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We adopt methods that are well-known in statistical physics to the problem of stochastic inflation. The

effective power spectrum for the classical, stochastic long-wavelength fluctuations is calculated for free

scalar fields in a de Sitter background. For a smooth separation into long and short wavelengths, we

identify an infrared divergence of the effective power spectrum, which has its correspondence in statistical

physics in the phenomenon of dimensional reduction. The inflationary dynamics pushes the affected

scales exponentially fast to large superhorizon scales, and establishes scale-invariant behavior for smaller

scales (for massless fields). In the limit of a sharp separation of wavelengths, the scale of the infrared

divergence is pushed to infinity.
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The concept of stochastic inflation, introduced by
Starobinsky several years ago [1], provides a framework
to study the evolution of quantum fields in an inflationary
universe [2,3] and has acquired considerable interest over
the last years [4,5]. The key idea lies in splitting the
quantum fields into long- and short-wavelength modes,
and viewing the former as classical objects evolving in
an environment provided by quantum fluctuations of
shorter wavelengths. It constitutes an example of how the
fundamental properties of quantum fields can be modeled
using methods of statistical mechanics. From this point of
view, one focusses on the ‘‘relevant’’ degrees of freedom,
the long-wavelength modes, and regards the short-
wavelength modes as ‘‘irrelevant’’ ones, generating a
bath in which the former evolve. The natural length scale
of this problem is the Hubble length, from which ‘‘short’’
and ‘‘long’’ acquire their physical meaning.

This stochastic description of cosmological inflation has
in fact two steps of complexity. In a simplified setup, the
problem is reduced to describe a scalar test field ’ in a
fixed cosmological background. If ’ is free, massive and
minimally coupled, one obtains after splitting into long and
short wavelengths, ’ ¼ ’L þ ’S, an effective equation of
motion of generalized Langevin-type,

ðhþ�2Þ’Lðt; xÞ ¼ hðt; xÞ: (1)

Here, ’L is viewed as a classical entity, evolving stochas-
tically in the presence of a (quantum) random force h,
which is Gaussian distributed with zero mean.

Early studies focussed on homogeneous fields—thus
restricting attention to the time evolution of ’L. The study
of inhomogeneous fields (see, e.g., [5]) is more involved,
but also allows one to discuss spatial correlations.

In the full problem of stochastic inflation, ’ is the
inflaton field, rather than a test field in a fixed background.
This requires not only a stochastic description of ’, but

also of the geometry. Thus, one should analogously split
the space-time metric and curvature into long- and short-
wavelength parts.
In this work, we study the scaling behavior and time

evolution of the power spectrum of ’L in a fixed back-
ground. We do so by means of replica field theory, which is
well known in statistical physics [6]. As far as we know,
replica fields have not been applied to cosmology before.
They allow us to compute spatial correlations and their
time evolution for the general test-field case.
Below we illustrate this method by the example of a free,

minimally coupled, N-component, real field ~’ with mass
�. Let us further restrict our attention to a spatially-flat
de Sitter universe in d space-time dimensions. Its scale
factor is aðtÞ ¼ eHt with Hubble expansion rate H. For
convenience we rescale to dimensionless variables

~’=Hðd�2Þ=2 ! ~’, �=H ! �, tH ! t, xH ! x, and
k=H ! k, and use " ¼ c ¼ 1. The mode function uðt; kÞ
is defined via the decomposition of the field components,
i ¼ 1; . . . ; N,

’iðt;kÞ ¼ âiðkÞuðt; kÞ þ H:c:; (2)

with k :¼ jkj and the annihilation and creation operators
obey the commutation relations

½âiðkÞ; âyj ðpÞ� ¼ ð2�Þd�1�d�1ðk� pÞ�ij;

½âiðkÞ; âjðpÞ� ¼ 0: (3)

