9� 8:5 �3:4� 2:7 �8:4� 5:1 �8:7� 2:1 31� 450 33� 21
5, �0:02� 0:18 �0:24� 0:18 �0:25� 0:10 �0:61� 0:13 0:6� 8:6 1:7� 1:1
(~� ¼ 42) [0:4� 1:0]
6, �0:02� 0:12 �0:10� 0:07 �0:17� 0:07 �0:44� 0:10 0:3� 5:0 1:2� 0:6
(~� ¼ 70) [0:3� 0:6]
6, �0:12� 0:18 0:04� 0:12 �0:30� 0:11 0:29� 0:08 0:7� 10 �1� 0:3
(~� ¼ 25) [� 0:43� 0:28]
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For each epoch and scenario, we compute the evolution
coefficients ln as a weighted average over the measure-
ments in the epoch. The representative redshift zn is the
average over the redshifts of observations inside the cor-
responding epoch. It is shown together with the resulting
values for ln in Table IV. This table summarizes our results
under the assumption of proportionality.

Rates of time variation in the present epoch
For Epoch 1 we incorporate the laboratory measure-

ments for rates of varying couplings by linear extrapolation
in time to the Oklo redshift z1 ¼ 0:14. The logarithmic
time derivatives may be approximated by linear interpola-
tion

_Gk

Gk

¼ @t lnGk ’ � dkl1
t0 � t1

; (81)

where t1 ¼ 1:8� 109 y is the time corresponding to the
redshift z1 ¼ 0:14.

Method of averaging
We evaluate the weighted average using all values listed

in Table III. This procedure may be quite problematic,
since sometimes different observations are in manifest
contradiction. We take the attitude that, given the possible
presence of systematic effects both in spectroscopic deter-
minations of nonzero coupling variations and in the pri-
mordial 7Li abundance, a viable model need not fit all data
points. However, even if any given nonzero claimed varia-
tion is actually due to systematic error, we still expect the
size of the error to be comparable to the size of the claimed
variation. Thus, such claims are most conservatively inter-
preted as bounds on the absolute magnitude of variation.
The surviving nonzero variation(s), in addition to the null
bounds at other epochs, define a set of evolution factors
which must be satisfied by any explicit model of evolution.

For some scenarios we therefore also evaluate the evo-
lution factors that are obtained by considering that some of
the claimed observations of nonzero variation may instead
be due to an underestimated systematic error. These alter-
native evolution factors are given in square brackets, cor-
responding to the following replacements:

Scenario 5, ~� ¼ 42: Neglecting 7Li-abundance at BBN
Scenario 6, ~� ¼ 70: Neglecting 7Li-abundance at BBN
Scenario 6, ~� ¼ 25: Replacing the � measurements of

[19] by the conservative upper bound of [47].

In the case where � alone varies, since the fit including 7Li
is poor we calculate a 2� range using observational central
values and errors of D and 4He abundances given in [1].

C. Monotonic evolution with unification

Here we briefly summarize whether the unified scenarios
we consider can be consistent with a monotonic evolution
of the single underlying varying parameter, based on the
evolution factors li found in Table IV.

Varying � only
Although variation of � alone does not help to account

for deviation of BBN abundances from standard theory, or
for any nonzero variation of �, the cosmic history is
interesting due to the significant nonzero value in Epochs
3 and 4. The Oklo bound in Epoch 1 restricts the present
time variation to 3:7� 10�17 y�1 (assuming no accelera-
tion of @t�).
Scenario 2
Scenario 2 favors a negative variation of �X at BBN, and

a negative variation may also fit the M� results. However,
the Reinhold � measurement indicates a positive, but
much smaller, variation. We keep the R� results, which
dominate the weighted average due to their small error on
� ln�X, to obtain l4. The ratio � ln�=� ln� ¼ 27 makes
this scenario unlikely to fit the reported signal of nonzero
��.
Scenario 3
In Scenario 3 a positive variation of h�i=MX is favored

