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We study Dvali-Gabadadze-Porrati (DGP) braneworlds with finite thickness. In respect to the standard

(thin) DGP Friedmann equation, finite thickness of the brane causes a subtle modification of the

cosmological equations that can lead to significant physical consequences. The resulting cosmology is

governed by two length scales which are associated with the brane thickness and with the crossover

length, respectively. In this setup both early inflation and late-time acceleration of the expansion are a

consequence of the 5D geometry. At early times, as well as at late times, 5D effects become dominant

(gravity leaks into the extra dimension), while, at intermediate times, gravity is effectively 4D due to

nontrivial physics occurring in standard (thin) DGP scenarios.
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I. INTRODUCTION

Since the discovery that our universe can be currently
undergoing a stage of accelerated expansion [1], many
phenomenological models based either on Einstein general
relativity (EGR), or using alternatives like the higher di-
mensional braneworld theories [2], have been invoked (for
a recent review on the subject see Ref. [3]). The latter ones,
being phenomenological in nature, are inspired by string
theory.

One of the brane models that has received the most
attention in recent years is the so-called Dvali-
Gabadadze-Porrati (DGP) braneworld [4,5]. This model
describes a brane with 4D world volume, which is em-
bedded into a flat 5D bulk, and allows for infrared (IR)/
large scale modifications of gravitational laws. A distinc-
tive ingredient of the model is the induced Einstein-Hilbert
action on the brane, that is responsible for the recovery of
4D Einstein gravity at moderate scales, even if the mecha-
nism of this recovery is rather nontrivial [6]. The accelera-
tion of the expansion at late times is explained here as a
consequence of the leakage of gravity into the bulk at large
(cosmological) scales, so it is just a 5D geometrical effect,
unrelated to any kind of mysterious dark energy.

Thin brane models are just an idealization of the physi-
cal reality. Braneworlds, if they are to be considered as
models for our world, have to be of finite thickness.1 The
aim of the present paper is to show what the consequences
are of considering finite-thickness DGP braneworlds
within the cosmological context. Here we follow the pre-
scriptions of Ref. [7]. It will be shown, in particular, that

there arise both ultraviolet (UV) and infrared (IR) modifi-
cations of the laws of gravity. Actually, assumption of
induced gravity on the finite-thickness brane leads to the
existence of two different length scales, associated with the
crossover length rc and with the brane thickness �, respec-
tively. This fact hints at a possible (unified) geometrical
description of early inflation and late-time accelerated
expansion of the universe.

II. THE MODEL

The thick brane model we are about to investigate rests
upon the following assumptions (same assumptions as in
Ref. [7]):
(i) We consider a finite-thickness brane which is em-

bedded in a five-dimensional (5D), Minkowski flat
spacetime that is homogeneous and isotropic along
three spatial dimensions.

(ii) Orbifold (Z2) symmetry is assumed along the extra
dimension.

(iii) It is possible to find a Gaussian normal coordinate
system centered on the middle layer of the brane.

(iv) Brane thickness is time independent.
The line element that respects the above listed assump-

tions is the following:

ds25 ¼ gð5ÞABdx
AdxB

¼ �n2ðt; yÞdt2 þ a2ðt; yÞ�ijdx
idxj þ dy2; (1)

where, in our Gaussian coordinate system, the extra di-
mension is spanned by the coordinate y. The brane is
localized between y ¼ ��=2 and y ¼ �=2 (� stands for
the time-independent brane thickness), and we use the
following metric signature: (�þþþþ ).
The starting point will be the five-dimensional DGP

action [4,5]:
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1However, there have been a few works on thick brane models

in the bibliography. In [7], for instance, a prescription for what to
consider as a four-dimensional observable is given, and a
Friedmann cosmology with time-independent brane thickness
is investigated. A similar scenario is studied in [8] (see also [9]).
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Stot ¼ SEH5 þ SEH4 þ Sm;
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where the delta function contribution �ðyÞ in the thin brane
case has just been replaced by ��=�. The step function
��ðyÞ is defined as it follows:�� ¼ 1, if��=2 � y � �=2,
�� ¼ 0 otherwise (see [10] for the same generalization of
DGP models to thick brane contexts). It is worth noticing
that, since in the limit � ! 0,

lim
�!0

��ðyÞ
�

¼ �ðyÞ;

then, in this (thin brane) limit, standard (thin) DGP model
is recovered.