The propagator is defined as

G0ðt; t0; k;k0Þ :¼ 1

N
h�j ~’ðt;kÞ � ~’ðt0; k0Þj�i; (4)

where the vacuum j�i is defined by âðkÞj�i ¼ 0 at t ¼ 0
and a subscript ‘‘0’’ indicates a quantity that is calculated
in the absence of any noise.
An object of central interest in cosmology is the dimen-

sionless power spectrum P’ðkÞ. Its relation to some field

propagator GðkÞ with an infrared behavior GðkÞ � k��,
i.e., for k � aH, is given by
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P ’ðkÞ :¼ kd�1GðkÞ � kn’�1; (5)

with the spectral index n’, connected to the critical ex-

ponent � via n’ ¼ d� �. For d ¼ 4 and� ¼ 0 the power

spectrum of the free, noiseless theory is scale invariant, i.e.,
n’ ¼ 1 for �0 ¼ 3. Nonzero mass leads to

n’ ¼ 4� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

9
�2

s
¼ 1þ 2

3
�2 þOð�4Þ: (6)

Note that this result does not include any metric perturba-
tion, which would cause the deviation from n’ ¼ 1 to be

negative (see, e.g., [7]).
Let us now introduce a split of the quantum field ~’ into

short- and long-wavelength modes. For the free scalar field
under consideration, this generates a linear noise term on
the right-hand side of the field equation, which becomes of
type (1). On the level of the action, this corresponds to a
linear random potential

Vð ~’LÞ ¼ ~h � ~’L (7)

plus a term quadratic in h, which is ascribed to a Gaussian
probability distribution p½fhg�. In statistical field theory,

this is the so-called random-field case.
For interacting scalar fields, the split of ~’ into long and

short wavelengths generates higher powers of both ~’L and
the noise in the equation of motion. They may as well be
collected into a probability distribution and a random
potential, which might be written as

Vð ~’LÞ ¼ �X1
j¼1

XN
fi1;...;ijg¼1

hi1...ij’
i1
L . . .’

ij
L; (8)

with the Taylor coefficients fhg being a set of random
variables subject to p½fhg��.

For any quantity O depending on fhg, the stochastic
average, which shall be denoted by a bar, is then calculated
as

O½fhg� :¼
Z

D½fhg�p½fhg�O½fhg�: (9)

Note, that linearizing the equation of motion in the quan-
tum modes, corresponds exactly to a Gaussian distribution
with vanishing mean. As has been shown recently, this
effectively resums the leading-log contribution of the full
quantum theory [4].

Objects of central interest are n-point correlation func-
tions of the classical long-wavelength field ~’L, i.e.,

h’i1
L ðx1Þ � . . . � ’in

L ðxnÞi: (10)

Since they can be derived from the generating functional

Z ½~|L� ¼
Z

D½ ~’L� expfiS½ ~’L; ~|L�g (11)

by taking derivatives of lnfZ½~|L�g with regard to an exter-

nal source ~|L, one in general needs to know lnfZ½~|L�g. This
might be difficult to calculate, because one has to average a
logarithm of a path integral over an exponential. To per-
form these stochastic averages we use the replica trick [8],

lnfZg ¼ lim
m!0

1

m
lnfZmg: (12)

Thus, one just has to compute Zm for integer m, and, if the
result is analytic in m, to take m ! 0 at the end. This
tantamounts to the introduction of m different copies (rep-
licas) of the same system which are then coupled through
the noise average.
As already mentioned, the noise distribution p½fhg� is

Gaussian for free scalar fields, with the first and second
cumulants given by

hiðxÞ ¼ 0; hiðxÞhjðyÞ ¼ �ij�ðx; yÞ; (13)

with a known function �ðx; yÞ depending on derivatives of
the mode functions in (2). In terms of the linear random
potential (7), this may be written as

Vð ~’a
LðxÞÞ ¼ 0;

Vð ~’a
LðxÞÞVð ~’b

LðxÞÞ ¼ �ðx; yÞ ~’a
LðxÞ � ~’b

LðyÞ; (14)

where the replica indices a; b ¼ 1; . . . ; m label the differ-
ent copies arising by means of the replica trick.
For interacting scalar fields, a Gaussian distribution is an

approximation, but for many cases at least a reasonable
staring point. Hence, one may specify a general random
potential V as in (8), in analogy to the case of free scalar
fields,

