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We reexamine the two-point correlation of density maxima in Gaussian initial conditions. Spatial

derivatives of the linear density correlation, which were ignored in the calculation of Bardeen et al.

[Astrophys. J. 304, 15 (1986)], are included in our analysis. These functions exhibit large oscillations

around the sound horizon scale for generic cold dark matter (CDM) power spectra. We derive the exact

leading-order expression for the correlation of density peaks and demonstrate the contribution of those

spatial derivatives. In particular, we show that these functions can modify significantly the baryon acoustic

signature of density maxima relative to that of the linear density field. The effect depends upon the exact

value of the peak height, the filter shape and size, and the small-scale behavior of the transfer function. In

the �CDM cosmology, for maxima identified in the density field smoothed at mass scale M �
1012–1014M�=h and with linear threshold height � ¼ 1:673=�ðMÞ, the contrast of the baryon acoustic

oscillations (BAO) can be a few tens of percent larger than in the linear matter correlation. Overall, the

BAO is amplified for � * 1 and damped for � & 1. Density maxima thus behave quite differently than

linearly biased tracers of the density field, whose acoustic signature is a simple scaled version of the linear

baryon acoustic oscillation. We also calculate the mean streaming of peak pairs in the quasilinear regime.

We show that the leading-order 2-point correlation and pairwise velocity of density peaks are consistent

with a nonlinear, local biasing relation involving gradients of the density field. Biasing will be an

important issue in ascertaining how much of the enhancement of the BAO in the primeval correlation of

density maxima propagates into the late-time clustering of galaxies.

DOI: 10.1103/PhysRevD.78.103503 PACS numbers: 98.80.�k

I. INTRODUCTION

Sound waves propagating in the primordial photon-
baryon fluid imprint a oscillatory pattern in the anisotro-
pies of the cosmic microwave background (CMB) and in
the matter distribution, whose characteristic length scale rs
is the sound horizon at the recombination epoch [1]. rs �
105h�1 Mpc for the currently favored cosmological mod-
els. While experiments have accurately measured this fun-
damental scale and its harmonic series in the temperature
and polarization power spectra of the CMB, this acoustic
signature has recently been detected in the correlation
function of galaxies [2,3]. There is also weak evidence
for the baryon oscillations in the correlation function of
clusters [4]. In the 2-point correlation, the series of maxima
and minima present in the power spectrum translates into a
broad peak at the sound horizon scale. Since the latter can
be accurately calibrated with CMB measurements, the
baryon acoustic oscillations (BAO) have emerged as a
very promising standard ruler for determining the angular
diameter distance and Hubble parameter [5]. Measuring
the BAO at different redshifts thus offers a potentially
robust probe of the dark energy equation of state.

In linear theory, the amplitude of the baryon acoustic
peak increases while its shape and contrast remain un-
changed. However, the clustering of galaxies does not fully
represent the primeval correlation. Mode-coupling, pair-

wise velocities, and galaxy bias are expected to alter the
position and shape of the acoustic peak and, therefore, bias
the measurement [6]. The evolution of the acoustic pattern
in the 2-point statistics of the matter, halo, or galaxy
distributions has been studied using both numerical simu-
lations [7,8] and analytic techniques based on the halo
model or perturbation theory [9–20]. Yet the results of
these studies do not always agree and the impact of non-
linearities on the matter and galaxy power spectrum re-
mains debatable. For instance, Refs. [10,12] argue that any
systematic shift (i.e., not related to random motions or
biasing) must be less than the percent level owing to the
particularly smooth power added by nonlinearities on those
scale, and to the cancellation of the mean streaming of
(linearly) biased tracers at the first order. On the other
hand, Refs. [11,13,15,16] have shown that mode-coupling
modifies the acoustic pattern in the correlation of dark
matter and haloes, and generates a percent shift toward
smaller scales. Despite their redshift dependence, these
shifts appear to be predictable and could be removed
from the data [19].
There is a broad consensus regarding the shape of the

acoustic peak. In light of the nonlinear gravitational evo-
lution of matter fluctuations, it is sensible to expect a
baryon acoustic peak less pronounced in the late-time
clustering of galaxies than in the linear theory correlation.
This can be shown to hold for any local transformation of
the density field [12,21,22]. Such biasing mechanisms do
indeed predict a damping of the baryon acoustic features in*dvince@physik.uzh.ch
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the 2-point statistics of the galaxy distribution [8,13,23].
Galaxies, of course, form a discrete set of points but one
commonly assumes them to be a Poisson sample of some
continuous field. Still, the extent to which those models are
an accurate approximation to the clustering of galaxies
remains unclear. Notice also that a reconstruction of the
primordial density field could significantly restore the
original contrast of the acoustic oscillation [24].

The main objective of this paper is to demonstrate that
the BAO in the correlation of tracers of the density field can
be noticeably modified if we consider local biasing rela-
tions more sophisticated than local transformations of the
density field [25,26]. To this purpose, we will examine the
clustering of density maxima in the initial cosmological
density field. In this respect, we will assume that the initial
fluctuations are described by Gaussian statistics. This as-
sumption is remarkably well supported by measurements
of the CMB and large-scale structures [27,28]. Density
peaks form a well-behaved point process whose statistical
properties depend not only on the underlying density field,
but also on its first and second derivatives. Therefore,
although the number of density maxima is modulated by
large-scale fluctuations in the background, their clustering
properties cannot be derived from a continuous field ap-
proach in which the peak overdensity would depend upon
the value of the matter density only. Interestingly, however,
we shall see that at large separations, the peak correlation
and pairwise velocity are consistent with a nonlinear bias-
ing relation involving gradients of the density field.

In a seminal paper, Bardeen, Bond, Kaiser, and Szalay
(BBKS) [29] provided a compact expression for the aver-
age number density of peaks in a three-dimensional
Gaussian random field, etc. Furthermore, they obtained a
large-scale approximation for the correlation function of
peaks which, at a large threshold height, tends toward the
correlation of overdense regions [30–32] as it should be.
However, BBKS determined the correlation function of
density maxima only in the limit where derivatives of the
2-point function of the density field can be ignored. As we
will see below, these correlations can greatly influence the
large-scale correlation of density maxima for generic cold
dark matter (CDM) power spectra. It is also worth noticing
that the statistics of Gaussian random fields in a cosmo-
logical context has received some attention in the literature
[33–37]. Some of these results have been applied to the
mass function and correlation of rich clusters, for example,
[38–40]. The present work mainly follows the analytic
study of BBKS, and the lines discussed in [41,42], where
2-point statistics of the linear tidal shear are investigated.
We refer the reader to [43] for a rigorous introduction to the
statistics of maxima of Gaussian random fields.

The paper is organized as follows. Section II introduces
a number of useful variables and correlation functions.
Section III is devoted to the derivation of the leading-order
expression for the large-scale asymptotics of the peak

correlation. Our result can be thought as arising from a
specific type of nonlinear local biasing relation including
second spatial derivatives of the density field. In Sec. IV,
we explore the impact of these derivatives on the amplitude
and shape of the correlation of density maxima. Our atten-
tion focuses on the baryon oscillation, across which the
amplitude of the linear matter correlation varies abruptly. It
is shown that the BAO of density maxima can be amplified
relative to that of the matter distribution. Section V deals
with the peak pairwise velocity. Its leading-order contri-
bution is found to be consistent with the nonlinear local
bias relation inferred from the 2-point correlation of peaks.
A final section summarizes our results.

II. PROPERTIES OF COSMOLOGICAL GAUSSIAN
DENSITY FIELDS

We review some general properties of Gaussian random
fields and provide explicit expressions for the correlations
of the density and its lowest derivatives. We show that the
latter are not always negligible in CDM cosmologies.

A. Useful definitions

Wewill assume a�CDM cosmology with normalization
amplitude �8 ¼ 0:82, and spectral index ns ¼ 0:96 [28].
The matter transfer function is computed using publicly
available Boltzmann codes [44]. The position of the BAO
in the linear matter correlation function is close to �
105:0h�1 Mpc.
Let q designate the Lagrangian coordinate. We are in-

terested in the three-dimensional density field �ðqÞ and its
first and second derivatives. It is more convenient to work
with the normalized variables � ¼ �ðqÞ=�0, �i ¼
@i�ðqÞ=�1, and �ij ¼ @i@j�ðqÞ=�2, where the �j are the

spectral moments of the matter power spectrum,

�2
j �

Z 1

0
d lnkk2j�2ðkÞ: (1)

�2ðkÞ � �2
�ðkÞjŴðk; RfÞj2 denotes the dimensionless

power spectrum of the density field smoothed on scale

Rf with a spherically symmetric window Ŵðk; RfÞ.
The best choice of smoothing is open to debate. Among

the popular window functions, the top hat filter is com-
pactly supported and has a straightforward interpretation
within the spherical collapse model. Notwithstanding this,
oscillations that arise in Fourier space do not lead to well-
defined spectral moments �j with j � 2 for CDM power

spectra. This can be understood by examining the high-k
tail of the CDM transfer function. Neglecting the baryon
thermal pressure on a scale less than the Jeans length, the
small-scale matter transfer function behaves as TðkÞ /
lnð1:8kÞ=k2 [29,45], which clearly leads to divergences
when the integer j is larger than 1. By contrast, a
Gaussian window function ensures the convergence of all
the spectral moments for any realistic matter power spec-
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tra. Consequently, we shall mostly rely on the Gaussian
filter throughout this paper, although the top hat filter will
also be considered briefly in Sec. IV. Note that a Gaussian

filter of characteristic width Rf encloses a mass Mf ¼
ð2�Þ3=2 ��R3

f a few times larger than that encompassed by

a top hat filter of an identical smoothing radius.
Following BBKS, we also introduce the parameters � ¼

�2
1=ð�0�2Þ and R? ¼ ffiffiffi

3
p

�1=�2 for subsequent use. The
spectral width � reflects the range over which �2ðkÞ is
large, while R? characterizes the radius of peaks. For the
special case of a powerlaw power spectrum with Gaussian
filtering on scale Rf, these parameters are given by �2 ¼

ðnþ 3Þ=ðnþ 5Þ and R2
? ¼ 6R2

f=ðnþ 5Þ. For CDM power

spectra, �� 0:5–0:7 when the smoothing length varies
over the range 0:1 & Rf & 10h�1 Mpc.