In Eq. (2), SEH5 is the five-dimensional Einstein-Hilbert

action for the 5D metric gð5ÞAB, while SEH4 is the effective

four-dimensional Einstein-Hilbert action. The 4D Ricci
scalar R4 is constructed from the four-dimensional metric

induced on a given slice in the thick brane: gð4ÞAB ¼ gð5ÞAB �
nAnB (nA is the normal to the slice). As customary Sm is the
action of the matter degrees of freedom.

As it is stated in [7], due to the non-null thickness of the
brane, there is some arbitrariness in the definition of effec-
tive four-dimensional quantities that an observer living in
the brane would measure. Here we follow the same pre-
scription of [7] that is the simpler one can envisage. Given
a 5D quantity Qðt; yÞ, we define its (spatial) average over
the brane thickness �QðtÞ as follows:

�QðtÞ ¼ 1

�

Z �=2

��=2
dy��ðyÞQðt; yÞ ¼ 1

�

Z �=2

��=2
dyQðt; yÞ:

(3)

It is the magnitude a 4D observer living in the brane
measures. In Sec. V we will discuss the implications of
this prescription for the physical phenomena associated
with the occurrence of two length scales in the model.

The 5D Einstein’s field equations that are derived from
the action (2) are the following (k25 � M�3

5 ):

GA
B ¼ k25T

A
BjTotal ¼ k25ðTA

B þUA
BÞ; (4)

where, in correspondence with the symmetries assumed
here, the stress-energy tensor for the matter degrees of
freedom trapped to the thick brane is necessarily of the
form2

TA
B ¼ ��ðyÞ

�
diag½ð��b; pb; pb; pbÞ; �PT�: (5)

The other contribution to the energy-momentum UAB ¼
ð�M2

4ð��=�ÞG4
��; 0Þ comes from the four-dimensional

scalar curvature R4 induced in the thick brane. The non-
null components of the latter contribution are
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(6)

III. COSMOLOGY WITH TWO LENGTH SCALES:
UNIFYING EARLY-TIME AND LATE-TIME

INFLATION

The basic equation determining the dynamics of the
cosmic evolution can be written in the following form:3

�2�2 �H2 ¼
�
���þ �2

2

�
1þ 2

rc
�

�
�H2

�
2 þ C�2

�a4
; (7)

where C is an arbitrary integration constant, and we have
used the following definitions (see [7]):

�H � �_a

�a
; �� k25

6
� ��b; �� a1=2

�a
; �� �b �a

2

��b �a
2
:

(8)

The parameter � characterizes the thickness of the brane,
while the quantities � and � characterize the inhomoge-
neity of the brane along the fifth dimension. The crossover
length is defined in the usual way:

rc ¼ M2
4

2M3
5

:

If we compare Eq. (7) of the present section with
Eq. (15) of Ref. [7] (assuming spatially flat cosmology
with k ¼ 0, and a Minkowski bulk which means � ¼ 0),
we notice that the only difference is in the factor 1þ 2rc=�
multiplying the averaged Hubble parameter �H in the right-
hand side of (7). In what follows we shall explore the
consequences of this tiny difference.
From now on, until the contrary is specified, we assume

the constant C ¼ 0, which amounts to ignoring the ‘‘dark’’
radiation term. This will make our analysis more transpar-
ent. Equation (7) can then be rewritten in the following
way:

�H 2 � 2�

�þ 2rc
�H ¼

�k24
3

��b; (9)

where we defined the effective 4D gravitational constant

2Since we have assumed the bulk spacetime to be Minkowski,
then TA

BjBulk ¼ 0.

3For details of the derivation of basic formulas, see
Appendix A.
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measured by a brane observer

�k 2
4 �

k25�

�þ 2rc
: (10)

Let us explore the limits of the modified Friedmann
equation (9). For � � rc, we obtain

�H 2 � 2�

�
�H ¼

�k24
3

��b; �k24 ¼
k25�

�
; (11)

where the modified ‘‘crossover’’ length �rc � �=2�, or

�r c ¼ �k25=
�k24

2�
:

For an infinite brane thickness (� ! 1), supposing �k24 is
nonvanishing, we recover standard cosmology with

�H 2 ¼
�k24
3

��b:

For � � rc the cosmic dynamics of the thick brane is
dictated by the following modified Friedmann equation:

�H 2 � �

rc
�H ¼

�k24
3

��b; (12)

where, now, the 4D gravitational constant measured by a
brane observer is given by

�k 2
4 ¼

k25�

2rc
: (13)

In respect to the thin DGP brane case, the effect of the
brane thickness is to modify the crossover length ( �rc �
rc=�) and the strength of gravity (13), through the inho-
mogeneity of the brane along the extra dimension (quanti-
fied by the parameters � and �). In the thin brane limit
� ! 0, since both � ! 1 and � ! 1 (a thin brane is
necessarily homogeneous in the extra dimension), we re-
cover standard DGP cosmology as it should be. Note that,
in this case, rc ¼ k25=2

�k24, so that, �k24 ¼ M�2
4 .