Vð ~’a
LðxÞÞVð ~’b

LðyÞÞ ¼ �ðx; yÞNR

�
~’a
LðxÞ � ~’b

LðyÞ
N

�
; (15)

where each of the random variables fhg is taken to be
Gaussian-distributed with mean zero. Of course, the con-
crete form of the function R, as well as the form of its
argument has to be determined from first principles. Note
that for our example of a free scalar field, the Gaussian
distribution is exact and that the function R is linear, as
seen in (14). In the terminology of statistical field theory,
the space-time correlation �ðx; yÞ is called short-range, if
�ðx; yÞ ¼ }ðt; t0Þ�d�1ðx� yÞ, and long-range for all other
cases (cf. [9]). The latter is relevant for stochastic inflation.

After averaging over the noise we obtain from Zm and
Eq. (15) the replicated action

SðmÞ ¼ 1

2

Xm
a¼1

Z
t;t0

Z
k
GL0

�1ðt; t0; kÞ ~’a
Lðt; kÞ � ~’a

Lðt0;�kÞ

� 1

2

Xm
a;b¼1

Z
x;y

�ðx; yÞNR

�
~’a
LðxÞ � ~’b

LðyÞ
N

�
; (16)

with the definitions
R
k
:¼ R

dd�1k=ð2�Þd�1,
R
t
:¼ R

dt,R
x
:¼ R

ddx, and GL0ðkÞ :¼
R
k0 GL0ðk; k0Þ. We dropped
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the source term / ~|L, because it is irrelevant for the follow-
ing calculation. We see that the m replicas are coupled to
each other through the noise correlation (15).

In the following, we will use a variational method to
approximate action (16) by the Gaussian variational action

S ðmÞ
0

:¼ 1

2

Xm
a;b¼1

Z
t;t0

Z
k
GL

�1
abðt; t0; kÞ ~’aðt; kÞ � ~’bðt0;�kÞ

(17)

with the inverse propagator

GL
�1

ab
:¼ GL0

�1�ab � �ab: (18)

Although Gaussian, the perhaps highly nonlinear noise
interaction Rð. . .abÞ is accommodated by the nondiagonal
replica structure �ab.

Let us comment on the structure of (18). On the diagonal
(in replica space) we find the inverse of the noiseless
propagator GL0

�1 plus some mass correction, to be deter-

mined later. This correction alone would not only be trivial
but also inconsistent, as we will see later. Hence, the off-
diagonal part is filled by some, a priori unknown, replica
structure �ab, which, in general, can be time dependent,
and, if one includes long-range noise correlation, also
momentum dependent, directly affecting the scaling be-
havior of the power spectrum. Thus, although this varia-
tional method only generates a self-energy contribution, its
off-diagonal replica structure might have a viable influence
on large-scale correlations.

The Gaussian variational method becomes exact in the
limit N ! 1 and allows one to go beyond ordinary per-
turbation theory. It is based on the following Feynman-
Jensen inequality [10]

lnfZg � lnfZ0g þ hSðmÞ
0 � SðmÞi0; (19)

where the subscript 0 refers to the variational action (17)
and we temporarily Wickrotate to Euclidean signature.
Equation (19) can easily be proven by using the Jensen
inequality expfh. . .ig � hexpf. . .gi [11], which comes from
the convexity of the exponential. The problem is to find the
best GLab, i.e., the best �ab, satisfying (19) by maximizing
the right-hand side of (19).

The result of the variation, again for Minkowski signa-
ture, is

�abðt; pÞ ¼
Z
x
�ðt; xÞe�ip�xR̂0

�Z
k
e�ik�xGLabðt; kÞ

�
;

(20)

where �ðt; xÞ :¼ �ðt; t; xÞ, �abðt; kÞ :¼ �abðt; t; kÞ and
GLabðt; kÞ :¼ GLabðt; t; kÞ, the prime denotes a derivative
w.r.t. the argument, and we assume translational invariance
for the spatial correlation, i.e., �ðx; yÞ ¼ �ðt; t0; jx� yjÞ.
The function R̂ is defined by R̂ðh�i0Þ :¼ hRð�Þi0. In the limit
N ! 1, or trivially for free scalar fields for arbitrary

values of N, one has R̂ ¼ R.

