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We study Schwinger pair production in scalar QED from a uniform electric field in dS2 with scalar

curvature RdS ¼ 2H2 and in AdS2 with RAdS ¼ �2K2. With suitable boundary conditions, we find that the

pair-production rate is the same analytic function of the scalar curvature in both cases.
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I. INTRODUCTION

Recently anti–de Sitter spacetime (AdS) has attracted
much attention because of the AdS/conformal field theo-
ries correspondence. The de Sitter spacetime (dS) is also
widely studied because of the accelerating phase of the
present Universe and the inflationary period in the early
Universe. The AdS and dS spacetimes have constant scalar
curvatures and are the maximally symmetric spacetimes
for any given dimension.

The Minkowski vacuum becomes unstable with a strong
electric field and decays into pairs of charged particles,
known as Schwinger pair production [1–3]. The vacuum
also may be unstable when the spacetime expands or con-
tracts, leading to particle creation [4,5], particularly in the
de Sitter spacetime [6–11]. Schwinger pair production in
curved spacetimes may be an interesting issue, combin-
ing the two effects. Pair production by a uniform electric
field in dS2 was studied in Refs. [12–14] and in AdS2 in
Ref. [15]. Also pair production was considered in an an-
isotropically expanding universe [16,17]. Though the in-
stantons in dS2 and AdS2 have been known independently,
the relation between the pair-production rates has not been
examined before.

The purpose of this paper is to study scalar QED in a
uniform electric field in dS2 and AdS2 and to calculate the
Schwinger pair-production rates from the exact solutions
of the massive charged Klein-Gordon equation. Since the
geometry of dS2 with scalar curvature RdS ¼ 2H2 can be
analytically continued to AdS2 with RAdS ¼ �2K2, both of
which are conformally flat, the Schwinger pair-production
rates are shown to have the same kind of analytical con-
tinuation from one geometry to another.

The organization of this paper is as follows. In Sec. II,
we formulate the Klein-Gordon equation in a uniform elec-
tric field in dS2 and AdS2. In Sec. III, we find the pair-
production rate from the exact mode solutions in dS2. In

Sec. IV, we find the exact mode solutions and pair-
production rate in AdS2. In Sec. V, we discuss the
Schwinger pair-production rates and show that they are
both the same analytical function of the scalar curvatures in
both geometries.

II. KLEIN-GORDON EQUATION IN dS2 AND AdS2

The two-dimensional de Sitter spacetime has positive
constant curvature and may be assigned the topology
R1 � S1, while the anti–de Sitter spacetime has negative
constant curvature and may be assigned the topology S1 �
R1. The two-dimensional de Sitter spacetime (dS2) with a
scalar curvature R ¼ 2H2 can be embedded into a three-
dimensional hyperboloid with radius 1=H and has the
metric [18]

ds2dS ¼ �dt2 þ cosh2ðHtÞdx2; (1)

where �1< t <1 and x is identified periodically with
period 2�=H to give the topology R1 � S1, while the two-
dimensional anti–de Sitter spacetime (AdS2) with scalar
curvature R ¼ �2K2 has the metric of the form

ds2AdS ¼ �cosh2ðKxÞdt2 þ dx2; (2)

where this time �1< x<1 and t is identified periodi-
cally with period 2�=K to give the topology S1 � R1. Here
H and K have the dimension of inverse length. Alterna-
tively, one may take x to have infinite range in (1) and t to
have infinite range in (2) to get the covering spaces for dS2
and AdS2, respectively.
To study Schwinger pair production by a uniform elec-

tric field in dS2 and AdS2, we consider scalar QED de-
scribed by the Klein-Gordon equation for bosons with
mass m and charge q (in units of @ ¼ c ¼ 1):�

1ffiffiffiffiffiffiffi�g
p ði@� þ qA�Þð ffiffiffiffiffiffiffi�g

p
g��ði@� þ qA�ÞÞ þm2

�
�ðt; xÞ

¼ 0: (3)

In a two-dimensional curved spacetime, a uniform electric
field E leads to the electromagnetic field two-form [19]
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F ¼ E
ffiffiffiffiffiffi
jgj

q
dx ^ dt: (4)

Since the electromagnetic potential satisfies dA ¼ F, for
dS2 we may take the potential of the form

A ¼ � E

H
sinhðHtÞdx: (5)

Note that the potential (5) respects one of the Killing
symmetries, @x. In AdS2 the electromagnetic potential is
given by

A ¼ E

K
sinhðKxÞdt: (6)

AdS2 has the Killing vector, @t, and allows separation of
variables.