Let us focus on the so-called ‘‘self-accelerating’’ branch
of the Friedmann equation [‘‘-’’ sign of the second term in
the left-hand-side of Eqs. (11) and (12)]. Assuming a
vanishing averaged energy density in the thick brane ��b !
0, then, Eqs. (11) and (12) lead to the following de Sitter
expansion rates:

�H ¼ 2�

�
; �H ¼ �

rc
: (14)

As seen, the two de Sitter expansion rates—as measured
by a 4D observer—are driven by two different length
scales: the brane thickness �, and the crossover length rc,
respectively.4

This feature of thick DGP braneworld cosmology hints
at the possibility that both, early-time inflation, and late-
time accelerated expansion of the universe, could be ex-
plained as an effect of the leakage of gravity into the extra
space at early and late times, respectively. However, for
constant rc and �, this unification cannot be accomplished
in a consistent way. One possibility is to consider time-
dependent brane thickness. A second possibility is to con-
sider a running crossover length rc ¼ rcðtÞ. The latter case
could be associated with induced Brans-Dicke gravity on
the thick brane, through replacement of rc ! r0	, where
	—the Brans-Dicke scalar field.
Within the context of the later possibility, a convenient

scenario to address unified geometric description of early
inflation and late-time accelerated expansion could be the
following. Assume the running crossover length rcðtÞ is a
monotonically increasing function of the cosmic time [0 �
rcðtÞ � r0], such that, as expansion proceeds rc increases
and, at late times, asymptotes to r0 � �.
During the course of the early-time cosmic evolution

(rc � �), eventually, the stress-energy content dilutes and
the universe settles in an early de Sitter stage: �H ¼ 2�=�.
This stage could be identified with the early inflationary
period inherent in the standard cosmological model, so that
the brane thickness � sets the scale at which early inflation
happens. After the early stage of inflation, a mechanism for
populating again the matter content of the universe is
mandatory; however, here we do not aim at a discussion
of this very delicate issue.
Exit from inflation here is natural. Actually, as expan-

sion further proceeds, the running crossover length further
increases and eventually becomes much larger than the
brane thickness, so that r̂ ¼ �þ 2rc ! 2rc � 2r0. As a
consequence, the cosmic dynamics is dictated now by the
following Friedmann-DGP equation:

�H 2 � �

r0
�H ¼

�k24
3

��b: (15)

For 1=r0 � �H � 1=� (recall that r0 � �), there is an
intermediate stage after early inflation and before the onset
of late-time accelerated expansion, where (approximate)
standard Friedmann behavior,

�H 2 �
�k24
3

��b (16)

drives the cosmic evolution. This stage corresponds to the
effective 4D (intermediate) regime, lasting between the
two (early and late-time) inflationary stages. Eventually,
as expansion further proceeds, the matter content dilutes
with the expansion, so we are led with a late-time period of
accelerated de Sitter expansion with �H ¼ �=r0. From
Eq. (15) it is evident that, for late-time expansion to be
accelerating, it is necessary that the crossover length rc �
r0 >� �H�1

0 , where �H0 is the present value of the Hubble

parameter. Therefore, according to the present scenario of

4Notice, from Eqs. (14) that the de Sitter expansion rate is also
modified by the inhomogeneity of the thick brane along the extra
dimension, being quantified by the parameter �.
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early inflation–late-time accelerating expansion, it is re-
quired the brane thickness to be of the order of the inverse
of the Hubble parameter during early inflation, while the
crossover length has to be, at least, of the order of the
present value of the comoving Hubble radius ( �a0 ¼ 1).

