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In the general matter composition where the multiple scalar fields and the multiple perfect fluids

coexist, in the leading order of the gradient expansion, we construct all of the solutions of the nonlinear

evolutions of the locally homogeneous universe. From the momentum constraint, we derive the constraints

which the solution constants of the locally homogeneous universe must satisfy. We construct the gauge

invariant perturbation variables in the arbitrarily higher order nonlinear cosmological perturbation theory

around the spatially flat Friedmann-Robertson-Walker universe. We construct the nonlinear long wave-

length limit formula representing the long wavelength limit of the evolution of the nonlinear gauge

invariant perturbation variables in terms of perturbations of the evolutions of the locally homogeneous

universe. By using the long wavelength limit formula, we investigate the evolution of nonlinear

cosmological perturbations in the universe dominated by the multiple slow rolling scalar fields with an

arbitrary potential. The � function and the N potential introduced in this paper make it possible to write the

evolution of the multiple slow rolling scalar fields with an arbitrary interaction potential and the arbitrarily

higher order nonlinear Bardeen parameter at the end of the slow rolling phase analytically. It is shown that

the nonlinear parameters such as fNL and gNL are suppressed by the slow rolling expansion parameters.

DOI: 10.1103/PhysRevD.78.103513 PACS numbers: 98.80.Cq

I. INTRODUCTION AND SUMMARY

In the inflationary universe scenario, the quantum fluc-
tuations of the scalar fields called inflatons are thought to
be the origin of the cosmological large scale structures
such as galaxies and clusters of galaxies. In the slow rolling
phase, the quantum fluctuations are stretched into the
superhorizon scales and stay outside the horizon until
they return into the horizon in the radiation dominant
universe. Therefore the method for investigating the evo-
lutions of the long wavelength cosmological perturbations
became necessary, and the long wavelength limit (LWL)
method was developed [1–3]. In the LWL method, we use
the LWL formulas representing the long wavelength limit
of the evolutions of the cosmological perturbations in
terms of the quantities of the corresponding exactly homo-
geneous universe. As for the adiabatic modes, the exact
LWL formula had already been constructed, and it was
used in order to investigate the slow rolling phase [4] and
the oscillatory phase [5,6]. Taruya and Nambu suggested in
the multiple scalar field system also the LWL formula
exists [3]. Soon in this case the exact LWL formula was
constructed [1,2], and it was used to investigate the mul-
tiple oscillatory scalar fields [7,8]. In addition, in Ref. [1],
we presented the flexible way for constructing the LWL
formulas in the general matter composition. It will be
called the Kodama and Hamazaki (KH) construction in
this paper. In the KH construction, the perturbation varia-
bles related with the exactly homogeneous universe, such
as the scalar field perturbation and the energy density
perturbation, are expressed in terms of the exactly homo-

geneous perturbations, that is, the derivative of the exactly
homogeneous quantity with respect to the solution con-
stant. By solving the spatial components of the Einstein
equations, the perturbation variables not related with the
exactly homogeneous quantities such as vector quantities,
for example, velocity perturbation variables, are expressed
in the form of the integral of the perturbation variables
related with the exactly homogeneous universe which have
already been determined. We pointed out that the pertur-
bation solution constants contained in the expressions of
the perturbation variables determined in the processes ex-
plained above must satisfy the constraint coming from the
momentum constraint. The KH construction can be applied
to the system containing the perfect fluid components
having vector degrees of freedom such as the velocity
perturbation variables. Therefore by using the KH con-
struction, in the most general matter composition where
multiple scalar fields and multiple perfect fluids coexist,
the LWL formula was constructed and used to investigate
the multiple component reheating and the multiple compo-
nent curvaton decay [9]. Afterward, in the case of the
nonlinear perturbation also, the existence of the LWL
formula was suggested [10,11]. In this paper we give the
definition of arbitrarily higher order nonlinear gauge in-
variant perturbation variables and the exact nonlinear LWL
formula representing them in terms of the derivatives of the
quantities of the locally homogeneous universe with re-
spect to the solution constants.
In order to calculate the present density perturbations

and the cosmic microwave background anisotropies from
the initial seed perturbations, we need to calculate the
evolution of the scalar field perturbations on superhorizon
scales during the slow rolling phase. In Refs. [12,13], by*yj4t-hmzk@asahi-net.or.jp
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decomposing the multiple scalar fields into the adiabatic
field and the entropy fields instant by instant, the evolu-
tionary behaviors of cosmological perturbations during the
slow rolling phase were discussed. But this study is the
local investigation; that is, it is based on the Taylor expan-
sion of the evolution equations around the first horizon
crossing, and the evolutions of the scalar fields in the long
time interval were not solved. Then in this paper we
present the method which makes it possible to trace the
evolutions of the multiple slow rolling scalar fields with an
arbitrary interaction potential for the long time period as in
the whole slow rolling phase.

This paper is organized as follows. Section II is devoted
to the nonlinear LWL formula. In Sec. II A, under the
assumption that the universe is the spatial flat
Friedmann-Robertson-Walker (FRW) universe in the back-
ground level, in the leading order of the gradient expan-
sion, we give the evolution equations of the locally
homogeneous universe. We point out that these locally
homogeneous evolution equations are similar to the corre-
sponding exactly homogeneous evolution equations and
that deviations between the two are induced by the uni-
modular factor of the spatial metric ~�ij which has a con-

tribution from the adiabatic decaying mode. Following the
philosophy of the KH construction [1], we construct all of
the solutions of the evolution equations of the locally
homogeneous universe. We give the constraint which
comes from the momentum constraint and which must be
satisfied by the solution constants contained in the solution
of the locally homogeneous universe. In Sec. II B, we give
the definition of the gauge invariant perturbation variables
of the arbitrarily higher order nonlinear cosmological per-
turbation theory and prove their gauge invariance. We
present the nonlinear LWL formula representing the long
wavelength limit of the evolutions of the gauge invariant
perturbation variables in the nonlinear perturbation theory
in terms of the derivatives with respect to the solution
constant of the locally homogeneous solutions.
Section III is devoted to the analysis of the nonlinear
evolution of the multiple slow rolling scalar fields as an
application of the nonlinear LWL formula constructed in
the previous section. In Sec. III A, it is shown that in the
slow rolling phase the scalar field evolution equations are
simplified by truncation. By estimating the truncation er-
ror, we establish the accuracy of the truncated evolution
equations in the slow rolling expansion scheme. In
Sec. III B, the ideas of the � function and the N potential
are introduced, and they are shown to enable us to trace the
multiple slow rolling scalar fields in the whole slow rolling
phase analytically. By adopting the � function as the evo-
lution parameter, the truncated evolution equations of the
multiple slow rolling scalar fields are simplified enough for
their solutions to be written analytically. From the scalar
field solutions we can easily calculate the N potential,
which allows us to calculate the arbitrarily higher order

Bardeen parameter at the end of the slow rolling phase
from the initial scalar field perturbations at the first horizon
crossing. In Sec. III C, by the � function and theN potential
we calculate the various perturbation variables such as the
Bardeen parameter, the entropy perturbations, the gravita-
tional wave perturbation, and their spectrum indices in the
case of the multiple quadratic potential whose truncated
evolution can be exactly solved. In Sec. III D, we consider
the effect of the interaction between multiple slow rolling
scalar fields in the case where the masses of the scalar
fields do not satisfy any resonant relations. We point out
that this problem is related with the well-known Poincaré
theorem about the linearization. In the concrete model, we
calculate the various quantities such as the N potential and
the nonlinear parameters fNL and gNL introduced in
Ref. [14]. In Sec. III E, we investigate the resonant inter-
action between the multiple slow rolling scalar fields. We
show that the N potential has no singular part by introduc-
ing the resonant interactions. Section IV is devoted to the
discussions. The appendixes are devoted to the proofs of
the propositions presented in the main content of this
paper.

II. NONLINEAR LWL FORMULA

In this section, we derive the nonlinear LWL formula in
the most general matter composition whose energy mo-
mentum tensor is divided into A ¼ ðS; fÞ parts, where S
represents NS component scalar fields �a (a ¼
1; 2; . . . ; NS) and f represents Nf component perfect fluids

�� (� ¼ 1; 2; . . . ; Nf). The content of this section is the

nonlinear generalization of the content of Ref. [9]. Our
results in this section can be applied not only to the
multiple slow rolling scalar fields but also to the multi-
component reheating and the multicomponent curvaton
decay [9,15].
In Sec. II A, we give the evolution equations of the

locally homogeneous universe in the leading order of the
gradient expansion, and we construct all of the solutions of
these locally homogeneous universe evolution equations.
In Sec. II B, we give the definition of the nonlinear gauge
invariant perturbation variables, and we give the nonlinear
LWL formula representing the long wavelength limit of the
evolutions of the gauge invariant perturbation variables in
terms of the derivative with respect to the solution constant
of the evolutions of the locally homogeneous universe
determined in Sec. II A.
Our theory has two small expansion parameters: One is

� characterizing the small spatial derivative, that is, the
small wave number, and the other is �c characterizing the
amplitudes of the higher order perturbations. In general,
under our present scheme, all of the terms are classified as
Oð�k�l

cÞ, where k and l are appropriate non-negative in-
tegers. Since we are interested in the full nonlinear pertur-
bations, in Sec. II Awe will not Taylor expand with respect
to �c. But since we treat the evolutions of the long wave-
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length perturbations only, we will expand with respect to �
and we will drop terms which are small compared to the
leading order by Oð�2Þ order quantity. This process corre-
sponds to the leading order of the gradient expansion
[10,11,16], and the universe treated in this way is called
the locally homogeneous universe. The locally homoge-
neous evolution equations are very similar to the exactly
homogeneous evolution equations. The evolutions of lo-
cally homogeneous physical quantities which have coun-
terparts in the corresponding exactly homogeneous
universe can be determined as easily as the exactly homo-
geneous evolutions are determined. This is the attractive
point of our LWL method.

