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Keeping the exact general relativistic treatment of light bending as a reference, we compare the

accuracy of commonly used approximate lens equations. We conclude that the best approximate lens

equation is the Ohanian lens equation, for which we present a new expression in terms of distances

between observer, lens, and source planes. We also examine a realistic gravitational lensing case, showing

that the precision of the Ohanian lens equation might be required for a reliable treatment of gravitational

lensing and a correct extraction of the full information about gravitational physics.
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I. INTRODUCTION

Gravitational lensing is a well-established research sub-
ject treating the bending of light trajectories by gravita-
tional fields. Its methodology is traditionally developed
within the weak field approximation of general relativity,
which describes photon trajectories through the geodesics
equation. In this context, the true position of a source in the
sky and its apparent position after deflection of the light by
a massive body are related by the so-called lens equation
[1,2] (for textbook reviews, see [3–5]). This relation and its
mathematical properties have been extensively studied for
generic lens models and represents the basis of the whole
gravitational lensing theory.

The lens equation is typically established in the small
angle approximation, in conjunction with the weak deflec-
tion hypothesis. In more recent years, there has been a
renewed interest in astrophysical situations in which the
deflection angle is not small. For example, if the bending of
light emitted by sources near a black hole is considered, the
deflection angle may reach arbitrary large values [6]. For
such gravitational lenses the old small angles lens equation
must be obviously revised. Several proposals for general-
ized lens equations have then appeared in the literature and
have been applied to specific cases [7–13]. Such lens
equations principally differ among each other for what
concerns the variables in which they are expressed.
However they also lie at different approximation levels
below the full general relativistic description of the photon
motion.

In this work, we review all these lens equations for
spherically symmetric bodies that have appeared in the
literature and introduce a new lens equation that fills a
gap in the present taxonomy. We also present a detailed
discussion of the order of magnitude of the errors commit-
ted in the use of different lens equations, giving a complete
interpretation for their origin. It is worth mentioning that a
critical review of the approximations leading to the weak
deflection lens equation has recently appeared [14]. The
present work shares the same spirit by testing different

approximations leading to large deflection lens equations,
instead.
The plan of the paper is as follows. In Sec. II we

establish the notations by describing the basic geometric
configuration for gravitational lensing. In Sec. III, we
review the exact lens equation by Frittelli, Kling, and
Newman, derived in a fully general relativistic context.
In Sec. IV, we discuss the asymptotic approximation and
all lens equations making use of this approximation. We
also introduce our new proposal for an improved lens
equation. In Sec. V we present a numerical example about
a realistic gravitational lensing situation, in order to com-
pare the different approximations in the lens equations
previously discussed. Section VI contains a discussion
about the precision needed in gravitational lensing obser-
vations and the conclusions of the work.

II. BASIC LENSING GEOMETRY

Let us consider a spherically symmetric spacetime,
whose metric is

ds2 ¼ AðrÞdt2 � BðrÞdr2 � CðrÞ2ðd#2 þ sin#2d�2Þ:
(1)

Let us put a static source at radial coordinate dLS and a
static observer at radial coordinate dOL. The orientation of
the polar coordinates is chosen in such a way that both the
source and the observer lie on the equatorial plane # ¼
�=2. As a consequence of the spherical symmetry, the
whole photon motion takes place on this plane. We also
assume that the metric is asymptotically flat, so that the
coordinates ðt; r; #;�Þ become Minkowski polar coordi-
nates very far from the center (we neglect any effects due to
cosmological expansion in our discussion).
A very useful structure for understanding several lens

equations proposed in the literature is the Minkowski space
associated with (1). This structure can be introduced by
assuming that the metric depends on one or more parame-
ters continuously so that, once we tune these parameters to
zero, the metric becomes Minkowski and the coordinates
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ðt; r; #;�Þ become Minkowski polar coordinates on the
whole spacetime. The parameters of the metric may be
the mass of the lens, the electric charge, the scalar charge
or any other parameter dictated by any kind of gravitational
theory. Many definitions need to be given by referring to
this associated Minkowski space obtained by tuning all
these parameters to zero. Of course, the original curved
spacetime and the associated Minkowski space coincide in
the asymptotically flat region.

A typical geometric configuration of gravitational lens-
ing is shown in Fig. 1, with a photon emitted by a source S,
curved by the gravitational field generated by the lens L
and detected by the observer in O. The observer sees the
photon at an angle � with respect to the optical axis OLM,
whereas, if there were no lens, he would directly observe
the source at an angle �. � is thus the first quantity that is
well-defined only in the associated Minkowski space, as
we must tune the mass of the lens to zero to define it.

The emission direction of the photon is SC, whereas the
detection direction is CO. In the associated Minkowski
space, we can also measure the angle between these two
directions and define it as the deflection angle� (we cannot
compare directions from different points in a curved
space).

