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Within the framework of nonstandard (Weyl) representations of the canonical commutation relations,

we investigate the polymer quantization of the Taub cosmological model. The Taub model is analyzed

within the Arnowitt-Deser-Misner reduction of its dynamics, by which a time variable arises. While the

energy variable and its conjugate momentum are treated as ordinary Heisenberg operators, the anisotropy

variable and its conjugate momentum are represented by the polymer technique. The model is analyzed at

both classical and quantum level. As a result, classical trajectories flatten with respect to the potential wall,

and the cosmological singularity is not probabilistically removed. In fact, the dynamics of the wave

packets is characterized by an interference phenomenon, which, however, is not able to stop the evolution

towards the classical singularity.
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I. INTRODUCTION

The necessity for a quantum theory of gravity arises
from fundamental considerations, and, in particular, from
the space-time singularity problem. In fact, the classical
theory of gravity implies the well-known singularity theo-
rems, among which the cosmological one [1]. The canoni-
cal quantization of gravity, which exhibits a host of
difficulties both at technical and interpretative levels, is
based on the Heisenberg representation of theWeyl algebra
[2]. On the other hand, the background-independent for-
mulation of canonical quantum gravity based on Yang-
Mills formalism has recently appeared [3]. Anyhow,
smearing such variables in the holonomy-flux representa-
tion is an important step towards canonical quantum grav-
ity [4]. The scenario induced by such an algebra is
illustrated to be equivalent to the so-called polymer repre-
sentation of quantum mechanics [5–7], as soon as a me-
chanical system is taken into account. This work is aimed
at investigating the quantization of the Taub model in the
polymer representation of quantum mechanics. The Taub
universe arises as a particular case of the Bianchi IX
model, i.e. the most general scheme allowed by the homo-
geneity constraint [8]. In the Bianchi IX model, the uni-
verse dynamics towards the classical singularity is
summarized by the chaotic motion of a particle. More
precisely, this particle bounces an infinite number of times
against the potential walls of a triangular domain, on a two-
dimensional plane. The two-dimensional plane describes
the configuration space of the particle (universe) dynamics.
The Taub model consists in restricting the dynamics to that
of a one-dimensional particle bouncing against a wall,

when only one degree of freedom is taken into account.
The relevance of the Taub universe in quantum cosmology
is due to the fact that it is a necessary step towards the more
general Bianchi IX model. The advantage of this model is
that it is a generalization of other isotropic models. In
particular, it has been used to test the validity of the
minisuperspace scheme [9] and to explore the application
of the extrinsic cosmological time [10]. Furthermore, the
Taub model has also been investigated within the frame-
work of a generalized uncertainty principle in [11], where
the cosmological singularity has been shown to be proba-
bilistically removed. The polymer representation of quan-
tum mechanics is based on a nonstandard representation of
the canonical commutation relations [6]. In particular, in a
two-dimensional phase space, it is possible to choose a
discretized operator, whose conjugate variable cannot be
promoted as an operator directly. From a physical point of
view, this scheme can be interpreted as the quantum-
mechanical framework for the introduction of a cutoff.
Its continuum limit, which corresponds to the removal of
the cutoff, has to be understood as the equivalence of
microscopically modified theories at different scales [7].
This approach is relevant in treating the quantum-
mechanical properties of a background-independent ca-
nonical quantization of gravity. In fact, the holonomy-
flux algebra used in loop quantum gravity reduces to a
polymerlike algebra, when a system with a finite number of
degrees of freedom is taken into account [5]. From a
quantum-field theoretical point of view, this is substantially
equivalent to introducing a lattice structure on the space
[12]. Loop quantum cosmology [13] can be regarded as the
implementation of this quantization technique in the min-
isuperspace dynamics [14]. The Taub model is approached
in the scheme of an Arnowitt-Deser-Misner (ADM) reduc-
tion of the dynamics in the Poincaré plane. As a result, a
time variable naturally emerges, and the Universe is de-
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scribed by an anisotropy-like variable. The anisotropy
variable and its conjugate momentum are quantized within
the framework of the polymer representation. More pre-
cisely, the former appears as discretized, while the latter
cannot be implemented as an operator in an appropriate
Hilbert space directly, but only its exponentiated version
exists. The analysis is performed at both classical and
quantum levels. The modifications induced by the cutoff
scale on ordinary trajectories are analyzed from a classical
point of view. On the other hand, the quantum regime is
explored in detail by the investigation of the evolution of
the wave packets of the universe. Two main conclusions
can be inferred.