In our scheme, we can assign @t ~�ij ¼ Oð�cÞ and

@2t ~�ij ¼ Oð�cÞ, where ~�ij is the unimodular factor of the

spatial metric defined by (2.5), since we require only that
the universe should be the spatially flat FRW universe in
the background level. So in the leading order of the gra-
dient (�) expansion, the terms containing @t ~�ij and @2t ~�ij

cannot be dropped. But in Refs. [10,16], mainly in order to
avoid the computational complexity, the authors assigned
@t ~�ij ¼ Oð�2Þ and @2t ~�ij ¼ Oð�2Þ and discarded the terms

containing @t ~�ij and @2t ~�ij. But this is confusion between

the different small parameters � and �c and cannot be
justified. In this section, under the more natural assumption
~�ij ¼ �ij þOð�cÞ, we show that the evolution of ~�ij can

be solved analytically and that the evolution equations of
the other dynamical variables are simple enough to be
solved analytically in spite of the inclusion of the terms
containing @t ~�ij and @2t ~�ij. By doing so, in the leading

order of the gradient (�) expansion, the evolutions of all of
the modes 2NS þ 4Nf þ 4 are obtained consistently in the

universe where NS scalar fields and Nf perfect fluids

coexist. In Refs. [10,16], the evolutions of the several
dynamical variables become higher orderOð�2Þ, and there-
fore the initial conditions of such variables are unnaturally
constrained to too small quantities.

A. Evolution of the locally homogeneous universe

First, we present the Einstein equations G�	 ¼ 
2T�	,

where 
2 ¼ 8�G is the gravitational constant, based on the
3þ 1 decomposition based on Ref. [17]. The metric

ds2 ¼ g�	dx
�dx	 (2.1)

is written by

g00 ¼ ��2 þ �k�
k; (2.2)

g0i ¼ �i; (2.3)

gij ¼ �ij; (2.4)

where � is the lapse, �i is the shift vector, and �i :¼
�ij�j. Greek indices take the values �; 	 ¼ 0; 1; 2; 3 and

Latin indices take values i; j ¼ 1; 2; 3. The spatial metric

�ij is decomposed as

�ij ¼ a2 ~�ij; detð~�ijÞ ¼ 1; (2.5)

where a can be interpreted as the nonlinear generalization
of the scale factor. The extrinsic curvature of the t ¼ const
hypersurface is given by

� Kij ¼ ��0
ij ¼

1

2�
ð _�ij �Di�j �Dj�iÞ; (2.6)

whereDi is the covariant derivativewith respect to �ij. The

extrinsic curvature is decomposed as

Kij ¼ 1
3�ijK þ a2 ~Aij; (2.7)

�ij ~Aij ¼ 0: (2.8)

Then we obtain

� K ¼ 1

�

�
3
_a

a
�Di�

i

�
: (2.9)

The energy momentum tensor is given by

T�	 ¼ ð�þ PÞu�u	 þ Pg�	; (2.10)

where �, P, and u� are the energy density, the pressure,

and the 4-velocity of the total system, respectively. The 4-
velocity u� is written as

u0 ¼ ½�2 � ð�k þ vkÞð�k þ vkÞ��1=2; (2.11)

ui ¼ u0vi; (2.12)

where vi is the 3-velocity of the total system and vi :¼
�ijvj. By using n� :¼ ð��; 0; 0; 0Þ, which is the unit

vector normal to the time slices, the 3þ 1 decomposition
of the energy momentum tensor is given by

E :¼ T�	n
�n	 ¼ ð�þ PÞð�u0Þ2 � P; (2.13)

Jj :¼ �T�	n
��	

j ¼ ð�þ PÞ�u0uj; (2.14)

Sij :¼ Tij ¼ ð�þ PÞðu0Þ2ð�i þ viÞð�j þ vjÞ þ P�ij:

(2.15)

The Hamiltonian and momentum constraints are written as

R� ~Aij
~Aij þ 2

3K
2 ¼ 2
2E; (2.16)

Di
~Ai
j � 2

3DjK ¼ 
2Jj; (2.17)

where the indices of ~Aij is raised by ~�ij, which is the

inverse matrix of ~�ij. The evolution equations for �ij are

written as

ð@t � �k@kÞa ¼ 1
3að��K þ @k�

kÞ; (2.18)
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ð@t � �k@kÞ~�ij ¼ �2� ~Aij þ ~�ik@j�
k þ ~�jk@i�

k

� 2
3
~�ij@k�

k: (2.19)

The evolution equations for Kij are given by

ð@t � �k@kÞK ¼ �

�
~Aij

~Aij þ 1

3
K2

�

�DkD
k�þ 
2

2
�ðEþ SkkÞ; (2.20)

ð@t � �k@kÞ ~Aij ¼ 1

a2

�
�

�
Rij � 1

3
�ijR

�

�
�
DiDj�� 1

3
�ijDkD

k�

��
þ �ðK ~Aij � 2 ~Aik

~Ak
jÞ þ ~Aik@j�

k

þ ~Ajk@i�
k � 2

3
~Aij@k�

k

� 
2�

a2

�
Sij � 1

3
�ijS

k
k

�
: (2.21)

Rij is the Ricci tensor of the metric �ij, R ¼ �ijRij, and

Skk ¼ �klSkl.
Next, under the 3þ 1 decomposition, we rewrite the

evolution equations of the energy momentum tensor T
�
A	 of

the A component:

r	T
	
A� ¼ QA�; (2.22)

where A :¼ ða; �Þ, a is the scalar field index, and � is the
perfect fluids index. The energy momentum transfer vector
QA� is decomposed as

QA� ¼ QAu� þ fA�; (2.23)

u�fA� ¼ 0; (2.24)

where QA and fA� are the energy transfer and the momen-

tum transfer vector of the A component, respectively. The
energy momentum tensor of the total system T�

	 can be
expressed as the sum of each component energy momen-
tum tensor T

�
A	:

T�
	 ¼ X

A

T�
A	: (2.25)

The energy momentum conservation, that is, the Bianchi
identity, gives X

A

QA� ¼ 0: (2.26)

We consider the scalar field component � ¼ ð�aÞ. The
energy momentum tensor of the scalar field part is given by

ðT�
	 ÞS ¼ r�� � r	�� 1

2½g�
r�� � r
�þ 2U�g�	:

(2.27)

The energy momentum tensor of the scalar field part

ðT�	ÞS can be written as the perfect fluid form by identify-

ing

�S ¼ �1
2g

�
r�� � r
�þU; (2.28)

PS ¼ �1
2g

�
r�� � r
��U; (2.29)

ua� ¼ � 1

sgnð _�aÞð�g�
r�� � r
�Þ1=2 @��a; (2.30)

where the minus sign of ua� is adopted by requiring ua0 ¼
��þOð�2Þ in the gradient expansion scheme, where � is
the small parameter characterizing the spatial derivative
defined below. When we assume that the energy momen-
tum transfer vector of the scalar field part ðQ�ÞS is given by

ðQ�ÞS ¼ Sar��a; (2.31)

where the source function Sa describes the energy transfer
from the scalar field�a to other components, the evolution
equation of the scalar field components r	ðT	

�ÞS ¼ ðQ�ÞS
holds if the scalar field �a satisfies the phenomenological
equations of motion of the scalar field �a:

h�a � @U

@�a

¼ Sa; (2.32)

where

h�a ¼ ð�gÞ�1=2@�½ð�gÞ1=2g�	@	�a�; (2.33)

g :¼ detðg�	Þ: (2.34)

Since we are interested in the cosmological perturba-
tions on superhorizon scales, we put the gradient expansion
assumption defined by

@i ¼Oð�Þ; �i ¼Oð�Þ; vi ¼Oð�Þ; fAi ¼Oð�Þ;
(2.35)

where � is the small parameter characterizing the small
wave number of the cosmological perturbations. By the
assumption @i ¼ Oð�Þ, we assume that the spatial scale of
all of the inhomogeneities is of the order of 1=�; that is, all
of the physical quantities which are approximately homo-
geneous on each horizon can vary on the superhorizon
scales. The local homogeneity and isotropy in the horizon
guarantee that the vector quantities such as �i, vi, and fAi
are of the order of Oð�Þ. Unlike Refs. [10,16], where
@t ~�ij ¼ Oð�2Þ is assumed, from the requirement that our

locally homogeneous universe should be the spatially flat
FRW universe in the background level, we assume that

~� ij ¼ �ij þOð�cÞ; (2.36)

where �c is the small parameter characterizing the higher
order perturbations. Since we consider the leading order of
the gradient (�) expansion without expanding with respect
to �c, we must keep the terms containing @t ~�ij ¼ Oð�cÞ
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and @2t ~�ij ¼ Oð�cÞ as explained in the beginning of this

section.
Under the gradient (�) expansion scheme, the relations

between the total system quantities and the component
quantities are given by

� ¼ X
A

�A; (2.37)

P ¼ X
A

PA; (2.38)

h ¼ X
A

hA; (2.39)

hvi ¼
X
A

hAvAi þOð�3Þ; (2.40)

0 ¼ X
A

QA; (2.41)

0 ¼ X
A

fAi; (2.42)

where hA is the A component enthalpy defined by hA :¼
�A þ PA.

As for the fluid component �, r�T
�
�0 ¼ Q�0 gives

_� � ¼ �3Hð�� þ P�Þ þQ��þOð�2Þ; (2.43)

where H is the Hubble parameter defined by H :¼ _a=a,
and integrating r�T

�
�i ¼ Q�i with respect to t gives

h�ð�i þ v�iÞ ¼ �

a3
C�i þ �

a3

Z
t0

dt�a3
�
�@iP�

� 1

�
Di�h� þQ�i

�
þOð�3Þ; (2.44)

where t0 is the initial time and C�i :¼ C�iðxÞ are the
integration constants.