It is common practice to define the lens plane and the
source plane as those planes orthogonal to the optical axis
passing through the lens and the source, respectively. Of
course, also these definitions can be given in the associated
Minkowski space and then extended to the original curved
space. Then, one can define the distances from the observer
to the lens plane as DOL, the distance between the lens
plane and the source plane asDLS and the distance between
the observer and the source plane as DOS. The usual
relation

DOS ¼ DOL þDLS (2)

holds.
These distances between planes are obviously different

from the distances between the pointsO, L, and S. We have
already defined dOL and dLS as the radial coordinates of
observer and source in the original curved metric. Once we

report these coordinates in the associated Minkowski
space, they coincide with the proper distances of the ob-
server and the source from the lens. Then, in this space, we
can establish simple geometrical relations with the dis-
tances between planes. In particular, we have

dOL ¼ DOL (3)

dLS ¼ DLS= cos� (4)

dOS ¼ DOS= cos�: (5)

Of course, if the source is very close to the optical axis,
� and � are small and the differences between the upper-
case distances and the lowercase distances is of second
order in the angles. Therefore, in the classical weak de-
flection paradigm, the two notions are confused without
consequences. Here, we must keep them distinct in order to
avoid confusion.

III. EXACT LENS EQUATION

The lens equation is a relation among the source and
observer coordinates and the angle � at which the observer
detects an image of the source S.
Remaining in a fully general relativistic context, it is

possible to write down the exact equations governing the
photon motion and consequently write an exact lens equa-
tion. This approach has been proposed by Frittelli and
Newman in Ref. [7] and then applied to the
Schwarzschild lens in Ref. [8]. Later on, it has been
generalized to all spherically symmetric spacetimes in
Ref. [15] (see also [16]).
A photon emitted from a source, deflected by the lens

and detected by the observer experiences a change in the
azimuthal coordinate given by

�ðJ; dOL; dLSÞ ¼
�Z dOL

r0

þ
Z dLS

r0

� ffiffiffiffiffiffiffiffiffi
BðrÞp

J

CðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

AðrÞ � J2

CðrÞ
q dr;

(6)

where J is the specific angular momentum of the photon,
which is a constant of motion, and r0 is the distance of
closest approach to the lens. These two quantities are
related by

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Cðr0Þ
Aðr0Þ

s
: (7)

The specific angular momentum is also related to the
angle � at which the observer detects the photon. Defining
the angle by using the scalar product between the arrival
direction and the direction specified by the optical axisOL
(see, e.g., [17]), we find

O θ β γ

L

u u

C
Hα

S

I

M

θ

FIG. 1. Generic gravitational lensing configuration. Note that
only the angles �, �, and �� are well-defined in the curved
spacetime, whereas all other geometrical quantities need to be
defined referring to the Minkowski space associated with the
original curved space.
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� ¼ arcsin

�
J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðdOLÞ
CðdOLÞ

s �
: (8)

If the observer is very far from the lens, AðdOLÞ ! 1 and
CðdOLÞ ! d2OL, so that one recovers the relation

� ’ arcsinJ=dOL; (9)

which allows to identify J with the impact parameter u of
the light ray trajectory (except for a speed of light factor).
In general, however, this identification is only approximate
(see next section).

The exact lens equation can finally be written by noting
that the change in the azimuthal coordinate must be equal
to the difference between the azimuthal coordinates of the
observer and the source. Replacing all occurrences of J and
r0 in terms of � by Eqs. (7) and (8), we get [7,8,15]

�ð�; dOL; dLSÞ ¼ �� �: (10)

This equation is the exact general relativistic relation
between the angle at which the image appears in the
observer’s sky and the relative positions of source, ob-
server, and lens. All other lens equations represent approxi-
mate forms of this equation. Of course, most lens equations
are derived under assumptions that are largely satisfied in
realistic situations. Therefore, their simplifications are ab-
solutely welcome, if the induced errors are below obser-
vational sensitivity or other sources of noise. In the
following sections we will introduce some lens equations,
describing their approximations.

IV. APPROXIMATE LENS EQUATIONS

The most popular approximation is what can be called as
asymptotic approximation, which amounts to saying that
the source and the observer are in the asymptotic flat region
of the spacetime. Quantitatively, this is expressed by re-
quiring dOL, dLS � rg, where rg is the gravitational radius

of the lens, i.e., the typical scale in the curved spacetime
metric controlling the range of the gravitational field (it is
2GM=c2 in the Schwarzschild metric). As a first conse-
quence, Eq. (9) holds, so that the angular momentum of the
photon J can be identified with the impact parameter �u of
the initial trajectory and the impact parameter u of the final
trajectory, as depicted in Fig. 1. As a second consequence,
the deflection angle can be calculated as

�ðuÞ � �ðJ ¼ u;1;1Þ � �; (11)

which is the azimuthal shift of a photon incoming from
infinity with impact parameter J and escaping to infinity.

Once this approximation is accepted, it is possible to
establish a relation among � and the relative positions of
source, lens, and observer using pure Euclidean geometry.
In fact, all distances are defined in the asymptotic space-
time and the only input from general relativity is the
precise expression of the deflection angle as a function of
the impact parameter u.

Note that the asymptotic approximation does not neces-
sary imply the small angle approximation. In fact, it just
assumes that the source and the observer distances are
much larger than the gravitational radius of the lens. This
does not prevent the impact parameter to be very large.
In the following subsections, we will introduce several

approximate lens equations that appeared in the literature,
expressed in terms of different quantities.