(i) An interference between the wave packets and the
potential wall appears. Nevertheless, the classical
cosmological singularity is not probabilistically re-
moved. In fact, the wave function of the universe is
not strictly localized away from it, and the wave
packets fall into it following a classical trajectory.

(ii) The comparison between the polymer approach and
the generalized uncertainty principle (GUP) model
illustrates that the corresponding interference phe-
nomena are produced in a complementary way. This
feature appears both at the classical level, as it is
immediately recognized analyzing the modifications
of the equations of motion, and in the quantum
regime, as the behavior of the wave packets is
investigated.

The paper is organized as follows. In Sec. II, we review the
main features of the Taub cosmological model. In Sec. III,
the polymer representation of quantum mechanics is de-
veloped at both the kinematic and dynamical level.
Furthermore, the continuum limit of this approach is dis-
cussed. The fourth section is devoted to the application of
the polymer paradigm to the Taub universe, at both the
classical and quantum level. Section V is aimed at con-
structing suitable wave packets and investigating their
dynamics. In particular, they are analyzed in the
Wheeler-DeWitt (WDW) and the polymer representation.
In Sec. VI, our results are discussed and compared with
other models. Concluding remarks follow. Throughout the
paper, we have adopted natural units, i.e. @ ¼ c ¼
16�G ¼ 1.

II. THE TAUB MODEL

Homogeneity reduces the configuration space of general
relativity to three dimensions. The homogeneous cosmo-
logical models [8], the Bianchi Universes, are such that the
symmetry group acts simply transitively1 on each spatial
manifold. The Bianchi IX model, together with Bianchi
VIII, is the most general one and its line element reads, in

the Misner parametrization [15],

ds2 ¼ N2dt2 � e2�ðe2�Þij!i �!j; (1)

where N ¼ NðtÞ is the lapse function and the left invariant
one-forms !i ¼ !i

adx
a satisfy the Maurer-Cartan equa-

tion 2d!i ¼ �ijk!
j ^!k. The variable � ¼ �ðtÞ describes

the isotropic expansion of the universe and �ij ¼ �ijðtÞ is a
traceless symmetric matrix, �ij ¼ diagð�þ þ ffiffiffi

3
p

��;
�þ � ffiffiffi

3
p

��;�2�þÞ, which determines the anisotropy
changes via ��. The classical singularity appears for � !
�1, since the determinant of the 3-metric is given by h ¼
dete�þ�ij ¼ e3�.
a. Canonical Analysis. The Hamiltonian constraint for

this model is obtained performing the usual Legendre
transformation. As is well known [15,16], the dynamics
of the universe towards the singularity is described by the
motion of a two-dimensional particle (the two physical
degrees of freedom of the gravitational field) in a dynami-
cally closed domain. Such a domain depends on the time
variable� in the Misner picture, while it is stationary in the
Misner-Chitré framework defined by the variables [17]

� ¼ �e��; �þ ¼ e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

q
cos�;

�� ¼ e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

q
sin�;

(2)

with � 2 ½1;1Þ and � 2 ½0; 2��. In fact, the dynamically
allowed domain becomes independent of �, which behaves
like a time variable. In terms of these new variables, the
Hamiltonian constraint rewrites

H ¼ �p2
� þ p2

�ð�2 � 1Þ þ p2
�

�2 � 1
� 0: (3)

b. ADM Reduction. Let us perform the ADM [18] re-
duction of the dynamics. This scheme relies on the idea to
solve the classical constraint with respect to a given mo-
mentum, before implementing any quantization algorithm.
This paradigm allows us to dynamically separate the six-
dimensional phase space of the model. In particular, a time
variable arises and an effective Hamiltonian, which will
depend only on the physical degrees of freedom of the
system (the anisotropy-like variables), comes out. We
solve explicitly the constraint H ¼ 0 with respect to p�,
and thus we consider the variable � as the time coordinate
for the dynamics (we adopt the time gauge _� ¼ 1), obtain-
ing

� p� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
�ð�2 � 1Þ þ p2

�

�2 � 1

s
: (4)

The dynamics of such a system is equivalent to a billiard
ball on a Lobatchevsky plane [19], as we can see by means
of the Jacobi metric.2 It is possible to choose the so-called

1When G a Lie group, G is said to act simply transitively on
the spatial manifold � if, for all p; q 2 �, there is a unique
element g 2 G such that gðpÞ ¼ q.