As for the scalar field components, from (2.32), the
equation of motion of the scalar field �a is given by

1

�2

�
€�a þ 3

_a

a
_�a � _�

�
_�a

�
þ @U

@�a

þ Sa ¼ Oð�2Þ:
(2.45)

Since the source function Sa is the scalar quantity, we can
assume that Sa is the function of other scalar quantities. As
such scalar quantities, we can adopt �a,

T2a :¼ sgnð@0�aÞð�g�
r��ar
�aÞ1=2

¼ 1

�
_�a þOð�2Þ; (2.46)

or

T2a :¼ u�r��a ¼ 1

�
_�a þOð�2Þ; (2.47)

where u� is the arbitrary unit timelike vector field and

T3 :¼ r�u
� ¼ 3

1

�

_a

a
þOð�2Þ: (2.48)

Therefore, in the leading order of the � expansion, the form
of the source functions Sa can be given by

Sa ¼ Sa

�
�a;

1

�
_�a; 3

1

�

_a

a

�
þOð�2Þ: (2.49)

For example,

Sa ¼ �a

1

�
_�a; (2.50)

where �a is the decay constant of the scalar field �a, is the
most simple source function.
Since until now we have presented the leading order of

the gradient (�) expansion of all of the locally homoge-
neous evolution equations, we will construct all of the
solutions of the evolutions of the locally homogeneous
universe. From (2.19), we obtain

~A ij ¼ � 1

2�

d

dt
~�ij þOð�2Þ: (2.51)

By substituting the above equation into (2.21), we obtain

d2

dt2
M ¼

�
d

dt
ln
�

a3

�
_Mþ _MM�1 _MþOð�2Þ; (2.52)

where M :¼ ð~�ijÞ. By neglecting Oð�2Þ order terms, we

obtain the solution as

M ¼ R exp

�Z
t0

dt
�

a3
T

�
; (2.53)

where R ¼ RðxÞ and T ¼ TðxÞ are time-independent ma-
trices. Since M is a unimodular symmetric matrix for an
arbitrary t, R is unimodular symmetric, T is traceless, and
RT is symmetric. By using (2.53), we obtain

~A ij
~Aij ¼ 1

4�2
trð _MM�1 _MM�1Þ ¼ cT

a6
; (2.54)

cT :¼ 1
4 trðT2Þ; (2.55)

where cT ¼ cTðxÞ is a time-independent constant. By using
the above results, (2.16) gives

H2 ¼ �2

�

2

3
�þ 1

6

cT
a6

�
; (2.56)

and (2.20) gives

_H ¼ _�

�
H� �2

2

cT
a6

� �2
2

2
ð�þ PÞ: (2.57)

By eliminating H in (2.56) and (2.57), we obtain the well-
known continuity equation of the total system in the ex-
panding universe as

_� ¼ �3Hð�þ PÞ: (2.58)
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Equations (2.43) and (2.45) and the above three evolution
equations agree with the exactly homogeneous evolution
equations if the proper time slicing � ¼ 1 [18] and cT ¼ 0.
But we cannot assume cT ¼ 0 since the solution constants
must satisfy the constraint originating from the momentum
constraint (2.17) as


2
X
�

Cj� þ 1

2
@iT

i
j �

1

4
tr½R�1@jRT�

�
�
2a3@j

�
H

�

�
þ 
2 a

3

�

X
a

_�a@j�a

�
t0

¼ 0: (2.59)

For the derivation of (2.59), see Appendix A.
We consider the long wavelength limit of all of the

solutions of the evolution equations of the locally homoge-
neous universe. The unimodular factor of the spatial metric
~�ij is obtained by (2.53). These ~�ij induce the deviation

between the true locally homogeneous universe and the
corresponding exactly homogeneous universe, for ex-
ample, cT terms in (2.56) and (2.57). They contain the
scalar adiabatic decaying mode which was carefully
treated in Refs. [1,9], since in the scalar part in the linear
cosmological perturbation theory it induces the deviation
between the long wavelength limit of the true perturbation
solutions and the derivative of the exactly homogeneous
universe with respect to the solution constant. According to
the philosophy of the KH construction [1], the expressions
of �� and �a related with the exactly homogeneous quan-
tities are obtained by solving the evolution equations (2.43)
and (2.44) under the Hamiltonian constraint (2.56) and the
proper time slicing � ¼ 1. Under the proper time slicing
� ¼ 1, (2.43), (2.45), and (2.56) are almost the same as the
counterparts of the exactly homogeneous universe.
Therefore, solving the former true locally homogeneous
evolution equations requires as little labor as solving the
latter exactly homogeneous evolution equations. As for the
velocity perturbations of the fluid components h�ð�i þ
v�iÞ, which are the vector quantities not related with the
exactly homogeneous quantities, their evolutions are given
by (2.44) in whose right-hand side the second integral term
contains P�, h�, and � which have already been deter-
mined by the previous process. The solution constants must
satisfy the momentum constraint (2.59).

Let us count the degrees of freedom. As for (2.53), R is
unimodular symmetric, T is traceless, and RT is symmet-
ric; therefore, R and T have 5 degrees of freedom, respec-
tively. But by the coordinate transformation �xi ¼ fiðxÞ
(i ¼ 1; 2; 3), the 3 degrees of freedom of R can be made
vanishing. According to (2.43) and (2.45), the densities ��

and the scalar fields �a have Nf and 2NS degrees of free-

dom, respectively. According to (2.44), the fluids velocities
v�i have 3Nf degrees of freedom. The momentum con-

straint (2.59) gives 3 constraints. Therefore, the total de-
grees of freedom is 5þ5�3þNfþ2NSþ3Nf�3¼4þ
4Nfþ2NS. Then we have obtained all of the solutions of

the evolution equations of the locally homogeneous uni-
verse in the leading order of the gradient (�) expansion.
From the time dependence of all of the solutions, we can

interpret the physical roles of all of the solutions. Two from
R can be interpreted as the gravitational wave growing
modes. Five from T can be interpreted as the two gravita-
tional wave decaying modes, the one adiabatic scalar
decaying mode, and the two adiabatic vector decaying
modes. By the three momentum constraints (2.59), three
of Cj� are adjusted. In the remaining ð3Nf � 3Þ Cj�’s, the

ð2Nf � 2Þ entropic vector decaying modes and the ðNf �
1Þ entropic scalar decaying modes are contained. The Nf

densities �� have the Nf scalar growing modes, and the NS

scalar fields�a have theNS scalar field growing modes and
the NS scalar field decaying modes.

B. Gauge invariant variables and the derivation of the
LWL formula

In this subsection, we give the definitions of the gauge
invariant perturbation variables in the arbitrary higher or-
der perturbation theory in the leading order of the gradient
(�) expansion and the LWL formula representing the evo-
lutions of these gauge invariant perturbation variables in
terms of derivative with respect to the solution constant of
the corresponding physical quantities of the locally homo-
geneous universe.
As forM ¼ ð~�ijÞ, since the homogeneous parts of R and

T defined by (2.53) are determined by the fact that the
background metric is the spatially flat FRWuniverse, R and
T are expanded as

RijðxÞ ¼ �ij þ
X1
k¼1

1

k!
�kRijðxÞ; (2.60)

TijðxÞ ¼
X1
k¼1

1

k!
�kTijðxÞ; (2.61)

where � in the above is the operator generating the higher
order perturbation quantities.
As shown in the previous subsection, in the leading order

of the gradient (�) expansion, the evolution equations of
the locally homogeneous universe which have counterparts
in the evolution equations of the exactly homogeneous
universe do not contain the spatial derivative. Therefore,
in the expression of the solution of the evolution of an
arbitrary locally homogeneous physical quantity (related
with the exactly homogeneous quantity) A such as the
scalar fields �a and the fluid energy densities ��, all of
the dependences on the spatial coordinate x are contained
in the (time-independent) spatial-dependent integration
constants CðxÞ:

A ¼ Aðt; CðxÞÞ: (2.62)

Since the solutions of the evolution equations of the locally
homogeneous universe contain the nonlinear effect in the
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full order, the locally homogeneous physical quantity A
can be expanded as

Aðt; xÞ ¼ AðtÞ þ X1
k¼1

1

k!
�kAðt; xÞ: (2.63)

The higher order perturbation effects are induced by the
dependences on the spatial coordinate x. Therefore, each
solution constant CiðxÞ can be expanded as

CiðxÞ ¼ Ci þ
X1
k¼1

1

k!
�kCiðxÞ; (2.64)

whose background part is spatially independent. The kth
order nonlinear perturbation �kA can be expressed in terms
of the nonlinear perturbations of the spatial-dependent
integration constants �lCðxÞ. In this paper, the expressions
representing �kA in terms of �lCðxÞ are called the LWL
formula. In order to derive the LWL formula, we propose a
simple mathematical trick. In the leading order of the
gradient (�) expansion, the expression of the solution of
an arbitrary locally homogeneous physical quantity A can
be written as a function of the time t and the integration
constants C as shown in (2.62). We assume that all of the
integration constants C depend on one parameter � imag-
inarily instead of x. As understood below, � represents the
spatial coordinate dependence symbolically. The physical
quantity A can be expanded as

Að�Þ ¼ X1
k¼0

1

k!
�k dk

d�k
Að�Þj�¼0: (2.65)

The full order nonlinear solution is formally recovered by
setting � ¼ 1. Since both the perturbation � and the �
differentiation d=d� are the derivative operators satisfying
the same chain and product rules, and the kth order �
differentiation dk=d�k . . . j�¼0 is multiplied by �k, we
can use the � differentiation to track the algebraic behav-
iors of the perturbation �. By comparing (2.65) with (2.63),
we can read the correspondences given by

dk

d�k
Að�Þj�¼0 $ �kAðt; xÞ: (2.66)

The gauge transformation can be expressed by the Lie
derivative LðTÞ as

Að�;�Þ ¼ expf�LðTÞgAð�;� ¼ 0Þ; (2.67)

where � is the parameter characterizing the size of the
gauge transformation, Að�;� ¼ 1Þ is the transformed vari-
able, and Að�;� ¼ 0Þ ¼ Að�Þ is the original variable.
When the vector field T :¼ T�@� in the Lie derivative