A. Ohanian lens equation

The first lens equation we introduce is due to Ohanian
[9], who proposed it in a study of gravitational lensing by a
Schwarzschild black hole for arbitrary deflection angles.
Thanks to the asymptotic approximation, we can use

Euclidean geometry to relate the various quantities and
store all the relativistic input in the angle �. Let us define

the angle � � dOSL. Considering the triangles OLS and
OSC, we can write down the relations

�þ � þ �� � ¼ � (12)

ð�� �Þ þ ð ��� �Þ þ �� � ¼ �: (13)

Summing up these two equalities, we obtain [18] (see also
[13])

�þ ��� � ¼ �: (14)

The angle �� can be expressed in terms of � recalling that
the impact parameter of the incoming trajectory �u is equal
to the impact parameter of the outgoing trajectory u (in the
asymptotic approximation). Therefore

�� ¼ arcsin

�
dOL

dLS
sin�

�
: (15)

Once Eq. (15) is used in Eq. (14), we obtain the lens
equation as a relation involving the detection angle �, the
distance between the observer and the lens dOL, the dis-
tance of the lens to the source dLS, the source position
angle � and the deflection angle �, which is a function of �
through u ¼ dOL sin�.
The original form proposed by Ohanian [9] was actually

written by replacing � and �� by their small angle approx-
imations u=dOL and u=dLS, respectively. This is an addi-
tional approximation, with respect to the asymptotic
approximation, which we will not consider here.

B. Virbhadra, Narasimha, and Chitre lens equation

Another very simple expression for the lens equation
was proposed by Virbhadra, Narasimha, and Chitre (VNC)
in a paper studying the role of the scalar field in gravita-
tional lensing [10]. It is just the result of the sine theorem
applied to the triangle OCS

sinð�� �Þ ¼ dCS
dOS

sin�; (16)
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where dCS is the distance between the source S and the
intersection point C between the incoming and outgoing
trajectories. Equation (16) is valid for arbitrary deflections
and impact parameters. As for the Ohanian lens equation,
its only approximation with respect to the exact lens equa-
tion (10) is the asymptotic approximation, which is neces-
sary to express the deflection angle �.

However, the lens equation (16) is not a closed relation
among the detection angle � and the relative positions of
observer, lens, and source. In fact, it is expressed in terms
of the position of point C, which is unknown a priori and
needs to be estimated in some way. One possibility is to
approximate dCS by dLS, which is reasonable if the source
is at distances much larger than the impact parameter.
However, this additional approximation would spoil the
effectiveness of the lens equation in its original form.
Therefore, the VNC lens equation is difficult to use in
practical applications, since it demands an independent
knowledge or at least an estimate of the position of the
point C.

C. Virbhadra and Ellis lens equation

With their outbreaking paper about the possibility of
observing higher order images around the black hole at
the center of our Galaxy [11], Virbhadra and Ellis have
attracted great attention on gravitational lensing beyond
the weak deflection approximation, inspiring new vitality
in black hole gravitational lensing. They have also pro-
posed a new lens equation that has become very popular in
the scientific literature. Their equation is written in terms
of the distances between source, lens, and observer planes.

Starting from the relation among the segments

MS ¼ MI� SI; (17)

we can write the relation

DOS tan� ¼ DOS tan��DCS½tan�þ tanð�� �Þ�; (18)

where DCS is the distance between point C and the source

plane (namely the length of the segment CH). Even in this
case, the lens equation is expressed in terms of the position
of point C, which should be estimated in some way. The
proposal by Virbhadra and Ellis is to assume that C lies on
the lens plane, so that DCS ’ DLS. Then the final form of
the lens equation is

DOS tan� ¼ DOS tan��DLS½tan�þ tanð�� �Þ�: (19)

At the cost of an additional approximation, the lens equa-
tion is put in a form very easy to use in many astrophysical
applications, as it is finally expressed in terms of the
positions of lens, source, and observer. We will discuss
the error introduced by this approximation in Sec. V, while
in Sec. IV F we will present an improvement of this equa-
tion which avoids this approximation and makes it equiva-
lent to the Ohanian lens equation.

D. Dabrowski and Schunck lens equation

In a paper studying gravitational lensing by boson stars
[12], Dabrowski and Schunck realized the difficulties of
using the VNC lens equation (16) and derived the alter-
native lens equation

sinð�� �Þ ¼ dLS
dOS

cos� cos

�
arcsin

�
dOS

dLS
sin�

��
� ½tan�þ tanð�� �Þ�: (20)

This can be obtained from the Virbhadra and Ellis lens
equation (19) replacing the distances between planes DOS

and DLS by the distances between objects using Eqs. (4)
and (5) and noting that

dLS sin� ¼ dOS sin� (21)

in the associated Minkowski space.
In practice, the equation (20) by Dabrowski and Schunck

is the same as Eq. (19) by Virbhadra and Ellis but ex-
pressed in terms of distances between objects instead of
distances between planes. Of course, like the former equa-
tion, it contains the additional approximation that C lies on
the lens plane.