2This approach reduces the equations of motion of a generic
system to a geodesic problem on a given manifold.
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Poincaré representation in the complex upper half-plane
[20] by using new variables ðu; vÞ, defined as

� ¼ 1þ uþ u2 þ v2ffiffiffi
3

p
v

;

� ¼ �tan�1

� ffiffiffi
3

p ð1þ 2uÞ
�1þ 2uþ 2u2 þ 2v2

�
:

(5)

The dynamical-allowed domain �Q ¼ �Qðu; vÞ is plotted
in Fig. 1. It is worth noting that the three corners in the
Misner picture are replaced by the points (0, 0), ð�1; 0Þ,
and v ! 1 in the ðu� vÞ plane. In this scheme, the ADM
‘‘constraint’’ is simpler than the previous one (4), and
becomes

� p� � HADM ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
u þ p2

v

q
: (6)

The Taub universe corresponds to the Bianchi IX one in the
particular case of �� ¼ 0 [8]. The phase space of this
model is four dimensional and its dynamics is equivalent
to the motion of a particle in a one-dimensional domain.
Considering such a domain corresponds to taking only one
of the three equivalent potential walls of the Bianchi IX
model. As we can see from (2) and (5), this particular case

appears for � ¼ 0 ) u ¼ �1=2 (� ¼ ðv2 þ 3=4Þ= ffiffiffi
3

p
v),

and the ADM Hamiltonian (6) rewrites

HT
ADM ¼ vpv; (7)

being v 2 ½1=2;1Þ, as shown in Fig. 1. The Hamiltonian
above (7) can be further simplified defining a new variable
x ¼ lnv, and becomes

HT
ADM ¼ px � p; (8)

which will be the starting point of our analysis. Within this
framework, the Taub model is therefore described by a

two-dimensional system in which the variable � is consid-
ered as the time, while the variable x describes the single
degree of freedom of the universe, i.e. the shape change. It
is worth stressing that the classical singularity now appears
for � ! 1.

III. POLYMER QUANTUM MECHANICS

The polymer representation of quantum mechanics con-
sists in defining abstract kets, labeled by a real number, and
then considering a suitable finite subset of them, whose
Hilbert space is defined by the corresponding inner product
[6]. This procedure can be shown to be an inequivalent
representation of the Weyl algebra with respect to the
ordinary Schroedinger one. This representation helps one
gain insight onto some particular features of quantum
mechanics, when an underlying discrete structure is some-
how hypothesized. The request that the Hamiltonian asso-
ciated to the system be of direct physical interpretation
defines the polymer phase space, and the continuum limit
can be recovered by the introduction of the concept of the
scale [7].
c. Wave functions and operators. One can start by con-

sidering abstract kets j�i, � 2 R, and a suitable subset
defined by�i 2 R, i ¼ 1; 2; . . .N. These kets are assumed
to be an orthonormal basis, i.e., h�j	i ¼ 
�	, along which

any state � can be projected. This defines a Hilbert space
H pol, on which two basic operators act, the symmetric

‘‘label’’ operator, �̂, such that �̂j�i ¼ �j�i, and a one-
parameter family of unitary operators, ŝð�Þ, such that
ŝð�Þj�i ¼ j�þ �i. Because all kets are orthonormal,
ŝð�Þ is discontinuous and cannot be obtained from any
Hermitian operator by exponentiation. It is worth noting
that this Hilbert space is not separable.3

For the toy model of a one-dimensional system, whose
phase space is described by the variables p and q, the
polymer representation techniques find interesting appli-
cations when one of the two variables is supposed to be
discrete. This discreteness will affect both wave functions,
obtained by projecting the physical state on the p or q basis
(polarization), and the operators associated to the canoni-
cal variables, acting on them.
For later purposes, we will discuss only the case of a

discrete position variable q, and the corresponding mo-
mentum polarization.
In this case, wave functions are given by c �ðpÞ ¼

hpj�i ¼ eip�. Accordingly, the label operator �̂ is easily
identified with q̂, i.e., q̂�� ¼ �i@pc � ¼ �c �, while the

shift operator does not exist, as discussed previously.
It can be shown that the corresponding Hilbert space is

H pol ¼ L2ðRB; d�HÞ, i.e. the set of square-integrable

functions defined on the Bohr compactification of the

 0
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u

FIG. 1. The dynamical-allowed domain �Qðu; vÞ in the
Poincaré complex upper half-plane where the dynamics of the
universe is restricted, towards the classical singularity, by the
potential.