by BBN. The high ratio � ln�=� ln� ’ �325 makes the
bounds obtained on a variation of � strongly inconsistent
with the claimed size of variation of �. We keep the
Reinhold et al. values to obtain l4, which again dominate
the results.
Scenario 4
In this scenario, the ratio � ln�=� ln� ¼ �22 is again

large and makes any observation of significant nonzero
� ln� unlikely. Both the M� and the R� measurements
point in opposite direction to BBN; however the two
spectroscopic observations are also inconsistent with
each other, within the scenario. Again, we keep the R�
results which dominate the determination of l4 due to the
small error.
Scenario 5, ~� ¼ 42
In this scenario the variation of �X favored by BBN is

positive (l6 ¼ ð1:7� 1Þ � 103), however both nonzero
variations from spectroscopic data M� and R� require
negative variations. With � ln�=� ln� ¼ �6 the spectro-
scopic measurements appear consistent with each other.
Hence one would require some nonmonotonic evolution to
fit nonzero variations both at BBN and at moderate z. Thus
in Table IV we have also evaluated l6 using only the
constraints given by D and 4He (in brackets).
Scenario 6, ~� ¼ 70
As in the preceding scenario, BBN favors a positive

variation in �X, but M� and R� favor negative. Again,
Fig. 6 may suggest a nonmonotonic evolution. Fitting to
BBN including 7Li we would obtain l6 ¼ ð1:2� 0:6Þ �
10�3; Table IV also displays in brackets the value of l6
obtained from D and 4He bounds only.
Scenario 6, ~� ¼ 25
In this scenario, both BBN and the M� signal favor a

negative variation of �X, whereas the R� observations
point towards a positive variation. Following the argument
of Wendt et al. [47], we substitute the R� value by the null
constraint j��=�j � 2:5� 10�5 [47] to obtain the brack-
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eted value of l4 in Table IV. In this scenario the evolution
factors show a crossover from negligible variation at low
redshift, to strong and monotonically increasing negative
variation at z 	 2.

D. Tension between the 7Li problem and variation of�

Measurements of the primordial 7Li abundance show
that the BBN abundance needs to decrease below the
standard value to fit the observations, whereas the
Reinhold � measurement indicates � to increase at z ’
3. We find that for all our unification scenarios the sign of
the dependence on the fundamental parameter is the same
for � and 7Li. Moreover, the coefficients of this depen-
dence are nearly identical up to a common factor; hence the
induced variations for � and 7Li point in the same direc-
tion, in contradiction to the tendency inferred from the
observations. For example, for Scenario 5 we find

� ln� ¼ ð23:2� 0:65~�Þ� ln�X;

� ln7Li ¼ ð1692� 49~�Þ� ln�X:
(82)

These expressions change sign at ~� ¼ 35:7 and 34.5, re-
spectively. For a monotonic evolution, there is no possi-
bility to have both a significant variation of � and a
variation of opposite sign in the 7Li abundance. (In the
regime ~� 	 35 there is no 2� fit to BBN.) A similar result
can be found for Scenario 6 (including the SUSY partner
mass dependence, which shows the same sort of degener-
acy). Note that Scenarios 2 and 3 are just limiting cases of
Scenarios 5 and 6.

The main reason for this behavior is that variations of
7Li and � are dominated by the variations of m̂=�c and
me=�c, respectively, with the same sign of prefactor. This
degeneracy can be broken if me varies differently from the
quark masses, a possibility that we do not consider in this
paper. For our scenarios with constant m̂=me, the conflict
between a monotonic time evolution and the �- and

7Li-observations is reflected in the opposite signs of l4
and l6.
This observational tension for monotonic behavior is

clearly depicted in Fig. 8, where we plot simultaneously
the averaged observational values of evolution factors
li= lnð1þ ziÞ, normalized to l4= lnð1þ z4Þ. For Scenario
6, ~� ¼ 25, we also display the result obtained by substitut-
ing the Wendt et al. value of � variation for that of [19].
The factor lnð1þ ziÞ is introduced as a convenient normal-
ization to avoid compressing the scale of variations exces-
sively in recent epochs.4 For the purpose of a quick
inspection we have omitted the error bars, which are of
course necessary for a quantitative interpretation.