E. Bozza and Sereno lens equation

The Ohanian lens Equation (14) has the advantage of
being very simple and being the closest relative of the exact
lens equation, since it only contains the asymptotic ap-
proximation and makes no additional assumptions.
However, in several astrophysical applications one may
prefer to have a lens equation directly written in terms of
the angle � rather than �. In fact, � is an angle with vertex
in the observer and thus directly connected to coordinates
in the observer’s sky, whereas � is an angle with vertex in
the lens, thus being less close to observables. The relation
between the two angles is given by Eq. (21). Therefore, if
we take the sine of Eq. (14), using Eq. (15) and reordering
terms we get

dOS sin� ¼ dOL sin� cosð�� �Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2LS � d2OLsin

2�
q

sinð�� �Þ; (22)

which first appeared in Ref. [13]. Though being more
complicated than Eq. (14), this lens equation has the
advantage of being directly expressed in terms of the angle
� and thus preferable for applications in which this angle is
directly involved. Otherwise, it is completely equivalent to
the Ohanian lens equation. Note that the distances involved
in this equation are distances between the objects and not
between their geometrical planes, as in the lens equations
of Secs. IVC and IV F.
One may note that this lens equation is expressed in

terms of the same variables appearing in the equation by
Dabrowski and Schunck (20). However the two equations
look different. Apart from the ordering of the terms, Eq.
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(20) contains the additional approximation that C lies on
the lens plane, whereas Eq. (22) does not. Therefore, Eq.
(22) represents an improved version of Eq. (20). The same
difference will arise in the new equation to be presented in
the next section and the equation by Virbhadra and Ellis.

F. A new improved lens equations between planes

Equation (19) represents a very useful lens equation
expressed in terms of distances between the observer,
lens, and source planes. However, as we have explained
in Sec. IVC, it is derived under the additional assumption
that the intersection point C between the incoming and
outgoing ray trajectories lies on the lens plane. It would be
desirable to have a lens equation expressed in terms of the
same quantities without this additional assumption.

Starting again from the Ohanian lens equation (14), we
can solve it in terms of �� and plug it in Eq. (15). Recalling
Eq. (4) and the relation between � and � (21), we can put
the lens equation in the form

DOS tan� ¼ DOL sin��DLS sinð�� �Þ
cosð�� �Þ ; (23)

which represents the improved version of Eq. (19) by
Virbhadra and Ellis, in the same sense as Eq. (22) by
Bozza and Sereno represents the improved version of Eq.
(20) by Dabrowski and Schunck. In Sec. V we make a
thorough discussion and comparison of the two equations.

G. Small angles lens equation

We finally recall the classical lens equation obtained in
the hypothesis of small angles �, �, � � 1. This hypothe-
sis has nothing to do with the weak deflection approxima-
tion, since the deflection angle is typically expressed in
powers of rg=u, whereas the corrections to the small angles

approximation are expressed in powers of �, �, �. So it
makes sense to consider an exact deflection angle while
performing the small angles approximation in all trigono-
metric functions.

The small angles lens equation can be obtained from any
of the Eqs. (19), (20), and (22) or (23). The well-known
result [1–5] is

� ¼ �� DLS

DOS

�: (24)

The small angles approximation is the most rude ap-
proximation that can be done on the lens equation.
Nevertheless, it is a useful reference approximate equation
lying on the other extremum of the approximation ladder
with respect to the exact lens equation (10), with all other
lens equations staying in the middle steps between the two
equations.

It is interesting to note that a similar equation can be
deduced when the deflection angle is very close to multi-
ples of 2�. This case corresponds to higher order images

generated by photons performing one or more loops around
the lens before emerging. The only difference is that the
deflection angle � in Eq. (24) must be replaced by ��
2n�, where n is the number of loops.

H. Conclusions on approximate lens equations

To summarize this section, we can say that the asymp-
totic approximation allows the use of the relations of
Euclidean geometry, confining general relativity to the
derivation of the precise expression of the deflection angle
in terms of the impact parameter.
In order to write the lens equation in terms of �, �, and

the relative positions of observer, source and lens, an addi-
tional relation is needed between the incoming and the
outgoing branches of the photon trajectory. The lens equa-
tion by Ohanian (14), and the related Eqs. (22) by Bozza
and Sereno and (23) presented in this paper, use the equal-
ity of the impact parameters of the incoming and outgoing
trajectories, expressed by Eq. (15). This equality descends
from the time-reversal symmetry of the photon geodesic in
general relativity along with the asymptotic
approximation.
On the other hand, the lens equations by Virbhadra and

Ellis (19) and Dabrowski and Schunck (20) use an alter-
native relation between the incoming and outgoing trajec-
tories by imposing that the intersection point C lies on the
lens plane. In the next section we will quantify the accu-
racy of these lens equations in a realistic astrophysical
situation.

