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A dark energy scalar (or a function of the Ricci scalar) coupled with the derivative to the matter fields

will violate the CPT symmetry during the expansion of the Universe. This type of cosmological CPT

violation helps to generate the baryon number asymmetry and gives rise to the rotation of the photon

polarization which can be measured in the astrophysical and cosmological observations, especially the

experiments of the cosmic microwave background radiation. In this paper, we derive the rotation angle in

a fully general relativistic way and present the rotation formulas used for the cosmic microwave

background data analysis. Our formulas include the corrections from the spatial fluctuations of the scalar

field. We also estimate the magnitude of these corrections in a class of dynamical dark energy models for

quintessential baryo/leptogenesis.
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I. INTRODUCTION

In the standard model of particle physics, CPT is a
fundamental symmetry. Probing its violation is an impor-
tant way to search for new physics beyond the standard
model. Up to now, CPT symmetry has passed a number of
high precision experimental tests in the ground-based labo-
ratory, and no definite signal of its violation has been
observed [1]. So the present CPT violating effects, if
they exist, should be very small to be amenable to the
experimental limits.

The CPT symmetry could be violated dynamically in
the expanding Universe. To show it, consider a scalar
boson � which effectively couples to a fermion current
J�, with the Lagrangian given by

L int ¼ c

M
r��J�; (1)

where c is a dimensionless constant and M is the cutoff
scale. The interaction in (1) is CPT conserved; however,
during the expansion of the Universe, the background

value _� does not vanish and CPT is broken spontaneously.
This type of CPT violation occurs naturally in theories of
dynamical dark energy and has interesting implications in
particle physics and cosmology. In models of quintessen-
tial baryo/leptogenesis [2–4], the scalar field� in (1) is the
dark energy scalar (quintessence [5–7], k-essence [8],
phantom [9], quintom [10,11], etc.). In the early
Universe, the field � with the interaction in (1) generates
the baryon number asymmetry, and at late times it drives
the accelerating expansion of the Universe. One of the
features of these models is a unified description of the
present accelerating expansion and the generation of the
matter and antimatter asymmetry of our Universe.
Furthermore, differing from the original proposal for spon-

taneous baryogenesis by Cohen and Kaplan [12], since the
dark energy scalar has been existing up to the present
epoch, the corresponding CPT violation could be tested
in laboratory experiments and cosmology. In Refs. [2,3],
we have pointed out that, to produce the enough baryon
number asymmetry, the dark energy should be significant
in the radiation-dominated epoch. This is the case if the
dark energy has the tracking behavior, i.e., its density
decays almost at the same rate with that of radiation as
the Universe expanding. Along this line, the gravitational
baryo/leptogenesis [13,14] has been proposed in which a
function of curvature scalar R replaces the � field in (1).
There are other motivations in the literature, e.g.,
Refs. [15–20].
The current J� in Eq. (1) is not necessary to be the

baryon current for baryogenesis. It could be other currents
which are not orthogonal to J�B or J�B�L. In [21], we have
proposed, for example, that J� is the left-handed part of the
B� L current J�ðB�LÞL . Besides the generation of baryon

number asymmetry, this kind of coupling will bring a new
effect to the photon sector. This is because J�ðB�LÞL is

anomalous under the electromagnetic interaction

r�J
�
ðB�LÞL ���em

3�
F��

~F��: (2)

Hence the interaction in Eq. (1) would induce the following
effective coupling through the anomaly equation:

L int ¼ � 2c�em

3�M
r��A�

~F�� � p�A�
~F��; (3)

where A� is the electromagnetic vector potential, F�� ¼
r�A� �r�A� is the strength tensor, and ~F�� ¼
1=2�����F�� is its dual. This Chern-Simons term leads

to the rotations of the polarization vectors of photons when
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propagating over the cosmological distance [22].1 The
change in the position angle of the polarization plane
�	, characterizing CPT violation in this scenario, can be
obtained by observing polarized radiation from distant
sources such as radio galaxies, quasars [22,27], and the
cosmic microwave background (CMB) [28,29]. Assuming
the rotation angle is homogeneous and isotropic �	 ¼
� �	, the CMB power spectra would be rotated as [29,30]

CTT;obs
l ¼ CTT

l ; CTE;obs
l ¼ CTE

l cosð2� �	Þ;
CTB;obs
l ¼ CTE

l sinð2� �	Þ;
CEE;obs
l ¼ CEE

l cos2ð2� �	Þ þ CBB
l sin2ð2� �	Þ;

CBB;obs
l ¼ CEE

l sin2ð2� �	Þ þ CBB
l cos2ð2� �	Þ;

CEB;obs
l ¼ 1

2 sinð4� �	ÞðCEE
l � CBB

l Þ:

(4)

In the formulas above, the quantities with the superscript
obs are those observed after the rotation. T, E, and B
represent the temperature, the electriclike and magnetic-
like polarization modes, respectively.