E. Special values of ~�

In Scenarios 5 and 6 there is a value of ~� for which
� lnh�i=�c vanishes. For these values, standard model
physics undergoes an overall multiplicative shift of energy
scale under variation of �X, up to variations of perturba-
tive, dimensionless couplings: specifically the Yukawa
couplings (whose variation we have generally neglected)
and �. The significant observable effects arising from
variation of SM fermion masses relative to �c, which
dominate in most unified scenarios, are largely absent,
and the low-energy phenomenology is very similar to the
case of varying � only. In particular the 7Li problem at
BBN is not addressed and the variation of� is smaller than
that of �.
The required values are ~� ¼ 2
=7�X ’ 36 in the case

without SUSY (�X ’ 1=40); or ~� ¼ 2
=3�X ’ 50 with
SUSY (�X ’ 1=24) when the superpartner masses vary
with the Fermi scale, dS ¼ dH ¼ ~�dX. From a low-energy
point of view these values appear as fine-tuning, however it
is conceivable that they would arise from some specific
mechanisms of electroweak symmetry-breaking or SUSY-
breaking.

V. SUMMARY/CONCLUSIONS

Within grand unified theories, different measurements of
the variation of fundamental constants can be consistently
reduced to a variation of a few ‘‘unification parameters’’,
namely, the unification scale MX=MP, gauge coupling �X,
the Fermi scale h�i=MX and SUSY-breaking masses
~m=MX. We define various GUT-scenarios for varying cou-
plings by the assumption of proportionality of fractional
variations of the unification parameters.
Assuming that couplings really vary, this is a way of

excluding such GUT scenarios by demanding consistency

FIG. 8 (color online). Normalized evolution factors �li=�l4 for
each scenario, where �li � li= lnð1þ ziÞ.

4In quintessencelike theories, if the scalar field contributes a
constant fraction of the total energy density of the Universe, as in
so-called ‘‘tracker’’ models, the evolution of the field is typically
also proportional to lnð1þ zÞ. This is an additional motivation
for our normalization.
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of the implied variations. The assumption of proportion-
ality permits us to project all observations into constraints
on a common evolution factor lðzÞ for each scenario. We
show that different GUT scenarios yield different time
evolutions of lðzÞ assuming that certain claimed measure-
ments of varying constants are correct. We confirm that
‘‘simple’’ models which have only one fundamental pa-
rameter varying (�X or h�i=MX) result in inconsistent
variations. However, combined variations of these two
parameters, as described in Scenarios 5 and 6, lead to
results more consistent with the possible quintessence-
induced time variations of fundamental couplings which
we investigate in [7].

Specifically, one may ask whether the claimed observa-
tions of variations in � [14] and � [19] are mutually
consistent, and whether they are consistent with an expla-
nation of the apparent primordial 7Li-depletion by varying
couplings. Within a hypothesis of constant Yukawa cou-
plings, which results in identical fractional variations of all
quark and lepton masses, we investigated arbitrary varia-
tions of �X, h�i=MX and MX=MP. For scenarios with
supersymmetry we also assumed that the SUSY-breaking
masses vary proportional to h�i, but the effect of such a
variation only appears at higher order and is probably not
crucial.

We have not found a scenario with a monotonic time
evolution lðzÞ that makes all three signals or hints of
variation mutually consistent. A monotonic evolution re-
quires either to discount one of the ‘‘signals’’ by substan-
tially increasing its uncertainty, or to alter our assumptions
by including additional time variation of some Yukawa
couplings.