B. Correlation of the density and its derivatives

Calculating the 2-point correlation of density peaks
requires knowledge of the auto- and cross correlations of
the various fields. These objects can be decomposed into
components with definite transformation properties under
rotations. Statistical isotropy and symmetry implies that, in
position space, the most general ansatz for the isotropic
sector of the 2-point correlations of these fields reads

h�ðq1Þ�ðq2Þi ¼ 	ðrÞ h�ðq1Þ�iðq2Þi ¼ �ðrÞr̂i h�ðq1Þ�ijðq2Þi ¼ ���1ðrÞr̂ir̂j � ��2ðrÞ�ij

h�iðq1Þ�jðq2Þi ¼ �1ðrÞr̂ir̂j þ �2ðrÞ�ij h�iðq1Þ�lmðq2Þi ¼ �1ðrÞr̂ir̂lr̂m þ�2ðrÞðr̂i�lm þ r̂l�im þ r̂m�ilÞ
h�ijðq1Þ�lmðq2Þi ¼ �1ðrÞr̂ir̂jr̂lr̂m þ�3ðrÞðr̂ir̂l�jm þ r̂ir̂m�jl þ r̂jr̂l�im þ r̂jr̂m�ilr̂ir̂j�lm þ r̂lr̂m�ijÞ

þ�5ðrÞð�ij�lm þ �il�jm þ �im�jlÞ; (2)

where r ¼ jq2 � q1j is the Lagrangian separation, r̂i ¼ ri=r and the functions 	,�, �i,�i, and�i depend on r only. We
emphasize that these correlation functions transform as scalar under rotations. Note also that these expressions are valid for
any arbitrary random field. For a cosmological Gaussian density field however, these functions can be summarized as
follows:

	ðrÞ ¼ 1

�2
0

Z 1

0
d lnk�2ðkÞj0ðkrÞ �ðrÞ ¼ � 1

�0�1

Z 1

0
d lnkk�2ðkÞj1ðkrÞ �1ðrÞ ¼ � 1

�2
1

Z 1

0
d lnkk2�2ðkÞj2ðkrÞ

�2ðrÞ ¼ 1

�2
1

Z 1

0
d lnkk2�2ðkÞ

�
1

3
j0ðkrÞ þ 1

3
j2ðkrÞ

�
�1ðrÞ ¼ � 1

�1�2

Z 1

0
d lnkk3�2ðkÞj3ðkrÞ

�2ðrÞ ¼ 1

�1�2

Z 1

0
d lnkk3�2ðkÞ

�
1

5
j1ðkrÞ þ 1

5
j3ðkrÞ

�
�1ðrÞ ¼ 1

�2
2

Z 1

0
d lnkk4�2ðkÞj4ðkrÞ

�3ðrÞ ¼ � 1

�2
2

Z 1

0
d lnkk4�2ðkÞ

�
1

7
j2ðkrÞ þ 1

7
j4ðkrÞ

�
�5ðrÞ ¼ 1

�2
2

Z 1

0
d lnkk4�2ðkÞ

�
1

15
j0ðkrÞ þ 2

21
j2ðkrÞ þ 1

35
j4ðkrÞ

�
:

(3)

j‘ðxÞ are spherical Bessel functions of the first kind. In the
limit r ! 0, all the correlation functions vanish but 	, �2,
and�5, which tend towards 1, 1=3, and 1=15, respectively.
Averaging over the direction r̂ of the separation vector thus
yields

1

4�

Z
d�r̂h�iðq1Þ�jðq2Þi ¼ �ðrÞ

3
�ij

1

4�

Z
d�r̂h�ijðq1Þ�lmðq2Þi ¼ c ðrÞ

15
ð�ij�lm þ �il�jm

þ �im�jlÞ;

(4)

for the covariances of the fields �i and �ij, where we have
defined

�ðrÞ ¼ �1ðrÞ þ 3�2ðrÞ
c ðrÞ ¼ �1ðrÞ þ 10�3ðrÞ þ 15�5ðrÞ:

(5)

The angular average of the other correlation functions
vanishes, except that of the density correlation of course.
�ðrÞ and c ðrÞ can be expressed in terms of the deriva-

tives of the density correlation using relations like
h�i�ji ¼ �@i@j	ðrÞ, etc. For a density correlation that

falls off as a powerlaw r�n�3, �ðrÞ, and c ðrÞ decay as
r�n�5 and r�n�7, respectively. This derivation assumes a
powerlaw power spectrum with a fair amount of power at
short wavenumbers. Hence, as recognized in BBKS, ne-
glecting the derivatives of the density correlation should be
a reasonable approximation when n & �1.
This simple argument may not hold for CDM cosmolo-

gies since the index n is a smooth function of the separation
r. Namely, it is n��2 when r� 10h�1 Mpc, and in-
creases to attain a value of the order of unity on the scale
r * 60h�1 Mpc. For illustration purpose, the functions 	,
�, and c are plotted in Figs. 1 and 2 for the �CDM
cosmology considered here. The filtering length is Rf ¼
5 and 1h�1 Mpc, respectively. (The reason for choosing
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these values will become apparent below.) Retaining only
the density correlation appears to be a good approximation
on scales larger than a few smoothing radii. However, the
relative amplitude of the cross correlations strongly de-
pends upon the filtering scale. Namely, both �ðrÞ and c ðrÞ

increase relative to 	ðrÞ with increasing smoothing length.
Yet another striking feature of Figs. 1 and 2 is the oscil-
latory behavior of�ðrÞ and c ðrÞ. The large oscillations are
caused by rapid changes in the linear matter correlation
across the baryon acoustic peak. Notice that both �ðrÞ and
c ðrÞ are positive at distances r � 100–110h�1 Mpc. On
these scales, when Rf ¼ 1h�1 Mpc, �ðrÞ reaches to 3

percent of the density correlation while c ðrÞ is negligible.
At the large smoothing length however, they nearly reach
20 and 10 percent of the density correlation, respectively.
These results suggest that, for generic CDM power

spectra, the derivatives of the density correlation could
have a significant impact on the correlation of density
maxima, especially in the vicinity of the baryon acoustic
feature. This motivates the calculation presented in the
next section.

III. CORRELATION OF DENSITY MAXIMA

Owing to the constraints on the derivatives of the density
field, calculating the n-point correlation function of peaks
requires performing integration over a joint probability
distribution in 10n variables. Therefore, even the evalu-
ation of the 2-point correlation of density maxima 	pkðrÞ
proves difficult. Here, we derive the leading-order expres-
sion that includes, in addition to the linear matter correla-
tion 	ðrÞ, the contribution of the angular average functions
�ðrÞ and c ðrÞ. We also show that the large-scale asymp-
totics of the peak correlation can be thought as arising from
a specific type of nonlinear biasing relation involving
second derivatives of the density field.

A. The Kac-Rice formula

As shown in BBKS for instance, the correlation of
density extrema (maxima, minima, and saddle points)
can be entirely expressed in terms of �ðqÞ and its deriva-
tives, �iðqÞ and �ijðqÞ. In the neighborhood of an extre-

mum, the first derivative �i is approximately

�iðqÞ �
ffiffiffi
3

p
R�1
?

X
j

�ijðqpÞðq-qpÞ: (6)

Using the properties of the Dirac delta, the number density
of extrema can be written as

nextðqÞ ¼
X
p

�3ðq-qpÞ ¼ 33=2

R3
?

j det�ðqÞj�3½�ðqÞ�; (7)

provided that the Hessian �ij is invertible. The delta func-

tion �3½�� ensures that all the extrema are included. In this
paper however, we are interested in counting the maxima
solely. Consequently, we further have to require �ijðqpÞ be
negative definite at the extremum position qp. Note that,

later, we will also restrict the set to those maxima with a
certain threshold height. The average number density of
maxima eventually reads

FIG. 1 (color online). A comparison between the cross corre-
lation of the density field, 	ðrÞ, and that of its first and second
derivatives, �ðrÞ and c ðrÞ, respectively [see Eq. (4)]. Results are
shown as a function of the Lagrangian separation r for the
�CDM cosmology considered in the present work. The density
field is smoothed with a Gaussian filter of characteristic scale
Rf ¼ 5h�1 Mpc (i.e., a mass scale Mf ¼ 1:5� 1014M�=h).
Dashed lines denote negative values. All the correlations are
normalized to unity at zero lag.

FIG. 2 (color online). Same as Fig. 1, but for a smoothing
length Rf ¼ 1h�1 Mpc (Mf ¼ 1:2� 1012M�=h). The correla-

tion function c ðrÞ (not shown) is less than 10�6 at distances
larger than * 30h�1 Mpc.
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hnpkðqÞi ¼ 33=2

R3
?

hj det�ðqÞj�3½�ðqÞ�i: (8)

This expression, known as the Kac-Rice formula [43,46–
49], holds for arbitrary smooth random fields. In the gen-
eral case of a random field in N dimensions, it is trivial to
show that the mean density of maxima scales as hnpki /
R�N
? / R�N

f .

The 2-point correlation function of the density peak is
defined such that

1þ 	pkðrÞ ¼ hnpkðq1Þnpkðq2Þi=hnpki2 (9)

is the joint probability that a density maxima is in a volume
dVi about each qi. Let X be the diagonal matrix of entries
diagðx1; x2; x3Þ where x1 � x2 � x3 is the nonincreasing
sequence of eigenvalues of the symmetric matrix �� . The
condition that the extrema are maxima implies x3 � 0.
Therefore, the correlation function of the peaks is given by

1þ	pkðrÞ¼ 33

hnpki2R6
?

�hjdet�1jjdet�2j
ðx3Þ
ðy3Þ�3½�1��3½�2�i

¼ 33

hnpki2R6
?

Z
d�1d

6�1d�2d
6�2jdet�1jjdet�2j

�
ðx3Þ
ðy3ÞPð�1 ¼ 0;�1;�1;�2 ¼ 0;�2;�2;rÞ;
(10)

where, for shorthand convenience, subscripts denote quan-
tities evaluated at different Lagrangian positions, and
d6� ¼ Q

i	jd�ij is the usual Lebesgue measure on the

six-dimensional space of symmetric matrices. Here and
henceforth 
ðxÞ designates the Heaviside step-function,
i.e., 
ðxÞ ¼ 1 for x > 0 and zero otherwise.