III. PAIR PRODUCTION IN dS2

In the coordinates (1) for dS2, the Klein-Gordon
equation minimally coupled with the potential (5) takes
the form�
@2t þH tanhðHtÞ@t þ 1

cosh2ðHtÞ
�
i@x � qE

H
sinhðHtÞ

�
2

þm2

�
�ðt; xÞ ¼ 0: (7)

Then the Fourier component, �ðt; xÞ ¼
eikx�kðtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðHtÞp

, satisfies the one-dimensional
equation

½�@2t þ VdSðtÞ��kðtÞ ¼ 0; (8)

where

VdSðtÞ ¼ � 1

cosh2ðHtÞ
�
kþ qE

H
sinhðHtÞ

�
2 �m2

þH2

4

�
1þ 1

cosh2ðHtÞ
�
: (9)

In quantum mechanics, Eq. (8) is a scattering problem of a
particle with a negative potential but with zero energy. In
the two asymptotic regions t ¼ �1, there is an asymptotic
frequency

!2
0 ¼ �VdSð�1Þ ¼

�
qE

H

�
2 þm2 �H2

4
; (10)

so the positive frequency solutions of �kðtÞ ¼
�kðtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðHtÞp

at early and late times are given asymp-
totically by

uinð�1Þ � e�i!0tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!0 coshðHtÞp ;

uoutð1Þ � e�i!0tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!0 coshðHtÞp ;

(11)

and the negative frequency solutions asymptotically by u�in
and u�out. The initial vacuum and final vacuum are defined
with respect to �inðt; xÞ ¼ eikxuinðtÞ and �outðt; xÞ ¼
eikxuoutðtÞ, respectively. These are different definitions
from the de Sitter invariant vacua [9], so our initial and
final vacua are not the same, leading to pair production
with respect to them.
From Ref. [20] we find the general solution to Eq. (8)

with two linearly independent solutions given by

�kðtÞ ¼ zn=2ð1� zÞn�=2½c1Fð�; �;�; zÞ
þ c2z

1��Fð�� �þ 1; �� �þ 1; 2� �; zÞ�;
(12)

where F is the hypergeometric function [21], and c1 and c2
are integration constants, and

n ¼ 1

2
� k

H
þ i

qE

H2
; � ¼ nþ n�

2
� i

!0

H
;

� ¼ ��; � ¼ nþ 1

2
; z ¼ 1þ i sinhðHtÞ

2
:

(13)

From the asymptotic formula [22] for jzj � 1, the solution
at early and late times can be written as

�kðtÞ ¼ D1uinðtÞ þD2u
�
inðtÞ

¼ D3uoutðtÞ þD4u
�
outðtÞ; (14)

where D’s are constants determined by c’s, n and � only.
Eliminating the u�in part and normalizing the remaining part

to uinðtÞ, for each momentum we obtain the frequency
mixing

uinðtÞ ¼ �kuoutðtÞ þ �ku
�
outðtÞ; (15)

and the Bogoliubov transformation

â outðkÞ ¼ �kâinðkÞ þ ��
kâ

y
inðkÞ; (16)

where [23]

�k ¼ ei�ðn��n�2�Þ=2: (17)

The coefficients satisfy the relation for bosons

j�kj2 � j�kj2 ¼ 1: (18)

Then the mean number of produced pairs with k [4,5],

N k ¼ hinjâyoutðkÞâoutðkÞjini ¼ j�kj2; (19)

is given by the instantonlike ‘‘action,’’ defined so that
j�kj2 ¼ e�SdS , as
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S dS ¼ 2�

H2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqEÞ2 þ ðmHÞ2 �H4

4

s
� qE

�

¼ �m2

qE

2� R
4m2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2R

2ðqEÞ2 � R2

16ðqEÞ2
q : (20)

Here R is the scalar curvature.
In the zero-electric field limit (E ¼ 0), we recover the

particle-production probability in de Sitter space [6–11]

j�kj2 ¼ e�ð2�
ffiffiffiffiffiffiffiffiffiffiffi
m2�H2

4

p
Þ=H; (21)

which is the Boltzmann factor with the Gibbons-Hawking
temperature TGH ¼ H=ð2�Þ when H � m. In the H ¼ 0
limit, we recover the Schwinger pair-production rate in the
two-dimensional Minkowski spacetime. The instanton ac-
tions in Refs. [12,13] are the limiting case of Eq. (20) when
H � m. The pair-production rate of scalar QED may be
compared with that of spinor QED in Ref. [14]. A direct
calculation using the worldline instanton [24–26] and the
WKB instanton action [27] also gives this limiting result,
with only the�H2=4 term missing from the square root in
the first expression (20) above for SdS.