LðTÞ can be expanded in terms of �, the zeroth order
term Tð� ¼ 0Þ is zero since we consider the infinitesimal
gauge transformation. By differentiating (2.67) with re-
spect to �, afterward putting � ¼ 0, we obtain the well-
known expressions of the gauge transformations of �kA
[19]:

f�A ¼ L1Aþ �A; (2.68)

g�2A ¼ L2Aþ L1L1Aþ 2L1�Aþ �2A; (2.69)

where g�nA is the gauge transformed perturbation variables
of �nA and Lk is the Lie derivative induced by �kT; Lk :¼
Lð�kTÞ. The gauge transformation law (2.67) is the solu-
tion of the differential equation:

d

d�
Að�;�Þ ¼ LðTÞAð�;�Þ; (2.70)

which is much simpler than the individual gauge trans-
formation expressions of �kA. As for the vector field T :¼
T�@� inducing the Lie derivative LðTÞ, we can assume that

Ti ¼ Oð�Þ; (2.71)

since we consider only the gauge transformations keeping
the local homogeneity and isotropy in the horizon.
By using the differential equation (2.70), we can show

the following proposition.
Proposition 1.—For an arbitrary scalar quantity A, the

perturbation quantities DnA and Dnð _A=�Þ, where D is
defined by

D :¼ d

d�
� da

d�

1

_a

d

dt
; (2.72)

are gauge invariant up to order Oð�2Þ error. For the lapse
function �, An defined by

A n :¼
�
d

d�
� d

dt

1

_a

da

d�

�
n
� (2.73)

is gauge invariant up to order Oð�2Þ error.
For the proof, see Appendix C.
DnA,Dnð _A=�Þ, andAn are higher order generalizations

of DA, D _A, and A defined in Ref. [9], respectively.
Dnð _A=�Þ and An are not independent. For example,

D

� _A

�

�
¼ 1

�2
fðDAÞ��� _AA1g: (2.74)

Therefore, by putting A ¼ �a and A ¼ ��, we can use

Dn�a, D
nð _�a=�Þ, and Dn�� as the independent perturba-

tion variables. Our DA is almost the same as the well-
known gauge invariant perturbation variable, for example,
for A ¼ �a the Sasaki Mukhanov variable in the linear
perturbation theory [9,18,20,21]. Our D2A agrees almost
perfectly with the gauge invariant quantities introduced by
the second order gauge invariant perturbation theory [22–
24]. The reason of the tiny deviation between our gauge
invariant perturbation quantity and the gauge invariant
perturbation quantity of the first and the second order
gauge invariant perturbation theory is that we assume Ti ¼
Oð�Þ based on the gradient expansion scheme. In our
scheme (2.71), we can regard the scale factor a as the
scalar quantity up to Oð�2Þ. Therefore, in the same way
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as in the proof of Proposition 1, we can show that

�n :¼ ��n lna; (2.75)

�� :¼ d

d�
� d�

d�

1

_�

d

dt
(2.76)

are gauge invariant up to Oð�2Þ. �n is the higher order
generalization of the well-known Bardeen parameter
[25,26].

We discuss the influence of the replacement of the
evolution parameter. Concretely, we consider replacing
the old evolution parameter t with the new evolution
parameter as the scale factor a. With the scale factor a as
the evolution parameter, the D operation defined by (2.72)
can be written in the more simple form. d=d� in (2.72) is
the � derivative with t fixed, that is, operating on the locally
homogeneous physical quantity such as �� and �a ex-
pressed by using t as the evolution parameter. However,
arbitrary locally homogeneous quantities can be also ex-
pressed by using the scale factor a as the evolution pa-
rameter instead of t. In this case, we can consider the
differentiation ð@=@�Þa taken at fixed a. The differential
operators in the two groups ðd=d�; d=dtÞ and
ðð@=@�Þa; ð@=@aÞaÞ are commutative in each group, but
the differential operators belonging to the different groups,
for example, d=d� and ð@=@aÞa, are not commutative. By
using the relation

d

d�
¼

�
@

@�

�
a
þ da

d�

�
@

@a

�
a
; (2.77)

theD operation (2.72) can be expressed much more simply
as

D ¼
�
@

@�

�
a
: (2.78)

Therefore DnA and Dnð _A=�Þ can be written in the very
simple way as

DnA ¼
�
@n

@�n

�
a
A; Dn

� _A

�

�
¼

�
@n

@�n

�
a

� _A

�

�
: (2.79)

In this way, in the LWL formalism where the scale factor a,
not t, is used as the evolution parameter [7–9], the expres-
sions of the solutions ofDnA andDnð _A=�Þ can be obtained
by calculating only a single term written with the higher
order ð@=@�Þa derivative of the solution of the correspond-
ing locally homogeneous physical quantity. In the same
way, �� defined by (2.76) can be expressed in the word of
the scale factor a as

�� ¼
�
@

@�

�
a
�

��
@�

@�

�
a

��
@�

@a

�
a

��
@

@a

�
a
: (2.80)

As for the Bardeen parameter defined by (2.75), we can
show the following propositions.

Proposition 2.—If �1 is conserved for arbitrary values of
integration constants Cð� ¼ 0Þ, all �n (n � 2) are also

conserved, and they can be expressed as

�n ¼
�
@

@�

�
n�1

a
�1: (2.81)

For the proof, see Appendix D.
Proposition 3.—When P ¼ Pð�Þ holds, �n (n � 1) can

be expressed as

�n ¼ 1

3

�
@n

@�n

�
a

�Z
d�

1

�þ Pð�Þ
�
; (2.82)

and all �n (n � 1) are conserved.
For the proof, see Appendix E.
All of the definitions of the nonlinear gauge invariant

perturbation variables in this subsection are written in
terms of the � differentiations. As explained at the begin-
ning of this subsection, the � differentiation implies not
only the symbol of the higher order nonlinear perturbation
of the physical quantity but also the process of taking the
derivative with respect to the integration constants of the
corresponding locally homogeneous quantity. Therefore,
all of the definitions of the nonlinear gauge invariant
perturbation variables in terms of the � differentiations
can also be regarded as the LWL formulas themselves, so
from now on they will be called the LWL formulas.

III. NONLINEAR EVOLUTION OF THEMULTIPLE
SLOW ROLLING SCALAR FIELDS

In this section, as the application of the LWL formula
derived in the previous section, we consider the evolutions
of the long wavelength nonlinear cosmological perturba-
tions in the universe dominated by the multiple slow rolling
scalar fields. The � function and the N potential introduced
in this section are useful tools for tracing analytically the
evolutions of the multiple slow rolling scalar fields in the
long time interval. We calculate spectral indices of the
linear cosmological perturbations. In the interacting sys-
tem, we derive the formulas giving the amplitudes of the
nonlinear Bardeen parameters at the end of the slow rolling
phase in terms of the initial scalar field perturbations and
calculate the nonlinear parameters fNL and gNL [14] rep-
resenting the non-Gaussianity of the Bardeen parameter.

A. Evolution of the multiple slow rolling scalar fields

In the slow rolling phase, the scalar fields �a roll slowly
on the potential U. The potential energy U, which hardly
changes, triggers the exponential expansion of the uni-
verse. The Hubble parameter is large compared to the
masses of the scalar fields. The ratio of the kinetic energy
part in the whole energy density � is small compared to the
contribution from the potential energy U. In the investiga-
tions of the evolutions of the scalar fields under this situ-
ation, it is effective to use the transformation by which the
evolution equations of the slow rolling scalar field system
are greatly simplified; that is, the effects of the time de-

TAKASHI HAMAZAKI PHYSICAL REVIEW D 78, 103513 (2008)

103513-8



rivatives of the scalar fields pa :¼ _�a=� on the evolutions
of the scalar fields �a are eliminated.

In this section, we consider the multiple slow rolling
scalar fields �a under the conditions:

Sa ¼ 0; U ¼ X
a

1

2
m2

a�
2
a þUint; (3.1)

where Uint is the sum ofmth order monomials (m � 3). As

the independent variables, we adopt �a and pa :¼ _�a=�.
By nondimensionalizing the dynamical variables as

a

a0
! a;

�a

�0

! �a;
pa

p0

! pa;
cT
cT0

! cT;

(3.2)

and the parameter as

ma

m0
! ma; (3.3)

that is,

�

m2
0�

2
0
! �; (3.4)

we obtain the dimensionless parameters:

�� :¼
ffiffiffi
3

p

�0

; �2 :¼ p2
0

m2
0�

2
0

; 	2 :¼ 1

2

cT0

2m2

0�
2
0

1

a60
:

(3.5)

�� is the small constant representing the ratio of the mass
scale to the Hubble parameter. This �� is different from �
characterizing the small wave number in the previous
section. �2 is positive constant since we consider only
the scalar fields with positive definite kinetic parts. We
assume that �� � �� 	 � 1. Then the evolution equa-
tions of �a, pa, and cT are given by

d

dN
�a ¼ ��

�

1

�1=2
�2pa; (3.6)

d

dN
pa ¼ �3pa � ��

�

1

�1=2

@U

@�a

; (3.7)

cT ¼ const; (3.8)

where the evolution parameter is the e-folding number of
the scale factor N :¼ lna and the energy density � is given
by

� ¼ �2

2

X
a

p2
a þUþ 	2cT

1

a6
: (3.9)

By using pð1Þ
a defined by

pð1Þ
a :¼ pa þ 1

3

��
�

1

�1=2

@U

@�a

; (3.10)

which represents the deviation of pa from the truncated

slow rolling solution, the evolution equations (3.6) and
(3.7) can be rewritten as

d

dN
�a ¼ �2Fað�Þ þ �2fað�;pð1Þ; cT; NÞ; (3.11)

d

dN
pð1Þ
a ¼ �3pð1Þ

a þ �2gað�;pð1Þ; cT; NÞ; (3.12)

where

Fað�Þ :¼ � 1

3

�2�
�2

1

U

@U

@�a

(3.13)

and

jfaj � jpð1Þj þ �2; jgaj � 1; (3.14)

for an appropriate complex domain containing the real

interval where we consider the motion of �a, p
ð1Þ
a , and

N. In this section, in all of the inequalities we omit all of

the finite constants, and jpð1Þj is interpreted as the quantity

bounded by Mjpð1Þj for some positive constant M and

jpð1Þj :¼ X
a

jpð1Þ
a j: (3.15)