In Ref. [29], with Feng and Li, we did the simulations on
the measurement of � �	 with the future high precision
CMB experiments CMBPol [31] and PLANCK [32] using
the rotation formulas (4). We pointed out that in such
experiments the EB spectrum will be the most sensitive
probe of such CPT violation; this is because the EB power
spectrum is generated by the rotation of the EE power
spectrum, which is a more sensitive probe of the primordial
fluctuations than the TT and TE spectra. In [30], with
Feng, Xia, and Chen, we first found that a nonzero rotation
angle � �	 ¼ �6:0� 4:0 deg (1�) is mildly favored by the
CMB polarization data from the three-year Wilkinson
Microwave Anisotropy Probe (WMAP3) observations
[33–37] and the January 2003 Antarctic flight of
BOOMERanG (hereafter B03) [38–40] (see also
Refs. [41–44]). This is a signal in some sense of the
cosmological CPT violation mentioned above. Later on,
Cabella, Natoli, and Silk [45] performed a wavelet analysis
of the temperature and polarization maps of the CMB
delivered by WMAP3. They set a limit on the rotation
angle � �	 ¼ �2:5� 3:0 deg (1�). This is consistent
with our result because they considered WMAP3 data
only. Using the full data of B03 and the WMAP3 angular
power spectra, one of the authors (X. Z.) with Xia et al.
[46] has found that � �	 ¼ �6:2� 3:8 deg (1�). This re-
sult improved the measurement given by our previous
paper [30]. Recently, the WMAP experiment has published
the five-year results for the CMB angular power spectra
which include the TB and EB information [47,48]. They
used the polarization power spectra of WMAP5 TE=TB
(2 � l � 450) and EE=BB=EB (2 � l � 23) to determine

this rotation angle [49] and found that � �	 ¼ �1:7�
2:1 deg (1�). However, when B03 data are included, one
of the authors (X. Z.) with Xia et al. [50] found that � �	 ¼
�2:6� 1:9 deg (1�). Again, a small CPT-violating effect
is mildly detected by current data.
We note that the rotation formulas given in (4) are valid

only for a homogeneous and isotropic rotation angle and
are obtained in the Minkowski spacetime or the spatially
flat Friedmann-Robertson-Walker spacetime which is con-
formally equivalent to the former. This is expected to be a
good approximation when the coupled scalar field � is the
dark energy or the function of the curvature scalar, because
in these cases � is very homogeneous in the observed
Universe, while the accompanied perturbations are much
smaller. Usually, its background part makes the dominant
contributions. One of the aims of this paper is to study the
secondary effects due to the perturbations of �, which
leads to the anisotropies of the rotation angle. For this
purpose, we first study the Maxwell theory modified by
the Chern-Simons term in the general curved spacetime
and investigate the possibility of obtaining the rotation
angle in a fully general relativistic framework. The spatial
fluctuations of the scalar field make the rotation angle
inhomogeneous and anisotropic and bring higher order
corrections to the rotation formulas Eq. (4). Specifically,
we evaluate the magnitude of these corrections in the
models of tracking dark energy, as required by the quin-
tessential baryo/leptogenesis, and found the corrections are
negligible. However, for some other models, the correc-
tions could be sizable. This paper is organized as follows.
In Sec. II, we present the relevant equations of the modified
electromagnetic theory under the geometric optics ap-
proximation. In Sec. III, we study the generalized Stokes
parameters and the changes in CMB power spectra in
Sec. IV. In Sect. V, we evaluate the corrections due to
quintessence fluctuations in the quintessential baryogene-
sis model. Section VI is the conclusion.