3A Hilbert space is separable if and only if it admits a
countable orthonormal basis.
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real line RB, with a Haar measure d�H. Since the kets j�i
are arbitrary but finite, the wave functions can be inter-
preted as a quasiperiodic function, with the inner product

hc �jc �i ¼
Z
RB

d�H
�c �ðpÞc �ðpÞ

¼ lim
L!1

1

2L

Z L

�L
dp �c �ðpÞc �ðpÞ ¼ 
�;�: (9)

d. Dynamics. The Hamiltonian operator H describing a
quantum-mechanical system is usually a function of both

coordinate and momentum, i.e. H ¼ Hðq; pÞ ¼ p2

2m þ VðqÞ
while, in the particular case of a discrete position variable
in the momentum polarization, p cannot be implemented
as an operator, so that some restrictions on the model have
to be required. As a first step, a suitable approximation for
the kinetic term has to be provided. For this purpose, it is
useful to restrict the arbitrary kets j�ii, i 2 R to j�ii, i 2
Z, i.e. to introduce the notion of the regular graph ��0

,

defined as a numerable set of equidistant points, whose
separation is given by the parameter �0, ��0

¼ fq 2
Rjq ¼ n�0;8 n 2 Zg. The associated Hilbert space
H ��0

is separable. Because of the regular graph �0, the

eigenfunctions of p̂�0
must be of the form eim�0p, m 2 Z,

which are Fourier modes, of period 2�=�0. The inner
product (9) is equivalent to the inner product on a circle
S1 with uniform measure, i.e.,

h�ðpÞjc ðpÞi�0
¼ �0

2�

Z �=�0

��=�0

�̂ðpÞc ðpÞ; (10)

with p 2 ð���0; �=�0Þ, so that H ��0
¼ L2ðS1; dpÞ.

Within this space, it is possible to construct an approxima-
tion for the shift operator, i.e. a regulated operator p̂�0

,

p̂ �0
j�ni ¼ i

2�0

ðj�nþ1i � j�n�1iÞ: (11)

More precisely, the polymer paradigm can be understood
as the formal substitution

p ! 1

�0

sinð�0pÞ; (12)

where the incremental ratio (11) has been evaluated for
exponentiated operators. The Hamiltonian operator H�0

,

which lives in H ��0
, reads H�0

¼ p̂2
�0

2m þ Vðq̂Þ, where the

action of the new multiplication operator p̂�0
on wave

functions in the momentum polarization is

p̂ 2
�0
c ðpÞ ¼ 2

�2
0

½1� cosðp�0Þ�; (13)

while the differential operator q is well defined.
e. Continuum Limit. The physical Hilbert space of such

theories can be constructed as the continuum limit of
effective theories at different scales, and can be illustrated
to be unitarily isomorphic to the ordinary one, H S ¼

L2ðR; dpÞ. To this end, it is useful to remark that it is
impossible to obtainH S starting from a given graph �0 ¼
fqk 2 Rjqk ¼ ka0;8 k 2 Zg by dividing each interval a0
into 2n in new intervals of length an ¼ a0=2

n, becauseH S

cannot be embedded into H pol. It is however possible to

go the other way round and to look for a continuous wave
function that is approximated by a wave function over a
graph, in the limit of the graph becoming finer. In fact, if
one defines a scale Cn, i.e., a decomposition of R in terms
of the union of closed-open intervals that have lattice
points as end points and cover R without intersecting,
one is then able to approximate continuous functions
with functions that are constant on these intervals. As a
result, at any given scale Cn, the kinetic term of the
Hamiltonian operator can be approximated as in (13),
and effective theories at given scales are related by
coarse-graining maps. In particular, it is necessary to regu-
larize the Hamiltonian, treated as a quadratic form, as a
self-adjoint operator at each scale by introducing a nor-
malization factor in the inner product. The convergence of
microscopically corrected Hamiltonians is based on the
convergence of energy levels and on the existence of
completely normalized eigencovectors compatible with
the coarse-graining operation.