Our investigation shows how the variations of different
couplings in the standard model may be compared. If the
observational situation becomes clearer and at least one
nonzero time variation is established, such methods may be
used for new tests of the idea of grand unification.
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Note added.—Shortly before the completion of this
paper a new determination of the variation of � appeared
[70] reporting a reanalysis of spectra from the same twoH2

absorption systems as [19], and adding one additional
system at z ’ 2:8. The results of the new analysis are not
consistent with the previous claim indicating a nonzero
variation, either considering all three systems or the two
previously considered. The stringent null bound of the new
analysis, ��=� ¼ ð2:6� 3:0Þ � 10�6, would disfavor all
scenarios except those where the fractional variation of �
was of the same order as or smaller than that of �. This

would require us to approach the ‘‘special’’, apparently
fine-tuned values of ~� discussed in Sec. IVE, for which �
variation (and any deviation from the standard 7Li abun-
dance at BBN) are suppressed.

APPENDIX A: EFFECT OF ‘‘VARYING
CONSTANTS’’ AT CMB AND �

In our previous work on BBN we used the WMAP
determination of the baryon number density parameter
� � nB=n� directly to reduce by one the number of un-

known parameters. However, we should also consider the
effect of possible variations of Gk at the epoch of CMB
decoupling. This question has distinct aspects: first, can the
CMB alone or combined with various other cosmological
observations give useful bounds on the values of funda-
mental parameters at this epoch? Second, how do the
possible variations affect the determination of �?
It would not be appropriate to give an extended discus-

sion of CMB bounds on fundamental variations here; the
subject has already been treated [39] at length. Bounds
tend to depend strongly on the values taken by cosmologi-
cal parameters which are not at present well known
through independent measurements: in other words there
is considerable degeneracy. Fundamental parameters af-
fecting the CMB are the proton and electron masses, the
gravitational constant and the fine structure constant, as
well as the mass of any dark matter particle present. In
Planck units, these reduce to the particle masses and�. The
relevant cosmological parameters are the amplitude, spec-
tral index (and possible running, etc.) of primordial per-
turbations; the baryon, dark matter and dark energy
(cosmological constant, etc.) densities normalized to the
critical density; the Hubble constant; and the reionization
optical depth. Of these, the baryon density �bh

2 will vary
linearly with the proton mass in Planck units, for a fixed
baryon-to-photon ratio �. Conversely, given a measure-
ment of �bh

2 the correct value of � varies inversely with
the proton mass. The conversion factor between �bh

2

and �10 ¼ 1010� is then 273:9ðmp

ffiffiffiffi
G

p Þj0ðmp

ffiffiffiffi
G

p Þ�1 ’
273:9ð1� � lnðmN=MPÞjCMBÞ, where we approximate the

proton and neutron masses by their average mN .
If, therefore, we allow the proton mass (or the gravita-

tional constant, in QCD units) to vary arbitrarily at the
CMB epoch, � is undetermined by WMAP and we must
consider it as an extra free parameter or try to impose
independent cosmological bounds. However, we impose
that the size of variations away from the present value of
mp=MP is a monotonically decreasing function of time:

thus � lnðmN=MPÞjCMB � � lnðmN=MPÞjBBN. Hence we

would have a self-consistent treatment of this parameter
if the secondary discrepancies in primordial abundances
due to an incorrectly estimated � were smaller than the
primary effect of varying mN=MP at BBN. The relevant
results of our previous analysis
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@ lnðD=H; Yp;
7Li=HÞ

@ lnðmN=MPÞjBBN ¼ ð1:88; 0:72;�1:14Þ;

@ lnðD=H; Yp;
7Li=HÞ

@ ln�
¼ �@ lnðD=H; Yp;

7Li=HÞ
@ lnðmN=MPÞjCMB

¼ ð�1:6; 0:04; 2:1Þ (A1)

are derived in QCD units where the strong coupling scale
�c is constant, and where we neglect small contributions to
the nucleon mass mN and take it proportional to �c. The
first relation, derived at a fixed value of � ¼ 6:1� 10�10

(WMAP3 [67])5 led to the bound �0:095 �
lnðmN=MPÞjBBN � þ0:05, where the main sensitivity to

this variation is due to helium-4 (Yp). Since this abundance

is insensitive to changes in �, we postulate also that
�0:095 � lnðmN=MPÞjCMB � 0:05.