II. BASIC EQUATIONS

The full Lagrangian of the Maxwell theory modified by
the Chern-Simons term (3) (without other sources) is

L ¼ �1
4F��F

�� þ p�A�
~F��: (5)

This Lagrangian is not gauge-invariant, but the action
integral S ¼ R

Ld4x is gauge-independent because p� is

defined in (3) as the derivative of the scalar field. The
equation of motion can be obtained through varying this
Lagrangian with respect to A�:

r�F
�� ¼ �2p�

~F��: (6)

The right-hand side of the above equation is brought by the
Chern-Simons term. But the identity is unchanged:

r�F�� þr�F�� þr�F�� ¼ 0: (7)

1Such a term also breaks the Einstein equivalence principle
[23,24] in the short wavelength limit and breaks causality in the
long wavelength limit [25,26].
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We will study these equations in a gauge-independent way
though it is easier to do it by choosing the Lorenz gauge
[21]. For this purpose we make a differentiation to Eq. (7)
and get

hF�� þ 2r�ðp�
~F
�
�Þ � 2r�ðp�

~F
�
� Þ

� ½F�
�R�� � F�

�R�� � F��R����� ¼ 0; (8)

where R�� and R���� are Ricci and Riemann tensors,

respectively.
Since we are studying the light which propagates in the

cosmological scales, the geometric optics approximation
(GOA) applies very well. With this approximation, the
solution to the equation of motion is supposed to be

F�� ¼ ða�� þ �b�� þ �2c�� þ � � �ÞeiS=�; (9)

where we made a complexification to the electromagnetic
field, but � is a small real parameter and S is a real function.
This ansatz means that the phase of the wave varies much
faster than the amplitude. We define the wave vector as

k� � r�S; (10)

which represents the travel direction of the photon.
Substituting the ansatz (9) into Eqs. (8) and (7) and

dropping out the terms containing Ricci and Riemann
tensors, we have

hða�� þ �b�� þ � � �Þ þ 2i

�
k�r�ða�� þ �b�� þ � � �Þ

þ i

�
ðr�k

�Þða�� þ �b�� þ � � �Þ

� 1

�2
k�k

�ða�� þ �b�� þ � � �Þ
¼ �2½ðr�p

�Þð~a�� þ �~b�� þ � � �Þ
þ p�ðr�~a�� þ �r�

~b�� þ � � �Þ

þ ik�

�
p�ð~a�� þ �~b�� þ � � �Þ� þ 2½� ! �� (11)

and

½r�ða�� þ �b�� þ � � �Þ þ i

�
k�ða�� þ �b�� þ � � �Þ�

þ ½���� þ ½���� ¼ 0: (12)

At the leading order of the GOA, Eq. (12) gives

k�a�� þ k�a�� þ k�a�� ¼ 0; (13)

which implies that a�� should have the following antisym-

metric form:

a�� ¼ k�a� � k�a�: (14)

Then we collect the terms of Eq. (11) at the orders of 1=�2

and 1=�, respectively. At the order of 1=�2, we have

k�k
� ¼ 0: (15)

The propagation equation of k� can be obtained by differ-
entiating the above equation again:

0 ¼ r�ðk�k�Þ ¼ 2r�Sr�r�S ¼ 2r�Sr�r�S

¼ 2k�r�k�: (16)

This is a geodesic equation. The vector k� defines an affine
parameter 
 which measures the distance along the light
ray:

k� � dx�

d

: (17)

We can see from (16) that k� is parallelly transported along
the light curve x�ð
Þ. In other words, photons travel along
null geodesics. These results are the same as those of the
standard Maxwell theory. The modification due to the
Chern-Simons term appears at the order of 1=�:

D a� þ �

2
a� ¼ �p��

����k�a�; (18)

where we have considered Eq. (14) and defined the opera-
tor D � k�r�. The quantity � ¼ r�k

� describes the

expansion of the bundle of the light. Without the modifi-
cation, the right-hand side of the above equation would
vanish. Its physical meaning is that the polarization vector
of the photon is not parallelly transported along the light
ray as we will see in the next section. In addition, by
applying the GOA to the original equation

r�F
�� ¼ �2p�

~F��; (19)

we have

k�a
� ¼ 0: (20)

The basic results we got above are Eqs. (18) and (16) with
two orthogonality relations (15) and (20).

III. STOKES PARAMETERS

It is convenient to use the Stokes parameters to study the
polarization of radiation. The four Stokes parameters are
well defined in Minkowski spacetime (the inertial frame).
Considering a monochromatic electromagnetic wave of
frequency !0 propagating in the þz direction

Ex ¼ axðtÞ exp½ið!0t� �xðtÞÞ�;
Ey ¼ ayðtÞ exp½ið!0t� �yðtÞÞ�;

(21)

the Stokes parameters are defined as the time averages

I � hExE
�
xi þ hEyE

�
yi; Q � hExE

�
xi � hEyE

�
yi;

U � hExE
�
yi þ hE�

xEyi; V � i½hExE
�
yi � hE�

xEyi�:
(22)