IV. A TOY EXAMPLE

In order to illustrate the above discussion on the unified
description of early inflation and late-time accelerated
expansion as phenomena of purely geometric origin, here
we shall study a toy example. We shall consider the follow-
ing, ad hoc (arbitrarily chosen), evolution for the averaged
brane matter energy density ��b, and (running) crossover
length rc (thick brane Brans-Dicke scalar field), respec-
tively:5

�� b ¼ �0 �aðtÞ�3n; rc ¼ r0
�aðtÞm

�aðtÞm þ 1
; (17)

where n, m, �0, and r0 are free parameters. The above
arbitrary choice implies that the dynamics of the cosmic
evolution is being fixed through Einstein’s field equations.

In Fig. 1 we show a plot of the effective length scale r̂ ¼
�þ 2rcðtÞ vs the averaged scale factor �a. The free parame-
ters have been (arbitrarily) chosen to be: �0 ¼ 1, n ¼ 1,
m ¼ 3, r0 ¼ 1000, and � ¼ 0:1, respectively. Therefore,
the difference between the two length scales roughly
amounts to 4 orders of magnitude. In the real physical
world this difference has to be much more significant since
�	 �H�1

i ( �Hi is the value of the averaged Hubble parameter
at the end of inflation), while r0 	 �H�1

0 ( �H0 being the

present value of the averaged Hubble parameter).
However, for our purposes in this section, a difference of
4 orders of magnitude in the scales will be enough.

Note that, at early times ( �a ! 0), rc ! 0 ) r̂ ! �,
while, at late times (large �a), given r0 � �, r̂ ! 2rc �
2r0. For �a-s in the range 0–0.4, r̂ � �, so that early-time
behavior is dictated by the following Friedmann-DGP
equation [a different writing of Eq. (11)]:

�H e-time ¼ �

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

�2
þ

�k24
3

��b

s
: (18)

At late times ( �a-s in the range �a > 1), on the contrary, the
cosmic dynamics is driven by the modified Friedmann-
thick DGP equation (12), that can be rewritten in the
following way:

�H l-time ¼ �

2rc
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

4r2c
þ

�k24
3

��b

s
: (19)

At intermediate times (rc � �, ��b � �2= �k24r
2
c, �a-s in

the range 1< �a < 10), the cosmology is characterized by

(approximate) standard Friedmann behavior:

�H F ¼
ffiffiffiffiffiffiffiffiffiffiffi
�k24
3

��b

s
: (20)

In Fig. 2 we plot the (log of the) thin DGP averaged
Hubble parameter log �He-time (dark curve), and the (log of
the) standard one log �HF (gray curve) vs the averaged scale
factor �a, for the chosen values of the free parameters. Note
that for �a-s in the range 0:05< �a < 0:5, the departure from
standard Friedmann behavior is apparent. For earlier times
(prior to the onset of early inflation) there is a stage of
standard (4D) Friedmann evolution that, notwithstanding,
can be associated with the standard Kaluza-Klein (KK)
picture (infinite brane thickness limit). As expansion fur-
ther proceeds (1< �a < 10), the cosmic evolution is driven
by a second (intermediate) period of effective 4D
Friedmann evolution. Actually, note in the center of
Fig. 2 that thick DGP expansion (dark curve), given by
log �Hl-time, and standard 4D Friedmann evolution (gray
curve), given by log �HF, are indistinguishable. For �a-s
larger than (approximately) 10, the departure from stan-
dard Friedmann behavior is again apparent. This illustrates
in a toy example how the two (early-time and late-time)
periods of inflation, are preceded by two periods of stan-
dard 4D Friedmann behavior: one before the onset of early
inflation, and a second one (the intermediate one) between
the two inflationary stages. The origin of the different
periods will be investigated in detail in the next section
when we compute the corrections to the Newton’s law of
gravity arising from the occurrence of both length scales rc
and �.
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FIG. 1. Plot of the effective length scale r̂ vs the averaged
scale factor �a for the toy example of Sec. IV. It is seen how, at
early time (small �a-s), r̂ ! � ¼ 0:1 (lower gray line), while, at
late times (large �a-s), r̂ ! 2rc � 2r0 ¼ 2000 (upper gray line).
The difference between the two length scales is roughly 4 orders
of magnitude; i.e., it has been significantly smoothed out in
respect to the real physical situation.