IV. POLYMER TAUB UNIVERSE

In this section, we will apply the polymer discretization
technique to the description of the Taub model. In particu-
lar, we will specify the Hamiltonian (8) for the case of a
discretized x space. As a result, the conjugate variable will
not be implemented to the operator directly, in the corre-
sponding Hilbert space. Furthermore, the momentum
space will be compactified, the compactification scale
depending on the lattice characteristic length. The modifi-
cations to the Taub universe induced by the polymer rep-
resentation will be investigated at both the classical and
quantum level.

A. Classical analysis

First of all, let us clarify the physical meaning of our
variables. The configuration variable x is related to the
universe anisotropy �þ via the expression (2), for � ¼ 0

and � ¼ ðv2 þ 3=4Þ= ffiffiffi
3

p
v, as

�þ ¼ e�ffiffiffi
3

p
v

�
v2 � 3

4

�
¼ e��xffiffiffi

3
p

�
e2x � 3

4

�
: (14)

By this equation, a monotonic relation between the anisot-
ropy of the universe �þ and our (classical) configuration
variable x ¼ lnv 2 ½x0 � lnð1=2Þ;1Þ appears, and, there-
fore, the variable x can be regarded as a measure of the
model anisotropy. In particular, the isotropic shape of the
Taub universe (�þ ¼ 0) comes out for a particular value of

x, i.e. x ¼ lnð ffiffiffi
3

p
=2Þ, and, in this case, we get the closed

Friedmann-Robertson-Walker universe. Let us now discuss
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the polymer dynamics of a Taub universe at classical level.
By means of the substitution (12), the Taub Hamiltonian
reads

H ¼ 1

an
sinðanpÞ: (15)

From now on, we will take into account the discussion
about the definition of a scale, and, for the sake of compact
notation, wewill drop the index n from an. From a classical
point of view, the equations of motion are

_x ¼ fx;Hg ¼ cosðapÞ; (16a)

_p ¼ fp;Hg ¼ 0; (16b)

where the dot denotes differentiation with respect to the
time variable �. The equations of motion are immediately
solved as

xð�Þ ¼ cosðapÞ�; (17a)

pð�Þ ¼ A; (17b)

where A is a constant. As is well understood, the system
(17) describes a free particle (universe) bouncing against a
wall. In the ordinary case, i.e. for a ¼ 0, the model can be
interpreted as a photon in the Lorentzian minisuperspace,
and the classical trajectory in the ð�� xÞ plane is its light
cone. More precisely, the incoming particle (� < 0) boun-
ces on the wall (x ¼ x0) and falls into the classical cosmo-
logical singularity (� ! 1). Contrastingly, in the
discretized case, i.e. for a � 0, the one-parameter family
of trajectories flattens, i.e. the angle between the incoming
trajectory and the outgoing one is greater than �=2 since
p 2 ð��=a;�=aÞ (see Fig. 2). As these trajectories di-
verge rather than converge, we expect the polymer quan-
tum effects to be reduced with respect to the classical case,
as we will verify below.

B. Quantum regime

We now investigate the quantum behavior of the model.
After analyzing the mathematical requirements of the
polymer representation and their physical implications
for the model, we apply the methods introduced above to
the Taub universe. In particular, we choose a discretized x
space and solve the corresponding eigenvalue problem in
the p polarization. Even though the bulk of the discussion
of the relation of the polymer representation at different
scales is based on the properties of the Hamiltonian as a
quadratic form, we can nevertheless apply this paradigm to
the Taub model, which is described by a linear
Hamiltonian (8), after the well-known procedure, estab-
lished in [21]. In fact, squaring the Hamiltonian leads to
squared eigenvalues without affecting the corresponding
eigenfunctions.