B. Two-point probability distribution

The joint probability distribution of the density fields,
together with its first and second derivatives,
Pð�1; �1; �1; �2; �2; �2; rÞ, is given by a multivariate
Gaussian whose covariance matrix C has 20 dimensions.
This 20� 20 matrix may be partitioned into four 10� 10
block matrices, M ¼ hy1y>1 i ¼ hy2y>2 i in the top left cor-
ner and bottom right corners, B ¼ hy1y>2 i and its transpose
in the bottom left and top right corners, respectively. The
components �A, A ¼ 1; . . . ; 6 of the ten-dimensional vector
y> ¼ ð�i; �; �AÞ symbolize the entries ij ¼ 11, 22, 33, 12,
13, 23 of �ij. To emphasize that the entries �A transform as

a tensor under rotation, we shall also label them as the
matrix � in what follows.

The matrices M and B can be further decomposed into
block submatrices of size 4 and 6,

M ¼ M1 M>
3

M3 M2

� �
; B ¼ B1 B>

3

B3 B2

� �
: (11)

Unlike the Mi which describe the covariances at a single
position, the matrices Bi generally are functions of the
separation vector r. Using the harmonic decomposition
of the tensor products r̂ 
 . . . 
 r̂, they can be written as

B 1ðrÞ ¼ B0;0
1 þ X4

‘¼1

B‘;m
1 ðrÞYm

‘ ðr̂Þ

B2ðrÞ ¼ B0;0
2 þ X4

‘¼1

B‘;m
2 ðrÞYm

‘ ðr̂Þ

B3ðrÞ ¼ B0;0
3 þ X4

‘¼1

B‘;m
3 ðrÞYm

‘ ðr̂Þ:

(12)

Ym
‘ ðr̂Þ are spherical harmonics and B‘;m

i ðrÞ are matrices

which satisfy ðB‘;m
i Þy ¼ ð�1ÞmB‘;m

i . Only multipoles up
to ‘ ¼ 4 appear in the harmonic decomposition since the
correlations given in Eq. (3) involve products of up to four
unit vectors r̂. The monopole terms are

B 0;0
1 ¼ �ðrÞ=3I 03�1

01�3 	ðrÞ
� �

;

B0;0
2 ¼ c ðrÞ=15A 03�3

03�3 c ðrÞ=15I
� �

;

B0;0
3 ¼ 03�3 ���ðrÞ=313�1

03�3 03�1

� �
;

(13)

where

A ¼
3 1 1
1 3 1
1 1 3

0
@

1
A; (14)

I is the 3� 3 identity matrix and 11�3 ¼ ð1; 1; 1Þ, etc. The
matrices Mi are readily obtained as Mi ¼ B0;0

i ð0Þ. An
explicit computation of the higher multipole matrices is
unnecessary here as we confine the calculation to the
monopole contribution.
It is important to note that the joint density Pðy1; y2; rÞ

preserves its functional form under the action of the rota-
tion group SO(3). However, in a given frame of reference,
Pðy1; y2; rÞ does change when r̂ moves on the unit sphere.
Does this mean that 	pkðrÞ truly depends on the direction of
the separation vector r? No, as it should be clear from
Eq. (11) where the volume measure j det�jd6� is a rota-
tional invariant. More precisely, the volume element d6�
can be cast into the form

d6� ¼ 8�2j�ðxÞjd3xdR; (15)

where the xi’s are, as before, the three ordered eigenvalues
of�� , d3x ¼ dx1dx2dx3, and �ðxÞ ¼ Q

i<jðxi � xjÞ is the
Vandermonde determinant. dR is the Haar measure (for the
Euler angles, for example) on the group SO(3) normalized
to
R
dR ¼ 1. The peak correlation thus is proportional toZ
dR1dR2Pð�1 ¼ 0; �1; �1; �2 ¼ 0; �2; �2; rÞ; (16)
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where the integral runs over the two SO(3) manifolds that
define the orientation of the principal frames of �1 and �2
relative to the frame of reference. Alternatively, we can
choose the coordinate system such that the coordinate axes
are aligned with the principal axes of �1. In this new
coordinate frame, the above integral becomes

1

4�

Z
d�r̂dRPð�1 ¼ 0; �1; �1; �2 ¼ 0; �2; �2; rÞ; (17)

where R is an orthogonal matrix that defines the orientation
of the eigenvectors of �2 relative to those of �1. This
demonstrates that only the monopole component of
Pðy1; y2; rÞ contributes to the peak correlation function.
Therefore, 	pkðrÞ is invariant under rotations of the coor-

dinate system, namely, it is a function of the separation r
only.

C. Large-scale asymptotics

To obtain the correlation function of the peak, we need
first to calculate the 2-point probability distribution func-
tion averaged over the unit sphere for the variables y> ¼
ð�i; �; �AÞ,

Pðy1; y2; rÞ ¼ 1

4�

Z
d�r̂Pðy1; y2; rÞ: (18)

In the large-distance limit (r � 1), the cross-correlation

matrix is small when compared to the zero-point contribu-
tion M, e.g., jBj � M. Following [41,42], the quadratic
form which appears in the probability distribution
Pðy1; y2; rÞ,

Pðy1; y2; rÞ ¼ 1

ð2�Þ10j detCj1=2 e
�Qðy1;y2;rÞ; (19)

where detC � j detMj2 ¼ 42ð1� �2Þ2=ð151038Þ is the de-
terminant of the covariance matrix C, can be computed
easily using Schur’s identities. Expanding the exponential
in the small perturbation B yields, to the first order

e�Qðy1;y2;rÞ � ð1þ y>1 M�1BM�1y2Þe� �Qðy1;y2Þ; (20)

where the quadratic form �Qðy1; y2Þ can be recast as

2 �Q ¼ �2
1 þ

ð��1 þ tr�1Þ2
1� �2

þ 5

2
½3 trð�21 Þ � ðtr�1Þ2�

þ 1 $ 2; (21)

in agreement with the results of BBKS. The calculation of
y>1 M�1BM�1y2 is tedious but straightforward.

Fortunately, only the monopole terms B0;0
i survive after

averaging over the directions r̂. After further simplifica-
tion, the result can be reduced to the following compact
expression:

1

4�

Z
d�r̂y

>
1 M

�1BM�1y2 ¼ 5

2
½3 trð�1�2Þ � tr�1 tr�2�c ðrÞ þ ftr�1 tr�2½c ðrÞ þ �2	ðrÞ� þ �1�2½	ðrÞ þ �2c ðrÞ�

� 2�2ðtr�1 tr�2 þ �1�2Þ�ðrÞ þ �ð�1 tr�2 þ �2 tr�1Þ½	ðrÞ þ c ðrÞ � ð1þ �2Þ�ðrÞ�g
� ð1� �2Þ�2: (22)

The invariance under rotation requires that Pðy1; y2; rÞ be a
symmetric function of the eigenvalues, and thus a function
of trð�k1�l2Þ, k, l ¼ 0; 1; . . . .

Since the above expression depends only upon the rela-
tive orientation of the two principal axes frames of �1 and
�2 (through the presence of trð�1�2Þ), we choose a coordi-
nate system whose axes are aligned with the principal
frame of �1. With this choice of coordinate we define �1 ¼
�X and �2 ¼ �RYR>, where R is an orthogonal matrix
that defines the relative orientation of the eigenvectors of
�2. X and Y are the diagonal matrices consisting of the
three ordered eigenvalues xi and yi of the Hessian�@i@j�.

The properties of the trace imply that tr�1 ¼ �trX,
trð�21 Þ ¼ trðX2Þ (and similarly for �2), while the term
trð�1�2Þ ¼ trðXRYR>Þ depends explicitly on the rotation
matrix R.

The integral over the SO(3) manifold that describes the
orientation of the orthonormal triad of �1 is immediate. The
result is 2�2 (and not 8�2) as we do not care whether the
axes are directed toward the positive or negative direction.
The integral over the second SO(3) manifold involves

Z
SOð3Þ

dR trðXRYR>Þ ¼ 1

3
trX trY; (23)

and yields cancellation of the first term in the right-hand
side of Eq. (17). To integrate over the eigenvalues of �1 and
�2, we transform to the new set of variables fui; vi; wi; i ¼
1; 2g, where

u1 ¼ x1 þ x2 þ x3 v1 ¼ ðx1 � x3Þ=2
w1 ¼ ðx1 � 2x2 þ x3Þ=2:

(24)

The variables ðu2; v2; w2Þ are similarly defined in terms of
the yi. We will henceforth refer to u as the peak curvature.
Our choice of ordering imposes the constraints vi � 0

and �vi 	 wi 	 vi. The condition that the density ex-
trema be maxima, i.e., all three eigenvalues of the
Hessian �ij are negative, translates into ðui þ wiÞ � 3vi.

Another condition, ui � 0, should also be applied if one is
interested in selecting maxima with positive threshold
height.
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For shorthand convenience, and to facilitate the com-
parison with the calculation of BBKS, we introduce the
auxiliary function

Fðu1; v1; w1Þ � 33

2
j detXj�ðxÞ

¼ ðu1 � 2w1Þ½ðu1 þ w1Þ2 � 9v2
1�

� v1ðv2
1 � w2

1Þ; (25)

Fðu1; v1; w1Þ measures the degree of asphericity expected
for a peak and can be used to determine the probability
distribution of ellipticity v1=u1 and prolateness w1=u1
[29]. It scales as / u3i in the limit ui � 1.

D. The peak correlation �pkð�; rÞ
For the sake of generality, we will present results for the

cross correlation 	pkð�1; �2; rÞ between two populations of

density maxima �1 � �2 identified at smoothing scale
R1 � R2. However, we shall focus shortly on the autocor-
relation 	pkð�; rÞ (�1 ¼ �2 ¼ � and R1 ¼ R2 ¼ Rf),

which is more directly related to the clustering properties
of dark matter haloes of a given mass and galaxies of a
given luminosity spanning a narrow redshift range. It may
also be interesting to work out the correlation of peaks with
a fixed height but identified at smoothing radii R> Rf,

which can be thought as mimicking the statistical proper-
ties of haloes above a given mass. However, we will not
consider this correlation here since it requires a solution to
the cloud-in-cloud problem [50] at the location of density
maxima.