V. LENS EQUATIONS AT WORK IN A REALISTIC
EXAMPLE

As explained in the previous section, in the treatment of
gravitational lensing by spherically symmetric lenses with
arbitrary deflection angles, we can distinguish an exact lens
equation (10), a family of lens equations with the asymp-
totic approximation only (14), (22), and (23), and a family
of lens equations with the additional geometrical approxi-
mation that the intersection point C lies on the lens plane
(19) and (20). For simplicity, we shall refer to these two
families of approximate lens equations as the Ohanian
family and the Virbhadra and Ellis family, respectively.
Furthermore, we have the small angles lens equation, in
which all trigonometric functions are approximated by
their first order expansions. Finally, we can also consider
the effect of the weak deflection approximation on the
deflection angle, by retaining only the lowest order term
in the weak deflection expansion. Wewill not consider here
the VNC lens equation (16) since it is not expressed in
terms of the relative configuration of source, lens, and
observer but demands additional information on the posi-
tion of point C.
As pointed out in Ref. [11], the best candidate for the

observation of gravitational lensing in the regime of large
deflections is the black hole at the center of our Galaxy,
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named Sgr A*. Its mass is estimated toM ¼ 3:6� 106M�
and its distance is DOL ¼ 8 kpc [19]. The Schwarzschild
radius is therefore

rg ¼ 2GM

c2
¼ 1010 m: (25)

In order to test the accuracy of the different lens equa-
tions, we consider the source plane to be at distanceDLS ¼
1000rg from the black hole. At this distance, the source is

just at the margin of the accretion disk of the black hole, so
it may be a star spiralling towards the black hole (the
star S2 is known to reach a distance of 1700rg at its

periapse [19,20]) or a bright spot of hot material rotating
around the black hole. Apart from the physical meaning of
a source at such distance, this choice has been made with
the aim of putting in better numerical evidence the differ-
ences in the performances of the lens equations, since the
expected order of magnitude of the errors scales with
powers of rg=DLS and rg=DOL.

We are going to study the position of the images as a
function of the position of the source, keeping the distance
to the source plane DOS fixed. Therefore, we will compare
the results of the exact lens equation (10) with the results of
the Virbhadra and Ellis (VE) lens equation (19), the im-
proved lens equation (23), which is equivalent to Ohanian
lens equation (we shall refer to it as the OB lens equation),
and the small angles lens equation (24). The last three
equations are already expressed in terms of �, DLS, and
DOS, whereas the exact lens equation (10) is expressed in
terms of � and dLS. We will use Eqs. (4) and (21) to obtain
these quantities as functions of � and DLS, referring to the
associated Minkowski spacetime.

The azimuthal shift � is calculated assuming that the
spacetime metric around the black hole is Schwarzschild.
Therefore we have

AðrÞ ¼
�
1� rg

r

�
; BðrÞ ¼

�
1� rg

r

��1
; CðrÞ ¼ r2:

(26)

We remind that the detection angle � is related to the
angular momentum of the photon J by Eq. (8). In the
approximate lens equations (19), (23), and (24) the deflec-
tion angle is obtained by Eq. (11) as a function of � through
Eq. (8). For any given value of the source position �, we
find the corresponding position of the images � numeri-
cally in all lens equations (see Sec. VC for details).

A Schwarzschild black hole generates two infinite se-
quences of images on each side of the source [6]. The
outermost pair of images is made of the classical primary
and secondary images, which can also be described in the
classical weak deflection limit. Section VA is devoted to
their study. The second pair of images is generated by
photons performing one complete loop around the black
hole before reaching the observer. These higher order
images are typically very faint, but their detection could

be very important for a confirmation of general relativity.
We examine them in Sec. VB.

A. Primary and secondary images

For any values of �, we look for solutions of the lens
equation such that �=2<�ð�; dOL; dLSÞ< 3�=2. In this
interval we always have one solution for any values of �.
In Fig. 2 we show the exact position of the image for �

in the range [� 10 mas, 10 mas]. For positive � the image
is on the same side of the source (primary image), whereas
for negative � the image is on the opposite side (secondary
image). We see that for large values of � the position of the
primary image tends to coincide with the source position
itself (� ’ �). The secondary image, instead, becomes
closer and closer to the black hole. The minimum angle
�min represents the border of the so-called shadow of the
black hole. This angle is obtained by the minimum angular

momentum through Eq. (8) with Jmin ¼ 3
ffiffiffi
3

p
rg=2. For the

black hole in Sgr A*, we have �min ¼ 23 �as. The value of
� for � ¼ 0 represents the radius of the Einstein ring,
which for our geometrical configuration is �E ¼ 404 �as.
Figure 2 has been obtained with the exact lens equation.

However, as anticipated before, we expect errors at most of
the order rg=DLS using the approximate equations. So, the

difference cannot be appreciated by superposing the solu-
tions obtained with different lens equations. We choose,
instead, to plot the relative error in the image positions with
respect to the exact lens equation. These are defined as

	OB ¼ �OB
�ex

� 1 (27)

	VE ¼ �VE
�ex

� 1 (28)

-10 -5 0 5 10
β mas

1.5

2

2.5

3

3.5

4

L
og

θ
µ a

s

FIG. 2. The exact position of the image � as a function of the
source position � in a linear-log plot. The dashed line is the
shadow of the black hole �min. For �> 0 the plot represents the
primary image, for �< 0 it represents the secondary image.
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	SA ¼ �SA
�ex

� 1 (29)

	WD ¼ �WD

�ex
� 1 (30)

where the subscript ‘‘ex’’ refers to the result of the exact
lens equation (10), ‘‘OB’’ refers to the improved equation
presented in this paper (23) derived from that by Ohanian,
‘‘VE’’ refers to the equation by Virbhadra and Ellis (19),
‘‘SA’’ refers to the small angles equation (24), and ‘‘WD’’
refers to the small angles lens equation with the Einstein
approximation � ’ 2rg=DOL� for weak deflection angles.