5Here we consider the self-accelerating branch of the (thick)
DGP braneworld only.
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V. CORRECTIONS TO NEWTON’S LAW

In standard (thin) DGP braneworlds with an infinite size
extra dimension (Minkowski bulk), four-dimensional
Newtonian gravity is recovered on small scales due to a
very subtle mechanism. In fact, due to the infinite extent of
the extra dimension, and to the fact that the bulk is
Minkowski flat, there is no normalizable zero-mode gravi-
ton in the model. Four-dimensional gravity is reproduced

as a resonance of the massive KK gravitons [4,11,12]. The
massive graviton contains three additional degrees of free-
dom compared with a massless graviton. One of them is an
extra scalar degree of freedom, so that linearized gravity is
described in this model by Brans-Dicke gravity with zero
Brans-Dicke parameter. However, due to nonlinear shield-
ing of the scalar mode, solar system constraints can be
evaded [12].
In the present thick DGP brane model, in the thin brane

limit � ! 0, or, equivalently, when rc � �, four-
dimensional gravity is recovered in the way explained
above. However, due to the possibility for rc to evolve in
a cosmological setup, the opposite situation with rc � �
has to be investigated as well. As we will immediately
show, this possibility leads to new phenomena that could
be associated with early time inflation.
Since, in the present scenario, the laws of gravity are

affected by two length scales: the crossover length rc ¼
M2

4=2M
3
5 and the brane thickness �, we will pay due

attention to the different limits where ultraviolet (UV)
and infrared (IR) modifications of these laws arise. In
particular, corrections to Newton’s law of gravity become
important in these limits.
The 5D Einstein’s field equations that are derived from

the action (2) are the following (we omit here the matter-
action term Sm):

G5
AB ¼ � 2rc

�

ffiffiffiffiffiffiffiffijg4j
p
ffiffiffiffiffiffiffiffijg5j

p ��ðyÞG4
���

�
A�

�
B: (21)

where, as already said, rc ¼ M2
4=2M

3
5 is the crossover

length. The only 4D Poincarè-invariant solution to (21) is
flat Minkowski space �AB ¼ ð���; 1Þ.
In order to understand how corrections to Newton’s law

arise in the thick DGP braneworld, it will be useful to
explore both the ultraviolet (UV) and the infrared (IR)
limits of the graviton propagator computed from the action
(2), because in these limits non-Newtonian corrections
become important. As usual we simplify the analysis by
ignoring the tensor structure, i.e., by considering only the
scalar propagator Gðx; yÞ. The classical equation for the
Green’s function looks like [10]

M3
5

�
r2

5 þ
2rc
�

��ðyÞr2
4

�
Gðx; yÞ ¼ �ð4ÞðxÞ�ðyÞ; (22)

where r2
N is the flat Laplacian in N dimensions. In

Euclidean space we have

M3
5

�
p2 � @2y þ 2rc

�
��ðyÞp2

�
Gðp; yÞ ¼ �ðyÞ; (23)

where p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
4 þ p2

1 þ p2
2 þ p2

3

q
(p0 ¼ �ip4). The solu-

tions to the latter equations are [10]

Gðp; yÞ ¼ Ae�pjyj; jyj> �

2
; (24)
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FIG. 2. Comparison between standard Friedmann behavior
(gray curve) and effective thick DGP evolution of the (log of
the) averaged Hubble parameter (dark curve) for different stages
of the cosmic expansion (early times—upper figure; intermedi-
ate times—figure in the center; late times—lower figure). Note
that, before the onset of early inflation ( �a < 0:05), and at
intermediate times (0:5< �a < 5), the effective (averaged) cos-
mology on the thick DGP brane is indistinguishable from stan-
dard 4D Friedmann behavior.
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outside of the thick DGP brane, while

Gðp; yÞ ¼ Bep̂jyj þ Ce�p̂jyj; jyj � �

2
; (25)

inside the thickness of the brane. We have introduced the

definition p̂ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2rc=�

p
p, while A, B, and C are overall

constants that can be found from Darmoix boundary con-
ditions [8]. In the present case these conditions amount just
to continuity of the scalar propagatorGðp; yÞ and of its first
y derivative along the brane boundaries at ��=2 and �=2,
respectively. We have

A ¼ 2p̂

pþ p̂
eðp�p̂Þ�=2C; B ¼ p̂� p

p̂þ p
e�p̂�C;

C ¼ 1

2M3
5p̂

�
1þ p� p̂

pþ p̂
e�p̂�

��1
:

(26)

Since the effective gravitational potential mediated by the
scalar mode Gðp; yÞ is determined as