The physical interpretation of the saddle point Eqs. (18)
and (20) is the following: The replica structure � is a
generalized self-energy (cf. the discussion in Sec. 3 of [6]).
The replica structure (20) already contains our main

result, namely, the dimensional reduction at large scales,
as will become clear in the remainder of this work. It also
shows that the replica matrix is in general space-time
dependent, which affects the scaling behavior of the two-
point function (cf. [12]). As can easily be seen, in this
(replica) Gaussian variational approximation, any interac-
tion without random variables is diagonal in replica space.
Therefore it only modifies the diagonal part of the self-
energy. Arbitrary noise gives rise to a complex replica
structure, however.
For the free scalar field studied in this paper, one ob-

serves that random-field noise (linear potential) neces-
sarily yields a uniform replica matrix, i.e., �ab � � for

all a, b, because R̂0 ¼ const. This is the so-called replica
symmetric case, which has intensively been studied [6]. It
means that different replicas couple all in the same way
among each other. To leading order in the number of
replicas, m, we find that (GLab) has the form

ðGLabÞðt; kÞ ¼ GL0ðt; kÞ1þ �ðt; kÞGL0ðt; kÞ2J: (21)

where GL0ðt; kÞ :¼ GL0ðt; t; kÞ, and the m	m-matrix J
has 1 in every entry. In the limit of vanishing correlation,
i.e., � ! 0, the free theory is recovered. To derive (21), no
assumption except the validity of the Gaussian variational
method is made.
The physical propagatorGL of the long-wavelength field

~’L is obtained from GLab via

GLðt; kÞ ¼ lim
m!0

1

m
Tr½ðGLabÞðt; kÞ�; (22)

which is simply the arithmetic mean of the trace of the
replica matrix propagator (cf. Sec. 4 of [6]) and yields

GLðt; kÞ ¼ GL0ðt; kÞ þ �ðt; kÞGL0ðt; kÞ2: (23)

We now turn to the study of the infrared behavior of the
physical propagator and therefore the power spectrum,
with focus on the spectral index. Although irrelevant for
stochastic inflation, we first assume short-range correlation
for pedagogical reasons. Equation (20) then implies� to be
independent of momentum. With the infrared behavior
GL0ðt; kÞ � k��0 and GLðt; kÞ � k�� ð�0; � > 0Þ, we ob-
tain with the help of (21) and (23) the relation

� ¼ 2�0 (24)

—drastically different from to the noiseless case, where
� ¼ �0. This is a variant of the phenomenon of dimen-
sional reduction [13,14]. It is best understood in x space,
where the two-point function goes in the infrared like

jxj�ðd�1Þþ�, and the change in the exponent � can be
absorbed into the reduced dimension d0 :¼ d� �0. We
have to stress that, in the random-field case and for short-
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range correlation, the dimensional reduction theorem can
rigorously be proven to hold in great generality, i.e., to all
orders in perturbation theory and for arbitrary nonrandom
potentials (see especially [14] for a supersymmetric ver-
sion of the proof).

Let us now consider the case of long-range correlation of

the form �ðxÞ � jxj�ðd�1Þþ� with � < d� 1. This de-
scribes properly the infrared limit of the physical model
discussed below. In momentum space, the above choice
implies �ðkÞ � k�� and hence �abðkÞ � k�� by virtue of
(20). For � >��0, the infrared behavior of the power
spectrum deviates from the noiseless result, and we find
� ¼ 2�0 þ �. This result is consistent with previous stud-
ies in flat space with �0 ¼ 2 [12].

For exponential inflation (d ¼ 4 and � ¼ 0) we find a
modification if � � �3, i.e., the spatial noise correlator
decreases at most like jxj�6. In general, the spectral index
changes to

n’ ¼ d� 2�0 � �; (25)

wherefore the choice � ¼ 0 yields the short-range result.
The consequence is a dramatic change of the superhor-

izon power spectrum of the classical long-wavelength
modes as compared to the case without noise. In particular,
scale invariance does not hold on these scales.