Apart from �WD and �ex, in all remaining cases the position
of the images is computed picking � from Eq. (11) and
relating u to � by Eq. (8), as mentioned before.

Figure 3 shows a comparison between the accuracy of
the four equations.

All lens equations have the same accuracy for very large
�, when gravitational lensing becomes negligible.
However, as � approaches �E the error of all equations
increases, save for the OB lens equation. Noting that the
plot is in a logarithmic scale, we see that 	VE tends to be of
the order 10�3, whereas 	OB drops to 10�7, proving to be
much more accurate. Going to �< 0, we see that the error
stays nearly constant for the VE lens equation, whereas it
continues to decrease for the OB lens equation to very tiny
values. Note the change in sign in 	VE for positive �,
which can be deduced from the negative spike in the
logarithmic plot as 	VE crosses zero. This signals the fact
that the sources of error dominating for large� and small�
are different and have opposite signs. Surprisingly, the
small angles lens equation SA has an error comparable to
the VE lens equation in the most interesting lensing region
(j�j & �E), corresponding to a very good alignment of the

source with the lens. The VE lens equation performs better
than the SA equation at large negative �, where the small
angles approximation is no longer tenable. On the other
hand, the weak deflection approximation WD always stays
at larger errors.
Now let us find the interpretation of the errors of the

considered lens equations. We start from the OB lens
equation, which only contains the asymptotic approxima-
tion. This lens equation is completely equivalent to the
Ohanian lens equation, so we can use this equation for the
evaluation of the error and translate the results in terms of
the OB equation.
If we expand the azimuthal shift� (6) in inverse powers

of DOL and DLS, at zero order we obtain the deflection
angle �þ �. After this, we obtain some terms that repro-
duce the power expansions of the geometrical terms ��
and � ��, which are explicitly present in the Ohanian lens
equation (14) and finally, the first term that is not present in
the Ohanian lens equation is

��asym ¼ 1

8

�
rg
dLS

��3 þ rg
dOL

�3
�
: (31)

Taking this term to the right-hand side of the Ohanian
lens equation, we can interpret it as an effective change in
�. Then we can estimate the corresponding change in �
simply by

��asym ¼ @�

@�
��asym: (32)

Evaluating the derivative of � numerically, and taking
for ��asym the expression in Eq. (31), we exactly repro-

duce the error 
OB in the OB lens equation, as can be
appreciated from Fig. 4. In this figure we have also shown
the VE error, already presented in Fig. 3, together with the
error deriving from the approximation that C lies on the
lens plane. This error can be simply calculated by taking
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FIG. 3. Relative error in the position of the images for the
weak deflection lens equation (WD), the small angles lens
equation (SA), the Virbhadra and Ellis lens equation (VE), and
the improved Ohanian lens equation (OB) in a log scale. The
dashed vertical lines bound the region with j�j< �E, in which
gravitational lensing is mostly interesting.
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FIG. 4. Comparison among the relative error in the position of
the images for the Virbhadra and Ellis lens equation (VE) and
what we expect from the asymptotic approximation (asym) and
the approximation that the intersection point C lies on the lens
plane (cross).
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the differences of the right-hand sides of Eqs. (19) and (23)

��cross ¼ @�

@ tan�
�ðtan�Þcross (33)

�ðtan�Þcross ¼ DOL

DOS

�
tan�� sin�

cosð�� �Þ
�
: (34)

We can explicitly see that the error due to the approxi-
mation that C lies on the lens plane dominates the error due
to the asymptotic approximation in the calculation of the
secondary image (�< 0) and for the primary image up to
moderately large �. For � � �E, the error due to the
asymptotic approximation becomes more relevant than
the error due to the position of the intersection point.
However, as already mentioned before, the last regime is
the least important for gravitational lensing.

The error induced by the small angles approximation
can be obtained by considering the next-to-leading order in
the power expansions of the trigonometric functions
present in Eq. (23). It amounts to

��small ¼ �ðDOS��DLS�Þ3
3D3

OS

þDOL�ð3�2 � 6��þ 2�2Þ � 2DLSð�� �Þ3
6DOS

:

(35)