We are now ready to analyze the Schroedinger equation
i@�� ¼ p� for the wave function � ¼ �ðp; �Þ corre-
sponding to (8), where the configuration variable x is

defined in the domain x 2 ½x0 � lnð1=2Þ;1Þ. Consider-
ing the time evolution for the wave function � as given
by �kðp; �Þ ¼ e�ik�c kðpÞ and the results of [21], we
obtain the following eigenvalue problem:

ðp2 � k2Þc kðpÞ ¼
�
2

a2
ð1� cosðapÞÞ � k2

�
c kðpÞ; (18)

where, in the last step, the substitution (13) has been taken
into account. This eigenvalue problem is solved by

k2 ¼ k2ðaÞ ¼ 2

a2
ð1� cosðapÞÞ � k2max ¼ 4

a2
; (19a)

c k;aðpÞ ¼ A
ðp� pk;aÞ þ B
ðpþ pk;aÞ; (19b)

c k;aðxÞ ¼ A½expðipk;axÞ � expðipk;að2x0 � xÞÞ�: (19c)

(19b) is the momentum wave function, with A and B two
arbitrary integration constants, and (19c) is the coordinate
wave function, where an integration constant has been
eliminated by imposing suitable boundary conditions.
Moreover, we have defined the modified dispersion rela-
tion

pk;a � 1

a
arccos

�
1� k2a2

2

�
(20)

from (19a). Furthermore, we stress that k2 is bounded from
above, as illustrated in (19a), but it is its square root,
considered for its positive determination, which accounts
for the time evolution of the wave function.

V. TAUB WAVE PACKETS

We will now gain insight onto the physical implications
of the model by constructing suitable wave packets
�ðx; �Þ. In fact, analyzing the dynamics of such wave
packets allows us to give a precise description of the
evolution of the Taub model. Such an evolution will be

τ

x(τ)

FIG. 2 (color online). Semiclassical equations of motion for
the Taub universe: ordinary trajectory (blue, continuous line,
a ¼ 0) and polymer trajectories [green, upper ( cosaA ¼ 1=2)
and red, lower ( cosaA ¼ 1=3) dashed lines].
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preformed in both the polymer and WDW approaches.
More precisely, the latter will be considered the proper
continuum limit of the polymer representation, as illus-
trated above. Wave packets are a superposition of eigen-
functions (19c), such as

�ðx; �Þ ¼
Z kmax

0
dkAðkÞc k;aðxÞe�ik�; (21)

where AðkÞ is a Gaussian weighting function, i.e. AðkÞ ¼
exp½�ðk� k0Þ2=2
2�.

A. WDW dynamics

To better understand the modifications induced on the
ordinary dynamics by the polymer representation, we
briefly summarize the WDW wave packet dynamics for
the Taub model. In this case, the Hamiltonian is simply (8);
the associated Schroedinger eigenvalue equation can be
solved directly: the eigenfunctions in the position repre-
sentation are just plane waves. This way, wave packets (21)
can be analytically calculated, with no upper limit for the
energy k. The result is plotted in Fig. 3. As we can see from
the picture, the wave packets follow the ordinary classical
trajectories described in the previous section. The proba-
bility amplitude to find the particle (universe) is peaked
around these trajectories. In this respect, no privileged
regions arise, namely, no dominant probability peaks ap-
pear in the (�� x) plane. As a matter of fact, the ‘‘incom-
ing’’ universe (� < 0) bounces at the potential wall
(x ¼ x0) and then falls towards the classical singularity
(� ! 1). Therefore, as is well known, the WDW formal-
ism is not able to shed light on the necessary quantum
resolution of the classical cosmological singularity. As we
will see below, this picture is slightly modified in the
polymer representation.

B. Polymer dynamics

We are now ready to analyze the modifications brought
by the polymer representation in the quantized Taub uni-
verse. Two cases can be distinguished, i.e. the case k0a�
Oð1Þ, for which it is not possible to recover the ordinary
representation of the momentum operator, and the case
k0a 	 1, for which such a treatment is feasible. For k0a�
Oð1Þ, we get remarkable modifications of the wave packet
evolution. From a probabilistic point of view, however,
such modifications do not remove the cosmological singu-
larity. The case k0a 	 1, contrastingly, can be considered
as the semiclassical limit of the polymer approach.
f. Peaked weighting function. Let us now investigate the

