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The contributions of the cosmological constant to the deflection angle and the time delays are derived

from the integration of the gravitational potential as well as from Fermat’s principle. The findings are in

agreement with recent results using exact solutions to Einstein’s equations and reproduce precisely the

new � term in the bending angle and the lens equation. The consequences on time-delay expressions are

explored. While it is known that� contributes to the gravitational time delay, it is shown here that a new�

term appears in the geometrical time delay as well. Although these newly derived terms are perhaps small

for current observations, they do not cancel out as previously claimed. Moreover, as shown before, at

galaxy cluster scale, the � contribution can be larger than the second-order term in the Einstein deflection

angle for several cluster lens systems.
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I. INTRODUCTION

Various complementary observations seem to indicate
that the expansion of the Universe has entered a phase of
acceleration [1]. This has become one of the most impor-
tant current problems in cosmology and all physics, as
discussed, for example, in [2] and references therein.
While several explanations are possible [2], current obser-
vations [1] are consistent with a cosmological constant in
the Einstein field equations.

In a recent work, the authors of [3] used the
Schwarzschild-de Sitter (SdS) metric and showed that the
cosmological constant does contribute to the bending of
light around a concentrated mass. It was shown there that
even though� drops out from the null geodesic equation, it
still contributes to the deflection of light simply because of
the geometry of the SdS spacetime represented by the
metric, regardless of other considerations. The result
made a correction to the question (see e.g. [4–8]) and
was confirmed in [9–11]. Next, in Ref. [12], the authors
brought the result into an observational context and used an
exact solution construction where a Schwarzschild-de
Sitter vacuole was embedded into a Friedmann-Lemaitre-
Robertson-Walker (FLRW) background, and where a �
term was added to the deflection angle within the broadly
used lens equation. Finally, using observations of Einstein
angles around clusters, the authors were able to put upper
bounds on the value of the cosmological constant, only two
orders of magnitude away from the value determined by
cosmological probe constraints.

In this paper, we use the integration of the gravitational
potential method and also Fermat’s principle to calculate
the contribution of the cosmological constant to the de-
flection of light, the lens equation, and the time delays.
Whereas it is known that � contributes to the gravitational

time delay, we show here that a new � term appears in the
geometrical time delay.
First, it is worth clarifying a point that has been a source

of ambiguity in some of the recent literature about the
effect of� on the bending of light and gravitational lensing
by a galaxy cluster in an FLRW spacetime. As we show in
Fig. 1, the light bending due the lens occurs in a region
close to the lens (SdS vacuole) and then once the light
transitions out of the vacuole into FLRW spacetime then
the bending stops. Away from the cluster (i.e. outside the
vacuole), the ray of light propagates in a FLRW back-
ground. Now, from the geometry, the lens equation in-
cludes the bending angle and also angular-diameter
distances. While � is present in the lens equation via the
usual expressions for the angular-diameter distances in
FLRW, � also enters the lens equation via the bending
angle itself that occurs inside the SdS vacuole. As eval-
uated in [12], the contribution of � to the deflection angle
is small but larger than the second-order term in the
Einstein angle for several cluster lens systems. Moreover,
this is also a matter of mathematical correctness since the
newly derived terms do not cancel out as previously
claimed. In relation to this clarification about the lens
geometry above, recent papers [10,13] refer to our previous
work [3,12] without taking into consideration the construc-
tion described above and used in [12]. Then, it is concluded
in [13] that terms of the order of��rgr0 (in their notation)

may exist. That term is precisely the � term derived in our
previous work [12]. It is hoped that this paragraph along
with Fig. 1 will clarify this point about the cosmological
constant and the lens equation geometry.
It was recently pointed out in [14] that some of the �

terms contributing to the deflection angle could be incor-
porated into the angular diameter distances when these are
extended up to the lens and not the boundary of the vacuole
while other � terms cannot; this will be investigated
elsewhere.*mishak@utdallas.edu

PHYSICAL REVIEW D 78, 103006 (2008)

1550-7998=2008=78(10)=103006(6) 103006-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.103006


It is also worth noting that the contribution of the cos-
mological constant to the bending angle enters via the
Weyl focusing of the Sachs equations [15–17] and takes
place inside the SdS vacuole (see also footnote [22] in a
previous paper [3]), while outside the vacuole only the
Ricci focusing [15–17] takes place and the cosmological
constant appears via the angular distances in the FLRW
background. This applies to the bending angle and the
related time delay as well.