To conclude this subsection, it is interesting to give
approximate estimates of the order of magnitude of the
errors in terms of the geometric distances involved in the
problem in different limits. For example, we can consider
the two limits � � �E (primary image) and �� � �E
(secondary image). In the first case we have � ’ �, in the
second case � ’ �2rgDLS=ðDOLDOS�Þ from the weak

deflection approximation. Taking also DOS ’ DOL, we
have the simple estimates

	asymþ ’ � rg
8DLS

D2
OL�

2

d2LS
(36)

	asym� ’ �
�

rg
DOL�

�
4 D2

LS

d2LS
(37)

	crossþ ’ 2r2g

D2
OL�

2
(38)

	cross� ’ rg
DLS

(39)

	smallþ ’ � 2r2g
DOL

(40)

	small� ’ �D2
OL�

2

3D2
LS

; (41)

which reproduce the curves in Figs. 3 and 4 fairly well
outside the lensing zone and are useful to realize the order
of magnitude of the errors. In particular, we can appreciate
that the error due to the position of the intersection point
has opposite sign with respect to the others.
Finally, a very interesting limit is the case � ¼ 0, cor-

responding to a source perfectly aligned with the black
hole and the two images merged into an Einstein ring of
radius �. The errors in the estimate of the radius of the
Einstein ring are

	asym0
’ � r2g

8D2
LS

(42)

	cross0 ’
rg

2DLS

(43)

	small0 ’
rg

6DLS

(44)

	weak0 ’ � 15�

64

ffiffiffiffiffiffiffiffiffiffiffi
rg

2DLS

s
; (45)

where the error due to the weak deflection approximation
comes from the first term neglected in the weak deflection
expansion (see, for example, Refs. [21–23]).
These relations are very useful to understand the accu-

racy of the various lens equations in the most interesting
regime, that is when the gravitational lensing images are
most prominent and eventually form an Einstein ring. The
weak deflection lens equation has an error of the order

ðrg=DLSÞ1=2. In the case under examination, this would

translate into an error of 6:6 �as in the radius of the
Einstein ring, which is �E ¼ 404 �as in the situation
imagined in this calculation. The small angles lens equa-
tion employed with the exact deflection angle has an error
of order (rg=DLS), which would amount to 0:07 �as. The

VE lens equation has an error of the same order of magni-
tude, but with a slightly larger numerical coefficient, thus
leading to an error of 0:2 �as. Finally, the OB lens equa-
tion has an error of order ðrg=DLSÞ2, which amounts to 5�
10�5 �as.

B. Higher order images

An analysis similar to Sec. VA can be repeated for the
higher order images, whose position and magnification has
been analyzed in Ref. [11] for the case of the black hole in
the center of our Galaxy, and then revisited in many papers
with different methods. The first pair of higher order
images can be found in the interval 5�=2<
�ð�; dOL; dLSÞ< 7�=2, corresponding to photons per-
forming one loop before reaching an observer on the other
side of the lens with respect to the source. Since these
images appear very close to the shadow border �min, we
think it is more instructive to discuss the fractional dis-
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placement of the image from the shadow border, defined as


 ¼ �

�min

� 1: (46)

This quantity is shown in Fig. 5 for the geometric configu-
ration examined in this paper. The plot has been calculated
using the exact lens equation (10). For �> 0 the curve
represents the fractional displacement of the positive parity
image on the same side of the source and for �< 0 the
curve represents the fractional displacement of the nega-
tive parity image on the opposite side. For � ¼ 0, we
obtain the displacement of the first order Einstein ring
�E;1 from the shadow border.

In order to compare the performances of the different
lens equations, in Fig. 6 we plot the relative error in this
fractional displacement with respect to the exact lens
equation

	
;OB ¼ 
OB

ex

� 1 (47)

	
;VE ¼ 
VE

ex

� 1 (48)

	
;SA ¼ 
SA

ex

� 1: (49)

The SA lens equation, in this case, is Eq. (24) with �
replaced by �� 2�, as explained in Sec. IVG.

Again we see that the OB lens equation has much lower
errors in the estimate of the position of the images than any
other lens equations. The VE lens equation performs
slightly better than the small angles equation for j�j *
�E;1, whereas the opposite occurs in the good alignment

regime j�j & �E;1. It is interesting to note that there is a

value for � such that � ¼ 2� and � ¼ �. In this particular
point, all lens equations are equivalent and are affected by
the same small error, determined by the asymptotic
approximation.

Similarly to the case of the primary and secondary
images, we can make analytical estimates of the errors in
the positions of the higher order images. We follow the
same procedure described in the previous subsection and
use the analytical approximation


 ’ 
SDL ¼ 216ð7� 4
ffiffiffi
3

p Þe�3�þ�; (50)

derived in the strong deflection limit [6,9,24], in order to
have fully analytical results. Then, the errors in the dis-
placement of the first order Einstein ring are

	
;OB;0 ¼ � 81
ffiffiffi
3

p
64

�
rg
DLS

�
4

(51)

	
;VE;0 ¼ 81
ffiffiffi
3

p
16

�
rg
DLS

�
3

(52)

	
;SA;0 ¼ 27
ffiffiffi
3

p
16

�
rg
DLS

�
3
: (53)

Again the error in the VE lens equation is of the same
order as the error in the small angles lens equation with a
slightly larger numerical coefficient.

C. Notes on numerical integration

In the previous subsections we have compared the im-
ages obtained by solving different lens equations. The
relative error has proved to be quite small, particularly
for the OB lens equation, whose error goes down to
10�12 in some plots. In order to investigate such tiny
differences, we must push the numerical precision of our
calculations sufficiently far.
The crucial step in the computations is represented by

the evaluation of the integral (6), which contains an inte-
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FIG. 5. Fractional displacement of the first pair of higher order
images from the shadow border as a function of � as defined in
Eq. (46).