�VðrÞ ¼
Z

dt �Gðt; rÞ;

with �GðxÞ ¼
Z d4p

ð2
Þ4 e
ipx 1

�

Z �=2

��=2
dyGðp; yÞ;

(27)

then the effective (averaged) propagator in Euclidean space
will be given by the following expression:

�GðpÞ ¼ 1

�

Z �=2

��=2
dyGðp; yÞ

¼ 2ðC� BÞ
�p̂

þ 2

�p̂
ðBep̂�=2 � Ce�p̂�=2Þ: (28)

At this point we have to make a comment on the differ-
ences of our approach and the approach of Ref. [10].
Actually, while in [10] no a priori definition is given of
what to consider as an effective 4D (observable) magni-
tude, in the present approach we follow the definition of [7]
[basically Eq. (3)]. In consequence we can define without
ambiguities [in a way consistent with definition (3) for
averaged 4D quantities] the averaged (effective) 4D propa-
gator in Euclidean space and, consequently, the effective
4D gravitational potential �VðrÞ a four-dimensional ob-
server trapped on the thick DGP brane would measure
[see Eq. (27)].

Another comment has to do with what we understand as
UVand IR limits in the present thick DGP model. Here we
refer as the UV limit to the case when the crossover length
is much smaller than the brane thickness: rc � �. This
might be connected with the intuitive fact that, in this limit,
the brane thickness � has to play the role of the physically
meaningful scale at which 5D effects become important.
Since, on the other hand, physical evidence tends to point
to small enough �-s, then we can link this limit with a high-
energy (short range) regime. On the opposite end it is the
IR limit (properly the standard thin DGP limit), i.e., the
situation when the crossover length is much larger than the

brane thickness: rc � �. In this case arguments taken from
cosmology point to large rc-s (rc 	H�1

0 , where H0 is the

present value of the Hubble parameter). Therefore we can
link the latter limit with a low-energy (long range) phase.
We want to recall at this point that only a cosmological

scenario, where either rc or � (or both) evolve in cosmic
time, can bring us from the early UV regime into the late-
time IR phase. In the present section we are considering
constant � and rc. The cosmological arguments have been
already considered in the former sections.

A. UV limit

It is obvious that only in the limits, when either rc � �
or rc � �, the corrections to Newton’s law become im-
portant. In the intermediate regime the standard arguments
on nontrivial physics mentioned at the beginning of this
section apply, so that gravity is effectively four dimen-
sional, i.e., it is mediated by resonances of the KK
gravitons.
Let us first consider the UV limit, when rc � �, i.e., the

relevant scale is the brane thickness (this limit is missing in
standard thin DGP models). In this case p̂ � ð1þ rc=�Þp,
so that

B � rc
2�

e�p�C; C � 1

2M3
5p

�
1þ rc

�

�
1� e�p�

2

���1
:

(29)

At small momenta p � 1=� (long wavelengths � � �),
from (28) it is seen that �GðpÞ � Bþ C	 C, and, since, in
this case,

C � 1

2M3
5p

�
1� rc

2�

�
	 1

2M3
5p

;

then, up to linear terms in rc=�, the effective propagator
�GðpÞ 	 2M�3

5 p�1 displays intrinsic 5D behavior.

At large momenta p � 1=� (short wavelengths � � �),
the overall constant B � 0 [see (29)], while

C � 1

2M3
5p

�
1� rc

�

�
;

so that

�GðpÞ � 2C

�p

�
1� rc

�

�
� 1

�M3
5p

2

�
1� 2

rc
�

�
; (30)

i.e., up to linear terms in rc=�, �GðpÞ is the Green’s function
for a four-dimensional theory.

B. IR limit

This is properly the well-known thin DGP brane limit. In

this case, since rc � �, then p̂ � ffiffiffiffiffiffiffiffiffiffiffiffi
2rc=�

p
p. It will be

useful to introduce a couple of new variables: � �ffiffiffiffiffiffiffiffiffiffiffiffi
�=2rc

p � 1, and 
 � ffiffiffiffiffiffiffiffiffiffi
2�rc

p ¼ �rc. It can be shown
that, in terms of these variables, the effective propagator
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(28) can be written in the following form:

�GðpÞ ¼ 1


M3
5p

2

�
1� �e�
p=2

1� ð1� �Þe�
p

�
: (31)

Two limiting cases are of importance:
(I) Small 
p � 1.