In general relativity, these definitions should be gener-
alized. This can be done by using the tetrad formalism. A
tetrad is a set of four orthogonal unit basis vectors e�ðaÞ, with
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a ¼ 0; 1; 2; 3. At each point x, we can attach a tetrad which
transforms between the coordinate frame and the local
inertial frame at x. For a vector field B�ðxÞ, its components

in the local inertial frame are

�B a ¼ e
�
ðaÞB�: (23)

The Latin indices are lowered and raised by the Minkowski
metric �ab, the Greek indices, however, by the coordinate
metric g��. The tetrad has the following properties:

g��e
�
ðaÞe

�
ðbÞ ¼ �ab; �abe

�
ðaÞe

�
ðbÞ ¼ g��: (24)

We can set the tetrad frame at each point as follows.
Consider the rest frame of the free fall observer, in which
the four-velocity is �ua ¼ a

0 . Furthermore, we require the

observer to see the light traveling along the þz direction,
and hence �ka ¼ !ða

0 þ a
3Þ. So, after transforming to the

coordinate frame,

u� ¼ e
�
ðaÞ �u

a ¼ e
�
ð0Þ (25)

and

k� ¼ e�ðaÞ �k
a ¼ !ðu� þ e�ð3ÞÞ: (26)

Hence,

e
�
ð0Þ ¼ u�; e

�
ð3Þ ¼

1

!
ðk� �!u�Þ; (27)

where ! � k�u
� is the frequency measured by the ob-

server. The other tetrad vectors e�ð1Þ and e
�
ð2Þ are unit space-

like, orthogonal to each other and to e�ð0Þ, e
�
ð3Þ, and therefore

orthogonal to k�.
The electric vector in general spacetime for an observer

with four-velocity u� is defined as

E� � F��u�: (28)

At the leading order of the GOA mentioned at the last
section, it is

E� ¼ a��u�e
iS=� ¼ ðk�a� � k�a�Þu�eiS=�: (29)

Transforming it to the local inertial frame, we get the x and
y components of the electric field in this frame easily:

Ex ¼ �E1 ¼ E�e
�
ð1Þ; Ey ¼ �E2 ¼ E�e

�
ð2Þ: (30)

In the local inertial frame, the definitions of the Stokes
parameters (22) are applicable. By applying the above
equations to (22), we get the general expressions of the
Stokes parameters in curved spacetime [51,52]:

I ¼ !2L��ðe�ð1Þe�ð1Þ þ e�ð2Þe
�
ð2ÞÞ;

Q ¼ !2L��ðe�ð1Þe�ð1Þ � e
�
ð2Þe

�
ð2ÞÞ;

U ¼ !2L��ðe�ð1Þe�ð2Þ þ e�ð2Þe
�
ð1ÞÞ;

V ¼ i!2L��ðe�ð1Þe�ð2Þ � e
�
ð2Þe

�
ð1ÞÞ;

(31)

where L�� � ha�a��i satisfies the following equation mak-

ing use of Eq. (18):

DL�� þ �L�� ¼ �p�k�ð�����L�� þ �����L��Þ:
(32)

We can see that the Stokes parameters are coordinate
scalars but not Lorentz scalars. We require the tetrad
frames to be not physically rotating. In order to do that,
we set the tetrad vectors at each point so that e

�
ð1Þ and e

�
ð2Þ

are parallelly transported along the light curve. So it is
straightforward to get the propagation equations of the four
parameters along the light curve:

DF0 þ �F0 ¼ 0; (33)

DF1 þ �F1 ¼ 2p�k
�F2; (34)

DF2 þ �F2 ¼ �2p�k
�F1; (35)

DF3 þ �F3 ¼ 0; (36)

where Fa � ðI; Q;U; VÞ=!2. Equation (33) means the
conservation of the light flux. Equation (36) indicates
that the Stokes V, which describes the net circular polar-
ization, vanishes if it is zero at the beginning. This is the
case for CMB where the polarization is produced at the last
scattering. Since the Stokes V cannot be produced by
Thomson scattering, it remains zero afterwards. In short,
the net circular polarization remains vanishing even in the
presence of the Chern-Simons term. The terms in the right-
hand sides of Eqs. (34) and (35) are the effects of the
Chern-Simons term which rotates the polarization angle
of the light. The polarization angle defined by 	 �
1=2 arctanðU=QÞ ¼ 1=2 arctanðF2=F1Þ satisfies

D	þ p�k
� ¼ 0: (37)