As we will show, the � term in the lens equation as
discussed in [12] can be derived using various methods
used in gravitational lensing and propagates to time-delay
calculations.

II. DEFLECTION POTENTIALS, THE LENS
EQUATION, AND THE COSMOLOGICAL

CONSTANT

In this section, we show that the contribution of the
cosmological constant to the light bending angle [3] and
the lens equation [12] can also be derived from gravita-
tional potentials, a method that is frequently used in gravi-
tational lensing literature, see for example [15,18–20].

Ishak, Rindler et al. derived in [12] an amended lens
equation where the contribution of the cosmological con-
stant was added to the Einstein bending angle. The � term
was derived there using an exact construction of a SdS
vacuole embedded in a FLRW background and was given
by

�� ¼ ��Rrb
3

; (1)

where R is a radius close to the lens as used in [3,12] and

similar to the impact parameter, e.g. [21,22], but distinct
from it since the SdS spacetime is not asymptotically flat,
and rb is the radial coordinate at the boundary of the
vacuole where the spacetime transitions from the SdS
spacetime to a FLRW background.
We note that one can use again the following matching

conditions at the boundary of the vacuole, see e.g. [23–25],

rb in SdS ¼ aðtÞrb in FLRW (2)

and

mSdS ¼ 4�

3
r3b in SdS � �matter in FLRW; (3)

and rewrite the Ishak-Rindler � term, (1), as

�� ¼ ��R

3

�
3mSdS

4��matter in FLRW

�ð1=3Þ
: (4)

This expression gives the � term as a function of the mass
of the galaxy or cluster lens in the SdS vacuole and the
matter density of the FLRW background.
The second method that we shall employ to calculate ��

is analogous to the method of approximation that is fre-
quently used in gravitational lensing literature where the
lens (inhomogeneity) in a FLRW background is repre-
sented by a Newtonian potential inserted in a post-
Minkowskian line element or a post-FLRW line element
(see for example [15,18–20]). The metric in such a con-
struction is then given by gab ¼ �ab þ hab where hab
measure the departure from the Minkowskian metric �ab.
First, we recall that hab in linearized Schwarzschild

spacetime and the associated Newtonian potential � can
be read off the usual Schwarzschild metric in isotropic
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FIG. 1. The lens equation geometry. Observer, lens, and source are at O, L, and S, respectively. The position of the unlensed source is
at an angle �, the apparent position is at the angle � and the deflection angle is �. The distance from the observer to the source is DOS,
from the observer to the lens is DOL, and from the lens to the source is DLS. As usual, the lens equation follows from the geometry as
�DOS ¼ �DOS þ �DLS. A ray of light propagates from the left within the FLRW background, then enters inside the Schwarzschild-de
Sitter vacuole around the lens where it gets deflected by the lens, and then it exits the vacuole and continues its propagation in the
FLRW background to the right. The results derived from matching exact solutions to Einstein’s equations in [12] and those derived in
this work from the usual approximate constructions used in gravitational lensing literature are in perfect agreement for the contribution
of � to the deflection angle and the lens equation. The same result is also derived using Fermat’s principle.