Let us now return to our physical model of stochastic
inflation. The split of the field ~’ into a long- and short-
wavelength part, ~’ ¼ ~’L þ ~’S, together with the free field

equation, ðhþ�2Þ ~’ ¼ ~0, implies

�ðt; kÞ ¼
��������ðhk þ�2Þ

�
W�

�
k

aðtÞ � 	

�
uðt; kÞ

���������
2

; (26)

where hk is the (spatially Fourier transformed) covariant
Laplacian, uðt; kÞ is the mode function from Eq. (2), and
W� is a smooth high-pass filter, cutting out the low fre-
quencies below 	. The parameter � controls the width of
the cut. In the limit � ! 0,W� approaches a step function.
Here we choose W�ð�Þ ¼ 1=� arctanð�=�Þ þ 1=2 and
take 0< 	 � 1 in order to cut far below the Hubble rate
Hð¼ 1Þ, and � � 	 to have a narrow transition region
between quantum and classical modes. We do not impose
any restriction on � except that we demand the radicant in
(6) to be positive, i.e., �2 � 9=4.

It is natural to define a transition scale k
 at which the
two terms on the right-hand side of Eq. (23) balance each
other. It separates two regions such that for k � k
 the
behavior is noiseless and for k � k
, dimensional reduc-
tion holds.

In the infrared, the model of Eq. (26) is of long-range
type. We find in four dimensions

� ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

9
�2

s
� 2; (27)

and thus with (25) for k � k


n’ ¼ 6–9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

9
�2

s
¼ �3þ 2�2 þOð�4Þ; (28)

while for k � k
 the noiseless spectral index (6) is
recovered.
The zeros of the relative correction

GLðt; kÞ �GL0ðt; kÞ
GL0ðt; kÞ

¼ �ðt; kÞGL0ðt; kÞ (29)

define the transition scale k
ðtÞ. Its late-time behavior can
be calculated analytically,

k
ðtÞ /
�

�2

ð	2 þ �2Þ2
�ð1=2 ffiffiffiffiffiffiffiffiffiffiffi

9�4�2
p

�2Þ

	 ðe�tÞð8�2
ffiffiffiffiffiffiffiffiffiffiffi
9�4�2

p
=2

ffiffiffiffiffiffiffiffiffiffiffi
9�4�2

p
�2Þ: (30)

For � ¼ 0 we find the asymptotic form

k
ðtÞ ¼ e�t=2
ffiffiffiffi
�

p
ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ �2

p : (31)

Thus, for 	 � 0, k
 goes to zero in the (step-function) limit
� ! 0, i.e., dimensional reduction disappears. We should
point out that the two limits � ! 0 and 	 ! 0 do not
commute and that the case � � 0 and 	 ! 0 is unphysical.
Figure 1 shows the time behavior of the comoving scale

k
 for different values of the mass �. The solid rays
represent the analytic approximation (30), while the
dashed curves are obtained numerically from the roots of
(29). Well below this borderline the two-point function of
the classical stochastic field obeys dimensional reduction,
while well above ordinary scaling holds. One sees that
� ¼ 0 gives the largest k
ðtÞ. After an initial transient
phenomenon, whose duration depends on the specific

FIG. 1 (color online). Comoving transition scale k
 as a func-
tion of cosmic time t (both in units of H) for mass �=H ¼ 0:1,
0.2, 0.3, 0.4, 0.5, and 0.6 (dashed lines, top to bottom). Dashed
curves are numerical results, colored solid lines are analytic
approximations, and enveloping black lines are 	

2 aðtÞ and the

asymptotic form (31), respectively. A smoothing � ¼ 10�3 and
short-wavelength cut 	 ¼ 10�2 are chosen.
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choice of 	 and �, the comoving transition scale decays
exponentially fast. Hence, the dimensional reduction con-
tribution is pushed to larger and larger scales as time
increases. This therefore guarantees that quantum noise
induces only a minor change of the spectral index on
subhorizon as well as on moderate super-horizon scales.