first case, k0a� 1, where the implementation of the poly-
mer substitution (12) does not lead to the ordinary
Schroedinger dynamics. Furthermore, we stress that the
choice of the value for the standard deviation 
 in the
Gaussian weighting function can be relevant for detecting
the effects of the polymer paradigm. In fact, if the weight-
ing function is very sharply peaked around any value k0,
the resulting wave packet will be well approximated by a
purely monochromatic wave, for which a narrow neighbor-
hood of k0 is selected. As a consequence, the ordinary
dispersion relation is effectively reproduced by the de-
formed one, (20). In fact, narrowing the range of k is
equivalent to expanding the deformed Hamiltonian (15)
around a given value of the momentum. This kind of
behavior is explicitly illustrated in Fig. 4, where it is
possible to appreciate a small interference phenomenon
between the incoming (outgoing) wave and the wall. This
feature can be interpreted as a relic of the polymer mod-
ifications of the Taub universe dynamics, as it will be
clearer in the next analysis.
g. Spread weighting function. On the basis of the pre-

vious analysis, the effects of the polymer substitution show
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FIG. 3 (color online). The WDW wave packet j �ðx; �Þ j for
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up when broad wave packets are considered, i.e. when a
large neighborhood of k0 is taken into account by the
Gaussian weighting function. In this case, it is possible to
appreciate all the modifications induced by the deformed
Hamiltonian (15). As a result, a strong interference phe-
nomenon appears between the incoming (outgoing) wave
and the wall. However, as a matter of fact, such an inter-
ference phenomenon is not able to localize the wave packet
in a determined region of the configuration space. This
way, the probability density to find the universe far away
from the singularity is not peaked, i.e. the cosmological
singularity of this model is not tamed by the polymer
representation from a probabilistic point of view.
Consequently, the incoming particle (universe) is initially
(t < 0) localized around the classical polymer trajectory
(17). It then bounces against the wall (x ¼ x0), where the
wave packet spreads in the ‘‘outer’’ region, regains the
classical polymer trajectory (t > 0), and eventually falls
into the cosmological singularity (t ! 1). This way, we
claim that the classical singularity is not solved by this
quantization of the model. It is interesting to remark that
the interference phenomenon occurs in the outer region of
the configuration space, the (�� x) plane. These features
are explained in Fig. 5. As we will discuss later on, such a
behavior is complementary to that observed in the case of a
generalized uncertainty principle.

C. Semiclassical limit

We end up our analysis by obtaining the correct semi-
classical limit of the model. Within this framework, to
obtain the proper continuum limit of the polymer repre-
sentation, the value of k0 is not arbitrary, but has to be
chosen according to the request k0a 	 1. Since the range
of the variable conjugated to the anisotropy variable is
compactified, k0 has to be small with respect to the length

of the interval.4 As a result, differently from the other
cases, the value of k0 around which the wave packet is
peaked is not arbitrary, but constrained by the character-
istic scale a we are investigating. The ordinary WDW
behavior is therefore recast, as plotted in Fig. 6. Even
though taking ap 	 1 is enough to reproduce the ordinary
Hamiltonian (as a general feature of the polymer represen-
tation because of relation (12)), the fact that the correct
semiclassical limit for the polymer quantum Taub universe
is obtained for a wave packet peaked at k0 	 1=a is a
nontrivial feature of the model.

VI. COMPARISON WITH OTHER APPROACHES

We can deeper understand the physical implications of
this model by comparing it with other applications of the
polymer representation in cosmology and with the imple-
mentation of a generalized uncertainty principle for the
Taub universe. In fact, in our model, the cosmological
singularity is not probabilistically suppressed, as one could
expect from other models. Let us now discuss the main
differences from those models.
h. Isotropic polymer cosmology. The fact that the cos-

mological singularity is not removed within this frame-
work could look apparently in contrast with other models,
such as [14,22]: in the cosmological isotropic sector of
general relativity, i.e. the FRW models, the singularity is
removed by loop quantum effects. In particular, the wave
function of the universe exhibits a nonsingular behavior at
the classical singularity, and the big bang is replaced by a
big bounce, when a free scalar field is taken as the rela-
tional time [23]. There are, however, at least two funda-
mental differences with respect to our model.
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FIG. 5 (color online). The spread polymer wave packet
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4We recall that the length of the integration interval L of (21)
is L / 1=a, so that k0 	 L.
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(i) Within our scheme, the variable �, which describes
the isotropic expansion of the universe, is not dis-
cretized, but treated in the ordinary way. In fact, in
the ADM reduction of the model, this variable
emerges as the time coordinate, and cannot be dis-
cretized in a polymer framework. More precisely, the
phase space of this model is four dimensional, but we
naturally select a two-dimensional submanifold of it,
i.e. the (x� px) plane, where we implement the
polymer paradigm. In other words, we must discre-
tize the anisotropy variable only, without modifying
the volume (time) one. On the other hand, in the
FRW case, the scale factor of the universe is directly
quantized by the use of the polymer (loop) tech-
niques. So far, the evolution itself of the wave packet
of the universe is deeply modified by such an
approach.