Let npk ¼ npkð�Þ hereafter denote the differential den-

sity of peaks in the range � to �þ d�. The expectation
value of the product of the local peak densities that appears
in Eq. (9) is then

	pkð�1; �2; rÞ ¼ 1

hnpki2
5534

ð2�Þ6 R
�6
? ð1� �2Þ�1

�
Z Y

i¼1;2

fduidvidwiFðui; vi; wiÞg

�	0ð�1; �2; u1; u2; rÞe� �Q; (26)

where

	0ð�1; �2; u1; u2; rÞ ¼ fu1u2½c ðrÞ þ �2	ðrÞ�
þ �1�2½	ðrÞ þ �2c ðrÞ�
� 2�2ðu1u2 þ �1�2Þ�ðrÞ
� �ðu1�2 þ u2�1Þ½	ðrÞ þ c ðrÞ
� ð1þ �2Þ�ðrÞ�gð1� �2Þ�2 (27)

is Eq. (17) averaged over the relative orientation of the
frames spanned by the eigenvectors of �1 and �2. 	0

depends on the separation r through the correlation func-
tions 	ðrÞ, �ðrÞ, and c ðrÞ only. Furthermore, the quadratic

form �Q simply is

2 �Q ¼ �2
1 þ

ðu1 � ��1Þ2
1� �2

þ 15v2
1 þ 5w2

1 þ 1 $ 2 (28)

in the variables (24).
The integration over the variables vi and wi is lengthy

but straightforward. We refer the reader to BBKS for the
details since the calculation now proceeds along similar
lines. Let us mention that the allowed domain of integra-
tion is the interior of a triangle bounded by the points (0, 0),
ðui=4;�ui=4Þ, and ðui=2; ui=2Þ. As shown in BBKS, the
differential density of the peak of height � can be cast into
the form

npkð�Þ ¼ 1

ð2�Þ2R3
?

e��2=2G0ð�; ��Þ; (29)

where G0 is the zeroth moment of the peak curvature u.
Higher moments are written in explicit compact form as

Gnð�;!Þ ¼
Z 1

0
dxxnfðxÞ e

�ðx�!Þ2=2ð1��2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1� �2Þp : (30)

Using this result, the correlation of the peaks can be
rearranged as follows:

	pkð�1; �2; rÞ ¼ G0ð�; ��1Þ�1G0ð�; ��2Þ�1

�
Z Y

i¼1;2

�
duifðuiÞ

� e�ðui���iÞ2=2ð1��2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1� �2Þp �

	0ð�1; �2; u1; u2; rÞ:

(31)

For sake of completeness,

fðxÞ ¼ 1

2
ðx3 � 3xÞ

�
Erf

� ffiffiffi
5

2

s
x

�
þ Erf

� ffiffiffi
5

2

s
x

2

��

þ
ffiffiffiffiffiffiffi
2

5�

s ��
31x2

4
þ 8

5

�
e�5x2=8 þ

�
x2

2
� 8

5

�
e�5x2=2

�
;

(32)

as demonstrated in BBKS, who noted also that the asymp-
totic limits of this function include a cancellation to the
eighth order at small x, and the x3 law expected for density
maxima at large x.
The integration over x must generally be done numeri-

cally. It is worthwhile noticing that, while the exponential
exp½�ðx�!Þ2=2ð1� �2Þ� decays rapidly to zero, xnfðxÞ
are monotonically and rapidly rising. As a result, the
functions Gnð�;wÞ are sharply peaked around their maxi-
mum. For large values of !, we find that G0 and G1

asymptote to

BARYON ACOUSTIC SIGNATURE IN THE CLUSTERING . . . PHYSICAL REVIEW D 78, 103503 (2008)

103503-7



G0ð�;!Þ � !3 � 3�2!þ B0ð�Þ!2e�Að�Þ!2

G1ð�;!Þ � !4 þ 3!2ð1� 2�2Þ þ B1ð�Þ!3e�Að�Þ!2
:

(33)

The coefficients Að�Þ, B0ð�Þ, and B1ð�Þ are obtained from
the asymptotic expansion of the Error function that appears
in Eq. (33). We have explicitly

A ¼ 5=2

ð9� 5�2Þ ; B0 ¼ 432ffiffiffiffiffiffiffiffiffi
10�

p ð9� 5�2Þ5=2 ;

B1 ¼ 4B0

ð9� 5�2Þ :
(34)

The rest of the calculation is easily accomplished. The 2-
point correlation function of the peaks eventually reads

	pkð�1; �2; rÞ ¼ fð�1 � � �u1Þð�2 � � �u2Þ	ðrÞ þ ð �u1 � ��1Þ
� ð �u2 � ��2Þc ðrÞ � ½ð�1 � � �u1Þ
� ð��2 � �u2Þ þ ð��1 � �u1Þð�2 � � �u2Þ�
� ��ðrÞgð1� �2Þ�2; (35)

where we have introduced the mean curvature �uð�; ��Þ ¼
G1=G0. Also, the notation is such that �ui ¼ �uð�; ��iÞ. The
function �uð�; ��Þ is accurately fitted by Eq. (4.4) of BBKS,
which is constructed to match the asymptotic large �
expansions of G0 and G1 given in Eq. (34). In the special
case �1 ¼ �2 ¼ �, the 2-point correlation of the peaks
simplifies to

	pkð�; rÞ ¼ b2�ð�; �Þ	ðrÞ þ b�ð�; �Þ�ðrÞ þ b2� ð�; �Þc ðrÞ;
(36)

where the bias functions b�, b�, and b� are

b�ð�; �Þ ¼ �� � �u

1� �2
b� ð�; �Þ ¼ �u� ��

1� �2

b�ð�; �Þ ¼ 2�b�ð�; �Þb� ð�; �Þ:
(37)

The sign convention is chosen such that all three bias
parameters are positive when � ! 1. Notice that b� is
precisely the amplification factor found by BBKS when
derivatives of the density correlation function are
neglected.

Equation (36), which holds for any value of the peak
height � and the smoothing length Rf, is the main result of

this section. It describes the asymptotic behavior of the
peak correlation function in the limit where the correlation
functions 	ðrÞ, �ðrÞ, and c ðrÞ are much less than unity.

E. The bias parameters

To gain some insight into the behavior of the peak
correlation function 	pkð�; rÞ, we have plotted in Fig. 3

the biasing parameters b�, b�, and b� as a function of the

peak height. Again, the density field is smoothed on scale
Rf ¼ 5h�1 Mpc with a Gaussian filter. The dotted curves

show the following large � approximations:

b�ð�; �Þ � �� 3

�
b� ð�; �Þ � 3

��

b�ð�; �Þ � 6

�
1� 3

�2

�
;

(38)

obtained from the asymptotic expansions of G0 and G1

[Eq. (34)]. They provide a good match to the bias parame-
ters when the peak height is larger than ’ 2. As we can see,
b� tends towards the constant value of 6 when � ! 1.

Moreover, for a threshold height less than unity, b� is

negative and of an absolute magnitude larger than b2�.
This is also true in the intermediate region �� 1–2. For
these threshold heights, both b� and b� vanish while the

bias parameter b� is of the order of a few. Consequently,

the correlation of density maxima, albeit weak for peak
heights of the order of unity, never cancels out. Overall,
retaining the density correlation 	ðrÞ solely is not a rea-
sonable approximation when the peak height does not
exceed � & 4. Although the exact value of the bias pa-
rameters changes somewhat with the smoothing scale Rf,

their global behavior varies little as � weakly depends on
the filtering scale. Therefore, the above statements hold
regardless of the exact amount of smoothing.

F. Peak biasing: nonlinear and local ?

Equation (36) clearly differs from the linear, local rela-
tion 	pkð�; rÞ ¼ b2�	ðrÞ that would be expected if the peak

overdensity �npkðxÞ ¼ npkðxÞ=hnpki were related to the

underlying density field through the linear mapping

FIG. 3 (color online). Bias factors b2�ð�; �Þ, b�ð�; �Þ, and
b2� ð�; �Þ as a function of the peak height �. The density field

is smoothed on scale Rf ¼ 5h�1 Mpc with a Gaussian filter.

This leads to a correlation strength � ¼ 0:676. Dashed curves
indicate negative values. The dotted curves are the asymptotic
expansions given in Eq. (38).
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�npkðxÞ ¼ b��ðxÞ. However, it is worth noticing that

Eq. (36) is compatible with a nonlinear, local, deterministic
biasing relation involving a differential operator. Namely,
it can be explicitly checked that

�npkðxÞ ¼ b��ðxÞ þ b�uðxÞ; (39)

where uðxÞ ¼ �r2�ðxÞ=�2 leads to the correlation func-
tion (36). This demonstrates that, at large distances,
	pkð�; rÞ can be thought as arising from a specific case of

nonlinear local bias. We will see later (Sec. V) that this
local mapping is also consistent with the peak pairwise
velocity at the first order.

To make connection with the formalism introduced by
[25], we may conceive of a Taylor series

�npk ¼
X1
i¼0

bðiÞ�
i!

�i þX1
i¼0

bðiÞ�
i!

ui þ . . . (40)

to describe the properties of the peak distribution at all
separations and filtering scales. An expansion of the peak
correlation 	pkð�; rÞ beyond the leading order will be re-

quired to determine the values of the bðiÞ� and bðiÞ� when i >

1. Higher derivatives of the density field may also contrib-
ute to this general expression. However, (nonlocal) inte-
grals of the linear density correlation are expected only in
the evolved matter distribution when the non-Gaussianity
induced by gravitational clustering is significant.

Finally, it is worth noticing that, upon Fourier trans-
formation, the peak power spectrum reads

Ppkð�; kÞ ¼ b2pk

�
1þ �2

0b�

�2
1b

2
�

k2 þ �2
0b

2
�

�2
2b

2
�

k4
�
PðkÞ; (41)

where bpk � b�=�0 and PðkÞ are the power spectrum of the

smoothed density field. The exact amount of scale depen-
dence induced by the nonlinear bias depends upon the
exact value of � and Rf. We defer a thorough investigation

of this effect to a future work.

IV. CLUSTERING OF DENSITY PEAKS IN
GAUSSIAN INITIAL CONDITIONS

After a brief discussion on the peak-background split,
we focus on the acoustic signature in the 2-point correla-
tion of density maxima. We examine how the baryon
acoustic oscillation changes with the filtering, the thresh-
old height �, and the small-scale behavior of the transfer
function. We find that the extra contributions b��ðrÞ and
b2�c ðrÞ to the linear relation 	pkð�; rÞ ¼ b2�	ðrÞ can boost

significantly the contrast of the acoustic peak.