From now on, we will simply write pð1Þ
a as pa for notational

simplicity. In this section, we consider the evolution for
0 � N � 1=�2 during which the scalar fields roll slowly
on the potentialU. For a function fðNÞ, let us define kfk by

kfk :¼ sup
0�N�1=�2

jfðNÞj: (3.16)

Under these notations, the following propositions hold.
Proposition 4.—Let k be a non-negative integer and �c a

small positive constant. Under the initial conditions

@k

@�k
�ð0Þ; @k

@�k
pð0Þ; @k

@�k
cT � �k

c; (3.17)

for 0 � N � 1=�2, the upper bounds of the independent
variables are given by								

�
@k

@�k

�
a
�

								� �k
c; (3.18)

								
�
@k

@�k

�
a
p

								� �k
cðe�3N þ �2Þ: (3.19)

For the proof, see Appendix F.
In the above and from now on, as for � differentiations

of the physical quantities at the initial time N ¼ 0, the
suffixes a implying ‘‘a fixed’’ are omitted since what the �
differentiations operate on do not contain any a ¼ eN

dependent parts.
Proposition 5.—Let k be a non-negative integer. The

differences ��a :¼ �a � ��a, where � obey the exact
evolution equations (3.11) and (3.12) and �� obey the
truncated evolution equations as
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d

dN
�� ¼ �2Fð ��Þ; (3.20)

are bounded as





�
@k

@�k

�
a
��






� �2�k
c � �2







�
@k

@�k

�
a
�






; (3.21)

under the initial conditions

@k

@�k
��ð0Þ ¼ 0: (3.22)

For the proof, see Appendix G.
According to Proposition 5, if we want to investigate the

evolution of the leading order in the slow rolling (�2)
expansion, we have only to solve rather simple evolution
equations (3.20). In the following subsections, we study the
evolutionary behaviors of the above evolution equations
(3.20).

B. The � function and the N potential

In this subsection, we introduce the � function and the N
potential which enable us to trace the multiple slow rolling
scalar fields in the long time interval analytically. By using
the � function as the evolution parameter, the evolutions of
the scalar fields �a and the old evolution parameter N can
be expressed in the form of the simple analytic function of
�. From these expressions of �a in terms of the � function,
we can calculate the N potential in the simple way. The N
potential is written in terms of the initial values of the
scalar fields �að0Þ only. It not only represents the differ-
ence between the e-folding number of the scale factor at
the end of the slow rolling phase and that at the first horizon
crossing but also has the complete information as to the
nonlinear curvature perturbations. The � differentiations of
the N potential generate the S formulas connecting the
amplitudes of all of the higher order Bardeen parameters
at the end of the slow rolling phase with the scalar field
perturbations at the first horizon crossing.

Under the conditions (3.1), we will investigate the evolu-
tionary behaviors of the solution of the evolution equations
which are obtained by the truncation explained in the
previous subsection:

d

dN
�a ¼ � 1


2

1

U

@U

@�a

: (3.23)

From the present subsections, we will call off the non-
dimensionalization in the previous subsection, since the
truncated evolution equations (3.23) have already been
made sufficiently simple. In the multiple scalar field
case, the evolution equations (3.23) cannot be solved ana-
lytically, and the scalar fields�a cannot be expressed in the
form of the well-known function of N. So by replacing the
old evolution parameter N with the new evolution parame-
ter �, we decompose (3.23) into two parts:

d

d�
�a ¼ � @U

@�a

; (3.24)

d

d�
N ¼ 
2U: (3.25)

The new evolution parameter � introduced in the above
equations will be called the � function from now on. By
introducing the � function, the evolution equations become
simple enough to be solved analytically. In the potential
(3.1), we can easily solve (3.24) by iteration, and then we
can get �að�Þ expressed in the form of the analytic func-
tions of the � function. By substituting these �að�Þ into U
in (3.25), and integrating (3.25) with respect to the �
function, we obtain the expression of the old evolution
parameter N in terms of the new evolution parameter �:

N ¼
Z �

0
d�
2U: (3.26)

The expressions of �a and N in terms of the � function
describe the dynamical evolutions of our multiple slow
rolling scalar field system completely.
From this subsection, we adopt the � function as the

evolution parameter. We introduce ð@=@�Þ� as the � dif-
ferentiation taken at the fixed �, that is, operating on the
locally homogeneous quantities expressed by using the �
function as the evolution parameter. In order to exaggerate
the fact that the � derivative and ð@=@�Þ� are commutative,
we use ð@=@�Þ� as the � derivative from now on. By using
ð@=@�Þ� and ð@=@�Þ�,D defined by (2.72) can be expressed
as

D ¼
�
@

@�

�
�
�

��
@a

@�

�
�

��
@a

@�

�
�

��
@

@�

�
�
; (3.27)

and �� defined by (2.76) can be expressed as

�� ¼
�
@

@�

�
�
�

��
@U

@�

�
�

��
@U

@�

�
�

��
@

@�

�
�
; (3.28)

where we used

d

d�
¼

�
@

@�

�
�
þ d�

d�

�
@

@�

�
�
; (3.29)

and � ¼ U which holds under the present truncation (3.23)
. Then by using the � function as the evolution parameter,
the Bardeen parameter �n defined by (2.75) can be decom-
posed as

�n ¼ @n

@�n
�N � 
2

4
��nAð0; 0Þ: (3.30)

By �N, we represent

�N :¼
Z 1

0
d�
2U; (3.31)

and this �N will be called the N potential from now on. In
the above and from now on, as for � differentiations of the
physical quantities at the initial time � ¼ 0, the suffixes �
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implying ‘‘� fixed’’ are omitted since what the � differ-
entiations operate on do not contain any � dependent parts.
Að2n; kÞ is defined by

Að0; 0Þ :¼ 4
Z 1

�
d�U; (3.32)

Að2n; kÞ :¼
�
� 1

2

�
n
�
@n

@�n
@k

@�k

�
�
Að0; 0Þ: (3.33)

By using Að2n; kÞ, �� can be expressed as

�� ¼
�
@

@�

�
�
þ 1

2

Að2; 1Þ
Að4; 0Þ

�
@

@�

�
�
: (3.34)

Afterward we will prove the fact that, as for the Bardeen
parameter �n at the end of the slow rolling phase, the first
term in (3.30) has a leading contribution in the slow rolling
expansion scheme. In order to prove this statement, we put
forth several assumptions. All of the investigations in this
section will be established under the following assump-
tions:

(i) All of the masses of the scalar fields are of the same
order:

m2
a �m2; (3.35)

where

m2 :¼ min
a
fm2

ag: (3.36)

(ii) The interaction potential Uint is the sum of the mth
order monomials (m � 3) and satisfies

jUintj � �cm
2 1

�0

j�j3 (3.37)

for j�j � �0. �0 is defined by the positive constant
of the order of

�0 ��að0Þ; (3.38)

j�j is defined by

j�j2 :¼ X
a

j�aj2; (3.39)

and �c is the small positive constant characterizing
the interaction strength.

(iii) The nth order perturbation at the initial time � ¼ 0 is
of the order of

@k

@�k
�að0Þ � �k

c�0; (3.40)

where �c is the small constant characterizing the
perturbation size.

Under these assumptions, the following proposition holds.

Proposition 6.—The following estimations hold:

@k

@�k
�N ¼ 
2

4

X
a

@k

@�k
½�2

að0Þ� þ h
2�c�
k
c�

2
0i; (3.41)

Að2n; kÞ ¼ X
a

ðm2
aÞn @k

@�k
½�2

að0Þ� exp½�2m2
a��

þ h�cm
2n�k

c�
2
0 exp½�2m2��i; (3.42)

where hMi is the quantity bounded by M.
For the proof, see Appendix H.
At the end of the slow rolling phase when the Hubble

parameter is of the order of the scalar field mass, the values
of the scalar fields are of the order of the Planck mass
�að�Þ � 1=
. According to Proposition 6, at the end of the
slow rolling phase, we obtain the estimations as

@k

@�k
�N � 
2�k

c�
2
0; (3.43)

Að2n; kÞ �m2n�k
c�

2
0

�
m

H0

�
2
; (3.44)

whereH0 is the Hubble parameter at the initial time � ¼ 0.
By using the above estimations, the second term of (3.30)
can be estimated as

� 
2

4
��nAð0; 0Þ � 
2�n

c�
2
0

�
m

H0

�
2 � @n

@�n
�N �

�
m

H0

�
2
:

(3.45)

Since the second term of (3.30) is suppressed by the slow
rolling parameter ðm=H0Þ2 compared to the first term, the
main part of the nonlinear nth order Bardeen parameter �n
at the end of the slow rolling phase is given by the �
derivative of the N potential:

�n ¼ @n

@�n
�N: (3.46)

So in order to obtain the final amplitude of the Bardeen
parameter �n, we have only to calculate the N potential �N.
In particular case, the N potential can be calculated very

easily. When the scalar field potential is written in the
separable form

U ¼ X
a

Uað�aÞ; (3.47)

the N potential can also be expressed in the separable form
as

�N ¼ X
a

�NðaÞ; (3.48)

where

�NðaÞ :¼ 
2
Z �að0Þ

0
d�a

�
Ua

�
@Ua

@�a

�
: (3.49)
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C. Exactly solvable model; noninteracting case

In this subsection, in the multiple free field case, we give
the Bardeen parameter, the entropic perturbations, the
gravitational wave perturbations, and their spectral indices.
Since we can obtain the analytic expression of�að�Þ, all of
the results obtained in this subsection have no black boxes
originating from the S formulas connecting the amplitudes
of the final physical quantities and those of the initial
physical quantities, which were unknown in Ref. [12].