This angle when measured at the point f is rotated by

�	 ¼ 	f � 	i ¼ �
Z f

i
p�k

�d
 ¼ �
Z f

i
p�dx

�ð
Þ;
(38)

compared with that at the point i when the photon was
emitted. From (3), p� ¼ �ð2c�emÞ=ð3�MÞ@��, the rota-

tion angle is given by

�	 ¼ 2c�em

3�M
ð�f ��iÞ: (39)

Defining

F� � F1 � iF2; (40)

it satisfies from Eqs. (34) and (35) that

Ff
� ¼ Fi� exp

�
�
Z f

i
�d


�
expð�i2�	Þ: (41)
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The Chern-Simons term modifies the result by merely
adding the rotation factor expð�i2�	Þ. Hence the ob-
served Stokes parameters should be

ðQ� iUÞobs ¼ expð�i2�	ÞðQ� iUÞ: (42)

This is the basic result obtained in this section. It describes
the rotation of the polarization of a single bundle of light. It
is the starting point to study the rotated CMB power spectra
in the next section.

IV. CMB POWER SPECTRA

In order to analyze the CMB map, we usually make
multipole expansion. In the flat universe,2 we can expand
the temperature and polarization anisotropies in terms of
appropriate spin-weighted harmonic functions on the sky
[54]:

Tðn̂Þ ¼ X
lm

aT;lmYlmðn̂Þ;

ðQ� iUÞðn̂Þ ¼ X
lm

a�2;lm�2Ylmðn̂Þ: (43)

The expressions for the expansion coefficients are

aT;lm ¼
Z

d�Y�
lmðn̂ÞTðn̂Þ;

a�2;lm ¼
Z

d��2Y
�
lmðn̂ÞðQ� iUÞðn̂Þ:

(44)

Instead of a2;lm and a�2;lm, it is convenient to introduce

their linear combinations

aE;lm ¼ �ða2;lm þ a�2;lmÞ=2;
aB;lm ¼ iða2;lm � a�2;lmÞ=2:

(45)

The power spectra are defined as

ha�X0;l0m0aX;lmi ¼ CX0X
l l0lm0m (46)

with the assumption of statistical isotropy. In the equation
above, X0 and X denote the temperature T and the E and B
modes of the polarization field, respectively. For Gaussian
theories, the statistical properties of the CMB temperature/
polarization map are specified fully by these six spectra. In
the standard case, CTB

l ¼ CEB
l ¼ 0.

Considering the rotation in Eq. (42), the expressions for
the expansion coefficients become

aobs�2;lm ¼
Z

d��2Y
�
lmðn̂ÞðQ� iUÞobsðn̂Þ

¼
Z

d��2Y
�
lmðn̂Þ expð�i2�	ÞðQ� iUÞðn̂Þ; (47)

and aT;lm remains unchanged. The rotation angle in (39)

depends on time as well as space generally. It can be

separated as the background part, which is homogeneous
and isotropic, and the perturbation, which is randomly
distributed on the sky:

�	 ¼ � �	þ�	; (48)

where

� �	 ¼ 2c�em

3�M
½ ��ð�0Þ � ��ð�decÞ�; (49)

�	 ¼ � 2c�em

3�M
�ðxdec; �decÞ: (50)

In the above equations the subscript 0 indicates the present
values and dec means the values at the time of matter-
radiation decoupling. The homogeneous part � �	 is the
same one that appeared in the previous rotation formulas
(4). The final value of the fluctuation �ðx0; �0Þ is ne-
glected because it only gives rise to a dipole contribution
due to our motion with respect to the CMB frame. In the
flat universe, xdec ¼ ð�0 � �decÞn̂ when putting the ob-
server at the origin of the coordinate system. Similar to
the studies on Faraday rotation of the CMB polarization by
a stochastic magnetic field [55], we expand �	 on the
sky:

�	 ¼ X
lm

blmYlmðn̂Þ; (51)

and define its angular power spectrum as

hb�l0m0blmi ¼ C
	
l l0lm0m; (52)

where we have also assumed statistical isotropy of blm.
This angular power spectrum is related to the power spec-
trum of � at time �dec, which can be seen from the
following discussions. Expanding �ðxdec; �decÞ in terms
of Fourier functions, we have