A. Filtering scale and peak height

The peak height � and the filtering radius Rf could, in

principle, be treated as two independent variables.
However, in order to make as much connection with dark

matter haloes (and, to a lesser extent, galaxies) as possible,
we will follow the Press-Schechter (PS) prescription [51]
which is based on the critical density criterion issued from
the spherical collapse dynamics [52]. Namely, we assume
that density maxima with the peak height � ¼
�scðzÞ=�0ðRfÞ identified in the primeval density field

smoothed at scale Rf are related to dark matter haloes of

mass Mf collapsing at redshift z. Moreover, we will only

present results at redshift z ¼ 0, at which the linear critical
density for (spherical) collapse is �sc ¼ 1:673, and the
characteristic mass for clustering is M? � 3:5�
1012M�=h. While there is a direct correspondence between
the massive cluster-sized haloes in the evolved density field
and the largest maxima of the initial density field, it is
unclear the extent to which galaxy-sized haloes trace the
initial density maxima [53]. For this reason, we will only
consider mass scales in the range Mf * M?ð0Þ or, equiv-
alently, a smoothing radius Rf � 1h�1 Mpc.

We note that the spherical infall model provides a local
approximation to the collapse of a perturbation. However,
in the Press-Schechter approach, it is applied to random
points in space and leads to linear local biasing at large
scales [54,55] while, in the present work, it is applied to
density maxima and leads to the specific type of nonlinear
local biasing exemplified by Eq. (39).

B. Peak-background split and the halo multiplicity
function

Before illustrating the impact of derivatives of the den-
sity field on the baryon acoustic signature, we note that, in
the limit � � 1, the peak correlation is amplified by an
effective bias b2� which is significantly smaller than the
value �2=�sc derived for thresholded regions [30]. As
recognized in BBKS, this difference arises from the corre-
lation between the peak height � and the peak curvature u.
More precisely, in the spherical infall model, the linear
Lagrangian bias b2pk ¼ 	pk=ð�2

0	Þ of high density peaks

that are collapsing at redshift z evaluates to

bpk � �2 � 3

�sc

(42)

in the limit r � 1. This should be compared to the ex-
pression derived in [54,56] from the Press-Schechter for-
malism [50,51]

bMW ¼ �2 � 1

�sc

: (43)

In this second approach, the clustering of haloes is de-
scribed by the properties of regions above a given density
threshold. In both cases however, the Kaiser limit �2=�sc is
recovered. This, however, does not apply to the bias factor
derived by [55] using the ellipsoidal collapse

BARYON ACOUSTIC SIGNATURE IN THE CLUSTERING . . . PHYSICAL REVIEW D 78, 103503 (2008)

103503-9



bST � a�2 � 1

�sc

; (44)

where a ’ 0:7. Assuming the peak-background split holds
[30], these various bias parameters predict multiplicity
functions �fð�Þ [50] that have quite a different behavior
in the limit of large threshold heights. In particular, the
Sheth-Tormen multiplicity function is proportional to
� expð�a�2=2Þ [57], and exponentially deviates from the
scaling inferred from bpk and bMW, which is �fð�Þ /
�3 expð��2=2Þ and / � expð��2=2Þ, respectively. It is
worth emphasizing that the factor a ¼ 0:707 was essen-
tially determined by the number of massive haloes in the
GIF simulations [58] and, therefore, is not a direct outcome
of the ellipsoidal collapse dynamics. In fact, there is no
compelling theoretical reason for a halo mass function
whose high-mass end deviates exponentially from the scal-
ing expð��2=2Þ. Furthermore, recent lines of evidence
suggest that the high-mass tail, while being above the PS
mass function [51], may depart from the Sheth-Tormen
scaling [59].

In our opinion, it is likely that the true multiplicity
function scales as expð��2=2Þ in the limit of large �.
This would lead to a different parametrisation of the halo
bias and mass function. Given the lack of a convincing
physical description of these quantities, one may, for in-
stance, consider a phenomenological bias of the form

bL ¼ 1

�sc

�
�2 � c1 þ c2

�2p þ c3

�
; (45)

which, for a peak-background split, leads to a multiplicity
function

�fð�Þ /
�
1þ c3

�2p

�
c2=2pc3

�c1e��2=2: (46)

For c1 & 3 and c3 � c2=c1 (which guarantees bL � 0 in
the limit � ! 0), the biasing (45) closely follows the peak
scaling Eq. (42) at large mass and, simultaneously, exhibits
an upturn at low mass. Unfortunately, such a bias cannot be
derived from an excursion set approach (upon which PS
and Sheth-Tormen are based), where c1 ¼ 1 invariably.
This issue, which lies beyond the scope of the present
paper, will be examined in a separate paper.

C. Baryon acoustic signature

We now turn to the behavior of the peak correlation
function. 	pkð�; rÞ is shown in Fig. 4 for a filtering length

Rf ¼ 2, 4, and 6h�1 Mpc. The mass enclosed in the

Gaussian window thus is Mf ¼ 9:5� 1012, 7:6� 1013

and 2:6� 1014M�=h, respectively. To illustrate, we have
adopted a peak height � ¼ �scðz ¼ 0Þ=�0 such that � ¼
1:4, 2.1, and 2.9, respectively. In the spherical infall dy-
namics, a top hat overdensity enclosing a similar amount of
mass would collapse at redshift z� 0. Furthermore, the

density correlation �2
0	ðrÞ is also shown for comparison as

the dotted curve.
The three correlations considered here exhibit a very

different behavior that reflects the strong dependence of the
bias factors b�, b�, and b� on the threshold height (see

Sec. III E). In particular, we find b� ¼ �0:057, 0.847, and
1.771 with the increasing smoothing radius. As a result, for
Rf ¼ 2h�1 Mpc, the contribution of the term b2�c ðrÞ
dominates the others and strongly suppresses the amplitude
of 	pkð�; rÞ relative to that of the density correlation. This

term has the sign of c ðrÞ and features several oscillations
across the BAO scale (see Figs. 1 and 2). However, for
peaks of threshold height � ¼ 2:1 identified at smoothing
scale Rf ¼ 4h�1 Mpc, b2�c ðrÞ merely contributes to de-

crease the level of the minimum at distance r�
90–95h�1 Mpc. Interestingly, the term b2��ðrÞ boosts sig-
nificantly the contrast of the acoustic peak. This effect is
still present, albeit weaker, for � ¼ 2:9 and Rf ¼
6h�1 Mpc. We also note that zero-crossings of 	pkð�; rÞ
do not generally coincide with those of 	ðrÞ, in agreement
with numerical studies of the clustering of density maxima
[36,37].
Figure 5 further illustrates the sharpening of the acoustic

peak due to correlations among derivatives of the density
field. The density and the peak correlations are compared
in the neighborhood of the acoustic feature for the smooth-

FIG. 4 (color online). The peak correlation 	pkð�; rÞ (solid
curves) for three different smoothing lengths Rf ¼ 2, 4, and

6h�1 Mpc (from bottom to top). These correspond to a mass
scale Mf ¼ 9:5� 1012, 7:6� 1013, and 2:6� 1014M�=h, re-

spectively. A peak height � ¼ �sc=�0 is adopted and yields
the values � ¼ 1:40, 2.15, and 2.88, respectively. The density
correlation �2

0	ðrÞ is plotted as the dotted-dashed curve. Dashing
indicates negative values. The acoustic signature in the peak
correlation depends on the threshold height � through the bias
parameters b�, b�, and b� . Results are shown for the �CDM

cosmology.
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ing radii Rf ¼ 4 and 6h�1 Mpc considered above. To

emphasize the contrast of the acoustic peak, all the corre-
lations have been rescaled such that, at a distance r ¼
70h�1 Mpc, their amplitude is equal to 3. Figure 5 nicely
demonstrates the large impact of b2��, which fully restores

the acoustic signature of 	pkð�; rÞ otherwise smeared out

by the large filtering. The contrast of the acoustic peak can
even be enhanced relative to that of the unsmoothed (Rf ¼
0:1h�1 Mpc) linear density correlation (dotted-dashed
line). The effect is strongest for the density peaks identified
at the smaller smoothing, Rf ¼ 4h�1 Mpc. For these max-

ima, the difference between the height of the (negative)
minimum at r ’ 90h�1 Mpc and the maximum at ’
105h�1 Mpc is twice as large as in the linear density
correlation. The enhancement is somewhat smaller,
roughly 20 per cent, for the peaks at the filtering scale
Rf ¼ 6h�1 Mpc. This shows that density maxima behave

rather differently than linearly biased tracers of the density

field, whose acoustic signature cannot be larger than that of
the linear matter correlation [12].
We now concentrate on the vertical lines which indicate

the position of the local maximum. On the one hand, the
top panel shows that smoothing in the density correlation
generates a shift towards smaller scales, because the acous-
tic feature is not quite symmetric around its maximum
[13]. On the other hand, the presence of b2�� in the peak

correlation acts in the opposite sense and compensates for
the shift induced by the smoothing. We find the maximum
to be close to its linear value � 105:0h�1 Mpc in both
cases. More precisely, there is a small shift of & 0:4
percent toward larger scales.