We consider the exactly solvable model defined by

U ¼ X
a

1

2
m2

a�
2
a (3.50)

and calculate the various physical quantities. The N poten-
tial is calculated as

�N ¼ 
2

4

X
a

�2
að0Þ; (3.51)

and then the Bardeen parameter �n at the end of the slow
rolling phase is calculated by (3.46). From now on, we
consider the linear perturbations and calculate their spec-
tral indices. We consider the entropy perturbation between
�a and �b defined by

Sab :¼ �3H

�
1

_�a

D�a � 1

_�b

D�b

�
: (3.52)

In the present case (3.50), Sab is given by

Sab ¼ 3
2U

�
1

m2
a�að0Þ

@�að0Þ
@�

� 1

m2
b�bð0Þ

@�bð0Þ
@�

�
:

(3.53)

In order to calculate spectral indices, we have to know the
amplitudes of the quantum fluctuations of the scalar fields
and the gravitational waves at the first horizon crossing
� ¼ 0:��

@�að0Þ
@�

@�bð0Þ
@�

��
�H2�ab � 
2U�ab; (3.54)

1


2

��
@~�ijð0Þ
@�

@~�ijð0Þ
@�

��
�H2 � 
2U: (3.55)

When we calculate the above correlation functions, for
simplicity we do not take into account the first order
slow rolling corrections unlike Ref. [12], so the above
correlation functions become diagonal. From the horizon
crossing relation as

k ¼ aH ¼ 
ffiffiffi
3

p eNU1=2; (3.56)

we obtain

d lnk ¼
�

2Uþ 1

2U

dU

d�

�
d� ¼ 
2U

�
1þO

�
m2

H2
0

��
d�

	 
2Ud�: (3.57)

Then we can calculate the spectral indices as

@

@ lnk
lnhh�21 ii ¼ � 4


2

1

Bð2Þ
�
Bð2Þ
Bð0Þ þ

Bð4Þ
Bð2Þ

�
; (3.58)

@

@ lnk
lnhhS2abii ¼

4


2

1

Bð2Þ



�
m2

am
2
b

m2
a�

2
að0Þ þm2

b�
2
bð0Þ

m4
a�

2
að0Þ þm4

b�
2
bð0Þ

� Bð4Þ
Bð2Þ

�
;

(3.59)

@

@ lnk
lnhh~�2

ijii ¼ � 4


2

Bð4Þ
Bð2Þ2 ; (3.60)

where

Bð2nÞ :¼ X
a

ðm2
aÞn�2

að0Þ: (3.61)

As for the correlation between the adiabatic and the en-
tropic perturbations defined by

C ab :¼ hh�1Sabiiffiffiffiffiffiffiffiffiffiffi
hh�21 ii

q ffiffiffiffiffiffiffiffiffiffiffiffi
hhS2abii

q ; (3.62)

we obtain

@

@ lnk
lnCab ¼ 2


2

1

Bð0Þ �
2


2


 1

Bð2Þm
2
am

2
b

m2
a�

2
að0Þ þm2

b�
2
bð0Þ

m4
a�

2
að0Þ þm4

b�
2
bð0Þ

:

(3.63)

Since we succeed in solving the scalar field evolutions
completely, our expressions of the spectral indices of the
perturbation variables are expressed in terms of the initial
field values and the masses of the scalar fields only, unlike
Ref. [12], where the author did not solve the scalar field
evolutions and their expressions of the spectral indices
contain unknown factors originating from the scalar field
evolutions.

D. Effect of the nonresonant interactions

In the previous subsection, we considered the free scalar
fields. In this subsection, we will consider the interacting
case. All of the interacting systems are classified into
nonresonant cases and resonant cases. By the word ‘‘reso-
nance,’’ we mean all of the factors inducing the small
denominators in the perturbative expansion [27].
Therefore, the resonance phenomena are not confined in
the oscillatory dynamical system. In fact, the resonance
can also occur in the present slow rolling system. In the
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nonresonant case, the masses of the scalar fields do not
satisfy any resonant relations as shown in Proposition 7
presented below. In the resonant case, the masses of the
scalar fields satisfy more than one resonant relation. In the
nonresonant case, the Poincaré theorem greatly simplifies
the treatment of the interactions. In the nonresonant case,
all of the interaction terms can be removed from the
evolution equations by performing the suitable transforma-
tion of the field variables. This process is called the linea-
rization of the evolution equations. Since the linearized,
that is, transformed, evolution equations are the free field
equations, they can be solved easily. The effects of all of
the interaction terms are contained in the transformation
law of the field variables. The fact that the masses of the
scalar fields do not satisfy any resonant relations guaran-
tees the convergence of the transformation law of the field
variables. In this way, the evolutions of the interacting
scalar fields �a can be solved completely in the form of
the analytic functions of the � function. As for the concrete
nonresonant model, we determine the evolutions of the
scalar fields �að�Þ and the N potential. By using this N
potential, we can calculate the nonlinearity parameters fNL
and gNL representing the non-Gaussianity of the Bardeen
parameter. These nonlinearity parameters fNL and gNL are
shown to be suppressed by the slow rolling parameter.
Therefore, it is difficult to observe such small non-
Gaussianity.

First, we present the proposition about the nonresonant
condition. In order to express the nonresonant condition,
we introduce several notations. By � and k, we represent

� :¼ ðm2
1; m

2
2; . . . ; m

2
NS
Þ; (3.64)

k :¼ ðk1; k2; . . . ; kNS
Þ; (3.65)

where all ka belong to the non-negative integer set Z0þ:

ka 2 Z0þ; (3.66)

Z 0þ :¼ fk 2 Zjk � 0g: (3.67)

By jkj, we represent
jkj :¼ X

a

jkaj: (3.68)

Then the following proposition holds.
Proposition 7.—Suppose that, for an arbitrary ða; kÞ 2

f1; 2; . . . ; NSg 
 ZN
0þ satisfying jkj � 2,

ðk � �Þ � �a � 0 (3.69)

holds and, for an arbitrary a 2 f1; 2; . . . ; NSg,
m2

a > 0 (3.70)

holds. Then there exists a positive constant �m satisfying

jðk � �Þ � �aj � �m (3.71)

for an arbitrary ða; kÞ 2 f1; 2; . . . ; NSg 
 ZN
0þ satisfying

jkj � 2.
For the proof, see Appendix I.
Under the condition of Proposition 7, we can prove the

following proposition.
Proposition 8.—We consider the evolution equation

@

@�
�a ¼ ��a�a þ ~fað�Þ; (3.72)

where ~fa is the sum of mth order monomials of �a (m �
2) satisfying

j~fað�Þj<�c

�M

�0

j�j2; (3.73)

where �M is the maximum of �a, for j�j � �0. Under the
condition that � satisfies (3.71), there exists a positive
constant R such that, for ’ satisfying j’j � R, there exists
the transformation

�a ¼ ’a þ wað’Þ; (3.74)

where wa is the sum of mth order monomials of ’a (m �
2) and satisfies

jwað’Þj � �c

�0

j’j2: (3.75)

By this transformation law (3.72), (3.74) is transformed
into the linear differential equation as

@

@�
’a ¼ ��a’a: (3.76)

Since Proposition 8 is well known as the Poincaré
theorem, we omit the proof. As for the Poincaré theorem,
please see the appendix of Ref. [27] and references therein.
This theorem can be applied only to the differential equa-
tions containing the linear terms plus the small perturba-
tions. Since they are not even the Hamiltonian dynamical
systems in general, Proposition 8 does not cover the an-
harmonic oscillator. It is well known that the evolution
equation of the nonlinear anharmonic oscillator cannot be
transformed into the linear evolution equation. But for the
present purpose of treating the multiple slow rolling scalar
field systems, Proposition 8 is enough. All of the terms in
wað’Þ in (3.74) have factors as

1

ðk � �Þ � �a

: (3.77)

In order to prove the convergence of this transformation
law (3.74) by the majorant method, the nonresonant in-
equalities (3.71) are essential. According to Proposition 8,
by (3.74) and

’a ¼ ’að0Þ exp½��a��; (3.78)

the evolutions of the scalar fields�a can be expressed as an
analytic function of �.
Next, we consider the concrete example whose potential

U is given by
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U ¼ 1

2
m2

1�
2
1 þ

1

2
m2

2�
2
2 þ

g

4
�2

1�
2
2; (3.79)

where m2
1 and m2

2 are assumed to be nonresonant as in
Proposition 7. We obtain

�1 ¼ �1ð0Þ expð�m2
1�Þ �

g

4m2
2

�1ð0Þ�2
2ð0Þ½expð�m2

1�Þ

� expf�ðm2
1 þ 2m2

2Þ�Þg� þ � � � ; (3.80)

�2 ¼ �2ð0Þ expð�m2
2�Þ �

g

4m2
1

�2ð0Þ�2
1ð0Þ½expð�m2

2�Þ

� expf�ðm2
2 þ 2m2

1Þ�Þg� þ � � � : (3.81)

Then we obtain the N potential as

1


2
�N ¼ 1

4
�2

1ð0Þ þ
1

4
�2

2ð0Þ �
g

8ðm2
1 þm2

2Þ
�2

1ð0Þ�2
2ð0Þ

þ � � � : (3.82)

In this model, we consider the nonlinear parameters fNL
and gNL [14] defined by

fNL ¼ 5

6

�Nab
�Na �Nb

ð �Na
�NaÞ2 ; (3.83)

gNL ¼ 25

54

�Nabc
�Na �Nb �Nc

ð �Na
�NaÞ3 ; (3.84)

where

�N a :¼ @

@�að0Þ
�N; �Nab :¼ @2

@�að0Þ@�bð0Þ
�N; . . . :

(3.85)

We obtain

fNL ¼ 5

12

1
�N
�

�
m

H0

�
2
; (3.86)

gNL ¼ � 25

144

g
2

m2
1 þm2

2

�2
1ð0Þ�2

2ð0Þ
1
�N3

�Uint

U

�
m

H0

�
4
:

(3.87)

So we can conclude that the nonlinear parameters fNL and
gNL are suppressed by the slow rolling parameter ðm=H0Þ2.
For an arbitrary potential model satisfying assumptions (i),
(ii), and (iii) presented above Proposition 6 and for the
nonresonant masses as explained in Proposition 7, the N
potential can be written as

1


2
�N ¼ 1

4

X
a

�2
að0Þ þ ~gð�ð0ÞÞ; (3.88)

where ~g is the sum ofmth order monomials of�að0Þ (m �
3) and satisfies

~gð�ð0ÞÞ � �c

1

�0

j�ð0Þj3 (3.89)

for j�ð0Þj � �0. Then we obtain the nonlinear parameters
as

fNL ¼ 5

12

1
�N
�

�
m

H0

�
2
; gNL ��c

�
m

H0

�
4
; (3.90)

that is, the nonlinear parameters fNL and gNL are sup-
pressed by the slow rolling parameters ðm=H0Þ2.