�ðxdec; �decÞ ¼
Z d3k

ð2�Þ3=2 �kð�decÞeik�n̂��

¼
Z d3k

ð2�Þ3=2 �kð�decÞ
X
l

ð2lþ 1Þiljlðk��Þ

	 Plðk̂ � n̂Þ

¼
Z d3k

ð2�Þ3=2 �kð�decÞ
X
lm

4�iljlðk��Þ

	 Y�
lmðk̂ÞYlmðn̂Þ; (53)

where�� � �0 � �dec, jl is the spherical Bessel function,
and Pl is the Legendre polynomial. Comparing it with Eqs.
(50) and (51), we get

blm ¼ � 8c�em

3M
il
Z d3k

ð2�Þ3=2 �kð�decÞjlðk��ÞY�
lmðk̂Þ:

(54)

With the help of the definition of the power spectrum of

2For the treatment of CMB anisotropies in open and closed
universes, please see [53].
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�,

h��
k0 ð�decÞ�kð�decÞi � 2�2

k3
P�ðk; �decÞ3ðk� k0Þ; (55)

we can find that C	
l in Eq. (52) is

C
	
l ¼ 16c2�2

em

9�M2

Z dk

k
P�ðk; �decÞj2l ðk��Þ; (56)

and

X
l

ð2lþ 1ÞC	
l ¼ 4�h�	2i ¼ 16c2�2

em

9�M2
h�2i; (57)

where � ¼ �ðxdec; �decÞ and the arguments xdec; �dec

are suppressed in the following.
With these formulas, we can calculate the coefficients

after the rotation:

aobs�2;lm ¼
Z

d��2Y
�
lmðn̂ÞðQ� iUÞobsðn̂Þ

¼ expð�i2� �	ÞX
l1m1

a�2;l1m1

Z
d��2Y

�
lmðn̂Þ

	 expð�2i�	Þ�2Yl1m1
ðn̂Þ

¼ expð�i2� �	ÞX
l1m1

a�2;l1m1
F�
lml1m1

: (58)

In the last equality, we have defined

F�
lml1m1

�
Z

d��2Y
�
lmðn̂Þ expð�2i�	Þ�2Yl1m1

ðn̂Þ:
(59)

So

aobsE;lm ¼ 1

2

X
l1m1

½ðei2� �	Fþ
lml1m1

þ e�i2� �	F�
lml1m1

ÞaE;l1m1

þ iðei2� �	Fþ
lml1m1

� e�i2� �	F�
lml1m1

ÞaB;l1m1
�;

aobsB;lm ¼ 1

2

X
l1m1

½ð�iÞðei2� �	Fþ
lml1m1

� e�i2� �	F�
lml1m1

ÞaE;l1m1

þ ðei2� �	Fþ
lml1m1

þ e�i2� �	F�
lml1m1

ÞaB;l1m1
�: (60)

To calculate the observed correlations of T, E, and B, we
make the following assumptions: (i) the rotation field 	 or
� is uncorrelated with the primordial T, E, and B modes;
(ii) the rotation angle is small everywhere. In addition, we
have CTB

l ¼ CEB
l ¼ 0 for primordial modes. Hence, we

need only to calculate the following six correlations:

hF�
lml0m0 i, P

l1m1
CXX0
l1

hFþ�
l0m0l1m1

Fþ
lml1m1

i, P
l1m1

CXX0
l1

	
hF��

l0m0l1m1
F�
lml1m1

i, P
l1m1

CXX0
l1

hF��
l0m0l1m1

Fþ
lml1m1

i, andP
l1m1

CXX0
l1

hFþ�
l0m0l1m1

F�
lml1m1

i. Up to the quadratic order of

�	, we have

hF�
lml0m0 i ’ h1� 2i�	� 2�	2ill0mm0

¼ ð1� 2h�	2iÞll0mm0 (61)

and

X
l1m1

CXX0
l1

hFþ�
l0m0l1m1

Fþ
lml1m1

i ’ X
l1m1

CXX0
l1

Z
d�0d�½1� 4h�	2i þ 4h�	ðn̂0Þ�	ðn̂Þi�2Yl0m0 ðn̂0Þ2Y�

l1m1
ðn̂0Þ2Y�

lmðn̂Þ2Yl1m1
ðn̂Þ

¼ ð1� 4h�	2iÞCXX0
l ll0mm0 þ 4

X
l1m1l2m2

CXX0
l1

C
	
l2

Z
d�0d�2Yl0m0 ðn̂0Þ2Y�

l1m1
ðn̂0ÞY�

l2m2
ðn̂0Þ2

	 Y�
lmðn̂Þ2Yl1m1

ðn̂ÞYl2m2
ðn̂Þ: (62)