MUSTAPHA ISHAK PHYSICAL REVIEW D 78, 103006 (2008)

103006-2



coordinates given by (e.g. [22,26]) (we use relativistic units
where we set G ¼ c ¼ 1)

ds2 ¼ �
�
1� m

2r

1þ m
2r

�
2
dt2 þ

�
1þ m

2r

�
4ðdr2 þ r2d�2Þ; (5)

and are given by

� ¼ � htt
2

¼ �hii
2

¼ �m

r
: (6)

For a ray of light traveling in the x direction, the first-order
term of the Einstein deflection angle is then given by

� ¼ � 1

2

Z þxb

�xb

r?ðhtt þ hxxÞdx

¼ 2
Z þxb

�xb

r?�ðx; y; zÞdx; (7)

where r? � r�rk is the gradient transverse to the path,
see for example [15,20]. At the vacuole boundary, xb ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2b � R2

q
and a straightforward integration yields the

Einstein first-order term

�Einstein ¼ 4m

R
: (8)

For the contribution of � to the bending angle which
happens close to the lens (i.e. inside the vacuole region),
some subtleties come into consideration as we shall see. In
linearized general relativity (GR), we can add the hab due
to various sources. It therefore follows that the bending
angle itself can be obtained by adding the bending angles
due to different hab. Moreover, in order to comply with the
isotropic FLRW background outside the vacuole, we
should here also use isotropic coordinates for the de
Sitter metric inside the vacuole, see e.g. [27,28] and refer-
ence therein,

ds2 ¼ �
�
1� �r2

12

1þ �r2

12

�
2
dt2 þ 1

ð1þ �r2

12 Þ2
ðdr2 þ r2d�2Þ (9)

which linearizes to gab ¼ �ab þ hab with, see for example
[27],

htt ¼ �2� ¼ �r2

3
; h0i ¼ 0;

hij ¼ �2��ij ¼ ��r2

6
�ij:

(10)

The� contribution to the bending angle is then found by
using again

�� ¼ � 1

2

Z þxb

�xb

r?ðhtt þ hxxÞdx

¼
Z þxb

�xb

r?ð�þ�Þdx

¼ ��Rrb
3

: (11)

Now, combining Eqs. (8) and (11), using the lens ge-
ometry (Fig. 1), and the usual assumption of small angles,
the lens equation reads

�� � ¼ ð�Einstein þ ��ÞDLS

DOS

: (12)

The � term (11) and the lens equation (12) are exactly
the � term and the lens equation as derived in [12] from a
different method based on the exact matching of a SdS
spacetime vacuole to a FLRW spacetime background [12].
In Sec. IV below we shall give yet another alternative for

deriving the � term, this time from Fermat’s principle.

III. TIME DELAYS AND THE COSMOLOGICAL
CONSTANT

A ray of light traveling in the gravitational field is known
to experience two types of time delay, see for example
[15,29]. The first is the geometrical time delay, �geom, due

to the extra path length resulting from the deflection. The
second is the gravitational time delay, �grav, due to the

gravitational potential, known as the Shapiro delay
[15,30]. The contribution of the cosmological constant to
the gravitational time delay has been discussed in, for
example, [6,27]. However, we show here that� also affects
the geometrical time delay because its contribution to the
bending angle shortens the bent path.
Before we derive the two terms, we want to clarify that

the contributions of � that we are interested in here are
distinct from the obvious ones that come via the angular-
diameter distances as we explained in the introduction, but
we are interested in the contributions that happen inside the
vacuole around the lens.
First, the gravitational time delay due to � can be

derived using (10), see for example [27], and is given by

��;grav ¼ 1

2

Z þxb

�xb

ðhtt þ hxxÞdx ¼ �r3b
18

þ�rbR
2

12
: (13)

This result gives explicitly the two leading � terms for the
contribution of � to the gravitational time delay. One can
see that these terms are in agreement with [27] when their
integration boundaries �1 and �2 are set equal to þrb ¼
ðþxb; R; 0Þ and �rb ¼ ð�xb; R; 0Þ, respectively.
Now, we recall the Shapiro time delay due to the

Schwarzschild potential (6). It is given for our vacuole by

�Shapiro ¼ �2
Z þxb

�xb

�mdx ¼ 4m log

�
2rb
R

�
: (14)
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So the gravitational time delay due to � adds to the
Shapiro delay. These time delays are due to the gravita-
tional potentials which cause clocks to slow down [22,26].