D. Sensitivity to the filter shape and the transfer
function

As discussed in BBKS, the filtering of the density field is
an essential operation for power spectra covering a wide
range of wave numbers. However, the optimal choice of
filter is disputable. Furthermore, the (analytic) properties
of the filtered density field can depend significantly upon
the amount of power in small-scale fluctuations. It is,
therefore, important to assess the influence of the smooth-
ing operation and the small-scale transfer function on the
baryon acoustic signature in the correlation of density
peaks.
To this purpose, we have repeated the numerical calcu-

lation of 	pkð�; rÞ using a top hat filter. To avoid divergence
of the spectral moments and the correlation functions, we
have introduced a high-k cutoff whose functional form is
motivated by the damping of fluctuations due to the free
streaming of the dark matter particle(s). So far, we have
considered a CDM cosmology in which the velocity dis-
persion of the dark matter particle is negligible. By con-
trast, in warm dark matter (WDM) cosmologies, the dark
matter candidate(s) can suppress the matter power spec-
trum on galaxy scales r� 0:1h�1 Mpc [60]. The latter can
be approximated as PWDMðkÞ ¼ T2ðkÞPCDMðkÞ, where the
transfer function that accounts for the free-streaming cutoff
has the form [61]

TðkÞ ¼ ½1þ ð�kÞ2p��5=p: (47)

Here, p � 1:12 and� depends upon the properties of the
dark matter particles. Typically, 0:01 & � & 0:1 for ther-
mal relics of mass �1–10 keV.
In spite of its compactness, the top hat filter has some

inconvenient. Firstly, because of its slowly decaying tail, it
produces a density field that is not differentiable for ge-
neric CDM power spectra [50]. Secondly, it is good at
discriminating peaks from the background field so long
as the height of the latter is small, namely, when the
background field is uncorrelated over scales comparable
to the filtering length. By contrast, the Gaussian filter is
less sensitive to high frequencies and thus fares better at
picking up smoother objects. Indeed, the ‘‘true’’ filter may

FIG. 5 (color online). A comparison between the density cor-
relation 	ðrÞ (top panel) and the peak correlation 	pkð�; rÞ
(bottom panel) around the BAO. The density field is smoothed
with a Gaussian filter of width Rf ¼ 4 and 6h�1 Mpc. The

corresponding value of peak height is � ¼ 2:1 and 2.9, respec-
tively. For clarity, all the correlations have been rescaled such
that, at separation r ¼ 70h�1 Mpc, their amplitude is equal to 3.
Also shown as the dotted-dashed line is the (unsmoothed) linear
matter correlation. The vertical dashed lines indicate the position
of the local maximum. The presence of b2��ðrÞ in the peak

correlation restores, and even amplifies the acoustic peak other-
wise smeared out by the large filtering. b2��ðrÞ also acts to

reduce the shift induced by the smoothing. Results are shown
for the �CDM cosmology.
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lie between these two extremes [62]. Notice that the sharp
k-space window will not be considered here as it leads to
undesirable oscillations at all separations.

Figure 6 shows the baryon acoustic peak in the correla-
tion of density maxima for the smoothing radii used in
Figs. 4 and 5. Note, however, that the filter mass scale is
now roughly 4 times smaller than with the Gaussian win-
dow. The peak correlation is plotted for two values of the
free-streaming cutoff, � ¼ 0:01 and 0.1 (top and bottom
panels). Also shown in both panels for comparison is the
linear matter correlation (dotted-dashed line). At smooth-
ing length Rf ¼ 4 and 6h�1 Mpc, the enhancement of the

acoustic peak is very significant for � ¼ 0:1 while, for
� ¼ 0:01, it is only 10–20 per cent. The main reason is a
sharper power spectrum, which leads to a larger contribu-
tion of the correlations�ðrÞ and c ðrÞ to 	pkð�; rÞ. At Rf ¼
4h�1 Mpc for instance, the spectral width is � ¼ 0:48 and
0.26 for � ¼ 0:1 and 0.01, respectively. This difference
mostly arises because of the second spectral moment,
which increases from �2 ¼ 0:40 to 0.76 upon the decrease
in the free-streaming scale. Yet another interesting feature
of Fig. 6 is the rather broad acoustic peak at filtering scale
Rf ¼ 2h�1 Mpc (see bottom panel), for which � ¼ 0:96.

This broadening follows from the fact that b� is negative at

that value of the threshold height. As a consequence, the
oscillatory pattern of �ðrÞ across the BAO (see Figs. 1 and
2) smears out the acoustic feature in 	pkð�; rÞ. As seen from

Fig. 3, this damping always occurs at sufficiently low
values of the threshold height, � & 1 regardless of the
filtering length. It should also be noted that, unlike the
correlation of density maxima, the BAO in the smoothed
linear matter correlation is weakly insensitive to the small-
scale behavior of the power spectrum. In 	pkð�; rÞ however,
the BAO acquires an extra dependence upon the high-k tail
of the transfer function through the correlation functions
�ðrÞ and c ðrÞ.
To summarize,
(i) Both �ðrÞ and c ðrÞ contribute to the correlation of

density maxima and can affect the shape of the
baryon acoustic signature for peak heights � & 4.

(ii) c ðrÞ makes a significant contribution only in the
range 1 & � & 2, where b� and b� are much less

than unity.
(iii) The contribution of �ðrÞ increases with the spectral

width �. At constant filtering length, it increases
with the amount of power suppression due to the
small-scale free streaming.

(iv) b� is positive (negative) for � * 1 (� & 1). As a
result, the baryon acoustic peak is generally en-
hanced in 	pkð�; rÞ when � * 1, and damped out

when � & 1.
These results depend upon the exact shape of the filter and
the transfer function. Clearly however, the effect cannot be
reduced to a simple rescaling of the linear matter correla-
tion. This is due to the peculiar type of nonlinear local
biasing, Eq. (39), which involves the Laplacian of the
density field.

V. PAIRWISE VELOCITY OF DENSITY MAXIMA

Thus far, we have explored the BAO signature in the
correlation of the maxima of the primordial density field.
However, pairwise motions caused by small- and large-
scale structures, redshift space distortions etc. are likely to
degrade the acoustic signature, leading to a broadening
and, possibly, a shift of the acoustic peak. A thorough
investigation of these effects is postponed to a subsequent
work. Here, we consider a simple model in which the peak
centers evolve according to the Zeldovich ansatz. This
allows us to calculate the peak pairwise velocity at the
leading order, which is the main result of this section. We
show that, at the first order, the peak mean streaming is
consistent with the nonlinear local bias found in Sec. IV.
Dynamical evolution is also briefly addressed using the
pair conservation equation.

A. Zeldovich approximation

The Eulerian comoving position and proper velocity of a
density peak can generally be expressed as a mapping

x pk ¼ qþ Sðq; aÞ; vpk ¼ a _Sðq; aÞ; (48)

where q is the initial position, Sðq; aÞ is the displacement

FIG. 6 (color online). The correlation of density maxima that
trace the density field smoothed with a top hat filter. The
smoothing radii Rf ¼ 2, 4, and 6h�1 Mpc correspond to a

mass Mf ¼ 2:5� 1012, 2� 1013, and 6:8� 1013M�=h, respec-
tively. Results are shown for a WDM power spectrum with a
cutoff scale � ¼ 0:01 and 0:1h�1 Mpc (see Sec. IVD). The peak
height is chosen such that � ¼ �sc=�0, as before. In both panels,
the dotted-dashed curve is the linear matter correlation. The peak
correlation 	pkð�; rÞ for � ¼ 0:01 and Rf ¼ 2 is not shown as it

is too much affected by numerical noise.
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field and a is the scale factor. A dot denotes a time
derivative. At the first order, the peak position is described
by the Zeldovich approximation [63], in which the dis-
placement factorizes into a time and a spatial component

S ¼ �DðaÞ	ðqÞ; _S ¼ ��ðaÞ	ðqÞ: (49)

Here, 	ðqÞ is the perturbation potential linearly extrapo-
lated to present time. Explicitly, 	ðqÞ ¼

ðq; aÞ=4�G ��mðaÞa2DðaÞ where 
ðq; aÞ is the
Newtonian gravitational potential, ��mðaÞ is the average
matter density and DðaÞ is the growth factor. �ðaÞ ¼
HDf is proportional to the logarithmic derivative f ¼
d lnD=d lna, which scales as fðaÞ � �mðaÞ0:6 for a wide
range of CDM cosmologies [64]. Finally, HðaÞ is the
Hubble constant.

Such a simple model cannot account (among other
things) for the internal properties of peaks [65].
Furthermore, it provides a very limited description of the
late-time distribution of density maxima such as cluster- or
galaxy-size haloes [21,66]. Notwithstanding this, it is not
intended to be realistic, but only to capture the weakly
nonlinear regime reasonably well. A more sophisticated
approach can be found in [67] for instance.

The peak pairwise velocity, or mean streaming [68,69],
is now obtained from the statistics of the (proper) matter
velocity field v ¼ �a�ðaÞ	ðqÞ. The complication arises
from the fact that the latter has to be evaluated at those
maxima of the density field.

B. Mean streaming of peak pairs

We introduce the normalized velocity field uðqÞ ¼
vðqÞ=ða�ðaÞ��1Þ for subsequent use, and define u12ðrÞ as
the average number weighted pairwise velocity ½uðx2Þ �
uðx1Þ� 
 r̂ along the line of sight.

The calculation of the peak pairwise velocity is more
intricate than the peak correlation since we have three
additional degrees of freedom. Nevertheless, it closely
follows the analysis described in Sec. III. Details of the
calculation can be seen at Appendix A. The peak mean
streaming weighted by the number density of peaks at q1
and q2 eventually reads

ð1þ 	pkÞu12 ¼ ½b�ð�1; �Þ þ b�ð�2; �Þ�ðV � ���Þ
þ ½b� ð�1; �Þ þ b� ð�2; �Þ�ðS � ���Þ:

(50)

For comparison, the pairwise velocity of the matter distri-
bution is ½1þ �2

0	ðrÞ�u12ðrÞ ¼ 2�0V ðrÞ. The first term in

the right-hand side of Eq. (51) is similar to the mean
streaming derived for locally biased tracers of the density
field [70]. The second term arises because of the particular
nature of the bias of density maxima. Interestingly,
Eq. (51) can again be thought of as arising from the non-
linear local bias of Eq. (39) if we choose the peak velocity
field to be

u pkðxÞ ¼ uðxÞ � ���ðxÞ: (51)

In this continuous approach, the peak velocity field is still
unbiased with respect to the matter velocity field uðxÞ, but
it receives a contribution from the first derivative of the
density, �ðxÞ ¼ r�ðxÞ=�1, that is proportional to ��.
The sign and strength of the peak pairs flow depend upon

the detailed behavior of the functions V � ��� and S �
���. As seen in Fig. 7 where Rf ¼ 5h�1 Mpc for illus-

tration, the former is negative at all separations r &
200h�1 Mpc. By contrast, the latter is positive at distances
larger than a few smoothing radii but goes negative at
smaller scales, regardless of the exact value of Rf. The

mean streamingV ðrÞ of random field points is also shown
in Fig. 7 for comparison. Peak-peak exclusion leads to a
deficit of pairs at separation r & R? comparable to the
filtering scale. It adds to the smoothing and further damps
the relative velocity of peaks out to distances that are much
larger than the typical extent�Rf of density maxima. This

is the reason why the correlation V � ��� is strongly
suppressed relative to V ðrÞ when r & 30h�1 Mpc. Still,
the term proportional to S � ��� is most strongly nega-
tive at distances of the order of the smoothing length and,
therefore, could restore significantly the small-scale mean
streaming when the threshold height is less than � & 3 (for
which b� * b�). At large enough separations r *

FIG. 7 (color online). The correlations that contribute to the
leading-order mean streaming of peak pairs, Eq. (51). These are
compared to the line of sight pairwise velocity V ðrÞ of ambient
field points. Results are shown at a filtering scale Rf ¼
5h�1 Mpc. The correlation V � ��� is strongly damped on
scales less than the characteristic interpeak distance / Rf but, at

large distances, it is unaffected by small-scale exclusion effects
and closely follows the (scaled) mean streaming of random field
points. The correlation S � ��� can significantly contribute to
small-scale streaming motions when the peak height is � & 3 (so
that b� * b�).