For concreteness, let us consider a mode with comoving
k ¼ 0:05H. At time t ¼ 0 it is within the region of ordinary
scaling, suffering at most slightly from dimensional reduc-
tion. This mode enters then, after roughly two e-foldings,
the region of broken scale invariance, but leaves it at the
latest (for� ¼ 0) after seven e-foldings and stays eternally
in the scale-invariant regime, which itself grows exponen-
tially fast.

One may connect the replica structure � to a nonlinear-
ity parameter gNL, which shall now be defined via

’iðt; kÞ � ’G
i ðt; kÞ � gNLðt; kÞð’G

i ðt; kÞÞ2; (32)

where ~’Gðt; kÞ is a free Gaussian field. On the level of
propagators, this translates to

GLðt; kÞ ¼ GL0ðt; kÞ þ 3gNLðt; kÞ2GL0ðt; kÞ2 (33)

and hence

�ðt; kÞ ¼ 3gNLðt; kÞ2 (34)

can be directly read off, using Eq. (23). gNL measures the
influence of the quantum fluctuations, picked up by a
smooth filter function. Formally, it resembles an effective
non-Gaussianity parameter [15] for the long-wavelength
modes. However, this association is misleading since the
theory we work with is Gaussian (but with nontrivial
replica structure).

Figure 2 shows the dependence of gNL on the comoving
momentum k for various values of � for fixed time t ¼
10H, using Eq. (34). First, one sees that increasing � lifts
the curve upwards, and second, one observes a divergence
in the infrared—displaying the effect of dimensional re-
duction. For k � k
, one obtains a scale-invariant
spectrum.

To summarize, we presented novel methods to study the
power spectrum of classical, stochastic fields in stochastic
inflation. We demonstrate that replica field theory allows
us to study the spatial behavior of noncoincident long-
wavelength correlation functions. Dimensional reduction
changes the spectral index on superhorizon scales, in the
sense that it heavily amplifies the power spectrum of the
classical modes in the infrared. This effect has been calcu-

lated by a variational method, which allows us to go
beyond ordinary perturbation theory and suggests it might
be entirely of nonperturbative nature. However, in the limit
of vanishing �, i.e., of a sharp cut between long- and short-
wavelength modes, the singularity disappears.
Those huge differences in the energy density on large

superhorizon scales signal a breakdown of ordinary per-
turbation theory, because in that case one cannot speak
about the spectrum of fluctuations in the usual, perturbative
sense. It further displays the failure of the test-field as-
sumption, since in the situation at hand it is no longer valid
to neglect the backreaction of the field on the geometry.
However, the time evolution of the long-wavelength field
pushes the dimensionally reduced region exponentially fast
to unobservable scales. This provides further support for
the self-consistency of the idea of inflation, since regions of
broken scale invariance, with extraordinarily large fluctua-
tions disappear faster than any causal patch of the universe
expands.
It will be interesting to discuss other background space-

times, as well as to include self-interactions. The present
formalism might also help to tackle the full problem of
stochastic inflation, where the geometry is also random. If
we could assume that the dimensional reduction of our test
field also applies to the inflaton, we would find further
support of the idea of eternal inflation [3].

It is a pleasure to thank Benjamin Jurke, Daniel
Kruppke, Jérôme Martin, Aravind Natarajan, Erandy
Ramirez, Alexei Starobinsky, and Richard Woodard for
stimulating discussions. F. K. acknowledges support from
the Deutsche Forschungsgemeinschaft (DFG) under grant
GRK 881.

FIG. 2 (color online). Non-linearity parameter gNL as a func-
tion of comoving momentum k (in units of H) for mass �=H ¼
0:1 (uppermost), 0.2, 0.3, 0.4, 0.5, and 0.6 (lowermost) withHt ¼
10, � ¼ 10�3, and 	 ¼ 10�2. The dot-dashed black line repre-
sents the value of k
 corresponding to the respective mass.
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