This case corresponds to momenta p � 1=
ffiffiffiffiffiffiffiffiffiffi
2�rc

p
,

i.e., wavelengths � � ffiffiffiffiffiffiffiffiffiffi
2�rc

p
. The propagator can be

written in the following way:

�GðpÞ � 1


M3
5p

2


p


pþ �
: (32)

At very small momenta p � �=
 ¼ 1=rc (very
large wavelengths � � rc), it approximates a 5D
propagator

�GðpÞ � 1

�M3
5p

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=2�

p
M3

5p
: (33)

At intermediate momenta � � 
p � 1 ) r�1
c �

p � 1=
ffiffiffiffiffiffiffiffiffiffi
2�rc

p
(intermediate wavelengths

ffiffiffiffiffiffiffiffiffiffi
2�rc

p �
� � rc), alternatively

�GðpÞ � 1


M3
5p

2
¼ 1ffiffiffiffiffiffiffiffiffiffi

2�rc
p

M3
5p

2
; (34)

so that the propagator displays intrinsic four-
dimensional behavior.

(II) Very large 
p � 1.
Here we are talking about very small wavelengths
� � ffiffiffiffiffiffiffiffiffiffi

2�rc
p

. The effective propagator displays,
again, 4D behavior:

�GðpÞ � 1


M3
5p

2
: (35)

Notice that this approximate expression for the
propagator coincides with the one for the case of
intermediate momenta (intermediate wavelengthsffiffiffiffiffiffiffiffiffiffi
2�rc

p � � � rc) in Eq. (34). Therefore, in gen-
eral, for momenta p � 1=rc (wavelengths � � rc)
the propagator is given by the four-dimensional
behavior (34).

VI. DISCUSSION

As already pointed out, there is no way to have both UV
and IR limits in the same theory, unless one considers
cosmological evolution of either rc or �, or both. A pos-
sible cosmological scenario could be, for instance, to have
a running rc, that amounts to have Brans-Dicke (BD)
gravity induced on the thick brane, with rc playing the
role of the BD scalar field.

Let us to summarize the main results of our investiga-
tion:

(i) In the UV regime gravity is effectively trapped on
the thick DGP brane at length scales smaller that the

brane thickness (� � �). The effective 4D gravita-
tional coupling is given by �GN ¼ �M�2

4 , where �M2
4 ¼

�M3
5. At length scales � much larger than �, gravity

leaks into the extra space and 5D effects become
important.

(ii) In the IR regime (properly thin DGP brane regime),
due to resonances of the KK gravitons, gravity is
effectively 4D at length scales � � rc, with effec-
tive gravitational coupling �GN ¼ 
�1M�3

5 . At large

(perhaps cosmological) scales � � rc, gravity leaks
again into the extra space and 5D effects dominate.

Notice that there can be both a 4D as well as a 5D regime
associated with each limit, i.e., in a cosmological setup
there could be four stages associated with passing from one
limit into the other one: (i) effective 4D behavior with
gravitational coupling �GN ¼ ð�M3

5Þ�1 at very early times

(UV stage where rc � �); then (ii) 5D effects dominate at
length scales � � �. As rc further evolves with the cosmic
expansion one goes from the UV regime into the IR
(standard, thin DGP brane) regime (rc � �). Once the IR
stage is reached, (iii) gravity is effectively 4D with �GN ¼

�1M�3

5 at length scales smaller than the crossover length

� � rc (this 4D stage is just a continuation of the inter-
mediate one). (iv) Finally, at late times, the Universe enters
a stage where 5D effects dominate at very large (perhaps
cosmological) scales � � rc.
We think this can be a nice cosmological scenario to

address, in a unified frame, both early inflation and late-
time accelerated expansion as phenomena of purely geo-
metrical origin.

VII. CONCLUSIONS

Consideration of finite thickness leads to a very conve-
nient modification of the DGP scenario: there arise two
length scales associated with the brane thickness and with
the crossover length, respectively. A central role in the
present approach to thick DGP braneworlds is played by
the prescription of what to consider as a four-dimensional
observable [7]. According to this prescription, spatial av-
erage in respect to the extra dimension is defined through
integration over the brane thickness, unlike standard di-
mensional reduction where integration is performed over
the whole extent of the extra dimension. In the present
setup, as in standard thin DGP braneworlds, four-
dimensional gravity is mediated by resonances of the KK
gravitons. Massive KK modes lead to corrections of the
Newton law that are appreciable as UV and IR limits are
attained.
These corrections lead us to the conclusion that the short