For distant galaxies and clusters of galaxies, the Shapiro
delay and the � term need to take into account the redshift
of the lens, the geometry as given by Fig. 1, and the
angular-diameter distances as given in the FLRW metric
away from the potential. Also, when dealing with mea-
surements and observations, the gravitational time delays
require modeling of the lens systems, see for example
[29,31]. Following the standard approach [15,29], we put
the two time delays in a cosmological setting as

�grav ¼ ð1þ zLÞDOSDOL

DLS

ð�Shapiro þ ��;gravÞ; (15)

where all the quantities are as defined in Fig. 1 and the
angular-diameter distance is given by

DðzÞ ¼ c

H0ð1þ zÞ
Z z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mð1þ z0Þ3 þ��

p (16)

in a spatially flat cosmology.
Next, we derive the geometrical time delay, ��;geom, due

to �. This term is new and results from the contribution of
� to the deflection angle and thus to the path length. A
general derivation of �geom from the lens geometry (e.g.

Fig. 1) and the FLRWmetric can be found in, for example,
[15]. The geometrical time delay is given by

�geom ¼ ð1þ zLÞDOSDOL

DLS

1

2
ð�� �Þ2: (17)

We can use the lens equation (12) to rewrite (17) as

�geom ¼ ð1þ zLÞDLSDOL

DOS

1

2
�2: (18)

Now, we can expand �2 to write

�geom � ð1þ zLÞDLSDOL

DOS

1

2
ð�2

Einstein þ 2�Einstein��Þ;
(19)

where we define the last term as

��;geom � ð1þ zLÞDLSDOL

DOS

�Einstein��

¼ ð1þ zLÞDLSDOL

DOS

�
� 4�mrb

3

�
: (20)

The term (20) is new and represents the contribution of the
cosmological constant to the geometrical time delay that
enters from its contribution to the deflection angle. We
clarify again that the contribution of � as it appears in
the last fraction in (20) is separate from the contributions
that � has via the angular-diameter distances as given in
the FLRW background, outside the vacuole. This newly
derived term is perhaps observationally small but does not
cancel out to zero as previously claimed.

The sign of ��;geom is negative. So while the effect of a

Schwarzschild mass is to produce a retardation due to the
deflection of the light that it creates, the effect of � on the
geometrical time delay is the opposite. A positive cosmo-
logical constant diminishes the deflection angle and the
length of the path that light needs to travel and hence it
diminishes the geometrical time delay.
Finally, we note that when using observations, it is rather

the relative time delays between different images that are
used [29,31], i.e.

��1;2 ¼ �image1
� �image2

: (21)

Also, while observations fairly directly yield measure-
ments of redshifts of lenses and deflection angles, time-
delay measurements require some sophisticated modeling
of lens systems [29,31]. These are out of the scope of this
theoretical work but need to be studied in future work using
modeling and simulations of observed cluster lens systems
and images.
We will show in the next section that the contribution of

� to the deflection angle and consequently to the geomet-
rical time delay can also be derived from Fermat’s princi-
ple while the Shapiro delay follows directly from the
spacetime metric.

IV. FERMAT’S PRINCIPLE AND THE
CONTRIBUTION OF � TO THE LENS EQUATION

AND THE TIME DELAYS

The expression for the deflection angle also follows
from using Fermat’s principle and the Euler-Lagrange
equations of the variational principle

�
Z

ndl; (22)

where n is considered as an effective index of refraction of
the gravitational field and dl is the path of the ray of light.
First, as discussed in, for example, [15,31], the null

curve ds2 ¼ gabdx
adxb ¼ 0 for the Schwarzschild poten-

tial (6), leads to the Fermat’s principle (22), where

n ¼ 1� 2�; (23)

from which the Euler-Lagrange equations give [15,31],

�Einstein ¼ 2
Z

r?�dl ¼ 4m

R
: (24)