The remaining integrals in the above equation may be expressed in terms of the Wigner-3j symbol through the general
relation [56]:

Z
d�sY

�
lms1

Yl1m1s2Yl2m2
¼ ð�1Þmþs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l1 þ 1Þð2l2 þ 1Þ

4�

s
l l1 l2
s �s1 �s2

� �
l l1 l2

�m m1 m2

� �
: (63)

So

X
l1m1

CXX0
l1

hFþ�
l0m0l1m1

Fþ
lml1m1

i ’ ð1� 4h�	2iÞCXX0
l ll0mm0 þX

l1l2

CXX0
l1

C
	
l2

ð2l1 þ 1Þð2l2 þ 1Þ
�

l l1 l2
2 �2 0

� �
2

ll0mm0 ; (64)

where we have used the orthogonality relation of the 3j symbol

X
m1m2

ð2lþ 1Þ l l1 l2
m m1 m2

� �
l0 l1 l2
m0 m1 m2

� �
¼ ll0mm0 : (65)

Similarly, we can find that
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X
l1m1

CXX0
l1

hF��
l0m0l1m1

F�
lml1m1

i ¼ X
l1m1

CXX0
l1

hFþ�
l0m0l1m1

Fþ
lml1m1

i (66)

and X
l1m1

CXX0
l1

hF��
l0m0l1m1

Fþ
lml1m1

i ¼ X
l1m1

CXX0
l1

hFþ�
l0m0l1m1

F�
lml1m1

i

’ ð1� 4h�	2iÞCXX0
l ll0mm0

þX
l1l2

ð�1ÞLþ1CXX0
l1

C	
l2

ð2l1 þ 1Þð2l2 þ 1Þ
�

l l1 l2
2 �2 0

� �
2

ll0mm0 ; (67)

where L ¼ lþ l1 þ l2 and we have used the permutation property of the 3j symbol

l l1 l2
�m �m1 �m2

� �
¼ ð�1ÞL l l1 l2

m m1 m2

� �
: (68)

Consequently, we obtained the rotation formulas of the power spectra

CTT;obs
l ¼ CTT

l ; CTE;obs
l ¼ CTE

l cosð2� �	Þð1� 2h�	2iÞ; CTB;obs
l ¼ CTE

l sinð2� �	Þð1� 2h�	2iÞ;
CEE;obs
l ¼ ½CEE

l cos2ð2� �	Þ þ CBB
l sin2ð2� �	Þ�ð1� 4h�	2iÞ

þX
l1l2

l l1 l2

2 �2 0

 !
2 ð2l1 þ 1Þð2l2 þ 1Þ

2�
C	
l2
f½1þ ð�1ÞLþ1 cosð4� �	Þ�CEE

l1
þ ½1þ ð�1ÞL cosð4� �	Þ�CBB

l1
g;

CBB;obs
l ¼ ½CEE

l sin2ð2� �	Þ þ CBB
l cos2ð2� �	Þ�ð1� 4h�	2iÞ

þX
l1l2

l l1 l2

2 �2 0

 !
2 ð2l1 þ 1Þð2l2 þ 1Þ

2�
C	
l2
f½1þ ð�1ÞL cosð4� �	Þ�CEE

l1
þ ½1þ ð�1ÞLþ1 cosð4� �	Þ�CBB

l1
g;

CEB;obs
l ¼ 1

2
sinð4� �	ÞðCEE

l � CBB
l Þð1� 4h�	2iÞ

þ sinð4� �	ÞX
l1l2

l l1 l2

2 �2 0

 !
2 ð2l1 þ 1Þð2l2 þ 1Þ

2�
C	
l2
ð�1ÞLþ1ðCEE

l1
� CBB

l1
Þ: (69)

In comparisons with those in Eq. (4), Eq. (69) included the corrections from spatial fluctuations.

From Eq. (69), we can see first that CTB;obs
l and CEB;obs

l are proportional to sinð� �	Þ, which vanish when � �	 ¼ 0. This is
understandable because CPT is violated only by the background field. Second, we find that

X
l

ð2lþ 1ÞðCEE;obs
l þ CBB;obs

l Þ ¼ X
l

ð2lþ 1ÞðCEE
l þ CBB

l Þð1� 4h�	2iÞ

þ X
ll1l2

l l1 l2
2 �2 0

� �
2 ð2lþ 1Þð2l1 þ 1Þð2l2 þ 1Þ

�
C
	
l2
ðCEE

l1
þ CBB

l1
Þ

¼ X
l

ð2lþ 1ÞðCEE
l þ CBB

l Þð1� 4h�	2iÞ þ 4h�	2iX
l1

ð2l1 þ 1ÞðCEE
l1

þ CBB
l1
Þ

¼ X
l

ð2lþ 1ÞðCEE
l þ CBB

l Þ; (70)

where we have used another orthogonality relation of the 3j symbol

X
l

ð2lþ 1Þ l l1 l2
�m1 �m2 m1 m2

� �
2 ¼ 1: (71)