(ii) The solution of the equations of motion is radically
different in the two cases. In fact, in our case, the
variable p, conjugated to the anisotropy, is a constant
of motion, and, from the Schroedinger equation, it
describes also k, the energy of the system. According
to the polymer substitution (12), it is always possible
to choose a scale a for which the polymer effects are
negligible during the whole dynamics, at classical
level. On the other hand, the Hamiltonian constraint
in the FRW case does not allow for a constant
solution of the variable conjugated to the scale fac-
tor. For this reason, it is not possible to choose a
scale, such that the polymer modifications are neg-
ligible throughout the whole evolution.

i. Homogeneous loop cosmology. Also the Bianchi cos-
mological models have been analyzed in the framework of
loop quantum cosmology, according to the ADM reduction
of the dynamics. The main difference between these works
and our approach consists in the fact that in [24] all the
degrees of freedom are quantized by loop techniques. In
particular, also the time variable, i.e. the universe volume,
is treated at the same level as the others. In most cases, the
time variable is defined by a phase space variable, i.e. it is
an internal one. As a result, also the Bianchi universes are
singularity free [25]. In this respect, our analysis is based
on considering the time variable as an ordinary Heisenberg
variable.

j. GUP cosmology. The Taub universe, in this ADM
reduction, has also been described within the framework
of GUP [11]. In that case, the conjugate variables x� px

are quantized by means of a deformed Heisenberg algebra.
As a result, the cosmological singularity is probabilisti-
cally suppressed, since the deformation parameter helps

localize the wave function of the universe far away from it.
This way, comparing the GUP approach and the polymer
one allows us to infer that it is not always sufficient to
‘‘deform’’ the anisotropy variable to obtain significant
modifications on the universe evolution. However, the
polymer paradigm is a Weyl representation of the commu-
tation relations, while, as explained in [26], a generaliza-
tion of the commutation relations cannot be obtained by a
canonical transformation of the Poisson brackets of the
system. Moreover, it is possible to show how the effective
framework of loop cosmological dynamics can be obtained
by the opposite sign of the deformation term of the modi-
fied Heisenberg algebra [27]. This feature is phenomeno-
logically in agreement with our analysis.

VII. CONCLUDING REMARKS

In this work, we have analyzed the polymer quantization
of the Taub universe. The Taub model admits a four-
dimensional phase space, and its ADM reduction allows
for an emerging time variable. So far, the energy variable
and its conjugate momenta are treated canonically, while
the anisotropy variable and its conjugate momenta are
quantized according to the polymer paradigm. In particu-
lar, the anisotropy variable is assumed as discrete, while its
conjugate momenta is replaced by its exponentiated ver-
sion on a compactified space. This investigation has been
developed at both classical and quantum levels. In the first
case, trajectories are illustrated to flatten, with respect to
the standard case. However, the most interesting result
appears at the quantum level, when the evolution of wave
packets is discussed. In fact, an interference phenomenon
is illustrated to occur between the potential wall and the
incoming particle (universe), described as a localized wave
packet. Nevertheless, the interference is not strong enough
for the wave packet evolution to be localized. As a result,
the corresponding outgoing particle (universe) appears,
whose evolution towards the cosmological singularity is
not probabilistically avoided. The features of the polymer
Taub universe enhance the comparison with other ap-
proaches. On the one hand, the polymer quantization tech-
nique has been also applied to isotropic models. In this
case, the choice of the scale factor as the polymer-discrete
variable involves the singularity directly. This way, a non-
singular quantum cosmology arises. On the other hand, the
GUP approach to the Taub model leads to a singularity-free
universe. In particular, from an effective point of view, the
consequences of the polymer scheme are complementary
to those predicted by the GUP framework.
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