E. Effect of the resonant interactions

According to Proposition 8 in the previous subsection,
all of the nonresonant interaction terms can be eliminated
by the field transformations �a ! ’a. But in the resonant
interaction case, such linearization cannot be applied. In
this subsection, we calculate the effect of the resonant
interaction by the iteration method. Perturbatively at least,
the resonant interactions do not generate any special effects
in the N potential.
As the concrete example, we consider the model defined

by

Uint ¼ ��1�
2
2; m2

1 ¼ 2m2
2: (3.91)

It can be solved as

�1 ¼ �1ð0Þ expð�m2
1�Þ � ��2

2ð0Þ� expð�m2
1�Þ þ � � � ;

(3.92)

�2 ¼ �2ð0Þ expð�m2
2�Þ �

2�

m2
1

�1ð0Þ�2ð0Þ½expð�m2
2�Þ

� expf�ðm2
1 þm2

2Þ�Þg� þ � � � ; (3.93)

where in the right-hand side of �1 the second term pro-
portional to �� appears because of the resonant interaction.
The N potential is given by

1


2
�N ¼ 1

4
�2

1ð0Þ þ
1

4
�2

2ð0Þ �
5�

8m2
2

�1ð0Þ�2
2ð0Þ þ � � � :

(3.94)

So the resonant interaction terms generate no singular
terms in the N potential �N.

IV. DISCUSSION

We presented the nonlinear LWL formula, and by using
it we investigated the evolutionary behaviors of the non-
linear cosmological perturbations on superhorizon scales
in the universe dominated by the multiple slow rolling
scalar fields.
In the excellent study as to the multiple slow rolling

scalar fields [12,13], the multiple scalar fields were decom-
posed into the adiabatic field and the entropy fields instant
by instant. By using this decomposition, it was pointed out
that the growing of the Bardeen parameter corresponds to
the curvature of the trajectory in the scalar field space.
Further, in Ref. [12], the spectral index (the wave number
dependences) of the Bardeen parameter was presented by
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calculating the differential coefficients at the instant of the
first horizon crossing. But this study is a local investigation
because the author did not calculate the S formulas con-
necting the final amplitudes of the adiabatic and the en-
tropic field variables at the end of the slow rolling phase
with the initial amplitudes of them at the first horizon
crossing, and they calculated only the time derivative of
the S formulas at the first horizon crossing by using the
perturbation evolution equations. So the formulas of the
spectral indices in Ref. [12] have black boxes (unknown
factors) which come from the S formulas which could not
be determined. Therefore, as the method for investigating
the evolutions of the scalar field perturbations in the long
time interval such as in the whole slow rolling phase
analytically, we present the method using the � function
and theN potential. This method enables us to calculate the
S formulas analytically. In fact, our expressions of spectral
indices in Sec. III C can be expressed in terms of the initial
field values and the masses of the scalar fields only, and
they have no black boxes since we succeed in calculating
the scalar field evolutions containing the S formulas com-
pletely. Our method will deepen the understanding of the
dynamical evolutions of the multiple slow rolling scalar
fields in the long time interval with high accuracy.
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APPENDIX A: DERIVATION OF (2.59)

In this appendix, we rewrite the momentum constraints
(2.17) into the constraints which the solution constants of
the solution of the locally homogeneous universe must
satisfy.

By using (2.9) and (2.51), the left-hand side of the
momentum constraint (2.17) is expressed as

Di
~Ai
j �

2

3
DjK ¼ 1

�

�
1

2

@i�

�
~�ik@t ~�kj þ 1

2
~�il@i ~�lm ~�

mk@t ~�kj

� 1

2
~�ik@i@t ~�kj � 3

2

@ka

a
~�kl@t ~�lj

þ 1

2
s~�k

ij ~�
il@t ~�lk þ 2�@j

�
H

�

��
; (A1)

where s~�k
ij is the Christoffel symbol of ~�ij. As for the right-

hand side of (A1),

1

2

@i�

�
~�ik@t ~�kj � 3

2

@ka

a
~�kl@t ~�lj

¼ � 1

2

�

a3
@i

�
a3

�

�
ðM�1 _MÞij; (A2)

s~�k
ij ~�

il@t ~�lk ¼ 1
2 tr½M�1@jMM�1 _M�; (A3)

~� il@i ~�lm ~�
mk@t ~�kj ¼ ðM�1@iMM�1 _MÞij; (A4)

and

~� ik@i@t ~�kj ¼ ðM�1@i _MÞij: (A5)

Therefore we obtain

Di
~Ai
j �

2

3
DjK ¼ 1

�

�
� 1

2

�

a3
@iT

i
j þ

1

4

�

a3
trðR�1@jRTÞ

þ �

a3

Z
t0

dt@j

�
�

a3

�
cT þ 1

2

�

a3

Z
t0

dt


 �

a3
@jcT þ 2�@j

�
H

�

��
; (A6)

where we used the solution of M (2.53).
The right-hand side of (2.17) is expressed as


2Jj ¼ 1

�
½
2hðvj þ �jÞ�: (A7)

By summing (2.44) with fluid indices �, we obtain

½hð�i þ viÞ�f ¼ �

a3
X
�

C�i þ �

a3

Z
t0

dt�a3
�
�@iPf

� 1

�
Di�hf �

X
a

Sa@i�a

�
þOð�3Þ;

(A8)

where we used
P

�Q�i ¼ �ðQiÞS ¼ �P
aSa@i�a, and as

for the scalar field components we obtain

½hað�i þ vaiÞ�S ¼ �X
a

_�a@i�a þOð�3Þ: (A9)

We substitute the sum of (A8) and (A9) into hð�i þ viÞ in
(A7).
Then through simple calculations we obtain (2.59).

APPENDIX B: LIE DERIVATIVE IN THE LEADING
ORDER OF THE GRADIENT EXPANSION

The Lie derivatives of the quantity of the upper index
and the quantity with the lower index are expressed as

LðTÞX� ¼ T�@�X
� � @�T

�X�; (B1)

LðTÞX� ¼ T�@�X� þ X�@�T
�; (B2)

respectively. By the Leibniz rule, these definitions are
expanded into the tensor of an arbitrary rank. For example,
the Lie derivative of the metric is given by

LðTÞg�	 ¼ T�@�g�	 þ g�	@�T
� þ g��@	T

�: (B3)

From now on, we consider the gradient expansion scheme
defined by

@i ¼ Oð�Þ; Ti ¼ Oð�Þ; gi0 ¼ Oð�Þ; (B4)
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and the Oð�2Þ order corrections are dropped. For an arbi-
trary scalar quantity A, in our scheme (B4) the Lie deriva-
tive of A is written by

LðTÞA ¼ T0 d

dt
AþOð�2Þ: (B5)

By using (B3) to g00 ¼ ��2 þ �k�
k and gij ¼ �ij, we

obtain

LðTÞ� ¼ T0 d

dt
�þ �

d

dt
T0 þOð�2Þ; (B6)

LðTÞ�ij ¼ T0 d

dt
�ij þOð�2Þ: (B7)

From (B5) and (B6), we obtain

LðTÞ
� _A

�

�
¼ T0 d

dt

� _A

�

�
þOð�2Þ: (B8)

From this equation, we can see that the Lie derivative of
_A=�, where A is a scalar quantity, has the same form as the
Lie derivative of the scalar quantity (B5). By using (B7) to
detð�ijÞ ¼ a6, we obtain

LðTÞa ¼ T0 d

dt
aþOð�2Þ; (B9)

and therefore we obtain

LðTÞ~�ij ¼ T0 d

dt
~�ij þOð�2Þ: (B10)

In our gradient expansion scheme, the scale factor a and
~�ij can be regarded as the scalar quantity.

APPENDIX C: PROOF OF PROPOSITION 1

The gauge transformation is described by the differential
equation (2.70). So we can consider the � derivative as the
gauge transformation. By differentiating (2.70) with re-
spect to �, we obtain

d

d�

dA

d�
¼ L

�
dT

d�

�
Aþ LðTÞ dA

d�
; (C1)

d

d�

d2A

d�2
¼ L

�
d2T

d�2

�
Aþ 2L

�
dT

d�

�
dA

d�
þ LðTÞd

2A

d�2
; (C2)

and so on. As for DnA, where D is defined by (2.72) and A
is an arbitrary scalar quantity, we can prove

d

d�
DnA ¼ LðTÞDnA (C3)

for an arbitrary natural number n.
Proof.—If we interpret D0A :¼ A, (C3) holds evidently

for n ¼ 0. We assume that (C3) holds for n ¼ k� 1,
where k ¼ 1; 2; . . . . Then for n ¼ k

d

d�
DkA ¼ d

d�

��
d

d�
� da

d�

1

_a

d

dt

�
Dk�1A

�
¼ d

d�

d

d�
Dk�1A� d

d�

�
da

d�

�
1

_a
ðDk�1AÞ� � da

d�

d

d�

�
1

_a
ðDk�1AÞ�

�

¼ L

�
dT

d�

�
Dk�1Aþ LðTÞ d

d�
Dk�1A�

�
L

�
dT

d�

�
aþ LðTÞ da

d�

�
1

_a
ðDk�1AÞ� � da

d�
LðTÞ

�
1

_a
ðDk�1AÞ�

�

¼ LðTÞ
��

d

d�
� da

d�

1

_a

d

dt

�
Dk�1A

�
¼ LðTÞDkA; (C4)

where we use the fact that both Dk�1A and the scale factor
a have the Lie derivatives of the scalar quantity type (B5).
For n ¼ k, (C3) holds. By induction, we complete the
proof. j

By putting � ¼ 0 in (C3) and by noticing Tð� ¼ 0Þ ¼ 0,

d

d�
DnAj�¼0 ¼ 0: (C5)

Then we proved that DnA, where A is an arbitrary scalar
quantity, is gauge invariant. Since _A=�, where A is an
arbitrary scalar quantity, has the same Lie derivative as
that of the scalar quantity A, Dnð _A=�Þ is also gauge invari-
ant. In a way similar to the above calculation, as for An

defined by (2.73) we can prove

d

d�
An ¼ LðTÞAn: (C6)

Then An is gauge invariant.