and large range behaviors of the laws of gravity depend on
whether length scale dominates: rc or �. Accordingly, there
can be two different Newtonian ( �V 	 1=r) regimes: one at
� � � (rc � �), and the other one at � � rc (rc � �). In
the same way, one can find two different ‘‘five-
dimensional’’ regimes: one at � � � (rc � �), and the
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other one at r � rc (rc � �). The existence of two stages
of ‘‘five-dimensional’’ behavior is a very convenient fact to
accommodate both early inflation, and late-time acceler-
ated expansion of the cosmic evolution, within a unique
geometrical picture where both inflationary stages are a
consequence of the leakage of gravity into the extra space.
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APPENDIX A: DERIVING FRIEDMANN’S
EQUATION

In this Appendix we use definitions previously intro-
duced in the main text [see for instance (8)].

In terms of the metric (1) the components of the five-
dimensional Einstein’s tensor GAB are

G00 ¼ 3

��
_a

a

�
2 � n2

�2

��
a0

a

�
2 þ a00

a

��
;

Gij ¼ a2

�2
�ij

�
a0

a

�
a0

a
þ 2

n0

n

�
þ 2

a00

a
þ n00

n

�

þ a2

n2
�ij

�
_a

a

�
� _a

a
þ 2

_n

n

�
� 2

€a

a

�
;

G05 ¼ 3

�
n0

n

_a

a
� _a0

a

�
;

G55 ¼ 3

�
a0

a

�
a0

a
þ n0

n

��
� 3

�2

n2

�
_a

a

�
_a

a
� _n

n

�
þ €a

a

�
:

(A1)

Then, the 05 component of Einstein’s field equations (4)
yields

nðt; yÞ ¼ �ðtÞ _aðt; yÞ: (A2)

We take the normalization �n ¼ 1, so that

� ¼ �_a�1 ) n ¼ _a= �_a: (A3)

On the other hand, since

T0
0jTotal ¼ ��

�
��b

�
þ 3M2

4

�a2

�
_a

n

�
2
�
; (A4)

then, from G0
0 ¼ k25T

0
0jTotal it follows that

ða2Þ00 ¼ � 2

3
k25����ba

2 þ 2�2 �_a2
�
1þ 2

rc
�
��

�
; (A5)

where we have defined the crossover length rc ¼ M2
4=2M

3
5.

Integrating the last equation over the brane thickness one
obtains

að1=2Þ0 ¼ �a

�

�
���þ �2

2

�
1þ 2

rc
�

�
�H2

�
: (A6)

The next step is to notice that the 55 component of
Einstein’s field equations (4) can be written in the compact
form:

_F ¼ 2

3
k25 _aa

3PT;
F

a2
¼

�
a0

a

�
2 � �_a2; (A7)

where the following relationship holds:

G5
5 ¼

3

2

_F

_aa3
: (A8)

If we impose the boundary condition PTð
1=2Þ ¼ 0, i.e.,
_Fð
1=2Þ ¼ 0, then, after time integration, one obtains

�2 �H2 ¼
�
a0ð1=2Þ

�a

�
2 þ C�2

�2 �a4
; (A9)

where C is an arbitrary integration constant. By substitut-
ing (A6) into the last equation, the following Friedmann
equation can be derived:

�2�2 �H2 ¼
�
���þ �2

2

�
1þ 2

rc
�

�
�H2

�
2 þ C�2

�a4
; (A10)

or, since � ¼ k25 ��b�=6, then

�2 �H2 ¼
�
� k25

6
� ��b þ r̂

2
�H2

�
2 þ C

�a4
;

where r̂ � �þ 2rc is an effective length scale. The later
equation can be recast into the form of Eq. (9) of the main
text.

APPENDIX B: THE LIMITS

As seen from (9), the thin brane limit � ! 0 (r̂ ¼ 2rc),
� ! 1, � ! 1, yields the celebrated Friedmann equation
for DGP braneworlds:

�H 2 � 1

rc
�H ¼

�k24
3

��b: (B1)

The so-called Kaluza-Klein limit � ! 1 (r̂ ! 1), in-
stead, yields to the following standard Friedmann behav-
ior:

�H 2 ¼ 8
Ĝ

3
��b; (B2)

where we have considered 8
Ĝ � k25�=2r̂ to be nonvan-

ishing in this limit.
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