-0.2 -0.1 0 0.1 0.2
β mas

-11

-10

-9

-8

-7

-6

-5

-4

L
og

δ ε

SA

VE

OB

FIG. 6. Errors in the estimate of the fractional displacement of
the first pair of higher order images from the shadow borders. SA
refers to the small angles lens equation, VE to the Virbhadra and
Ellis lens equation, OB to the improved Ohanian lens equation.
The dashed lines bound the range in which j�j< �E;1, where
�E;1 is the angular radius of the first order Einstein ring.
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grable singularity at r0. We have used the NINTEGRATE

routine by MATHEMATICA with the default method (adap-
tive Gaussian quadratures with error estimation based on
Kronrod points [25]). In order to reduce the errors, we have
worked with the variable z, defined by

r ¼ r0
1� z

; (54)

z ranges from 0 to 1 as r ranges from r0 to þ1. In the
Schwarzschild metric, the integrand in Eq. (6) expressed in
terms of z becomes ffiffiffiffiffi

r0
p

ffiffiffi
z

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r0 � 3þ ð3� r0Þz� z2

p : (55)

We have checked that increasing the precision goal and
the working precision makes the numerical results con-
verge to an asymptotic limit, with a controllable precision
(we have reached a 10�25 precision). Furthermore, we have
also rewritten the integral as an ordinary differential equa-
tion to be solved by the NDSOLVE routine, which switches
between a nonstiff Adams method and a stiff Gear back-
ward differentiation formula method. Solving the differen-
tial equation, we get the primitive function, which can be
evaluated at both ends of the domain. In this way, we have
double-checked our results obtained by NINTEGRATE find-
ing that the two methods converge to the same result. In
particular, we find that the differential equation method
converges more slowly than the numerical integration with
the Gaussian quadratures, as the precision goal is in-
creased. For this reason we tend to give a preference to
the NINTEGRATE routine. The results presented in the plots
are calculated with a 10�18 precision.

The accuracy in the numerical calculation is finally
confirmed by the very good agreement with the analytical
estimates for the errors at leading order.

VI. DISCUSSION AND CONCLUSIONS

Of course, an approximation can be valid or not depend-
ing on the precision of the observational instrumentation,
the level of environmental noise and the accuracy needed
for the extraction of the interesting information.

The best resolution we can expect to reach in a reason-
ably near future is that of the MAXIM project [26], which
amounts to a fraction of �as. Then, in the example con-
sidered in this section, the weak deflection lens equation
would not be able to ensure such a precision. The VE and
the small angles lens equations would be marginally ade-
quate, whereas the Ohanian lens equation would be largely
sufficient, without need to resort to the exact lens equation.
So, in order to exploit the resolution of future instruments,
it might be necessary to use the Ohanian lens equation or
one of its variants.

Environmental noise can be provided by scattering and
absorption processes affecting the photons involved in

gravitational lensing. Such processes should be very effec-
tive in the environment of the supermassive black hole at
the Galactic center. However, they act in a statistical way
and a good average process should be able to restore the
original information regarding gravitational lensing. More
subtle are the effects that introduce unwanted systematics,
such as gravitational lensing by secondary objects.
However, the gravitational lensing optical depth towards
the center of the bulge is of the order 10�6 [5], which
indicates that lensing or microlensing effects by stars or
other compact objects on the line of sight is absolutely
negligible (see also [27]). In the absence of relevant sys-
tematics, the position of the centroids of the images can be
used for a clean reconstruction of the gravitational lensing
event at the angular resolution level reached by the
instruments.
Finally, we note that there are many theoretical reasons

to require a reconstruction of a gravitational lensing event
as precise as possible. As anticipated, the study of higher
order terms in the deflection angle requires a precision

better than ðrg=DLSÞ1=2 at second PPN order and

(rg=DLS) at third PPN order. Therefore, if one wants to

compare the results of PPN formalism with different black
hole metrics, it is mandatory to use a lens equation that
guarantees the necessary accuracy. In this respect the VE
lens equation does not represent an improvement with
respect to the small angles approximation, as it is affected
by an error of the same order of magnitude.
In this work we have compared the level of accuracy of

several lens equations, keeping the exact general relativis-
tic lens equation introduced by Frittelli, Kling, and
Newman [7,8] as the reference equation. We have shown
that the Ohanian lens equation [9] and its close relatives
[13,18] are the best approximations of the exact lens
equation, in that they adopt the asymptotic approximation
only. Other lens equations are not expressed in terms of
relative positions of source, lens and, observer [10] or
introduce additional approximations [11,12].
Furthermore, we have presented a new formulation of

the Ohanian lens equation in terms of the distances be-
tween the observer, lens, and source planes, which fills a
gap in the lens equation zoo. As shown by a numerical
example describing a realistic gravitational lensing event
by the black hole at the center of our Galaxy, such an
equation represents a noteworthy improvement with re-
spect to previous commonly used lens equations expressed
in terms of the same quantities.
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