APPENDIX D: PROOF OF PROPOSITION 2

Since �1 is conserved for arbitrary values of the integra-
tion constants Cð� ¼ 0Þ, �1 with Cð� ¼ 0Þ replaced with
Cð�Þ is also conserved; that is, �1 is conserved for arbitrary
values of �: �

@

@a
�1

�
a
¼ 0: (D1)

Then by the expression of �� (2.80) we obtain

�2 ¼
�
@

@�
�1

�
a
: (D2)
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Since ð@=@aÞa and ð@=@�Þa are commutative, we obtain�
@

@a
�2

�
a
¼

�
@

@a

@

@�
�1

�
a
¼

�
@

@�

@

@a
�1

�
a
¼ 0: (D3)

By iterating the same process, we obtain

�n ¼
�
@

@�

�
n�1

a
�1;

�
@

@a
�n

�
a
¼ 0 (D4)

for n � 2.

APPENDIX E: PROOF OF PROPOSITION 3

When P ¼ Pð�Þ,

a
@�

@a
¼ �3ð�þ PÞ: (E1)

Then

�1 ¼ �
��
@�

@�

�
a

��
@�

@a

�
a

�
1

a
¼ 1

3

1

�þ P

�
@�

@�

�
a

¼
�
@

@�

�
a

�
1

3

Z
d�

1

�þ Pð�Þ
�

(E2)

and �
@

@a
�1

�
a
¼

�
@

@�

@

@a

�
a

�
1

3

Z
d�

1

�þ Pð�Þ
�

¼
�
@

@�

�
a

�
� 1

a

�
¼ 0 (E3)

since ð@=@�Þa and ð@=@aÞa are commutative. Then we can
use Proposition 2, and we complete the proof.

APPENDIX F: PROOF OF PROPOSITION 4

For k ¼ 0, by solving (3.11) and (3.12) we obtain

jp� e�3Npð0Þj � �2; (F1)

j���ð0Þj � �2N: (F2)

If pð0Þ, �ð0Þ � 1, Proposition 4 is right for k ¼ 0. We
assume that Proposition 4 holds for k ¼ 0; 1; 2; . . . ; k� 1:								
�
@i

@�i

�
a
�

								;
								
�
@i

@�i

�
a
p

								��i
c ði¼ 0;1;2; . . . ;k�1Þ;

(F3)

and therefore								
�
@i

@�i

�
a
fð�;p; cT; NÞ

								��i
c ði ¼ 0; 1; 2; . . . ; k� 1Þ;

(F4)

if

jfð�;p; cT; NÞj � 1; (F5)

for a proper complex domain containing the real interval
which we consider. For k, the evolution equations are

d

dN

�
@k

@�k

�
a
� ¼ �2

�
@k

@�k

�
a
�þ �2

�
@k

@�k

�
a
pþ �2�k

c;

(F6)

d

dN

�
@k

@�k

�
a
p ¼ �3

�
@k

@�k

�
a
pþ �2

�
@k

@�k

�
a
�

þ �2

�
@k

@�k

�
a
pþ �2�k

c; (F7)

where all of the coefficients bounded by positive constants
are omitted except �3 in (F7). By solving (F6) and (F7),
for 0 � N � 1=�2, we obtain								

�
@k

@�k

�
a
�

								�
								 @k

@�k
�ð0Þ

								þ�2

								 @k

@�k
pð0Þ

								þ�k
c; (F8)

								
�
@k

@�k

�
a
p

								� e�3N

								 @k

@�k
pð0Þ

								þ�2

�								 @k

@�k
�ð0Þ



								þ�2

								 @k

@�k
pð0Þ

								þ�k
c

�
: (F9)

Therefore for the initial conditions (3.17), for k, (3.18) and
(3.19) hold. By induction, for all non-negative integers k,
Proposition 4 holds.

APPENDIX G: PROOF OF PROPOSITION 5

First, we consider k ¼ 0 case. By the mean value theo-
rem, we obtain

d

dN
�� ¼ �2��þ �2f; (G1)

where

jfj � jpj þ �2 � e�3N þ �2; (G2)

where we used Proposition 4 in the last inequality. By
solving (G1), we obtain

j��j � expð�2NÞðj��ð0Þj þ �2 þ �4NÞ: (G3)

Therefore for 0 � N � 1=�2, under the initial condition
(3.21) and (3.22) holds for k ¼ 0. Next, we consider a
positive integer k case. In this case, we notice the following
fact. By Proposition 4, if an complex analytic function f
satisfies

jfð�;p; cT; NÞj � 1; (G4)

then 								
�
@k

@�k

�
a
fð�;p; cT; NÞ

								� �k
c: (G5)

By differentiating (G1) with respect to � and by using the
above fact and Proposition 4, we obtain
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d

dN

�
@k

@�k

�
a
�� ¼ �2

�
@k

@�k

�
a
��þ �2�k

cðe�3N þ �2Þ;
(G6)

which is solved as								
�
@k

@�k

�
a
��

								 � expð�2NÞ



�								 @k

@�k
��ð0Þ

								þ�2�k
c þ �4N�k

c

�
:

(G7)

Therefore for 0 � N � 1=�2, under the initial condition
(3.21) and (3.22) holds for a positive integer k.

APPENDIX H: PROOF OF PROPOSITION 6

Lemma 1.—

�a ¼ �að0Þ exp½�m2
a�� þ h�c�0 exp½�m2��i: (H1)

Proof.—We consider the evolution equation

@

@�
�a ¼ �m2

a�a þ ~fað�Þ; (H2)

where ~fað�Þ is the sum of mth order monomials (m � 2)
satisfying

j~fað�Þj � m2�c

1

�0

j�j2 (H3)

for j�j � �0. From (H2), we obtain

@

@�
j�j � �m2j�j þm2�c

�0

j�j2; (H4)

which is solved as

j�j � �0 exp½�m2��ð1þOð�cÞÞ: (H5)

We consider ��a satisfying

@

@�
��a ¼ �m2

a
��a; (H6)

��að0Þ ¼ �að0Þ: (H7)

The difference ��a :¼ �a � ��a satisfies

@

@�
��a ¼ �m2

a��a þ ~fað�Þ; (H8)

��að0Þ ¼ 0; (H9)

where

j~fað�Þj � m2�c�0 exp½�m2��; (H10)

where we used (H5). By solving the above evolution
equation under the above initial condition, we obtain

j��j � Oð�cÞ�0 exp½�m2��: (H11)

We complete the proof. j
Lemma 2.—�

@k

@�k

�
�
�a ¼ @k

@�k
�að0Þ exp½�m2

a��

þ h�k
c�c�0 exp½�m2��i: (H12)

Proof.—As for the evolution equation as

@

@�

�
@k

@�k

�
�
�a ¼ �m2

a

�
@k

@�k

�
�
�a þ

�
@k

@�k

�
�

~fað�Þ;
(H13)

where								
�
@k

@�k

�
�

~fað�Þ
								�m2�c

�0

j�j
								
�
@k

@�k

�
�
�a

								þm2�c

�0

�k
cj�j2

�m2�cexp½�m2��
								
�
@k

@�k

�
�
�a

								
þ�k

c�cm
2�0 exp½�2m2��: (H14)

We perform the calculations similar to the proof of
Lemma 1. We complete the proof. j
Lemma 3.—�
@k

@�k

�
�

�YN
l¼1

�aðlÞ
�
¼ @k

@�k

�YN
l¼1

�aðlÞð0Þ
�
exp

�
�XN

l¼1

m2
aðlÞ�

�

þ h�k
c�c�

N
0 exp½�Nm2��i: (H15)

Proof.—We use the Leibniz rule for the � derivative and
use Lemmas 1 and 2. We complete the proof. j
Lemma 4.—For n � 1

Að2n; 0Þ ¼ X
a

ðm2
aÞn�2

a þ F2nð�Þ; (H16)

where F2nð�Þ is the sum of mth order monomials of �
(m � 3) and satisfies

jF2nð�Þj � �cm
2n 1

�0

j�j3 (H17)

for j�j � �0.
Proof.—We use (H2). We complete the proof. j
As for �

@k

@�k

�
�

�N ¼ 
2
Z 1

0
d�

�
@k

@�k

�
�
U; (H18)

Að0; kÞ ¼ 4
Z 1

�
d�

�
@k

@�k

�
�
U; (H19)

and

Að2n; kÞ ¼
�
@k

@�k

�
�
Að2n; 0Þ; (H20)

for n � 1, where Að2n; 0Þ is expressed as a polynomial of
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�ð�Þ (H16), we use Lemma 3. Then we complete the proof
of Proposition 6.

APPENDIX I: PROOF OF PROPOSITION 7

By �M and �m, we mean

�M :¼ max
a

fm2
ag; (I1)

�m :¼ min
a
fm2

ag: (I2)

Then we obtain

jðk � �Þ � �aj � jkj�m � �M: (I3)

Therefore for k satisfying

jkj � �1 þ �M

�m

¼: L; (I4)

where �1 is a positive constant, we obtain

jðk � �Þ � �aj � �1: (I5)

Since the number of k satisfying jkj< L is finite, there
exists a positive constant �2 satisfying

jðk � �Þ � �aj � �2 (I6)

for jkj< L. Therefore for �m defined by

�m :¼ minf�1; �2g; (I7)

the inequality (3.71) holds. We complete the proof.
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