BARYON ACOUSTIC SIGNATURE IN THE CLUSTERING . . . PHYSICAL REVIEW D 78, 103503 (2008)

103503-13



50h�1Mpc however, the mean streaming of peak pairs is
unaffected by small-scale exclusion effects and closely
tracks the pairwise velocity V ðrÞ of ambient field points.

To illustrate the impact of the correlation function S �
��� on the mean streaming, we show in Fig. 8 the peak
pairwise velocity for the smoothing radii Rf ¼ 2, 4, and

6h�1 Mpc considered in Sec. IV (recall that the peak
height is specified by the relation � ¼ 1:673=�0ðRfÞ).
Also shown for comparison is the mean streaming of the
(unsmoothed) matter density field (dotted-dashed curve).
At the smallest filtering scale for which � ¼ 1:4, the bias
parameters are �b� � 0:06 � b� � 2:32 so that S �
��� is the dominant contribution at all separations. The
resulting strong ‘‘inward’’ transport at distances less than a
few h�1 Mpc reflects the fact that these small peaks tend to
accrete onto high density regions. At separation r�
10h�1 Mpc, there is a positive net flow presumably owing
to the fact that the peaks fall onto nearby distinct overdense
regions. Notice that, at all separation, the mean streaming
of these maxima is larger than that of the density field,
indicating that these small peaks move apart from each
other (in an average sense) relative to the matter distribu-
tion. At larger filtering scales, the contribution of the first
term in the right-hand side of Eq. (51) increases with the
smoothing length as seen from the progressive disappear-
ance of the broad bump at r� 10h�1 Mpc. The maxima
identified at Rf ¼ 6h�1 Mpc (� ¼ 2:9) stream toward

each other relative to the underlying density field, but their
relative motion is strongly suppressed at distances r &
10h�1 Mpc due to the exclusion effect mentioned above.

C. Pair conservation equation

So long as peaks do not merge, the time evolution of the
peak correlation function 	pk is governed by the pair

conservation equation. Transforming the time variable to
the scale factor, this equation can be written as

@	pk

@a
¼ �Df��1

1

r2
@

@r
½r2ð1þ 	pkÞu12ðrÞ�; (52)

where r and u12ðrÞ are the comoving separation and scaled
pairwise velocity, respectively. The root mean square vari-
ance ��1 [computed from Eq. (1)] defines the length scale
��1 � 9:2h�1 Mpc for the values of the cosmological
parameters used here.
Following the approach outlined in [16], the general

solution of Eq. (52) can be found by solving the character-
istic equation

dr

da
¼ Df��1u12ðrÞ: (53)

This equation gives rðaÞwhich, upon insertion into the pair
conservation Eq. (52), allows us to write down a first order
ordinary differential equation along the characteristics

d ln½1þ 	pkðr; aÞ�
da

¼ �Df��1

1

r2
@½r2u12ðrÞ�

@r
; (54)

where it is understood that r ¼ rðaÞ [16].
We will not attempt to solve Eq. (54) since, as recog-

nized by [15,16], nonlinearity in the divergence of the
pairwise velocity, which is lacking here, is a crucial ingre-
dient in the redshift evolution of the baryon acoustic sig-
nature. Instead, we will simply estimate the first order
change in the initial separation of peak pairs, �r0, induced
by coherent motions across the acoustic scale, r0 �
105h�1 Mpc. To proceed, we assume that the peaks
move according to the Zeldovich ansatz described above,
an approximation expected to be valid only in the early
(quasilinear) stages of gravitational clustering. Owing to
the near constancy of the peak pairwise velocity at those
scales, we can write �r0 � ��1u12ðr0Þ

R
Dfda whereR

Dfda � 0:56. For the maxima considered above, we

find �r0ðr0 ¼ 105Þ ¼ þ0:010, �0:25, and
�0:74h�1 Mpc with increasing Rf. For comparison,

�ðr0 ¼ 105Þ � 0:21h�1 Mpc for the dark matter. These
values are consistent with those found by [16]. Therefore,
at the linear order, changes in the acoustic signature of
	pkðrÞ will be roughly at the percent level. This suggests

that some of the enhancement of the BAO in the initial
correlation of density maxima may survive in the correla-
tion of high redshift density peaks. Clearly, a thorough
numerical investigation and detailed analytic modeling
will be needed to ascertain how much of this effect prop-
agates into the late-time clustering of galaxies.

FIG. 8 (color online). The mean streaming of peak pairs for
density maxima identified at smoothing scale Rf ¼ 2, 4, and

6h�1 Mpc and with peak height � ¼ 1:40, 2.15, and 2.88,
respectively (as in Fig. 4). The dotted-dashed curve shows the
pairwise velocity of the (unsmoothed) underlying density field.
The smallest peaks tend to accrete onto high density maxima.
However, they move apart from each other relative to the matter
distribution due to peak-peak exclusion.
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VI. CONCLUSIONS

We have investigated the strength of the baryon acoustic
signature in the 2-point correlation of maxima of the linear
(Gaussian) density field �ðxÞ. To this purpose, we exam-
ined in Sec. III the large-scale asymptotics of the peak
correlation 	pkðrÞ and derived the leading-order contribu-

tion, Eq. (36). In contrast to the analysis of BBKS, spatial
derivatives of the linear density correlation 	ðrÞ were in-
cluded in our derivation. These derivatives are not negli-
gible for generic CDM power spectra, especially around
the BAO scale where they exhibit large oscillations. We
find that the leading asymptotic behavior of the peak
correlation is governed by three terms: a term previously
derived in BBKS plus two terms involving the spatial
derivatives �ðrÞ and c ðrÞ of the linear density correlation.
The relative contribution of these functions is controlled by
two independent bias parameters, b� and b� [The third

being b� ¼ 2�b�b� , see Eq. (37)]. We also showed that

the large-scale asymptotics of 	pkðrÞ can be thought as

arising from a nonlinear, local biasing relation, Eq. (39),
involving second derivatives of the density field.

In Sec. IV, we demonstrated that those extra terms have a
large impact on the correlation of density maxima in the
vicinity of the BAO. The results are sensitive to the exact
value of the threshold height �, the smoothing length Rf,

the filter shape, and the high-k tail of the transfer function.
For the Gaussian filter adopted throughout this paper, the
contrast of the baryon acoustic signature can be signifi-
cantly enhanced relative to that in the linear matter corre-
lation when the peak height is in the range 1 & � & 3. This
boost originates from the oscillatory behavior of �ðrÞ and
c ðrÞ around the sound horizon scale. For instance, we find
that, at filtering scaleMf ¼ 8� 1013M�=h, the contrast of
the BAO in the correlation of density maxima of height is
about twice as large as in 	ðrÞ. The amplification fades as
we go to larger peak height. For a peak height of the order
of unity, 	pkðrÞ can exhibit several bumps which reflect

those of c ðrÞ around the BAO scale. For a threshold height
less than & 1, the original acoustic peak is smeared out by
the negative contribution of the term b��ðrÞ.

To avoid the divergence of the (fourth order) spatial
derivative c ðrÞ of the density correlation, we have filtered
the density field with a Gaussian window. The main draw-
back of this window function is the lack of a well-defined
mass and spatial extent associated to the density fluctua-
tions. A top hat filter appears better motivated in the
context of, e.g., the spherical infall model, although it
does not produce an infinitely differentiable density field
for generic CDM power spectra. Furthermore, the differ-
entiability of the density field depends strongly upon the
small-scale behavior of the transfer function. Fluctuations
in the matter density are damped on scales smaller than the
free-streaming length of the dark matter particle. In the
CDM cosmology considered here, the velocity dispersion

of the dark matter particle is negligible. By contrast, WDM
particles such as massive neutrinos, for example, can sup-
press the matter power spectrum on galaxy scales [60]. For
these reasons, we also discussed in Sec. IV how the BAO
changes with the window function and the free-streaming
cutoff. We found that the correlation of density maxima is
more sensitive to the properties of the dark matter particle
(s) than the matter correlation itself. This follows from the
dependence of the peak biasing upon the second deriva-
tives of the density field. However, whether the baryon
acoustic signature in the clustering of peaks varies signifi-
cantly with the nature of dark matter remains to be
determined.
In Sec. V, we calculated the pairwise velocity of peak

pairs at the leading order. We showed that it is consistent
with the nonlinear local biasing relation inferred from the
2-point correlation of density maxima, provided that the
peak velocity field receives a contribution from the gra-
dient of the density field. Explicitly, the leading-order peak
correlation and mean streaming can be derived from the
nonlinear local biasing relation

�npkðxÞ ¼ b��ðxÞ � b�r2�ðxÞ
upkðxÞ ¼ uðxÞ � ��r�ðxÞ;

(55)

where we have dropped some factors for clarity and uðxÞ is
the linear matter velocity field. This particular bias relation
may be helpful to translate the Lagrangian analysis per-
formed in this paper into quantitative predictions for the
baryon oscillation in the low redshift distribution of gal-
axies, which is currently the primary observable proxy of
the baryonic acoustic oscillations. Using the formalism
introduced by [25], one may conceive of sophisticated
extensions of the halo model [71] that would include
derivatives of the density field, so as to ascertain how
much of the amplification of the acoustic signature in the
initial clustering of density maxima propagates into the
late-time correlation of galaxies and clusters. Extensions
which, as a general criterion, reproduce the observed prop-
erties of the galaxy distribution, would provide an interest-
ing complement to current local biasing models.
We emphasize that the calculations presented in this

paper are performed in the initial conditions. As nonline-
arities progress, the late-time acoustic signature is smeared
out by structure formation as reported by many authors
using N-body simulations [7]. This might explain why
numerical investigations of the clustering of dark matter
haloes have not shown thus far any evidence for an ampli-
fication of the BAO. Interestingly however, preliminary
results from a large suite of N-body simulations hint at a
an enhancement of the contrast of the baryonic signature in
the clustering of low redshift dark matter haloes [72]. In
this regard, it is also worth noticing that the clustering of
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the Sloan Digital Sky Survey Luminous Red Galaxies’
sample [2], for instance, shows a slightly sharper acoustic
peak than expected from the linear theory and smearing
due to nonlinearities. However, one should remember that
the data points are strongly correlated, so that a very high
acoustic peak is actually allowed by the current �CDM
cosmology. Future redshift surveys such as ADEPT,
BOSS, CIP, DES, HETDEX, LSST, Pan-STARRS, PAU,
WiggleZ, or WFMOS [73], which will obtain redshifts for
millions of galaxies, should achieve an exquisite precision
on the shape of the baryon acoustic signature in the clus-
tering of galaxies. Beyond the nature of dark energy, a
precise measurement of the BAO could also place con-
straints on galaxy biasing and the physical mechanisms
that cause it.
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APPENDIX A: MEAN STREAMING OF PEAK
PAIRS