The equality in Eq. (70) is the direct consequence of invariance of Q2 þU2 under the rotation (42).
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V. THE EVALUATION ON THE MAGNITUDE OF
CORRECTIONS IN THE TRACKING DARK

ENERGY MODEL

Equations (69) indicated that the most important correc-
tions appear at the order of h�	2i. In this section, we
consider a model for quantitative estimation on the correc-
tions. Specifically, we take the quintessential baryo/lepto-
genesis model as we mentioned in the introduction. For
such a model, we have

h�	2i ¼ 4c2�2
em

9�2M2
h�2i � 10�5

M2
h�2i: (72)

As was pointed out in [2], to generate enough baryon
number asymmetry, the quintessence field � should have
tracking behavior, which happens, for example, in the
Albrecht and Skordis model [57]. In the following, we
will evaluate h�	2i in this model. We consider the per-
turbed metric in the Newtonian gauge:

ds2 ¼ ð1þ 2�Þdt2 � a2ð1� 2�Þdxidxi; (73)

where t ¼ R
ad� is the cosmic time and � is the gravita-

tional potential. The linear perturbation equation of the
quintessence is

€�þ 3H _��r2

a2
�þ V 00ð�Þ� ¼ 4 _� _��2V0�:

(74)

In the above equation, the dot denotes the derivative with
respect to t. The general solution to this equation is decom-
posed into two parts: the adiabatic mode and the isocurva-
ture one. For the model of quintessence with a tracking
solution, the isocurvature perturbation decays away
quickly [2,58]. We need only calculate the adiabatic per-
turbation, which satisfies the adiabatic condition

p

_p
¼ �

_�
; (75)

i.e.,

� ¼ d

dt

�
�
_�

�
: (76)

With the equation above, we can find that at the time of
matter-radiation decoupling (in the matter-dominated
epoch) the adiabatic perturbation of quintessence on large
scales is

� ¼ 2 _�

3H
� ¼ 2ffiffiffi

3
p

ffiffiffiffiffiffiffiffi
��

q
Mpl�; (77)

where we have considered the exact tracking behavior of
quintessence, w� ¼ wm ¼ 0, and the well-known result

� ¼ constant in the matter-dominated era. The parameter
�� � 10�2 [59,60] is the density of quintessence at this

time, and Mpl ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
8�G

p � 1018 GeV is the reduced

Planck mass. So, with h�2i � 10�10, we have

h�	2i � 10�7
M2

pl

M2
h�2i � 10�17

M2
pl

M2
: (78)

If h�	2i 
 1, the corrections in Eqs. (69) can be ne-
glected safely, which happens for the cutoff scale M �
10�8Mpl � 1010 GeV. In the quintessential baryo/lepto-

genesis model,M� 108TD [2], where TD is the decoupling
temperature of lepton number violating interaction and is
around 1011 GeV [14].

VI. CONCLUSION

In this paper, we have studied the effects of the interac-
tion with the derivative coupling of the scalar field to
photons given by the Chern-Simons term in the general
curved spacetime. Under the geometric optics approxima-
tion, we have obtained the general form of the rotation
angle in a gauge-invariant method. We have calculated the
corrections brought by the spatial fluctuations of the scalar
field to the rotation formulas. These corrections exist due
to the dynamics of the scalar field3; however, they have not
been considered in the literature on the CMB data analysis.
We have estimated the magnitude of the corrections in a
model of scalar field for the quintessential baryo/lepto-
genesis scenario and fortunately found that the corrections
are very small and can be neglected safely in the fit to the
CMB data. The same techniques can be applied to the case
of gravitational leptogenesis in which the coupled scalar is
the function of the gravitational field. Similar techniques
can be developed to other cases in which the Chern-Simons
parameter has other origins. For example, in a more com-
plicated case, where the parameter is not statistically iso-
tropic or even has no power spectrum, the space
components of p� in Eq. (3) will bring the correlations

between aT;l0m0 and aE;lm of different l0m0 and lm and so on.

These complications are beyond the scope of this paper,
and we leave them in the future work.
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