The resulting errors in the (standard) BBN abundances
due to a possibly misestimated � are then

� lnðD=H; Yp;
7Li=HÞ ¼ ðf�0:15; 0:08g; f�0:002; 0:004g;

f�0:10;þ0:20gÞ (A2)

to be compared with observational errors of

�D=ðD=HÞ ’ 0:4=2:6 ’ 0:15

�4He=Yp ’ 0:009=0:25 ’ 0:04

�7Li=ð7Li=HÞ ’ 0:5=4:5 ’ 0:1;

(A3)

where we take the standard BBN 7Li abundance 4:5�
10�10 as central value. Hence the variation of mN=MP at
the CMB epoch and consequent rescaling of � may in
principle have significant consequences for deuterium
and lithium abundances in BBN. It may be appropriate to
take � lnðmN=MPÞjCMB as an independent variable in the

analysis of BBN variations. The maximum effect due to
rescaling of � would occur when � lnðmN=MPÞjCMB ¼
� lnðmN=MPÞjBBN, giving a total sensitivity of

@ lnðD=H; Yp;
7Li=HÞ

@ lnðmN=MPÞjBBN;CMB

¼ ð3:48; 0:68;�3:24Þ: (A4)

APPENDIX B: THE 8Be RESONANCE

The 7Beþ n ! 7Liþ p reaction is the main channel for
destruction of 7Be during BBN. If this reaction was not
present, the final 7Li abundance predicted by standard
BBN would be considerably higher:

7Li=H ¼ 4:5� 10�10 ! �14� 10�10:

The high cross section of this reaction is due to a strong
8Be resonance which sits at about the energy of both 7Beþ
n and 7Liþ p [68]. For the reaction to continue to operate
efficiently, it is important that the resonance remains near
these 7Be=7Li energy levels. We will argue here that, given
the size of coupling variations relevant for our paper, this is
indeed the case.
In [1] we estimated the dependence of nuclear binding

energies on the pion mass by

@Bi

@m

¼ fiðAi � 1Þ BD

m


r ’ �0:13fiðAi � 1Þ; (B1)

taking r ’ �8. The constants fi are expected to be of order
unity, but will differ between light nuclei due to peculiar-
ities of the shell structure. Our normalization corresponds
to fD ¼ 1. We are then concerned with the relative changes
of the 7Be and 7Li binding energies and the energy of the
8Be resonance, whose dependence we will estimate in an
analogous way with a constant of proportionality f08. Then

�B7Be ¼ �9:1 MeV� 6f7Be� ln m̂;

�E8Be� ¼ �9:1 MeV� 7f08� ln m̂;

�B7Li ¼ �9:1 MeV� 6f7Li� ln m̂;

(B2)

recalling that m
 / m̂1=2. In [69] the sum of the neutron
and proton widths of the 8Be resonance is given as ap-
proximately 1.6 MeV thus for the 8Be-destroying reaction
to remain effective we require at least

j9:1 MeVð7f08 � 6f7Þ� ln m̂j< 1:6 MeV; (B3)

where f7 may correspond to either 7Be or 7Li. If we take all
fi ¼ 1 this condition becomes j� lnm̂j< 0:18, easily sat-
isfied by the range of variations that we consider (� lnm̂
was bounded at about 1.5%). However, this would imply a
substantial cancellation between the variations of A ¼ 7
and A ¼ 8 states, which may not occur for the true values
of fi. There may be less cancellation, for example, if f08 ¼
2, f7 ¼ 0:5 we obtain j� lnm̂j< 0:016, which is still
fulfilled in the unified scenarios we consider where the
variation of m̂ is around 1%.
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