1. Correlations of velocity field

Let us introduce the scaled velocity field uðqÞ ¼
vðqÞ=ða�ðaÞ��1Þ. The rms variance a���1 is the three-
dimensional proper velocity dispersion of random field
points, which is �430 km s�1 at present time in the cos-
mology considered here. Also, the notational shorthand�u
will designate the difference uðq2Þ � uðq1Þ. The autocor-
relation of the velocity and its cross correlations with the
fields �i, �, and �ij can be written as

h�iðq1Þ�jðq2Þi ¼ U1ðrÞr̂ir̂j þU2ðrÞ�ij

h�iðq1Þ�jðq2Þi ¼ ��	1ðrÞr̂ir̂j þ ��	2ðrÞ�ij

h�ðq1Þ�iðq2Þi ¼ V ðrÞr̂i
h�iðq1Þ�lmðq2Þi ¼ S1ðrÞr̂ir̂lr̂m þ S2ðrÞðr̂i�lm

þ r̂l�im þ r̂m�ilÞ: (A1)

Here �iðqÞ designates the components of uðqÞ. Notice that
UkðrÞ ¼ U1ðrÞ þU2ðrÞ and U?ðrÞ ¼ U1ðrÞ are the ra-

dial and transverse correlation functions of the velocity
field [74]. For the sake of completeness, the various angle
average correlations are

U 1ðrÞ ¼ � 1

�2�1

Z 1

0
d lnkk�2�2ðkÞj2ðkrÞ U2ðrÞ ¼ 1

�2�1

Z 1

0
d lnkk�2�2ðkÞ

�
1

3
j0ðkrÞ þ 1

3
j2ðkrÞ

�

	1ðrÞ ¼ � 1

�2
0

Z 1

0
d lnk�2ðkÞj2ðkrÞ 	2ðrÞ ¼ 1

�2
0

Z 1

0
d lnk�2ðkÞ

�
1

3
j0ðkrÞ þ 1

3
j2ðkrÞ

�

V ðrÞ ¼ � 1

��1�0

Z 1

0
d lnkk�1�2ðkÞj1ðkrÞ S1ðrÞ ¼ � 1

��1�2

Z 1

0
d lnkk�2ðkÞj3ðkrÞ

S2ðrÞ ¼ 1

��1�2

Z 1

0
d lnkk�2ðkÞ

�
1

5
j1ðkrÞ þ 1

5
j3ðkrÞ

�
;

(A2)

for the Gaussian density field considered here. The func-
tions 	1 and 	2 satisfy the relation 	1ðrÞ þ 3	2ðrÞ ¼ 	ðrÞ.
Like the spectral width �, the parameter �� ¼
�2

0=ð��1�1Þ characterizes the range over which the veloc-
ity power spectrum / k�2�2ðkÞ is large. It is worth notic-
ing that the latter peaks on the scale much larger than the
density power spectrum. Also, the correlation V ðrÞ is
proportional to the mean streaming of ambient field points

h½1þ �ðq1Þ�½1þ �ðq2Þ��u 
 r̂i ¼ 2�0V ðrÞ; (A3)

which is mass weighted by the densities at q1 and q2.

2. Mean streaming at the leading order

The calculation of the peak pairwise velocity is more
intricate than the peak correlation since we have three
additional degrees of freedom, but it closely follows the
analysis described in Sec. III.

The line of sight pairwise velocity weighted over all
pairs with comoving separation r can be expressed as

½1þ 	pkðrÞ�u12ðrÞ ¼ hnpki�2 1

4�

Z
d�r̂dy1dy2ð�u 
 r̂Þ

� npkðq1Þnpkðq2ÞPðy1; y2; rÞ: (A4)

The local peak density npkðqÞ is given by Eq. (7), supple-

mented by the appropriate conditions to select those max-
ima with a certain threshold height. To obtain the average
pair velocity as a function of separation r, we need to
calculate the 2-point probability distribution for the varia-
bles y> ¼ ð�i; �i; �; �AÞ. At zero lag, both vi and �i are
uncorrelated with the density and the Hessian �A. Hence,
the covariance M1 of the components ð�i; �i; �Þ is a 7� 7
block matrix which reads
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M1 ¼
1=3I ��=3I 03�1

��=3I 1=3I 03�1

01�3 01�3 1

0
@

1
A: (A5)

Similarly, the covariance M2 of the Hessian, and the cross
covariance M3 between �A and the entries ðvi; �i; �Þ are

M2 ¼ A=15 03�3

03�3 I=15

� �

M3 ¼ 03�3 03�3 ��=313�1

03�3 03�3 03�1

� �
:

(A6)

Proceeding as in Sec. III, we now consider the regime
where all the correlations are much less than unity. The
2-point probability distribution Pðy1; y2; rÞ can thus be
expanded in the small perturbation BðrÞ,

Pðy1; y2; rÞ � ð1þ y>1 M�1BM�1y2ÞPðy1ÞPðy2Þ: (A7)

Here PðyÞ designates the 1-point probability density. As
before, the (now 13� 13) matrix BðrÞ denotes the cova-
riances at different comoving positions. It has a (unique)

harmonic decomposition in term of the matrices B‘;m
i

(Eq. (12). The computation of these matrices is, however,
unnecessary as we will see later. Furthermore, the qua-
dratic form �Qðy1; y2Þ now reads

2 �Q ¼ 3�2
1

1� �2
�

þ �2
1 þ

ð��1 þ tr�1Þ2
1� �2

þ 5

2
½3 trð�21 Þ � ðtr�1Þ2� þ 1 $ 2: (A8)

We note that the velocity dispersion of density maxima is
lower by a factor 1� �2

� than that of random field points
[29]. One has �� � 0:43 for a smoothing length Rf ¼
5h�1 Mpc. Moreover, Eq. (A8) leads to a one-point proba-
bility distribution PðyjpeakÞ / exp½� �QðyÞ� separable into
the product P�ð�iÞP�� ð�; �AÞ, where P�� is the one-point

distribution of the density and its second derivatives, and
P�ð�iÞ is the velocity distribution of peaks,

P�ð�ijpeakÞ ¼ 33=2

ð2�Þ3=2ð1� �2
�Þ3=2

exp

�
� 3�2

2ð1� �2
�Þ
�
:

(A9)

The separability of the one-point distribution separability
considerably simplifies the calculation.

Taking the product ð�u 
 r̂ÞBðrÞmixes the various multi-

pole matrices B‘;m
i , so that the result depends on the

correlation functions of �i, �i, �, and �A in a rather
complicated way. Averaging over the directions gives

~B ¼ 1

4�

Z
d�r̂ð�u 
 r̂ÞM�1BM�1 ¼ ~B1 �~B>

3
~B3

~B2

 !
;

(A10)

where the block matrices ~Bi have the same dimensions as
Mi. The minus sign in the right-hand side of Eq. (A10)
arises from the negative parity of the correlations h�i�lmi

and h�i�lmi. Owing to the angular average, the calculation

of the B‘;m
i can be avoided by writing down the entries of

BiðrÞ using the relations Eqs. (3) and (A3), and retaining
only those components involving the odd products of the

unit vector r̂i. A tedious calculation shows that ~B1ðrÞ and
~B3ðrÞ can be cast into the form

~B 1 ¼
03�3 03�3 ��1�u
03�3 03�3 ��2�u

�1�u
> �2�u

> 0

0
@

1
A

~B3 ¼ ��1
1 � 3�3
2 ��2
1 � 3�4
2 03�1

�3�3
3 �3�4
3 03�1

� �
:

(A11)

The functions �iðrÞ are

�1ðrÞ ¼ V � ���� �ðS � ���Þ
ð1� �2Þð1� �2

�Þ

�2ðrÞ ¼ �� ��V � �ð�� ��SÞ
ð1� �2Þð1� �2

�Þ
�3ðrÞ ¼ S � ���

1� �2
�

�4ðrÞ ¼ �� ��S
1� �2

�

;

(A12)

where we have omitted the explicit r dependence of the
correlations for brevity. The 3� 3 matrices 
i have the
components ��i of the vector �u as entries


1 ¼
��1 ��2 ��3

��1 ��2 ��3

��1 ��2 ��3

0
@

1
A


2 ¼
��1 0 0
0 ��2 0
0 0 ��3

0
@

1
A


3 ¼
��2 ��1 0
��3 0 ��1

0 ��3 ��2

0
@

1
A:

(A13)

We have also set

�ðrÞ ¼ �1 þ 5�2; SðrÞ ¼ S1 þ 5S2: (A14)

The matrix ~B2 is identically zero.
The rest of the calculation is easily accomplished owing

to the factorization of the one-point probability distribution

PðyjpeakÞ. Notice that the scalar y>1 ~By2 contains terms
linear and quadratic in u1 and u2. After integrating out the
velocities, the linear terms vanish and we eventually findZ

d3u1d
3u2y

>
1
~By2Pðu1jpeakÞPðu2jpeakÞ

¼ ½�1ð�1 þ �2Þ þ ð��1 � �3Þðtr�1 þ tr�2Þ�ð1� �2
�Þ:

(A15)

Transforming to the set of variables ðui; vi; wiÞ and sub-
stituting the expressions (37) of the bias parameters b� and
b� , the mean streaming of peak pairs can be recast into the

form of Eq. (51).
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Astrophys. J. 332, L7 (1988).

BARYON ACOUSTIC SIGNATURE IN THE CLUSTERING . . . PHYSICAL REVIEW D 78, 103503 (2008)

103503-19