IV. PAIR PRODUCTION IN AdS2

In AdS2 with the electromagnetic potential (6), the Fou-

rier component, �ðt; xÞ ¼ e�i!t’!ðxÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðKxÞp

, satis-
fies the equation

½�@2x þ VAdSðxÞ�’!ðxÞ ¼ 0; (22)

where

VAdSðxÞ ¼ � ð!þ qE
K sinhðKxÞÞ2

cosh2ðKxÞ þm2

þ K2

4

�
1þ 1

cosh2ðKxÞ
�
: (23)

The formalism for dS2 cannot be applied to this static
problem since there do not exist ingoing states at past
infinity and outgoing states at future infinity. However,
we may apply the tunneling idea for pair production:
virtual pairs are created from a tunneling barrier, which
is the Dirac sea lowered by the electric potential, and then
move to spatial infinity to be real pairs along the electric
field [27–35]. For virtual pairs to be real ones, an asymp-
totic momentum given by

k20 ¼ �VAdSð�1Þ ¼
�
qE

K

�
2 �m2 � K2

4
(24)

should be real, thus requiring qE >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmKÞ2 þ K4=4

p
. Then

the solution takes asymptotically the form

vinð�1Þ � eik0xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k0 coshðKxÞ

p ;

voutð1Þ � eik0xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k0 coshðKxÞ

p :

(25)

The vin is the ingoing wave to the barrier and vout is the
outgoing wave from the barrier.
As in the case of dS2, we find the exact solution

’!ðtÞ ¼ z~n=2ð1� zÞ~n�=2½~c1Fð ~�; ~�; ~�; zÞ
þ ~c2z

1�~�Fð ~�� ~�þ 1; ~�� ~�þ 1; 2� ~�; zÞ�;
(26)

where ~c1 and ~c2 are integration constants, and

~n ¼ 1

2
�!

K
þ i

qE

K2
; ~� ¼ ~nþ ~n�

2
� i

k0
K
;

~� ¼ ~��; ~� ¼ ~nþ 1

2
; z ¼ 1þ i sinhðKxÞ

2
:

(27)

Imposing the tunneling boundary condition by eliminating
v�
out and appropriately normalizing the solution, we obtain

voutðxÞ ¼ ~�!vinðxÞ þ ~�!v
�
inðxÞ; (28)

where

~�! ¼ ei�ð~n�~n�þ2 ~�Þ=2: (29)

The mean number can be expressed in terms of the in-
stantonlike ‘‘action’’ from the exact solution

N ! ¼ j ~�!j2 ¼ e�SAdS ; (30)

where

S AdS ¼ 2�

K2

�
qE�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqEÞ2 � ðmHÞ2 � K4

4

s �

¼ �m2

qE

2� R
m2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2R

2ðqEÞ2 � R2

16ðqEÞ2
q : (31)

The instanton ‘‘action’’ (31) agrees with that obtained from
the one-loop effective action in Ref. [15].

V. CONCLUSION

We have studied Schwinger pair production by a uni-
form electric field in dS2 and AdS2. We solved the Klein-
Gordon equation in these curved spacetimes and found
the pair-production rate by appropriately imposing bound-
ary conditions. A number of interesting points have been
observed.
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First, there is an analytical continuation of the
Schwinger pair-production rate between dS2 with RdS ¼
2H2 and AdS2 with the scalar curvature RAdS ¼ �2K2. In
fact, the exact results are invariant under the correspon-
dence K ¼ iH and ! ¼ ik. This is because the metric and
the electromagnetic fields for dS2 are analytically contin-
ued to AdS2 under the transformations t $ ix and x $ it
together with K $ iH. The wave function, say the right-
moving free wave, is properly transformed from one space
into another. This means that the pair production is given
by the same analytic function of the scalar curvature in
both cases.

Second, the pair-production rate does not depend on the
frequency or momentum. A physical interpretation is that
the frequency or momentum depends on the Lorentz ref-
erence frame, whereas the spacetimes and electromagnetic
fields are maximally symmetric, so that the result can only
depend on the invariants m2, qE, and R (and actually only
on their two ratios, by dimensional analysis). It is interest-
ing to notice in both cases the expected numbers e�S are
given by the instantonlike ‘‘action’’ of the form

S dS ¼ 2�

H2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqEÞ2 þ ðmHÞ2 �H4

4

s
� qE

�
;

SAdS ¼ 2�

K2

�
qE�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqEÞ2 � ðmHÞ2 � K4

4

s �
;

(32)

both of which can be written in terms of the scalar curva-
ture R as

S ¼ �m2

qE

2� R
4m2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2R

2ðqEÞ2 � R2

16ðqEÞ2
q : (33)

Third, given the same magnitude (but not sign) of
the scalar curvature, jRj ¼ 2K2 ¼ 2H2, and the strength
of electric field, one has in general SAdS > SdS and hence
a larger pair-production rate in dS2 than in AdS2. The
gravitational confinement within AdS2 suppresses the
Schwinger pair production, and there is a minimal

strength E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmKÞ2 þ K4=4

p
=q to be able to produce

pairs. Without the electric field, the pair-production rate is
that of a scalar field in the de Sitter spacetime, but vanishes
in the anti–de Sitter spacetime due to the boundary condi-
tion at asymptotic regions, as expected.
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