Now, we apply Fermat’s principle in order to derive the
contribution of the cosmological constant to the bending
angle and use hab as given by (10). For a future-directed
null curve,

ds2 ¼ 0 ¼ �dt2ð1� 2�Þ þ ð1� 2�Þdl2;

¼ �dt2
�
1��r2

3

�
þ

�
1��r2

6

�
dl2;

(25)

or simply
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dt ¼ ð1� ð�þ�ÞÞdl ¼
�
1þ�r2

12

�
dl: (26)

First, the gravitational time delay follows from the second
term of the right-hand side of Eq. (26). The integral of
which gives

�t ¼ dl�
Z
ð�þ�Þdl ¼ dlþ ��;grav; (27)

where ��;grav was already calculated in (13) of the previous

section.
Next, it follows from Eqs. (22) and (26) that

n ¼ 1� ð�þ�Þ ¼ 1þ�r2

12
: (28)

Following [15], we consider a ray of light traveling
along the path dl with unit tangent vector e. The deflection
angle is given by the change in the direction of the null ray.
From our Eqs. (22) and (28) and the Euler-Lagrange equa-
tions, it follows that

de

dl
¼ �ðrð�þ�Þ � eðe:rð�þ�ÞÞ ¼ �r?ð�þ�Þ

(29)

and

�� ¼ ein � eout ¼
Z

r?ð�þ�Þdl; (30)

a result already derived in (11) using null geodesics and the
metric. So for a null ray traveling in the x direction with
integration boundaries as given in (11), this approach gives
again the � term as given in [12] and rederived in Sec. II,
i.e.

�� ¼ ��Rrb
3

: (31)

V. CONCLUSION

Using the integration of gravitational potentials and
Fermat’s principle, we find that a cosmological constant
term appears in the deflection angle and propagates to
time-delay calculations. We used here an approximate
construction that is frequently used in gravitational lensing
literature [15,18] and where the lens (inhomogeneity) in a
FLRW is represented by a potential inserted in post-

Minkowskian or post-FLRW line elements. Our results
for the deflection angle and the lens equation are in perfect
agreement with previous work [3,12] where a SdS space-
time vacuole was exactly embedded in a FLRW spacetime
background. Then we derived expressions for the effect of
� on the gravitational and geometrical time delays.
Whereas it is known that the cosmological constant con-
tributes to the gravitational time delay, we showed here that
a new � term appears in the geometrical time delay.
We also clarified the geometrical figure of interest

whether one uses a construction based on exact solutions
to Einstein’s equations or based on approximate construc-
tions. As shown, in Fig. 1, the bending of light occurs in the
region close to the deflector inside the SdS vacuole.
Outside the vacuole, the ray of light simply propagates in
a FLRW spacetime. The contribution of the cosmological
constant to the bending angle enters via the Weyl focusing
of the Sachs equations [15–17] and takes place inside the
vacuole, while outside the vacuole only the Ricci focusing
[15–17] takes place and � appears via the angular dis-
tances in the FLRW background.
Indeed, the � terms that are derived here and in [12] are

related to the bending of light which occurs inside the SdS
vacuole, close to the lens. These contributions are separate
from the usual presence of � in the expressions for
angular-diameter distances in the FLRW background.
It was recently discussed in Ref. [14] that some of the �

terms contributing to the light bending angle could be
incorporated into the angular diameter distances when
these are extended up to the lens and not the boundary of
the vacuole while other � terms cannot; this will be inves-
tigated elsewhere.
Although the newly derived � terms for the lens equa-

tion and the time delay are perhaps small for current
observations, they do not cancel out as previously claimed.
Moreover, at galaxy cluster scale, it was shown in [12] that
the contribution of � to the bending angle can be larger
than the second-order term in the Einstein deflection angle
for several cluster lens systems.
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